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Abstra
tThe shrinking generator is a well-known keystream generator 
omposed of two linearfeedba
k shift registers, LFSR1 and LFSR2, where LFSR1 is 
lo
k-
ontrolled a

ording toregularly 
lo
ked LFSR2. The keystream sequen
e is thus a de
imated LFSR1 sequen
e.Statisti
al distinguishers for keystream generators are algorithms whose obje
tive is todistinguish the keystream sequen
e from a purely random sequen
e. Previously proposedstatisti
al distinguishers for the shrinking generator are based on dete
ting binary linearrelations in the keystream sequen
e that hold with a probability suÆ
iently di�erentfrom one half. In this paper a novel approa
h whi
h signi�
antly redu
es the required
omputation time is introdu
ed. It is based on a probabilisti
 re
onstru
tion of thebits in the regularly 
lo
ked LFSR1 sequen
e that satisfy the LFSR1 re
urren
e or anylinear re
urren
e derived from low-weight multiples of the LFSR1 
hara
teristi
 polyno-mial. The keystream sequen
e length and the 
omputation time required for a reliablestatisti
al distin
tion are analyzed both theoreti
ally and experimentally.Key words. Stream 
iphers, irregular 
lo
king, posterior probabilities, statisti
aldistinguishers.1 Introdu
tionThe shrinking generator [1℄ is a well-known keystream generator for stream 
ipher appli
ations.It 
onsists of only two linear feedba
k shift registers (LFSR's). The 
lo
k-
ontrolled LFSR,LFSR1, is irregularly 
lo
ked a

ording to the 
lo
k-
ontrol LFSR, LFSR2, whi
h is regularly
lo
ked. More pre
isely, at ea
h time, both LFSR's are 
lo
ked on
e and the bit produ
edby LFSR1 is taken to the output if the 
lo
k-
ontrol bit produ
ed by LFSR2 is equal to1. Otherwise, the output bit is not produ
ed. The output sequen
e is thus a nonuniformlyde
imated LFSR1 sequen
e. It is re
ommended in [1℄ that the LFSR initial states and thefeedba
k polynomials be de�ned by the se
ret key. Under 
ertain 
onditions, the outputsequen
es possess a long period, a high linear 
omplexity, and good statisti
al properties.1



The basi
 divide-and-
onquer atta
ks on LFSR2 and LFSR1 are given in [9℄ and [3℄, re-spe
tively, and both require the exhaustive sear
h through the initial states and feedba
kpolynomials of the respe
tive LFSR. A number of algorithms whi
h may yield faster atta
kson LFSR1 are proposed in [4℄, [8℄, and [7℄.This paper deals with statisti
al distinguishers to be used for distinguishing the outputsequen
e of the shrinking generator from a purely random sequen
e.1 It is shown in [2℄ and[5℄ that the output sequen
e may have a dete
table linear statisti
al weakness if the feedba
kpolynomial of LFSR1 has low-weight polynomial multiples of moderately large degrees. Morepre
isely, with a probability 
onsiderably di�erent from one half, the output sequen
e satis�esthe linear re
urren
es 
orresponding to the so-
alled shrunken versions of these polynomials.These linear re
urren
es are 
alled the linear models for the shrinking generator. Any su
hlinear model dire
tly yields a linear statisti
al distinguisher for the shrinking generator. It isargued in [4℄ that this weakness may even be used for a faster re
onstru
tion of the feedba
kpolynomial as well as the initial state of LFSR1.Our obje
tive is to introdu
e another type of statisti
al distinguishers whi
h, instead oflooking for linear relations in the output sequen
e, aim at estimating the linear relations in theregularly 
lo
ked LFSR1 sequen
e by using the posterior probabilities of individual bits of theregularly 
lo
ked LFSR1 sequen
e when 
onditioned on appropriate segments of the outputsequen
e. The LFSR1 feedba
k polynomial is assumed to be known. In the probabilisti
model where the LFSR sequen
es are assumed to be independent and purely random, theseprobabilities 
an be 
omputed by the algorithm derived in [7℄. In addition, when the bitssatisfying the linear relations in the LFSR1 sequen
e are very 
lose to ea
h other so that theindependen
e assumption behind the bitwise approa
h is less realisti
, the algorithm from[7℄ is extended to deal with blo
ks of bits instead of individual bits. A theoreti
al analysisshows that the novel approa
h takes a signi�
antly smaller 
omputation time than the linearmodel approa
h from [2℄ and [5℄. The theoreti
al analysis is supported by experimental resultsobtained by 
omputer simulations.Se
tion 2 
ontains a 
on
ise overview of the linear model approa
h from [2℄, [4℄, and [5℄.Algorithms for 
omputing the posterior probabilities of individual bits and of blo
ks of bitsin the regularly 
lo
ked LFSR1 sequen
e are presented in Se
tion 3. The new statisti
aldistinguisher based on these probabilities is proposed and theoreti
ally analyzed in Se
tion4, whereas the experimental results are des
ribed in Se
tion 5. Con
lusions are presented inSe
tion 6.2 Linear ModelsWe use the notation A = a1; a2; � � � for a binary sequen
e, Ak for its subsequen
e ak; ak+1; � � �,An for its pre�x (ai)ni=1 = a1; a2; � � � ; an, and Ank for its subsequen
e (ai)ni=k = ak; ak+1; � � � ; an.If its length is �nite, then A is 
alled a string. Also, let �A denote the bitwise binary 
omplement1A sequen
e of independent uniformly distributed random variables over a �nite set is 
alled purely random.2



of A. Let w(A) denote the number of 1's in A. For simpli
ity, wherever possible, we keep thesame notation for random variables and their values.Let X, C, and Y denote the output sequen
es of LFSR1, LFSR2, and the shrinking gener-ator itself, respe
tively. Then Y is obtained from X by the nonuniform de
imation a

ordingto C, that is, a bit xi is deleted from X i� 
i = 0. It is assumed that C is a purely randomsequen
e.Let X satisfy the linear re
urren
e 
orresponding to a 
hara
teristi
 polynomial f of degreer and weight w+1, f(z) = 1+Pwk=1 zik , 1 � i1 < � � � < iw = r, that is, xt = Pwk=1 xt+ik , t � 1.Here and throughout it is assumed that the summation of binary values is modulo 2. Notethat f is the re
ipro
al of the LFSR1 feedba
k polynomial, that is, the LFSR1 
hara
teristi
polynomial or its any polynomial multiple. A shrunken polynomial of f is then de�ned asf̂(z) = 1 +Pwk=1 z îk , 1 � î1 < � � � < îw = r̂, where �̂k = îk � îk�1 � 1 � �k = ik � ik�1 � 1,1 � k � w, and î0 = i0 = 0. A

ording to the so-
alled linear sequential 
ir
uit approximationmethod appli
able to arbitrary keystream generators, it is pointed out in [2℄ and [5℄ that forany t � 1, the linear equation yt = wXk=1 yt+îk (1)holds with probability 1+
2 , where the 
orrelation 
oeÆ
ient2 
 is given as
 = 12r wYk=1 �k�̂k!: (2)Note that 
 is the probability that the w bits on the right-hand-side of (1) originate fromthe 
orresponding w bits in X that together with the bit yielding yt satisfy f in X. So, 
 isessentially the probability that the linear relation in X involving yt is preserved in Y . Theprobabilisti
 linear re
urren
e de�ned by (1) is 
alled a linear model as it means that Y 
anbe generated by a nonautonomous LFSR with a nonbalan
ed3 additive input and the feedba
kpolynomial being the re
ipro
al of f̂ .The 
orrelation 
oeÆ
ient 
 rea
hes its maximal value, 
f , given f , if the shrunken poly-nomial is 
hosen a

ording to �̂optk = b(�k + 1)=2
, 1 � k � w. If none of �k=2 is very small,then 
f 
an be approximated by
f � (2�)�w2  wYk=1�k!� 12 � (2�)�w2 �r � ww ��w2 ; (3)where the lower bound is rea
hed if the feedba
k taps are approximately equidistant.2The 
orrelation 
oeÆ
ient between two binary random variables is de�ned as 
(a; b) = 2Prfa = bg � 1.The 
orrelation 
oeÆ
ient of a single binary variable is de�ned as 
(a) = 
(a; 0).3A uniformly distributed random variable over a �nite set is 
alled balan
ed.3



The weakness 
an be dete
ted by the 
hi-square statisti
al test applied to the sequen
e (yt+Pwk=1 yt+îk)1t=1. The required sequen
e length, n, and the 
omputation time are proportionalto 1=
2, say 10=
2, and the output sequen
e length is n+r. The 
omputational step 
onsists ofw binary summations and one binary 
ounting update. For the optimal shrunken polynomial,we have 1
2f � (2�)w �r � ww �w : (4)A

ordingly, to minimize n, the use of the multiples of the LFSR1 
hara
teristi
 polynomialof relatively low weight and not too large degree is desirable.More importantly, n 
an be signi�
antly redu
ed by using a number, approximately 2�w=
f ,of di�erent shrunken polynomials 
lose to being optimal, that is, su
h that j�̂k � �̂optk j �(��k=2) 12 . The length required is thus 
onsiderably redu
ed and is proportional to1
f2�w � (2p2�)w �r � ww �w2 ; (5)whereas the 
omputation time remains the same, that is, proportional to (4).3 Computing the Posterior Probabilities of LFSR1 BitsWe keep the same notation as in Se
tion 2, but now assume a probabilisti
 model where apartfrom C, X is also a purely random sequen
e, whi
h is independent of C. In this model theoutput sequen
e Y is also purely random.3.1 Individual LFSR1 BitsThe basi
 statisti
al distinguisher to be introdu
ed in Se
tion 4 is based on the posteriorprobabilities of individual LFSR1 bits p̂i = Prfxi = 1 j Y ng = Prfxi = 1 j Y ig, 1 � i � n, forappropriately de�ned Y n. As proven in [7℄, they 
an be 
omputed in O(n2) time and O(n)spa
e by p̂i = 12  12 + 2�(i�1) i�1Xe=0 i� 1e ! yi�e! : (6)This is proven by simplifying a more general expression whi
h holds in a general probabilisti
model where X is a sequen
e of independent binary random variables. An alternative proofof (6) is given in Se
tion 3.3 where a more general problem of 
omputing the posterior proba-bilities of blo
ks of LFSR1 bits is 
onsidered. As p̂i 
an be numeri
ally approximated with anarbitrarily small error by using only O(pi� 1) values of e around (i� 1)=2, the 
omputationtime 
an be redu
ed to O(npn). 4



The binomial 
oeÆ
ients 
an be re
ursively pre
omputed in O(n2) time by e+ se ! =  e+ s� 1e� 1 ! +  e+ s� 1e ! (7)for 0 � s � n� 1, 0 � e � n� 1� s, and (e; s) 6= (0; 0), from the initial value �00� = 1.It is also shown in [7℄ that 1=4 � p̂i � 3=4, where the lower and upper bounds are a
hievedif and only if Y i 
onsists of all 0's and of all 1's, respe
tively.3.2 Initial Blo
ks of LFSR1 BitsFor 
omputing the posterior probabilities of blo
ks of LFSR1 bits to be introdu
ed in Se
tion3.3, we need to 
ompute the posterior probabilities of the initial blo
ks in the LFSR1 sequen
ePrfXn j Y g = PrfXn j Y ng. A

ording to [3℄ and [7℄, we havePrfXn j Y ng = PrfY n j Xng = nXe=0 2�eQ(e; n� e) (8)where Q(e; s) is the 
onditional probability for pre�xes of X and Y de�ned byQ(e; s) = PrfY s; w(Ce+s) = s j Xe+sg: (9)It is in fa
t the probability that Y s is obtained by deleting e bits from a given string Xe+s.This probability 
an be 
omputed re
ursively, in O(n2) time and O(n) spa
e, byQ(e; s) = 12 Q(e� 1; s) + 12 Æ(xe+s; ys)Q(e; s� 1) (10)for 0 � s � n and 0 � e � n � s, from the initial 
ondition Q(0; 0) = 1, where for e = 0 ors = 0 the 
orresponding terms on the right-hand side of (10) are assumed to be equal to zero.Here, Æ(i; j) or Æi;j is the Krone
ker symbol, i.e., Æ(i; j) = 1 if i = j and Æ(i; j) = 0 if i 6= j.Note that the statisti
ally optimal 
orrelation atta
k on LFSR1 is based on PrfXn j Y ng asa measure of 
orrelation between Xn and Y n, where Xn is produ
ed from an assumed LFSR1initial state. The required n is proportional to the length of LFSR1.3.3 Arbitrary Blo
ks of LFSR1 BitsThe re�nement of the basi
 statisti
al distinguisher to be introdu
ed in Se
tion 4 is based onthe posterior probabilities of blo
ks of m 
onse
utive bits at variable positions in the LFSR1sequen
e PrfX ii�m+1 j Y ng = PrfX ii�m+1 j Y ig, 1 � m � i � n. For m = 1, they redu
eto the posterior probabillities of individual LFSR1 bits already 
onsidered in Se
tion 3.1.These probabilities 
an also be useful for improving the fast 
orrelation atta
k on LFSR1 from[7℄. Our obje
tive here is to show that they 
an be 
omputed eÆ
iently by generalizing theexpression (6). 5



The basi
 fa
t to be used is that the 
lo
k-
ontrol sequen
e C, in the model where X ispurely random, remains to be purely random even when 
onditioned on the output sequen
eY . This is be
ause Y is purely random even if C is �xed, provided that X is purely random.A

ordingly, we havePrfX ii�m+1 j Y ig = i�mXe=0 PrfX ii�m+1 j w(Ci�m) = e; Y ig � Prfw(Ci�m) = e j Y ig= i�mXe=0 PrfX ii�m+1 j w(Ci�m) = e; Y e+me+1 g � Prfw(Ci�m) = eg= i�mXe=0 P (X ii�m+1 j Y e+me+1 ) � 12i�m  i�me ! (11)where we used the notationP (Am j Bm) def= PrfXm = Am j Y m = Bmg: (12)More pre
isely, the se
ond and the third line of (11) follow from the fa
t that C is purelyrandom when 
onditioned on Y and from the fa
t that, on the 
ondition that w(Ci�m) = e,Cii�m+1 and X ii�m+1 remain to be purely random and mutually independent as well as thata pre�x of the string Y e+me+1 is obtained by de
imating X ii�m+1 a

ording to Cii�m+1. Theprobability P (Xm j Y m) 
an be 
omputed re
ursively by using (8) and (10).A

ordingly, we have the following theorem, whi
h generalizes (6).Theorem 1 For any given X ii�m+1 and Y n and ea
h m � i � n, we havePrfX ii�m+1 j Y ng = 12i�m i�mXe=0  i�me !P (X ii�m+1 j Y e+me+1 ): (13)If m is relatively small, then one 
an pre
ompute the probabilities P (Xm j Y m) for all22m string pairs (Xm; Y m). In fa
t, in view of the 
omplementation property P (Xm j Y m) =P ( �Xm j �Y m), one has to pre
ompute only 2m�1(2m� 1) probabilities. The posterior probabil-ities 
an then be 
omputed in O((2m � 1)n2) time and O((2m � 1)n) spa
e by using (13). Itfollows that �14�m � PrfX ii�m+1 j Y ng � �34�m (14)where the bounds are a
hieved if and only if X ii�m+1 and Yi are both 
onstant strings, wheredi�erent 
onstants yield the lower bound and the same 
onstants yield the upper bound.
6



4 Statisti
al DistinguisherThe posterior probabilities of individual bits and of blo
ks of bits in the LFSR1 sequen
e aredetermined in Se
tions 3.1 and 3.3, respe
tively, in the probabilisti
 model where the LFSR1sequen
e is assumed to be purely random. Our main obje
tive here is to show that theseprobabilities 
an also be used in the model where the LFSR1 sequen
e is assumed to satisfy alinear re
urren
e and thus establish a basis for a new and more eÆ
ient statisti
al distinguisherfor the shrinking generator.4.1 Basi
 Statisti
al TestAs in Se
tion 2, assume that X satis�es the linear re
urren
e xt = Pwk=1 xt+ik , t � 1, 
orre-sponding to a 
hara
teristi
 polynomial f(z) = 1 + Pwk=1 zik of degree r and weight w + 1.Consider a bit yt in the output sequen
e Y . It is obtained from some bit xt0 in X, and itis not important to know t0. Therefore, the subsequen
e Yt+1 is obtained by de
imating thesubsequen
e Xt0+1. We know that the linear equation xt0 = Pwk=1 xt0+ik is satis�ed and weknow xt0 , but we do not know the remaining w involved bits of X. However, as Yt+1 is ob-tained by de
imating Xt0+1, we 
an determine the posterior probabilities of these w bits when
onditioned on known Yt+1.Namely, we 
an 
ompute p̂ik = Prfxt0+ik = 1 j Y t+ikt+1 g by using (6) for i = ik, 1 � k � w, inPwk=1 ik = O(wr) time. Here the dependen
e of p̂ik on t is not expli
itly shown for simpli
ityand to emphasize the fa
t that the position ik rather than t0 + ik is relevant. By using thenumeri
al approximation des
ribed in Se
tion 3.1, the 
omputation time 
an be redu
ed toO(wpr). We 
an then make hard de
isions on these w bits by applying the maximal posteriorprobability de
ision rule for individual bits, i.e., x̂t0+ik = 1 if p̂ik � 0:5 and x̂t0+ik = 0 ifp̂ik < 0:5, 1 � k � w. Finally, we 
an produ
e a hard estimate _xt = yt + Pwk=1 x̂t0+ik ofthe value of the linear equation xt0 +Pwk=1 xt0+ik , whi
h is known to be equal to zero. Themain point of the approa
h is that we 
an expe
t that _xt is biased towards zero when Y isthe output sequen
e of the shrinking generator and is balan
ed when Y is a purely randomsequen
e. This is justi�ed by the analysis given in Se
tion 4.2.A

ordingly, the statisti
al distinguisher is de�ned by repeating the pro
edure des
ribedabove for every 1 � t � n, by 
ounting the numbers of 0's and 1's in the hard estimatesequen
e _Xn = ( _xt)nt=1, say n0 and n1, respe
tively, and by 
omputing the 
hi-square statisti
�2 = (n0 � n1)2=n and the sign of n0 � n1. For large n, the statisti
 is expe
ted to follow the
hi-square distribution with one degree of freedom if Y is a purely random sequen
e and togrow approximately linearly with n if Y is the output sequen
e of the shrinking generator. So,let �20 be a threshold 
hosen to an assumed signi�
an
e level � (e.g., �20 � 6:6349 for � = 0:01).Then for a suÆ
iently large n, the statisti
 ex
eeds the threshold with probability � if Y isa purely random sequen
e and with probability very 
lose to 1 if Y is the output sequen
e ofthe shrinking generator. The minimal length and 
omputation time required are estimatedtheoreti
ally in Se
tion 4.2 and experimentally in Se
tion 5.7



4.2 Theoreti
al AnalysisGiven Y t+rt+1 , the binary variable Pwk=1 x̂t0+ik has a �xed value. However, the hard estimate_xt = yt +Pwk=1 x̂t0+ik is a binary random variable if yt is 
hosen at random. In the 
ase whenY is a purely random sequen
e, yt is balan
ed and independent of Pwk=1 x̂t0+ik , so that _xt isbalan
ed.In the 
ase when Y is the output sequen
e of the shrinking generator, yt is balan
ed, butis dependent on Pwk=1 x̂t0+ik in su
h a way that the linear equation yt + Pwk=1 xt0+ik = 0 issatis�ed. Consequently, we obtainPrf _xt = 0g = Prf wXk=1(x̂t0+ik + xt0+ik) = 0g: (15)Sin
e x̂t0+ik is obtained by applying the maximal posterior probability de
ision rule, we havePrfx̂t0+ik = xt0+ik j Y t+rt+1 g = max (p̂ik ; 1� p̂ik) (16)or, in terms of 
orrelation 
oeÆ
ients, we have
ik = 2Prfx̂t0+ik = xt0+ik j Y t+rt+1 g � 1 = j1� 2p̂ik j: (17)Under the independen
e assumption, by using the well-known fa
t that the 
orrelation 
oef-�
ient of a binary sum of independent binary random variables equals the produ
t of theirindividual 
orrelation 
oeÆ
ients, we obtain
 = 
( _xt) = wYk=1 
ik = wYk=1 j1� 2p̂ik j � 0 (18)or, in terms of probabilities, Prf _xt = 0g = (1 + 
)=2 � 1=2. This shows that the randomvariable _xt is nonbalan
ed and is biased towards zero.As the 
orrelation 
oeÆ
ient 
, relevant for the statisti
al distin
tion, depends on Y t+rt+1 ,it is important to estimate its expe
ted value over purely random Y t+rt+1 . Under the sameindependen
e assumption as above, (18) implies that�
 = wYk=1 �
ik : (19)Now, by using a uniform approximation to the binomial distribution, it is shown in [7℄ that
i = j1� 2p̂ij � 1m(i) jm1(i)� 0:5m(i)j (20)where m1(i) is the number of 1's in Y i on the segment I(i) of length m(i) � q3(i� 1)
entered around 0:5(i+1). Sin
e m1(i) is binomially distributed, we have jm1(i)� 0:5m(i)j �qm(i)=p2� and hen
e �
i � 1p2� 1qm(i) � 12�p3 14pi : (21)8



Finally, in view of (21), (19) redu
es to�
 � 1(2�p3)w 14qQwk=1 ik (22)whi
h is independent of t.Another interesting measure is the expe
ted value of 
2 over purely random Y t+rt+1 . By using(18) and the numeri
al approximation (20), in view of (m1(i)� 0:5m(i))2 � m(i)=4, we �rstget 
2i � 14m(i) � 14p3 1pi (23)and then 
2 � 1(4p3)w 1qQwk=1 ik : (24)The length n required for the statisti
al distin
tion is proportional to 1=�
2 or to 1=
2, wherethe two quantities di�er only by a multipli
ative 
onstant, dependent on w, and are given by1�
2 � (2�p3)wvuut wYk=1 ik; 1
2 � (4p3)wvuut wYk=1 ik: (25)The di�eren
e is due to the fa
t that the 
orrelation 
oeÆ
ient 
 is dependent on time. Ifinstead of runing the test forwards in time along the output sequen
e, we run it ba
kwardsin time, then we e�e
tively use the re
ipro
al polynomial of f and hen
e, instead of Qw�1k=1 ik,the produ
t Qw�1k=1 (r � ik) be
omes relevant. Consequently, to minimize n, we run the testforwards or ba
kwards a

ording to whi
h one of the two produ
ts is smaller.Another point that may be relevant for the statisti
al distin
tion is that the binary es-timates Pwk=1 x̂t0+ik , with the term yt ex
luded, are strongly dependent in time. However,the terms yt are roughly independent in time. The empiri
al eviden
e reported in Se
tion 5suggests that the quantity 1=�
2 seems to be more relevant than 1=
2. It follows that1�
2 � (2�p3)wvuut wYk=1 ik � (2�p3)w rw2 : (26)whi
h is to be 
ompared with (4) and (5). Re
all that if (6) is used for 
omputing the posteriorprobabilities, then the 
omputation time is at most wrn steps, and if the binomial distributionis trun
ated, then it is at most wp3r n steps, where ea
h step is an integer summation.Moreover, the step redu
es to a binary 
ounting update if the binomial distribution is repla
edby a uniform distribution, that is, if the numeri
al approximation (20) is used instead.9



In any 
ase, it follows that, in 
omparison with the linear model approa
h with multipleshrunken polynomials, the 
omputation time is signi�
antly redu
ed, whereas the requiredoutput sequen
e length, n + r, roughly remains the same. The advantage is espe
ially sig-ni�
ant if r is relatively large, whi
h is expe
ted to be the 
ase if a polynomial multiple ofthe LFSR1 
hara
teristi
 polynomials is used. Namely, the minimal degree of a polynomialmultiple of weight w + 1 of a random polynomial of degree r1 is expe
ted to be O(2r1=w) (see[6℄). In this 
ase, the 
omputation time is thus redu
ed from O(2r1) to O(2 r12 (1+ 1w )). Notethat in both the approa
hes the required output sequen
e length 
an be further redu
ed byusing more than just one linear re
urren
e satis�ed by the LFSR1 sequen
e, that is, by usinga number of polynomial multiples of the LFSR1 
hara
teristi
 polynomial.4.3 Improved Statisti
al TestIn the basi
 statisti
al test, the de
isions on the involved bits xt0+ik are made on the basis oftheir individual posterior probabilities. The de
isions are 
lose to being optimal if these bitsare 
lose to being independent when 
onditioned on the output sequen
e (the independen
eassumption). This is approximately satis�ed if the feedba
k taps are not too 
lose to ea
hother. If there are some taps that are very 
lose to ea
h other, then the basi
 statisti
al test
an be improved by making joint de
isions on the basis of the posterior probabilities of blo
ksof bits at appropriate positions in X.Suppose that the taps at positions ik, k1 � k � k2, are 
on
entrated. We �rst 
omputethe posterior probabilities of the blo
k of bits X t0+ik2t0+ik1 , that is, PrfX t0+ik2t0+ik1 = Ak2�k1+1 j Y t+ik2t+1 g,by using Theorem 1 for i = ik2 and m = k2 � k1 + 1, in (2k2�k1+1 � 1)ik2 steps. The desiredposterior probability PrfPk2k=k1 xt0+ik = 1 j Y t+ik2t+1 g is then dire
tly 
omputed by summing upthe posterior probabilities over the 
orresponding blo
ks Ak2�k1+1. This posterior probabilityis then used to make the hard de
ision on the binary sum Pk2k=k1 xt0+ik and 
ombined with theother posterior probabilities in the same way as in the basi
 statisti
al test.5 Experimental ResultsThe theoreti
al estimates of the output sequen
e length required for the basi
 statisti
al testto be su

essful are based on the numeri
al approximation (20) to the expression (6) forindividual posterior probabilities and on the independen
e assumption for the bits involvedin the linear re
urren
e 
onsidered. The obje
tive of the experiments was to obtain empiri
alestimates of the expe
ted values of the 
orrelation 
oeÆ
ient 
 and its square 
2 as well asto verify the e�e
tiveness of the test by 
omputing the value of the �2 statisti
 as a fun
tionof the output sequen
e length. This is performed for various degrees r and weights w + 1 ofthe LFSR1 
hara
teristi
 polynomial. Ea
h polynomial f(z) = 1 +Pwk=1 zik is 
hosen so thatQw�1k=1 ik < Qw�1k=1 (r � ik), so that it is better to run the test forwards than ba
kwards in time,and is spe
i�ed as a w-tuple (i1; � � � ; iw). 10



For Fig. 1, we �xed w = 2 and varied r by 
hoosing the polynomials (17; 50); (37; 100),(97; 250); (213; 500), and (319; 1000), whereas for Fig. 2, we �xed r = 50 and varied w by
hoosing the polynomials (17; 50); (7; 21; 50); (3; 15; 23; 50), and (5; 13; 15; 24; 50). For both�gures, the same 
lo
k-
ontrol LFSR2 with a primitive 
hara
teristi
 polynomial (2; 27; 29; 128)was used. For Fig. 1, the �2 statisti
 is 
omputed for di�erent sequen
e lenghts, n0 = n + r,with a step of 2000 bits, for both the shrinking generator sequen
e and a purely randomsequen
e. Ea
h value is averaged over 10 randomly 
hosen initial states of LFSR1. For therandom 
ase, the obtained 
urves are independent of the polynomial and follow the 
hi-squareprobability distribution with one degree of freedom, whereas for the shrinking generator 
ase,they in
rease with n roughly linearly, as �2 � �
2n for large n. We observed that whenever �2was large, the sign of n0 � n1 was positive, as expe
ted.Similar experiments were run for Fig. 2, but only for the shrinking generator 
ase. In theleft part of Fig. 2 we used a step of 104 bits and the 
urves are averaged over 10 randomly
hosen initial states of LFSR1, whereas in the right part we used a step of 106 bits and the
urves are obtained only for one initial state of LFSR1. The sequen
e length is shown on thelogarithmi
 s
ale in Fig. 2.For ea
h 
urve in both �gures, the 
riti
al length n00 is 
omputed as the minimal sequen
elength su
h that the threshold �20 = 6:6349 is rea
hed. Also, for ea
h 
onsidered polynomialand for the same sequen
e lengths as in Figures 1 and 2, the stable empiri
al estimates of theexpe
ted value of 
, �
exp, and of 
2, 
2exp, are both obtained and the inverses 1=�
2exp and 1=
2expare 
omputed. Here for ea
h t, 
 is 
omputed by (18) and the values are then averaged overt. In addition, the theoreti
al estimates are 
omputed a

ording to (25). All these quantitiesare shown in Tables 1 and 2, for the polynomials used for Figures 1 and 2, respe
tively.Table 1: Empiri
al and theoreti
al estimates for w = 2 and various r.r 1=
2exp 1=
2 1=�
2exp 1=�
2 n0050 1:42 � 103 1:40 � 103 3:33 � 103 3:45 � 103 2:80 � 104100 3:00 � 103 2:92 � 103 7:15 � 103 7:20 � 103 3:60 � 104250 7:79 � 103 7:47 � 103 1:88 � 104 1:84 � 104 1:00 � 105500 1:64 � 104 1:57 � 104 4:01 � 104 3:87 � 104 1:92 � 1051000 2:83 � 104 2:71 � 104 6:99 � 104 6:69 � 104 4:24 � 105The experimental results show that there is a very good a

ordan
e between the theoreti
aland empiri
al estimates of the expe
ted values of both 
 and 
2 for w = 2; 3; 4 as in this 
asethe feedba
k taps are not very 
lose to ea
h other, so that the independen
e assumption iswell justi�ed. For w = 5, that is, for the polynomial (5; 13; 15; 24; 50), the taps 13 and 15 are
on
entrated and this results in the empiri
al estimates 1=�
2exp and 1=
2exp being about threetimes greater than the 
orresponding theoreti
al estimates, respe
tively, so that the minimal11
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Table 2: Empiri
al and theoreti
al estimates for r = 50 and various w.w 1=
2exp 1=
2 1=�
2exp 1=�
2 n002 1:42 � 103 1:40 � 103 3:33 � 103 3:45 � 103 2:80 � 1043 2:82 � 104 2:85 � 104 9:58 � 104 1:11 � 105 5:00 � 1054 3:72 � 105 5:24 � 105 2:19 � 106 3:19 � 106 1:04 � 1075 5:69 � 106 1:73 � 107 5:58 � 107 1:65 � 108 4:00 � 108sequen
e length required is in pra
ti
e redu
ed. This length 
an be further redu
ed by usingthe improved statisti
al test treating the two bits 
orresponding to the taps 13 and 15 jointly.The experimental results also indi
ate that the minimal output sequen
e length requiredis proportional to 1=�
2exp where the multipli
ative 
onstant is between 5 and 10 as well as thatthis length is upper-bounded by 1=�
2 given by (26), multiplied by the same 
onstant.6 Con
lusionsFor a simpli�ed shrinking generator in whi
h the 
hara
teristi
 polynomial of the 
lo
k-
ontrolled LFSR, LFSR1, is assumed to be known, a new statisti
al distinguisher is proposed.Unlike the previously proposed statisti
al distinguisher whi
h sear
hes for the linear relationsin the output sequen
e, whi
h are 
alled the linear models, the new distinguisher estimatesthe linear relations in the original LFSR1 sequen
e by 
omputing the posterior probabilitiesof individual bits or of blo
ks of bits in this sequen
e when 
onditioned on the known outputsequen
e, where the output sequen
e is the de
imated LFSR1 sequen
e. Both distinguishersare based on low-weight polynomial multiples of the LFSR1 
hara
teristi
 polynomial.The theoreti
al and experimental analysis show that the 
omputation time of the newdistinguisher is signi�
antly redu
ed. The new approa
h is also e�e
tive if the LSFR1 
har-a
teristi
 polynomial is randomly 
hosen, provided that the degree of the used low-weightpolynomial multiple is 
lose to the expe
ted minimal degree.Referen
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