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Abstract

The shrinking generator is a well-known keystream generator composed of two linear
feedback shift registers, LFSR; and LFSR,, where LFSR; is clock-controlled according to
regularly clocked LFSRy. The keystream sequence is thus a decimated LESR; sequence.
Statistical distinguishers for keystream generators are algorithms whose objective is to
distinguish the keystream sequence from a purely random sequence. Previously proposed
statistical distinguishers for the shrinking generator are based on detecting binary linear
relations in the keystream sequence that hold with a probability sufficiently different
from one half. In this paper a novel approach which significantly reduces the required
computation time is introduced. It is based on a probabilistic reconstruction of the
bits in the regularly clocked LFSR; sequence that satisfy the LFSR; recurrence or any
linear recurrence derived from low-weight multiples of the LFSR; characteristic polyno-
mial. The keystream sequence length and the computation time required for a reliable
statistical distinction are analyzed both theoretically and experimentally.

Key words. Stream ciphers, irregular clocking, posterior probabilities, statistical
distinguishers.

1 Introduction

The shrinking generator [1] is a well-known keystream generator for stream cipher applications.
It consists of only two linear feedback shift registers (LFSR’s). The clock-controlled LESR,
LFSR;, is irregularly clocked according to the clock-control LESR, LFSR,, which is regularly
clocked. More precisely, at each time, both LFSR’s are clocked once and the bit produced
by LFSR; is taken to the output if the clock-control bit produced by LFSR, is equal to
1. Otherwise, the output bit is not produced. The output sequence is thus a nonuniformly
decimated LFSR; sequence. It is recommended in [1] that the LESR initial states and the
feedback polynomials be defined by the secret key. Under certain conditions, the output
sequences possess a long period, a high linear complexity, and good statistical properties.



The basic divide-and-conquer attacks on LESR, and LFSR; are given in [9] and [3], re-
spectively, and both require the exhaustive search through the initial states and feedback
polynomials of the respective LFSR. A number of algorithms which may yield faster attacks
on LFSR; are proposed in [4], [8], and [7].

This paper deals with statistical distinguishers to be used for distinguishing the output
sequence of the shrinking generator from a purely random sequence.! It is shown in [2] and
[5] that the output sequence may have a detectable linear statistical weakness if the feedback
polynomial of LFSR; has low-weight polynomial multiples of moderately large degrees. More
precisely, with a probability considerably different from one half, the output sequence satisfies
the linear recurrences corresponding to the so-called shrunken versions of these polynomials.
These linear recurrences are called the linear models for the shrinking generator. Any such
linear model directly yields a linear statistical distinguisher for the shrinking generator. It is
argued in [4] that this weakness may even be used for a faster reconstruction of the feedback
polynomial as well as the initial state of LESR;.

Our objective is to introduce another type of statistical distinguishers which, instead of
looking for linear relations in the output sequence, aim at estimating the linear relations in the
regularly clocked LFSR; sequence by using the posterior probabilities of individual bits of the
regularly clocked LFSR; sequence when conditioned on appropriate segments of the output
sequence. The LFSR; feedback polynomial is assumed to be known. In the probabilistic
model where the LF'SR sequences are assumed to be independent and purely random, these
probabilities can be computed by the algorithm derived in [7]. In addition, when the bits
satisfying the linear relations in the LESR; sequence are very close to each other so that the
independence assumption behind the bitwise approach is less realistic, the algorithm from
[7] is extended to deal with blocks of bits instead of individual bits. A theoretical analysis
shows that the novel approach takes a significantly smaller computation time than the linear
model approach from [2] and [5]. The theoretical analysis is supported by experimental results
obtained by computer simulations.

Section 2 contains a concise overview of the linear model approach from [2], [4], and [5].
Algorithms for computing the posterior probabilities of individual bits and of blocks of bits
in the regularly clocked LFSR; sequence are presented in Section 3. The new statistical
distinguisher based on these probabilities is proposed and theoretically analyzed in Section
4, whereas the experimental results are described in Section 5. Conclusions are presented in
Section 6.

2 Linear Models

We use the notation A = ay, as, - - - for a binary sequence, Ay for its subsequence ag, axyq, - -,
A" for its prefix (a;)?_, = a1, a9, -, a,, and A} for its subsequence (a;)? . = ag, Gpi1,- -, Uy
If its length is finite, then A is called a string. Also, let A denote the bitwise binary complement

LA sequence of independent uniformly distributed random variables over a finite set is called purely random.



of A. Let w(A) denote the number of 1’s in A. For simplicity, wherever possible, we keep the
same notation for random variables and their values.

Let X, C, and Y denote the output sequences of LFSR;, LFSR5, and the shrinking gener-
ator itself, respectively. Then Y is obtained from X by the nonuniform decimation according
to C, that is, a bit x; is deleted from X iff ¢; = 0. It is assumed that C' is a purely random
sequence.

Let X satisfy the linear recurrence Corresponding to a characteristic polynomial f of degree
rand weight w+1, f(2) =14+ X0 2", 1 <4 < -+ <, =r, thatis, &, = Y} ¥y, t > 1.
Here and throughout it is assumed that the summation of binary values is modulo 2. Note
that f is the reciprocal of the LFSR; feedback polynomial, that is, the LFSR; characteristic
polynomial or its any polynomlal multiple. A shrunken polynomial of f is then defined as
f( )=1+>} 2 1< 0 <<y =7 where Ay =1 — i — 1< A =i —ipq — 1,
1 <k<w,and iy =iy =0. Accordlng to the so-called linear sequential circuit approximation
method applicable to arbitrary keystream generators, it is pointed out in [2] and [5] that for
any t > 1, the linear equation

Y = ZyH»%k (1)
k=1

holds with probability 1£¢, where the correlation coefficient? ¢ is given as

c=5ll (i:) (2)

Note that ¢ is the probability that the w bits on the right-hand-side of (1) originate from
the corresponding w bits in X that together with the bit yielding y, satisfy f in X. So, ¢ is
essentially the probability that the linear relation in X involving y; is preserved in Y. The
probabilistic linear recurrence defined by (1) is called a linear model as it means that Y can
be generated by a nonautonomous LFSR with a nonbalanced?® additive input and the feedback
polynomial being the reciprocal of f.

The correlation coefficient ¢ reaches its maximal value, ¢y, given f, if the shrunken poly-
nomial is chosen according to A% = |(Ay +1)/2], 1 < k < w. If none of A,/2 is very small,
then c¢; can be approximated by

g

o~ ) % (11 Ak)% > a8 (120) ®)

w

where the lower bound is reached if the feedback taps are approximately equidistant.

2The correlation coefficient between two binary random variables is defined as c¢(a,b) = 2Pr{a = b} — 1.
The correlation coefficient of a single binary variable is defined as ¢(a) = ¢(a, 0).
3 A uniformly distributed random variable over a finite set is called balanced.



The weakness can be detected by the chi-square statistical test applied to the sequence (y;+
by yt+;k)§il. The required sequence length, n, and the computation time are proportional
to 1/c?, say 10/c?, and the output sequence length is n+7. The computational step consists of
w binary summations and one binary counting update. For the optimal shrunken polynomial,
we have

5 < e (=) (1)

C w

o

Accordingly, to minimize n, the use of the multiples of the LFSR; characteristic polynomial
of relatively low weight and not too large degree is desirable.

More importantly, n can be significantly reduced by using a number, approximately 27" /¢y,
of different shrunken polynomials close to being optimal, that is, such that |Ak — Azpt\ <
(wAk/2)%. The length required is thus considerably reduced and is proportional to

w
2

L < ovamye (=) (5)

cp2mw W

whereas the computation time remains the same, that is, proportional to (4).

3 Computing the Posterior Probabilities of LFSR,; Bits

We keep the same notation as in Section 2, but now assume a probabilistic model where apart
from C, X is also a purely random sequence, which is independent of C. In this model the
output sequence Y is also purely random.

3.1 Individual LFSR,; Bits

The basic statistical distinguisher to be introduced in Section 4 is based on the posterior
probabilities of individual LFSR; bits p; = Pr{z; =1 | Y"} =Pr{z; =1 | Y'}, 1 <i < n, for
appropriately defined Y. As proven in [7], they can be computed in O(n?) time and O(n)

space by
N N i i—1\ ©)
pi = 5\ 9 e Yie] -

e=0

This is proven by simplifying a more general expression which holds in a general probabilistic
model where X is a sequence of independent binary random variables. An alternative proof
of (6) is given in Section 3.3 where a more general problem of computing the posterior proba-
bilities of blocks of LESR; bits is considered. As p; can be numerically approximated with an
arbitrarily small error by using only O(y/i — 1) values of e around (i — 1)/2, the computation
time can be reduced to O(ny/n).



The binomial coefficients can be recursively precomputed in O(n?) time by

(1))

for0<s<n—-1,0<e<n—1-s, and (e, s) # (0,0), from the initial value (g) =1.
It is also shown in [7] that 1/4 < p; < 3/4, where the lower and upper bounds are achieved

if and only if Y consists of all 0’s and of all 1’s, respectively.

3.2 Initial Blocks of LFSR; Bits

For computing the posterior probabilities of blocks of LFSR; bits to be introduced in Section
3.3, we need to compute the posterior probabilities of the initial blocks in the LFSR; sequence
Pr{X" | Y} =Pr{X" | Y"}. According to [3] and [7], we have

Pr{X" Y™} = Pr{y" | X"} = zn;)w@(e,n—e) (8)

where Q)(e, s) is the conditional probability for prefixes of X and Y defined by
Qle,s) = Pr{Y* w(C*™) =s| X} (9)

It is in fact the probability that Y* is obtained by deleting e bits from a given string X°¢**.
This probability can be computed recursively, in O(n?) time and O(n) space, by

Q(e, 5) = %Q(e - 17 S) + %6(xe+57 ys) Q(ea s = 1) (10)

for 0 < s <nand 0 < e <n-— s, from the initial condition (0,0) = 1, where for e = 0 or
s = 0 the corresponding terms on the right-hand side of (10) are assumed to be equal to zero.
Here, (7, j) or d;; is the Kronecker symbol, i.e., §(i,5) =1 if i = j and 6(i, j) = 0 if i # j.

Note that the statistically optimal correlation attack on LFSR; is based on Pr{X™ | Y"} as
a measure of correlation between X" and Y, where X" is produced from an assumed LFSR;
initial state. The required n is proportional to the length of LESR,.

3.3 Arbitrary Blocks of LFSR; Bits

The refinement of the basic statistical distinguisher to be introduced in Section 4 is based on
the posterior probabilities of blocks of m consecutive bits at variable positions in the LFSR;
sequence Pr{X/ .. |Y"} =Pr{X/ ., |Y},1<m <i<n Form =1, they reduce
to the posterior probabillities of individual LFSR; bits already considered in Section 3.1.
These probabilities can also be useful for improving the fast correlation attack on LESR; from
[7]. Our objective here is to show that they can be computed efficiently by generalizing the
expression (6).



The basic fact to be used is that the clock-control sequence C', in the model where X is
purely random, remains to be purely random even when conditioned on the output sequence
Y. This is because Y is purely random even if C' is fixed, provided that X is purely random.
Accordingly, we have

T
3

Pr{X{ 0 [ V1) = 3 Pr{X .0 [w(C ™) = eV} Pr{uw(C ™) = | V')

)
Il
<)

=
3

= Pr{XLmJrl | w(C’i*m) =e, Y:j{”} . Pr{w(Ci*m) =e}

e=0
izm ; e 1 1—1m
= 3 PO ) g () (1)
e=0 €
where we used the notation
P(A™ | B™) % Pr{X™ = A™ | Y™ = B"}. (12)

More precisely, the second and the third line of (11) follow from the fact that C' is purely
random when conditioned on Y and from the fact that, on the condition that w(C*™™) = e,
C! .. and X7 ., remain to be purely random and mutually independent as well as that
a prefix of the string Y,5" is obtained by decimating X! , ., according to C!_,,,,. The
probability P(X™ | Y™) can be computed recursively by using (8) and (10).

Accordingly, we have the following theorem, which generalizes (6).
)

Theorem 1 For any given X L and Y™ and each m <1 < n, we have

1—m-+
i n 1 L—m i e+m
P e 177 = 5 32 (") PO ) (13
e=0

If m is relatively small, then one can precompute the probabilities P(X™ | Y™) for all
22" string pairs (X™,Y™). In fact, in view of the complementation property P(X™ | Y™) =
P(X™ | Y™), one has to precompute only 2™ 1(2™ — 1) probabilities. The posterior probabil-
ities can then be computed in O((2™ — 1)n?) time and O((2™ — 1)n) space by using (13). Tt
follows that

(1) <Pty < (3) (14)

where the bounds are achieved if and only if X/ , ., and ¥; are both constant strings, where
different constants yield the lower bound and the same constants yield the upper bound.



4 Statistical Distinguisher

The posterior probabilities of individual bits and of blocks of bits in the LFSR; sequence are
determined in Sections 3.1 and 3.3, respectively, in the probabilistic model where the LFSR;
sequence is assumed to be purely random. Our main objective here is to show that these
probabilities can also be used in the model where the LESR; sequence is assumed to satisfy a
linear recurrence and thus establish a basis for a new and more efficient statistical distinguisher
for the shrinking generator.

4.1 Basic Statistical Test

As in Section 2, assume that X satisfies the linear recurrence z, = ;" | #444,, t > 1, corre-
sponding to a characteristic polynomial f(z) = 1 + X%, 2% of degree r and weight w + 1.
Consider a bit y; in the output sequence Y. It is obtained from some bit x, in X, and it
is not important to know ¢'. Therefore, the subsequence Y;,; is obtained by decimating the
subsequence Xy, ;. We know that the linear equation zy = Y ;| oy, is satisfied and we
know xy, but we do not know the remaining w involved bits of X. However, as Y;;; is ob-
tained by decimating X, .1, we can determine the posterior probabilities of these w bits when
conditioned on known Y;.

Namely, we can compute p;, = Pr{zy,;, = 1| Y%} by using (6) for i = ix, 1 < k < w, in
>y i = O(wr) time. Here the dependence of p;, on ¢ is not explicitly shown for simplicity
and to emphasize the fact that the position i, rather than ¢ + i, is relevant. By using the
numerical approximation described in Section 3.1, the computation time can be reduced to
O(w+/r). We can then make hard decisions on these w bits by applying the maximal posterior
probability decision rule for individual bits, i.e., yy; = 1 if p;, > 0.5 and 2y, = 0 if
pi, < 0.5, 1 <k < w. Finally, we can produce a hard estimate , = y, + >2;_; Ty, of
the value of the linear equation xy + >, xy i, , which is known to be equal to zero. The
main point of the approach is that we can expect that x; is biased towards zero when Y is
the output sequence of the shrinking generator and is balanced when Y is a purely random
sequence. This is justified by the analysis given in Section 4.2.

Accordingly, the statistical distinguisher is defined by repeating the procedure described
above for every 1 < ¢t < n, by counting the numbers of 0’s and 1’s in the hard estimate
sequence Xn = (@)1, say ng and ny, respectively, and by computing the chi-square statistic
X% = (ng — n1)?/n and the sign of ng — n;. For large n, the statistic is expected to follow the
chi-square distribution with one degree of freedom if Y is a purely random sequence and to
grow approximately linearly with n if Y is the output sequence of the shrinking generator. So,
let x2 be a threshold chosen to an assumed significance level a (e.g., x3 ~ 6.6349 for o = 0.01).
Then for a sufficiently large n, the statistic exceeds the threshold with probability « if Y is
a purely random sequence and with probability very close to 1 if Y is the output sequence of
the shrinking generator. The minimal length and computation time required are estimated
theoretically in Section 4.2 and experimentally in Section 5.



4.2 Theoretical Analysis

Given Y7, the binary variable 3% | &y, has a fixed value. However, the hard estimate
Ty =Yg + D p—1 Ty4i, 1S @ binary random variable if y; is chosen at random. In the case when
Y is a purely random sequence, y; is balanced and independent of }7;_, Ty, , so that i, is
balanced.

In the case when Y is the output sequence of the shrinking generator, y; is balanced, but
is dependent on Y2} | Zy;, in such a way that the linear equation vy, + >2; ; xp4;, = 0 is
satisfied. Consequently, we obtain

Pr{i, =0} = Pr{sz:(:iyﬂk + zp44,) = 0} (15)

Since Iy, is obtained by applying the maximal posterior probability decision rule, we have

Pr{i‘t'-l-ik = Tt +iy, ‘ }/;t—l—ﬁr} = max (ﬁlkﬂ 1 _ﬁlk) (16)
or, in terms of correlation coefficients, we have
¢i, = 2Pr{ipii, = app, | YT —1 = |1 =25, (17)

Under the independence assumption, by using the well-known fact that the correlation coef-
ficient of a binary sum of independent binary random variables equals the product of their
individual correlation coefficients, we obtain

¢ =cliy) = [[e = ]I —2p5] >0 (18)
k=1 k=1

or, in terms of probabilities, Pr{i; = 0} = (1 + ¢)/2 > 1/2. This shows that the random
variable z; is nonbalanced and is biased towards zero.

As the correlation coefficient ¢, relevant for the statistical distinction, depends on Y},
it is important to estimate its expected value over purely random Y. Under the same
independence assumption as above, (18) implies that

c = ] ¢ (19)
k=1
Now, by using a uniform approximation to the binomial distribution, it is shown in [7] that
1
¢ = |1—2p ~ e imq () — 0.5m(i)] (20)

where m; (i) is the number of 1’s in Y? on the segment I(i) of length m(i) ~ (/3(i — 1)

centered around 0.5(¢+ 1). Since m, (7) is binomially distributed, we have |m; (i) — 0.5m(i)| ~
\/m(i)/v/2m and hence

~ 1 1 1 1
C; = =~ - -
V2T v/ m(7) 213 Vi

(21)
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Finally, in view of (21), (19) reduces to

1 1
c ~ (22)

(2mV/3)" WITi, i
which is independent of ¢.

Another interesting measure is the expected value of ¢? over purely random Y,";". By using
(18) and the numerical approximation (20), in view of (m; (i) — 0.5m(7))? ~ m(i)/4, we first
get

2
2
|

(23)

and then

QI\D
2

(24)

(4\/§)w \/ Hz)zl ik .

The length n required for the statistical distinction is proportional to 1/¢2 or to 1/?, where
the two quantities differ only by a multiplicative constant, dependent on w, and are given by

(:1_2 ~ (21V3)" \ HZka p:12 ~ (4‘/5)1”« ﬁzk (25)

The difference is due to the fact that the correlation coefficient ¢ is dependent on time. If
instead of runing the test forwards in time along the output sequence, we run it backwards
in time, then we effectively use the reciprocal polynomial of f and hence, instead of [T{'_}' i,
the product [T¥_](r — i) becomes relevant. Consequently, to minimize n, we run the test
forwards or backwards according to which one of the two products is smaller.

Another point that may be relevant for the statistical distinction is that the binary es-
timates ) ;_, Zy44,, with the term y, excluded, are strongly dependent in time. However,
the terms y; are roughly independent in time. The empirical evidence reported in Section 5
suggests that the quantity 1/¢% seems to be more relevant than 1/c2. It follows that

c%% (27/3)% sz < (27V3)rs, (26)

which is to be compared with (4) and (5). Recall that if (6) is used for computing the posterior
probabilities, then the computation time is at most wrn steps, and if the binomial distribution
is truncated, then it is at most w+/3rn steps, where each step is an integer summation.
Moreover, the step reduces to a binary counting update if the binomial distribution is replaced
by a uniform distribution, that is, if the numerical approximation (20) is used instead.



In any case, it follows that, in comparison with the linear model approach with multiple
shrunken polynomials, the computation time is significantly reduced, whereas the required
output sequence length, n + r, roughly remains the same. The advantage is especially sig-
nificant if r is relatively large, which is expected to be the case if a polynomial multiple of
the LFSR; characteristic polynomials is used. Namely, the minimal degree of a polynomial
multiple of weight w + 1 of a random polynomial of degree 7, is expected to be O(27/%) (see
[6]). In this case, the computation time is thus reduced from O(2") to O(271+%). Note
that in both the approaches the required output sequence length can be further reduced by
using more than just one linear recurrence satisfied by the LESR,; sequence, that is, by using
a number of polynomial multiples of the LFSR; characteristic polynomial.

4.3 Improved Statistical Test

In the basic statistical test, the decisions on the involved bits x;; are made on the basis of
their individual posterior probabilities. The decisions are close to being optimal if these bits
are close to being independent when conditioned on the output sequence (the independence
assumption). This is approximately satisfied if the feedback taps are not too close to each
other. If there are some taps that are very close to each other, then the basic statistical test
can be improved by making joint decisions on the basis of the posterior probabilities of blocks
of bits at appropriate positions in X.

Suppose that the taps at positions iy, ky < k < ky, are concentrated. We first compute

the posterior probabilities of the block of bits X;j_;:z, that is, Pr{Xf,I;’:Q = Ak2—krtl Ytt:sz ,
1 1

by using Theorem 1 for ¢ = iy, and m = ky — k; + 1, in (2827 %1+1 — 1), steps. The desired
posterior probability Pr{>}*, zy;, =1 | i/i:rfk?} is then directly computed by summing up
the posterior probabilities over the corresponding blocks A*2=%1+1 This posterior probability
is then used to make the hard decision on the binary sum 222:191 Ty 44, and combined with the

other posterior probabilities in the same way as in the basic statistical test.

5 Experimental Results

The theoretical estimates of the output sequence length required for the basic statistical test
to be successful are based on the numerical approximation (20) to the expression (6) for
individual posterior probabilities and on the independence assumption for the bits involved
in the linear recurrence considered. The objective of the experiments was to obtain empirical
estimates of the expected values of the correlation coefficient ¢ and its square ¢? as well as
to verify the effectiveness of the test by computing the value of the x? statistic as a function
of the output sequence length. This is performed for various degrees r and weights w + 1 of
the LFSR; characteristic polynomial. Each polynomial f(z) =1+ >%_, 2% is chosen so that

vl < TI¥Z}(r — i1), so that it is better to run the test forwards than backwards in time,
and is specified as a w-tuple (i1, -, 7y).
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For Fig. 1, we fixed w = 2 and varied r by choosing the polynomials (17,50), (37,100),
(97,250), (213,500), and (319,1000), whereas for Fig. 2, we fixed r = 50 and varied w by
choosing the polynomials (17,50), (7,21, 50), (3,15,23,50), and (5,13,15,24,50). For both
figures, the same clock-control LFSR, with a primitive characteristic polynomial (2, 27,29, 128)
was used. For Fig. 1, the y? statistic is computed for different sequence lenghts, n’ = n +r,
with a step of 2000 bits, for both the shrinking generator sequence and a purely random
sequence. Each value is averaged over 10 randomly chosen initial states of LFSR;. For the
random case, the obtained curves are independent of the polynomial and follow the chi-square
probability distribution with one degree of freedom, whereas for the shrinking generator case,
they increase with n roughly linearly, as x? ~ ¢?n for large n. We observed that whenever y?
was large, the sign of ng — n; was positive, as expected.

Similar experiments were run for Fig. 2, but only for the shrinking generator case. In the
left part of Fig. 2 we used a step of 10* bits and the curves are averaged over 10 randomly
chosen initial states of LFSR;, whereas in the right part we used a step of 10° bits and the
curves are obtained only for one initial state of LFSR;. The sequence length is shown on the
logarithmic scale in Fig. 2.

For each curve in both figures, the critical length nj is computed as the minimal sequence
length such that the threshold y3 = 6.6349 is reached. Also, for each considered polynomial
and for the same sequence lengths as in Figures 1 and 2, the stable empirical estimates of the
expected value of ¢, Cuyp, and of ¢2, cZ,, are both obtained and the inverses /¢, and 1/Zonp
are computed. Here for each ¢, ¢ is computed by (18) and the values are then averaged over
t. In addition, the theoretical estimates are computed according to (25). All these quantities
are shown in Tables 1 and 2, for the polynomials used for Figures 1 and 2, respectively.

Table 1: Empirical and theoretical estimates for w = 2 and various r.

r 1/exp 1/c2 /e, 1/¢? n)

50 [ 1.42-10% [ 1.40-10% || 3.33-10% | 3.45-10° || 2.80 - 10*
100 [[ 3.00-10% | 2.92-10% || 7.15-10% | 7.20 - 10® || 3.60 - 10*
250 || 7.79-10% | 7.47-10% || 1.88-10* | 1.84 - 10* || 1.00 - 10°
500 || 1.64-10* | 1.57-10* || 4.01-10* | 3.87-10* || 1.92-10°
1000 || 2.83-10* | 2.71-10* || 6.99 - 10* | 6.69 - 10* || 4.24 - 10°

The experimental results show that there is a very good accordance between the theoretical
and empirical estimates of the expected values of both ¢ and ¢? for w = 2,3, 4 as in this case
the feedback taps are not very close to each other, so that the independence assumption is
well justified. For w = 5, that is, for the polynomial (5,13, 15,24,50), the taps 13 and 15 are
concentrated and this results in the empirical estimates 1/E§Xp and 1/c?.,, being about three
times greater than the corresponding theoretical estimates, respectively, so that the minimal

11
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Figure 1: The y?2 statistics for w = 2 and various r.
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Figure 2: The x? statistics for r = 50 and various w.
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Table 2: Empirical and theoretical estimates for = 50 and various w.

w || 1/ ey 1/c2 1/c2., 1/¢? n,

2 [ 1.42-10% [ 1.40-10% || 3.33-10% | 3.45-10% || 2.80 - 10"
3 [282-107]285-10% | 9.58-10% | 1.11-10° || 5.00 - 10°
4 |13.72-10° [ 5.24-10° || 2.19-10° | 3.19-10° || 1.04 - 107
5 | 5.69-10°]1.73-107 | 5.58 - 107 | 1.65- 10% || 4.00 - 10°

sequence length required is in practice reduced. This length can be further reduced by using
the improved statistical test treating the two bits corresponding to the taps 13 and 15 jointly.

The experimental results also indicate that the minimal output sequence length required
is proportional to 1/¢;, , where the multiplicative constant is between 5 and 10 as well as that

this length is upper-bounded by 1/¢* given by (26), multiplied by the same constant.

6 Conclusions

For a simplified shrinking generator in which the characteristic polynomial of the clock-
controlled LFSR, LFSR,, is assumed to be known, a new statistical distinguisher is proposed.
Unlike the previously proposed statistical distinguisher which searches for the linear relations
in the output sequence, which are called the linear models, the new distinguisher estimates
the linear relations in the original LFSR; sequence by computing the posterior probabilities
of individual bits or of blocks of bits in this sequence when conditioned on the known output
sequence, where the output sequence is the decimated LFSR, sequence. Both distinguishers
are based on low-weight polynomial multiples of the LFSR; characteristic polynomial.

The theoretical and experimental analysis show that the computation time of the new
distinguisher is significantly reduced. The new approach is also effective if the LSFR; char-
acteristic polynomial is randomly chosen, provided that the degree of the used low-weight
polynomial multiple is close to the expected minimal degree.
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