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AbstratThe shrinking generator is a well-known keystream generator omposed of two linearfeedbak shift registers, LFSR1 and LFSR2, where LFSR1 is lok-ontrolled aording toregularly loked LFSR2. The keystream sequene is thus a deimated LFSR1 sequene.Statistial distinguishers for keystream generators are algorithms whose objetive is todistinguish the keystream sequene from a purely random sequene. Previously proposedstatistial distinguishers for the shrinking generator are based on deteting binary linearrelations in the keystream sequene that hold with a probability suÆiently di�erentfrom one half. In this paper a novel approah whih signi�antly redues the requiredomputation time is introdued. It is based on a probabilisti reonstrution of thebits in the regularly loked LFSR1 sequene that satisfy the LFSR1 reurrene or anylinear reurrene derived from low-weight multiples of the LFSR1 harateristi polyno-mial. The keystream sequene length and the omputation time required for a reliablestatistial distintion are analyzed both theoretially and experimentally.Key words. Stream iphers, irregular loking, posterior probabilities, statistialdistinguishers.1 IntrodutionThe shrinking generator [1℄ is a well-known keystream generator for stream ipher appliations.It onsists of only two linear feedbak shift registers (LFSR's). The lok-ontrolled LFSR,LFSR1, is irregularly loked aording to the lok-ontrol LFSR, LFSR2, whih is regularlyloked. More preisely, at eah time, both LFSR's are loked one and the bit produedby LFSR1 is taken to the output if the lok-ontrol bit produed by LFSR2 is equal to1. Otherwise, the output bit is not produed. The output sequene is thus a nonuniformlydeimated LFSR1 sequene. It is reommended in [1℄ that the LFSR initial states and thefeedbak polynomials be de�ned by the seret key. Under ertain onditions, the outputsequenes possess a long period, a high linear omplexity, and good statistial properties.1



The basi divide-and-onquer attaks on LFSR2 and LFSR1 are given in [9℄ and [3℄, re-spetively, and both require the exhaustive searh through the initial states and feedbakpolynomials of the respetive LFSR. A number of algorithms whih may yield faster attakson LFSR1 are proposed in [4℄, [8℄, and [7℄.This paper deals with statistial distinguishers to be used for distinguishing the outputsequene of the shrinking generator from a purely random sequene.1 It is shown in [2℄ and[5℄ that the output sequene may have a detetable linear statistial weakness if the feedbakpolynomial of LFSR1 has low-weight polynomial multiples of moderately large degrees. Morepreisely, with a probability onsiderably di�erent from one half, the output sequene satis�esthe linear reurrenes orresponding to the so-alled shrunken versions of these polynomials.These linear reurrenes are alled the linear models for the shrinking generator. Any suhlinear model diretly yields a linear statistial distinguisher for the shrinking generator. It isargued in [4℄ that this weakness may even be used for a faster reonstrution of the feedbakpolynomial as well as the initial state of LFSR1.Our objetive is to introdue another type of statistial distinguishers whih, instead oflooking for linear relations in the output sequene, aim at estimating the linear relations in theregularly loked LFSR1 sequene by using the posterior probabilities of individual bits of theregularly loked LFSR1 sequene when onditioned on appropriate segments of the outputsequene. The LFSR1 feedbak polynomial is assumed to be known. In the probabilistimodel where the LFSR sequenes are assumed to be independent and purely random, theseprobabilities an be omputed by the algorithm derived in [7℄. In addition, when the bitssatisfying the linear relations in the LFSR1 sequene are very lose to eah other so that theindependene assumption behind the bitwise approah is less realisti, the algorithm from[7℄ is extended to deal with bloks of bits instead of individual bits. A theoretial analysisshows that the novel approah takes a signi�antly smaller omputation time than the linearmodel approah from [2℄ and [5℄. The theoretial analysis is supported by experimental resultsobtained by omputer simulations.Setion 2 ontains a onise overview of the linear model approah from [2℄, [4℄, and [5℄.Algorithms for omputing the posterior probabilities of individual bits and of bloks of bitsin the regularly loked LFSR1 sequene are presented in Setion 3. The new statistialdistinguisher based on these probabilities is proposed and theoretially analyzed in Setion4, whereas the experimental results are desribed in Setion 5. Conlusions are presented inSetion 6.2 Linear ModelsWe use the notation A = a1; a2; � � � for a binary sequene, Ak for its subsequene ak; ak+1; � � �,An for its pre�x (ai)ni=1 = a1; a2; � � � ; an, and Ank for its subsequene (ai)ni=k = ak; ak+1; � � � ; an.If its length is �nite, then A is alled a string. Also, let �A denote the bitwise binary omplement1A sequene of independent uniformly distributed random variables over a �nite set is alled purely random.2



of A. Let w(A) denote the number of 1's in A. For simpliity, wherever possible, we keep thesame notation for random variables and their values.Let X, C, and Y denote the output sequenes of LFSR1, LFSR2, and the shrinking gener-ator itself, respetively. Then Y is obtained from X by the nonuniform deimation aordingto C, that is, a bit xi is deleted from X i� i = 0. It is assumed that C is a purely randomsequene.Let X satisfy the linear reurrene orresponding to a harateristi polynomial f of degreer and weight w+1, f(z) = 1+Pwk=1 zik , 1 � i1 < � � � < iw = r, that is, xt = Pwk=1 xt+ik , t � 1.Here and throughout it is assumed that the summation of binary values is modulo 2. Notethat f is the reiproal of the LFSR1 feedbak polynomial, that is, the LFSR1 harateristipolynomial or its any polynomial multiple. A shrunken polynomial of f is then de�ned asf̂(z) = 1 +Pwk=1 z îk , 1 � î1 < � � � < îw = r̂, where �̂k = îk � îk�1 � 1 � �k = ik � ik�1 � 1,1 � k � w, and î0 = i0 = 0. Aording to the so-alled linear sequential iruit approximationmethod appliable to arbitrary keystream generators, it is pointed out in [2℄ and [5℄ that forany t � 1, the linear equation yt = wXk=1 yt+îk (1)holds with probability 1+2 , where the orrelation oeÆient2  is given as = 12r wYk=1 �k�̂k!: (2)Note that  is the probability that the w bits on the right-hand-side of (1) originate fromthe orresponding w bits in X that together with the bit yielding yt satisfy f in X. So,  isessentially the probability that the linear relation in X involving yt is preserved in Y . Theprobabilisti linear reurrene de�ned by (1) is alled a linear model as it means that Y anbe generated by a nonautonomous LFSR with a nonbalaned3 additive input and the feedbakpolynomial being the reiproal of f̂ .The orrelation oeÆient  reahes its maximal value, f , given f , if the shrunken poly-nomial is hosen aording to �̂optk = b(�k + 1)=2, 1 � k � w. If none of �k=2 is very small,then f an be approximated byf � (2�)�w2  wYk=1�k!� 12 � (2�)�w2 �r � ww ��w2 ; (3)where the lower bound is reahed if the feedbak taps are approximately equidistant.2The orrelation oeÆient between two binary random variables is de�ned as (a; b) = 2Prfa = bg � 1.The orrelation oeÆient of a single binary variable is de�ned as (a) = (a; 0).3A uniformly distributed random variable over a �nite set is alled balaned.3



The weakness an be deteted by the hi-square statistial test applied to the sequene (yt+Pwk=1 yt+îk)1t=1. The required sequene length, n, and the omputation time are proportionalto 1=2, say 10=2, and the output sequene length is n+r. The omputational step onsists ofw binary summations and one binary ounting update. For the optimal shrunken polynomial,we have 12f � (2�)w �r � ww �w : (4)Aordingly, to minimize n, the use of the multiples of the LFSR1 harateristi polynomialof relatively low weight and not too large degree is desirable.More importantly, n an be signi�antly redued by using a number, approximately 2�w=f ,of di�erent shrunken polynomials lose to being optimal, that is, suh that j�̂k � �̂optk j �(��k=2) 12 . The length required is thus onsiderably redued and is proportional to1f2�w � (2p2�)w �r � ww �w2 ; (5)whereas the omputation time remains the same, that is, proportional to (4).3 Computing the Posterior Probabilities of LFSR1 BitsWe keep the same notation as in Setion 2, but now assume a probabilisti model where apartfrom C, X is also a purely random sequene, whih is independent of C. In this model theoutput sequene Y is also purely random.3.1 Individual LFSR1 BitsThe basi statistial distinguisher to be introdued in Setion 4 is based on the posteriorprobabilities of individual LFSR1 bits p̂i = Prfxi = 1 j Y ng = Prfxi = 1 j Y ig, 1 � i � n, forappropriately de�ned Y n. As proven in [7℄, they an be omputed in O(n2) time and O(n)spae by p̂i = 12  12 + 2�(i�1) i�1Xe=0 i� 1e ! yi�e! : (6)This is proven by simplifying a more general expression whih holds in a general probabilistimodel where X is a sequene of independent binary random variables. An alternative proofof (6) is given in Setion 3.3 where a more general problem of omputing the posterior proba-bilities of bloks of LFSR1 bits is onsidered. As p̂i an be numerially approximated with anarbitrarily small error by using only O(pi� 1) values of e around (i� 1)=2, the omputationtime an be redued to O(npn). 4



The binomial oeÆients an be reursively preomputed in O(n2) time by e+ se ! =  e+ s� 1e� 1 ! +  e+ s� 1e ! (7)for 0 � s � n� 1, 0 � e � n� 1� s, and (e; s) 6= (0; 0), from the initial value �00� = 1.It is also shown in [7℄ that 1=4 � p̂i � 3=4, where the lower and upper bounds are ahievedif and only if Y i onsists of all 0's and of all 1's, respetively.3.2 Initial Bloks of LFSR1 BitsFor omputing the posterior probabilities of bloks of LFSR1 bits to be introdued in Setion3.3, we need to ompute the posterior probabilities of the initial bloks in the LFSR1 sequenePrfXn j Y g = PrfXn j Y ng. Aording to [3℄ and [7℄, we havePrfXn j Y ng = PrfY n j Xng = nXe=0 2�eQ(e; n� e) (8)where Q(e; s) is the onditional probability for pre�xes of X and Y de�ned byQ(e; s) = PrfY s; w(Ce+s) = s j Xe+sg: (9)It is in fat the probability that Y s is obtained by deleting e bits from a given string Xe+s.This probability an be omputed reursively, in O(n2) time and O(n) spae, byQ(e; s) = 12 Q(e� 1; s) + 12 Æ(xe+s; ys)Q(e; s� 1) (10)for 0 � s � n and 0 � e � n � s, from the initial ondition Q(0; 0) = 1, where for e = 0 ors = 0 the orresponding terms on the right-hand side of (10) are assumed to be equal to zero.Here, Æ(i; j) or Æi;j is the Kroneker symbol, i.e., Æ(i; j) = 1 if i = j and Æ(i; j) = 0 if i 6= j.Note that the statistially optimal orrelation attak on LFSR1 is based on PrfXn j Y ng asa measure of orrelation between Xn and Y n, where Xn is produed from an assumed LFSR1initial state. The required n is proportional to the length of LFSR1.3.3 Arbitrary Bloks of LFSR1 BitsThe re�nement of the basi statistial distinguisher to be introdued in Setion 4 is based onthe posterior probabilities of bloks of m onseutive bits at variable positions in the LFSR1sequene PrfX ii�m+1 j Y ng = PrfX ii�m+1 j Y ig, 1 � m � i � n. For m = 1, they redueto the posterior probabillities of individual LFSR1 bits already onsidered in Setion 3.1.These probabilities an also be useful for improving the fast orrelation attak on LFSR1 from[7℄. Our objetive here is to show that they an be omputed eÆiently by generalizing theexpression (6). 5



The basi fat to be used is that the lok-ontrol sequene C, in the model where X ispurely random, remains to be purely random even when onditioned on the output sequeneY . This is beause Y is purely random even if C is �xed, provided that X is purely random.Aordingly, we havePrfX ii�m+1 j Y ig = i�mXe=0 PrfX ii�m+1 j w(Ci�m) = e; Y ig � Prfw(Ci�m) = e j Y ig= i�mXe=0 PrfX ii�m+1 j w(Ci�m) = e; Y e+me+1 g � Prfw(Ci�m) = eg= i�mXe=0 P (X ii�m+1 j Y e+me+1 ) � 12i�m  i�me ! (11)where we used the notationP (Am j Bm) def= PrfXm = Am j Y m = Bmg: (12)More preisely, the seond and the third line of (11) follow from the fat that C is purelyrandom when onditioned on Y and from the fat that, on the ondition that w(Ci�m) = e,Cii�m+1 and X ii�m+1 remain to be purely random and mutually independent as well as thata pre�x of the string Y e+me+1 is obtained by deimating X ii�m+1 aording to Cii�m+1. Theprobability P (Xm j Y m) an be omputed reursively by using (8) and (10).Aordingly, we have the following theorem, whih generalizes (6).Theorem 1 For any given X ii�m+1 and Y n and eah m � i � n, we havePrfX ii�m+1 j Y ng = 12i�m i�mXe=0  i�me !P (X ii�m+1 j Y e+me+1 ): (13)If m is relatively small, then one an preompute the probabilities P (Xm j Y m) for all22m string pairs (Xm; Y m). In fat, in view of the omplementation property P (Xm j Y m) =P ( �Xm j �Y m), one has to preompute only 2m�1(2m� 1) probabilities. The posterior probabil-ities an then be omputed in O((2m � 1)n2) time and O((2m � 1)n) spae by using (13). Itfollows that �14�m � PrfX ii�m+1 j Y ng � �34�m (14)where the bounds are ahieved if and only if X ii�m+1 and Yi are both onstant strings, wheredi�erent onstants yield the lower bound and the same onstants yield the upper bound.
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4 Statistial DistinguisherThe posterior probabilities of individual bits and of bloks of bits in the LFSR1 sequene aredetermined in Setions 3.1 and 3.3, respetively, in the probabilisti model where the LFSR1sequene is assumed to be purely random. Our main objetive here is to show that theseprobabilities an also be used in the model where the LFSR1 sequene is assumed to satisfy alinear reurrene and thus establish a basis for a new and more eÆient statistial distinguisherfor the shrinking generator.4.1 Basi Statistial TestAs in Setion 2, assume that X satis�es the linear reurrene xt = Pwk=1 xt+ik , t � 1, orre-sponding to a harateristi polynomial f(z) = 1 + Pwk=1 zik of degree r and weight w + 1.Consider a bit yt in the output sequene Y . It is obtained from some bit xt0 in X, and itis not important to know t0. Therefore, the subsequene Yt+1 is obtained by deimating thesubsequene Xt0+1. We know that the linear equation xt0 = Pwk=1 xt0+ik is satis�ed and weknow xt0 , but we do not know the remaining w involved bits of X. However, as Yt+1 is ob-tained by deimating Xt0+1, we an determine the posterior probabilities of these w bits whenonditioned on known Yt+1.Namely, we an ompute p̂ik = Prfxt0+ik = 1 j Y t+ikt+1 g by using (6) for i = ik, 1 � k � w, inPwk=1 ik = O(wr) time. Here the dependene of p̂ik on t is not expliitly shown for simpliityand to emphasize the fat that the position ik rather than t0 + ik is relevant. By using thenumerial approximation desribed in Setion 3.1, the omputation time an be redued toO(wpr). We an then make hard deisions on these w bits by applying the maximal posteriorprobability deision rule for individual bits, i.e., x̂t0+ik = 1 if p̂ik � 0:5 and x̂t0+ik = 0 ifp̂ik < 0:5, 1 � k � w. Finally, we an produe a hard estimate _xt = yt + Pwk=1 x̂t0+ik ofthe value of the linear equation xt0 +Pwk=1 xt0+ik , whih is known to be equal to zero. Themain point of the approah is that we an expet that _xt is biased towards zero when Y isthe output sequene of the shrinking generator and is balaned when Y is a purely randomsequene. This is justi�ed by the analysis given in Setion 4.2.Aordingly, the statistial distinguisher is de�ned by repeating the proedure desribedabove for every 1 � t � n, by ounting the numbers of 0's and 1's in the hard estimatesequene _Xn = ( _xt)nt=1, say n0 and n1, respetively, and by omputing the hi-square statisti�2 = (n0 � n1)2=n and the sign of n0 � n1. For large n, the statisti is expeted to follow thehi-square distribution with one degree of freedom if Y is a purely random sequene and togrow approximately linearly with n if Y is the output sequene of the shrinking generator. So,let �20 be a threshold hosen to an assumed signi�ane level � (e.g., �20 � 6:6349 for � = 0:01).Then for a suÆiently large n, the statisti exeeds the threshold with probability � if Y isa purely random sequene and with probability very lose to 1 if Y is the output sequene ofthe shrinking generator. The minimal length and omputation time required are estimatedtheoretially in Setion 4.2 and experimentally in Setion 5.7



4.2 Theoretial AnalysisGiven Y t+rt+1 , the binary variable Pwk=1 x̂t0+ik has a �xed value. However, the hard estimate_xt = yt +Pwk=1 x̂t0+ik is a binary random variable if yt is hosen at random. In the ase whenY is a purely random sequene, yt is balaned and independent of Pwk=1 x̂t0+ik , so that _xt isbalaned.In the ase when Y is the output sequene of the shrinking generator, yt is balaned, butis dependent on Pwk=1 x̂t0+ik in suh a way that the linear equation yt + Pwk=1 xt0+ik = 0 issatis�ed. Consequently, we obtainPrf _xt = 0g = Prf wXk=1(x̂t0+ik + xt0+ik) = 0g: (15)Sine x̂t0+ik is obtained by applying the maximal posterior probability deision rule, we havePrfx̂t0+ik = xt0+ik j Y t+rt+1 g = max (p̂ik ; 1� p̂ik) (16)or, in terms of orrelation oeÆients, we haveik = 2Prfx̂t0+ik = xt0+ik j Y t+rt+1 g � 1 = j1� 2p̂ik j: (17)Under the independene assumption, by using the well-known fat that the orrelation oef-�ient of a binary sum of independent binary random variables equals the produt of theirindividual orrelation oeÆients, we obtain = ( _xt) = wYk=1 ik = wYk=1 j1� 2p̂ik j � 0 (18)or, in terms of probabilities, Prf _xt = 0g = (1 + )=2 � 1=2. This shows that the randomvariable _xt is nonbalaned and is biased towards zero.As the orrelation oeÆient , relevant for the statistial distintion, depends on Y t+rt+1 ,it is important to estimate its expeted value over purely random Y t+rt+1 . Under the sameindependene assumption as above, (18) implies that� = wYk=1 �ik : (19)Now, by using a uniform approximation to the binomial distribution, it is shown in [7℄ thati = j1� 2p̂ij � 1m(i) jm1(i)� 0:5m(i)j (20)where m1(i) is the number of 1's in Y i on the segment I(i) of length m(i) � q3(i� 1)entered around 0:5(i+1). Sine m1(i) is binomially distributed, we have jm1(i)� 0:5m(i)j �qm(i)=p2� and hene �i � 1p2� 1qm(i) � 12�p3 14pi : (21)8



Finally, in view of (21), (19) redues to� � 1(2�p3)w 14qQwk=1 ik (22)whih is independent of t.Another interesting measure is the expeted value of 2 over purely random Y t+rt+1 . By using(18) and the numerial approximation (20), in view of (m1(i)� 0:5m(i))2 � m(i)=4, we �rstget 2i � 14m(i) � 14p3 1pi (23)and then 2 � 1(4p3)w 1qQwk=1 ik : (24)The length n required for the statistial distintion is proportional to 1=�2 or to 1=2, wherethe two quantities di�er only by a multipliative onstant, dependent on w, and are given by1�2 � (2�p3)wvuut wYk=1 ik; 12 � (4p3)wvuut wYk=1 ik: (25)The di�erene is due to the fat that the orrelation oeÆient  is dependent on time. Ifinstead of runing the test forwards in time along the output sequene, we run it bakwardsin time, then we e�etively use the reiproal polynomial of f and hene, instead of Qw�1k=1 ik,the produt Qw�1k=1 (r � ik) beomes relevant. Consequently, to minimize n, we run the testforwards or bakwards aording to whih one of the two produts is smaller.Another point that may be relevant for the statistial distintion is that the binary es-timates Pwk=1 x̂t0+ik , with the term yt exluded, are strongly dependent in time. However,the terms yt are roughly independent in time. The empirial evidene reported in Setion 5suggests that the quantity 1=�2 seems to be more relevant than 1=2. It follows that1�2 � (2�p3)wvuut wYk=1 ik � (2�p3)w rw2 : (26)whih is to be ompared with (4) and (5). Reall that if (6) is used for omputing the posteriorprobabilities, then the omputation time is at most wrn steps, and if the binomial distributionis trunated, then it is at most wp3r n steps, where eah step is an integer summation.Moreover, the step redues to a binary ounting update if the binomial distribution is replaedby a uniform distribution, that is, if the numerial approximation (20) is used instead.9



In any ase, it follows that, in omparison with the linear model approah with multipleshrunken polynomials, the omputation time is signi�antly redued, whereas the requiredoutput sequene length, n + r, roughly remains the same. The advantage is espeially sig-ni�ant if r is relatively large, whih is expeted to be the ase if a polynomial multiple ofthe LFSR1 harateristi polynomials is used. Namely, the minimal degree of a polynomialmultiple of weight w + 1 of a random polynomial of degree r1 is expeted to be O(2r1=w) (see[6℄). In this ase, the omputation time is thus redued from O(2r1) to O(2 r12 (1+ 1w )). Notethat in both the approahes the required output sequene length an be further redued byusing more than just one linear reurrene satis�ed by the LFSR1 sequene, that is, by usinga number of polynomial multiples of the LFSR1 harateristi polynomial.4.3 Improved Statistial TestIn the basi statistial test, the deisions on the involved bits xt0+ik are made on the basis oftheir individual posterior probabilities. The deisions are lose to being optimal if these bitsare lose to being independent when onditioned on the output sequene (the independeneassumption). This is approximately satis�ed if the feedbak taps are not too lose to eahother. If there are some taps that are very lose to eah other, then the basi statistial testan be improved by making joint deisions on the basis of the posterior probabilities of bloksof bits at appropriate positions in X.Suppose that the taps at positions ik, k1 � k � k2, are onentrated. We �rst omputethe posterior probabilities of the blok of bits X t0+ik2t0+ik1 , that is, PrfX t0+ik2t0+ik1 = Ak2�k1+1 j Y t+ik2t+1 g,by using Theorem 1 for i = ik2 and m = k2 � k1 + 1, in (2k2�k1+1 � 1)ik2 steps. The desiredposterior probability PrfPk2k=k1 xt0+ik = 1 j Y t+ik2t+1 g is then diretly omputed by summing upthe posterior probabilities over the orresponding bloks Ak2�k1+1. This posterior probabilityis then used to make the hard deision on the binary sum Pk2k=k1 xt0+ik and ombined with theother posterior probabilities in the same way as in the basi statistial test.5 Experimental ResultsThe theoretial estimates of the output sequene length required for the basi statistial testto be suessful are based on the numerial approximation (20) to the expression (6) forindividual posterior probabilities and on the independene assumption for the bits involvedin the linear reurrene onsidered. The objetive of the experiments was to obtain empirialestimates of the expeted values of the orrelation oeÆient  and its square 2 as well asto verify the e�etiveness of the test by omputing the value of the �2 statisti as a funtionof the output sequene length. This is performed for various degrees r and weights w + 1 ofthe LFSR1 harateristi polynomial. Eah polynomial f(z) = 1 +Pwk=1 zik is hosen so thatQw�1k=1 ik < Qw�1k=1 (r � ik), so that it is better to run the test forwards than bakwards in time,and is spei�ed as a w-tuple (i1; � � � ; iw). 10



For Fig. 1, we �xed w = 2 and varied r by hoosing the polynomials (17; 50); (37; 100),(97; 250); (213; 500), and (319; 1000), whereas for Fig. 2, we �xed r = 50 and varied w byhoosing the polynomials (17; 50); (7; 21; 50); (3; 15; 23; 50), and (5; 13; 15; 24; 50). For both�gures, the same lok-ontrol LFSR2 with a primitive harateristi polynomial (2; 27; 29; 128)was used. For Fig. 1, the �2 statisti is omputed for di�erent sequene lenghts, n0 = n + r,with a step of 2000 bits, for both the shrinking generator sequene and a purely randomsequene. Eah value is averaged over 10 randomly hosen initial states of LFSR1. For therandom ase, the obtained urves are independent of the polynomial and follow the hi-squareprobability distribution with one degree of freedom, whereas for the shrinking generator ase,they inrease with n roughly linearly, as �2 � �2n for large n. We observed that whenever �2was large, the sign of n0 � n1 was positive, as expeted.Similar experiments were run for Fig. 2, but only for the shrinking generator ase. In theleft part of Fig. 2 we used a step of 104 bits and the urves are averaged over 10 randomlyhosen initial states of LFSR1, whereas in the right part we used a step of 106 bits and theurves are obtained only for one initial state of LFSR1. The sequene length is shown on thelogarithmi sale in Fig. 2.For eah urve in both �gures, the ritial length n00 is omputed as the minimal sequenelength suh that the threshold �20 = 6:6349 is reahed. Also, for eah onsidered polynomialand for the same sequene lengths as in Figures 1 and 2, the stable empirial estimates of theexpeted value of , �exp, and of 2, 2exp, are both obtained and the inverses 1=�2exp and 1=2expare omputed. Here for eah t,  is omputed by (18) and the values are then averaged overt. In addition, the theoretial estimates are omputed aording to (25). All these quantitiesare shown in Tables 1 and 2, for the polynomials used for Figures 1 and 2, respetively.Table 1: Empirial and theoretial estimates for w = 2 and various r.r 1=2exp 1=2 1=�2exp 1=�2 n0050 1:42 � 103 1:40 � 103 3:33 � 103 3:45 � 103 2:80 � 104100 3:00 � 103 2:92 � 103 7:15 � 103 7:20 � 103 3:60 � 104250 7:79 � 103 7:47 � 103 1:88 � 104 1:84 � 104 1:00 � 105500 1:64 � 104 1:57 � 104 4:01 � 104 3:87 � 104 1:92 � 1051000 2:83 � 104 2:71 � 104 6:99 � 104 6:69 � 104 4:24 � 105The experimental results show that there is a very good aordane between the theoretialand empirial estimates of the expeted values of both  and 2 for w = 2; 3; 4 as in this asethe feedbak taps are not very lose to eah other, so that the independene assumption iswell justi�ed. For w = 5, that is, for the polynomial (5; 13; 15; 24; 50), the taps 13 and 15 areonentrated and this results in the empirial estimates 1=�2exp and 1=2exp being about threetimes greater than the orresponding theoretial estimates, respetively, so that the minimal11
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Table 2: Empirial and theoretial estimates for r = 50 and various w.w 1=2exp 1=2 1=�2exp 1=�2 n002 1:42 � 103 1:40 � 103 3:33 � 103 3:45 � 103 2:80 � 1043 2:82 � 104 2:85 � 104 9:58 � 104 1:11 � 105 5:00 � 1054 3:72 � 105 5:24 � 105 2:19 � 106 3:19 � 106 1:04 � 1075 5:69 � 106 1:73 � 107 5:58 � 107 1:65 � 108 4:00 � 108sequene length required is in pratie redued. This length an be further redued by usingthe improved statistial test treating the two bits orresponding to the taps 13 and 15 jointly.The experimental results also indiate that the minimal output sequene length requiredis proportional to 1=�2exp where the multipliative onstant is between 5 and 10 as well as thatthis length is upper-bounded by 1=�2 given by (26), multiplied by the same onstant.6 ConlusionsFor a simpli�ed shrinking generator in whih the harateristi polynomial of the lok-ontrolled LFSR, LFSR1, is assumed to be known, a new statistial distinguisher is proposed.Unlike the previously proposed statistial distinguisher whih searhes for the linear relationsin the output sequene, whih are alled the linear models, the new distinguisher estimatesthe linear relations in the original LFSR1 sequene by omputing the posterior probabilitiesof individual bits or of bloks of bits in this sequene when onditioned on the known outputsequene, where the output sequene is the deimated LFSR1 sequene. Both distinguishersare based on low-weight polynomial multiples of the LFSR1 harateristi polynomial.The theoretial and experimental analysis show that the omputation time of the newdistinguisher is signi�antly redued. The new approah is also e�etive if the LSFR1 har-ateristi polynomial is randomly hosen, provided that the degree of the used low-weightpolynomial multiple is lose to the expeted minimal degree.Referenes[1℄ D. Coppersmith, H. Krawzyk, and Y. Mansour, \The shrinking generator," Advanesin Cryptology - CRYPTO '93, Leture Notes in Computer Siene, vol. 773, pp. 22-39,1993.[2℄ J. Dj. Goli�, \Intrinsi statistial weakness of keystream generators," Advanes in Cryp-tology - ASIACRYPT '94, Leture Notes in Computer Siene, vol. 917, pp. 91-103, 1995.13
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