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Abstract. Considerable research effort has recently been devoted to
the design of structured peer-to-peer overlays, a term we use to en-
compass Content-Addressable Networks (CANs), Distributed Hash Ta-
bles (DHTSs), and Decentralized Object Location and Routing networks
(DOLRSs). These systems share the property that they consistently map
a large set of identifiers to a set of nodes in a network, and while at
first sight they provide very similar services, they nonetheless embody
a wide variety of design alternatives. We present the case for develop-
ing application-driven benchmarks for such overlays, give a model of the
services they provide applications, describe and present the results of
two preliminary benchmarks, and discuss the implications of our tests
for application writers. We are unaware of other empirical comparative
work in this area.

1 Introduction and Motivation

This paper reports on our ongoing work to devise useful benchmarks for im-
plementations of structured peer-to-peer overlays, a term we use to encompass
Content-Addressable Networks (CANs), Distributed Hash Tables (DHTs), and
Decentralized Object Location and Routing networks (DOLRs). We argue that
benchmarks are essential in understanding how overlays will behave in a partic-
ular application. Our work is driven partly by our experience implementing the
OceanStore [6] and Mnemosyne [4] systems.

We want to benchmark structured peer-to-peer overlays for three reasons.
The first is naturally for pure performance comparisons. However, in this paper
we are not interested in declaring one overlay “better” or “worse” than another
by measuring them on the same scale. The real value of application-driven bench-
marks is to demonstrate how the design choices embodied in different overlay
designs lead to different performance characteristics in different applications. Our
aim is to relate three different areas: the design choices of the various overlays,
their measured performance against our benchmarks, and the kind of perfor-
mance and scaling behavior that users might see for their own applications. Our
final motivation in benchmarking is our desire to provide overlay designers with
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Fig. 1. Overlay Service Decomposition. The functionality exposed by structured peer-
to-peer overlays can be divided into a mapping of keys onto nodes, mechanisms to
store and retrieve data items, and mechanisms to route to or locate data items stored
according to a policy outside the overlay’s control.

a metric of success as expressed by application builders. Even a less-than-perfect
benchmark would allow the designers of new algorithms to compare their work
against previous designs, raising the barrier to entry for algorithms which hope
to lure a large user base.

In the next section, we present a generic service model for structured peer-
to-peer overlays which we use as a framework for measurement. Such a model
attempts to capture the characteristics of an overlay which are of interest to
an application writer. In Section 3, we describe our benchmarking environment,
consisting of the Chord [13] and Tapestry [5,16] implementations running on
the PlanetLab testbed. In Section 4 we discuss two benchmarks for overlays,
and the results of running them against our Chord and Tapestry deployments.
In Section 5 we draw some conclusions and discuss future work.

2 A Common Service Model

Before describing our benchmarking work, we present a generic service model for
structured peer-to-peer overlays which we use as a framework for measurement.
Such a model attempts to capture the characteristics of overlays which are of
interest to an application writer.

The service model is in some ways like an Application Programming Interface
(API), but it differs from an API in that it tries to capture the possible behavior
of functionality presented to a user of the overlay, rather than explicitly specify-
ing how the functionality is invoked. Furthermore, the model does not attempt
to capture the routing mechanisms of the overlay except insofar as they manifest
themselves in observed application performance, under “normal” conditions. We
are not at this stage concerned with benchmarking overlays under attack in the
ways described in [3], though this is clearly a direction for future work.



Figure 1 shows a functional decomposition of the services offered by various
structured peer-to-peer overlays.® All existing overlays of which we are aware
consist of a set of identifiers, T (often the set of 160-bit unsigned integers), and
a set of nodes, N (often some subset of the set of IPv4 addresses), which consists
of the nodes participating in the overlay at a given moment. The lowest level of
an overlay, the key-based routing layer, embodies a surjective mapping

owner : T - N

which maps every identifier i € 7 to a node n € N. We chose the name owner
to embody the idea that the owner is the node ultimately responsible for some
portion of the set of identifiers. To compute owner, it is generally necessary to
gather state from several successive nodes in the system; these nodes may all be
contacted from the querying node itself, as in the MIT Chord implementation, or
the query may be routed through the network, with each relevant node contacting
the next, as in the Berkeley Tapestry implementation. In the original Chord
paper [13], these two styles are respectively termed iterative and recursive; we
will continue the use of that terminology in this work.

The most basic operations application writers are interested in is evaluating
this function for some i € Z, and/or sending a message to the node owner(i). In
Chord, the owner function is directly implemented, and called find_successor,
while in Tapestry it is provided by the route_to_root(i,m) function which sends
a message m to owner(i).

Above this basic facility many applications are also interested using overlays
to store or retrieve data. To date, there are to our knowledge two different ways
in which this functionality is achieved. In the first, a DHT is implemented atop
the routing layer by mapping the names of data items into Z, and storing each
object at the owner of its identifier.* In this case, an application may call the
function put(i,x) to store the datum z with name i, or get(i) to retrieve the
datum named 4. For load balancing and fault tolerance, data items are often
replicated a nodes other than the owner.

The second common method of implementing a storage layer in an overlay
is to place data throughout the system independent of the overlay, but use the
overlay to place pointers to where the data is stored. Algorithms using this
second technique are called DOLRs to emphasize that they locate or route to
data without specifying a storage policy. The functionality exposed by DOLRs
consists of a publish(i) operation, by which a node advertises that it is storing a
datum with name i, and a route_to_object(i, m) operation, by which a message
m is routed to a node which has previously published .

While many applications benefit from the higher levels of abstraction pro-
vided by some overlays, others are hindered by them. To Mnemosyne, for ex-

3 This figure is a simplified version of that presented in the work to establish a common
API for such systems [2].

* A common mapping of this sort is exemplified by CFS [1], which associates a data
block b with an identifier i = SHA1(b) and stores the block contents at node n =
owner(SHAI(D)).



PlanetLab Internode Distance Distribution
600

500 r

400 r Region A 1

300

Count

200

Region B
100 1
Region C

0 50 100 150 200 250 300 350 400
Ping Time (In 5 ms Buckets)

Fig. 2. Distribution of round-trip times in PlanetLab. Region A (0-100 ms) contains
72.3% of the times, Region B (100-275 ms) contains 26.6%, and Region C (275-400
ms) contains the the negligible remainder.

ample, the additional performance cost of DHT or DOLR-like functionality is a
disadvantage; in contrast, the DOLR properties of Tapestry are integral to the
OceanStore design. We conclude this section by noting that the decomposition
in Figure 1 is not a strict layering. While at a functional level, a DOLR may
be implemented by a DHT and vice-versa, we show in the results section of this
paper that there are performance consequences of doing so.

3 Experimental Setup

Our experiments are performed on PlanetLab [9], an open, shared testbed for
developing and deploying wide-area network services. This testbed consists of
sites spread across the United States and Europe with up to three nodes at each
site. While the hardware configuration of the machines varies slightly, most of
the nodes are 1.2 GHz Pentium III CPUs with 1 GB of memory.

To gain some notion of the shape of the network, we performed two simple
experiments using 83 of the machines on November 1, 2002. First, we pinged ev-
ery host from every other hosts ten times and stored the minimum value seen for
each pair; the results are graphed in Figure 2. The median inter-node ping time is
64.9 ms. Next, we had each node use the Unix scp command to transfer a 4 MB
file from each of the machines planlabl.cs.caltech.edu, planetlabl.lcs.mit.edu,
and ricepl-1.cs.rice.edu. This test is crude, but we only wanted a rough idea of
the throughput available. The median observed throughput was 487 kB/s. The
correlation between observed throughput and ping time is shown in Figure 3;
as predicted analytically by Padhye et al. [8], TCP throughput and round-trip
time show an inverse correlation. Since well-behaved peer-to-peer applications
are likely to use TCP for data transfer in the foreseeable future, this correlation
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Fig. 3. PlanetLab Inter-node Throughput. Throughput is inversely proportional to
ping time.

is significant; it implies that nearby nodes are likely to observe higher throughput
on data transfers than distant nodes.

In the first version of this paper, we used the MIT Chord implementation
from September 23, 2002.> We later discovered that this implementation caches
the IP addresses and Chord identifiers of the last several hundred nodes it has
contacted; since our test uses less than a hundred nodes, with this cache each
lookup takes at most a single network hop. This behavior will clearly not scale,
so we reran some of our experiments with the Chord implementation from March
2, 2003, which allows us to disable this cache. For our Tapestry experiments, we
used the Berkeley implementation of Tapestry,® also from either September or
March. The implementation used in each experiment is noted below.

Chord is implemented in C++ while Tapestry is implemented in Java atop
SandStorm [15]. To test them both under the same framework, we extended the
Chord implementation to export the find_successor functionality to the local
machine through an RPC interface over UDP. We then built a stage which used
this interface to provide access to Chord’s functionality from within SandStorm.
To test the overhead of this wrapping, we started a single node network and
performed 1000 calls to find_successor from within SandStorm; the average call
took 2.4 ms.” As we show below, this is a small percentage of the overall time
taken by each find_successor operation.

To run an experiment with Chord, we start a Chord instance running this
gateway for each node in the test, allow the network to stabilize, and then
bring up the benchmarking code for each machine. To run an experiment with

% Available at http://www.pdos.lcs.mit.edu/chord/.

6 Available at http://oceanstore.cs.berkeley.edu/.

" This small delay only occurs once for each computation of the successor of a given
identifier, not once per hop during that computation.



Tapestry, we bring up the Tapestry network first and allow it to stabilize, then
we begin the benchmark.

4 Experimental Results

In this section we describe our experiments and analyze their results.

4.1 Find Owner Test

Our first benchmark measures the find_owner function. It tests the find_successor
function under Chord; under Tapestry it is implemented as a route_to_root func-
tion with a response from the root to the query source over TCP. This test
was run on March 4, 2003, on 79 PlanetLab nodes using the implementations of
Chord and Tapestry from March. In the test, each node in the network chooses
400 identifiers uniformly and randomly from the identifier space and evaluates
find_owner on each, timing the latency of each operation and waiting one second
between them. All nodes perform the test concurrently.

Relevance The find_owner functionality is used by almost every system built on
an overlay. It is used to read and write data in CFS, PAST, and Mnemosyne,
and to find candidate archival storage servers in OceanStore. With systems such
as CFS and Mnemosyne, where the individual units of storage are small (on the
order of disk blocks), the latency of the find_owner operation can drastically
affect the time to perform a read or write.

Results Figure 4 shows the median latency of the find_owner operation imple-
mented using Chord as a function of the ping time between the query source
and the discovered owner. In theory, this function can be implemented without
contacting the owner; if an identifier lies between a node and its successor, that
node knows the successor of the identifier. The MIT Chord implementation al-
ways contacts the owner node in the the process of finding it, however, so there
is a correlation between the find_owner and ping times.

Figure 5 shows the same graph, but using Tapestry to implement find_owner.
As in the MIT Chord implementation, the owner is always contacted in comput-
ing this function in Tapestry, so the find_owner latency should never be lower
than the ping time. Ping times do vary between when they are measured and
the test in question however, so some points fall below the line y = z. In general,
though, Tapestry behaves as predicted in previous work [11]; the time to find
the owner is roughly proportional to the network distance between the owner
and the query source.

Discussion A summary of the find_owner results is shown in Table 1. The median
find_owner time in Chord is 2.9 times slower than in Tapestry. Also shown in
Table 1 are estimated times to send a message to the owner of an identifier
using each algorithm; we call this operation call_owner. In both networks, the
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Fig.5. Tapestry find_owner latency.

time to compute call_owner can be estimated as one half ping time less than the
find_owner time. In this test, Chord is 3.9 times slower than Tapestry.

There are two main reasons to expect that the Chord implementation would
be slower than Tapestry on find_owner. First, the Tapestry network is built
for locality; although both networks take O(log N) hops in locating an owner,
network hops early in the Tapestry location process are expected to be short.
Second, the MIT Chord implementation performs iterative lookup; each node in
the lookup process is contacted from the query node, rather than routing the
query through the network as in Tapestry. Since the query node is in control
of the lookup process from start to finish, iterative lookup is attractive from a
robustness standpoint. Our timing results show some cost associated with this
increased robustness, although we leave separating this cost from that of locality
in neighbor links as a topic for future work.



Median latency of. .. |Ch0rd|Tapestry
find_owner (measured)| 269 93
call_owner (estimated)| 236 61

Table 1. Summary of find_owner results. Times for the call_owner operation are esti-
mated using the ping times shown in Figure 2. All times are in milliseconds.

We can also use the find_owner times to make a rough estimate of the median
time to retrieve a data block from the owner. We first note that the time to
retrieve a block of negligible size is the same as the find_owner time in our
experiments. Estimating the time to retrieve larger blocks is a matter of adding
the time to transfer the additional bytes. Assuming the throughput between
the query source and the owner is the median throughput of 487 kB/s, a 4 kB
block takes only 8 ms to transfer, resulting in Chord being 2.8 times slower than
Tapestry. This difference fades with increasing block size, however; for 1.7 MB
blocks, the Chord retrieval time would be within 5% of the Tapestry time.

Our computed times, of course, are only estimates; if such computations
were sufficient for judging algorithmic performance, there would be no need
for benchmarking. As such, we have already begun further testing to directly
measure call_owner and block retrieval times.

4.2 Replica Location Test

Our next test is a replica location test; it was run on October 29, 2002, on 83 of
the PlanetLab nodes. In Chord, this test is simply the get operation implemented
in DHASH, the storage layer underlying CFS. In Tapestry, it is implemented as
the locate operation, followed by a response over TCP with the requested data.
In these tests we measure not the latency of the replica location, but the location
stretch, which we define as the the distance to the replica that was located divided
by the distance to the replica closest to the query source. Location stretch is a
measure of the quality of location; it shows the degree to which an overlay finds
close replicas when they are available. In these tests, we use the implementations
of both algorithms from September 2002; since location stretch is independent
of the time to find a replica, these results are not affected by the presence of
Chord’s cache.

Relevance An important feature of Tapestry is that it tries to route to the clos-
est replica to the query source if more than one replica is available. In contrast,
although DHASH generally provides several replicas of each data block in CFS,
there is no direct mechanism in Chord to locate the nearest replica. Instead, it al-
ways locates the one stored on the owner of the block’s identifier, and provisions
to find closer replicas must be implemented at the application layer.

Locating nearby replicas has several benefits, the most obvious of which is
performance; as Figure 3 shows, there is some correlation between ping time and
throughput. Replicas close in ping time to the query source are more likely to
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have a high throughput path to the latter; they can thus not only deliver the
first byte of a data item faster than replicas further from the query source, but
they can also provide the last byte faster. Applications with high performance
needs and multiple replicas of each data object should thus value locality highly.

In addition to performance, locality can also help provide availability; the
closer a discovered replica is, the less likely it will fall on the other side of a
network partition than the query source. Finally, by serving each read from the
replica closest to the reader, a system may achieve better resource utilization
and load balance.

Results To test the locality features of the overlays, we first built a Chord network
and stored 4 replicas of 10 different zero-byte objects as in DHASH. Then, we
read the objects from each node in the system, one at a time, and recorded the
total read latency and the node on which the replica was found. Next, we built
a Tapestry network in which we stored the replicas on the same nodes as in the
Chord test, and read the data as before.

After performing the tests, we calculated for each operation the distance
to the closest replica from the query source, and the ping time to the replica
that was actually discovered. The median ping time to the located replica in
Chord was 55 ms; in Tapestry it was 39 ms, a 39% improvement. For reference,
the median ping time to the closest available replica in each case was 29 ms, so
Tapestry underperforms an ideal algorithm by 36%. Figure 6 graphs the location
stretch of the two overlays.

Discussion We first observe that neither overlay performs well when the query
source is within 5 ms of the closest replica; we believe that other techniques are
necessary to achieve high performance in this range [11].

Next, we can see from Figure 6 that Tapestry significantly outperforms Chord
when the closest available replica is within 515 ms of the query source. Referring



back to Figure 3, a replica in this range generally sees high throughput to the
query source as well, further increasing the benefits of locality.

Finally, we note that although Chord is not designed to find replicas according
to locality, it could be extended to achieve low location stretch by finding all
available replicas and then choosing the one with the lowest ping time. The CFS
paper seems to imply that their implementation does something of this sort.
Finding the latency to each replica would take time, but in some cases it might
be justified. For example, if a service is being located (as in I? [14]), rather than
a replica, if the number of replicas is very small, or if the replica is for a very
large file, the location time may be dwarfed by the remainder of the operation.
Further study is needed to determine the performance of such a scheme relative
to Tapestry, and we plan to test the CFS implementation in our future work.

5 Conclusions and Future Work

One can observe structured peer-to-peer overlay designs from several angles: sim-
plicity, robustness, efficiency, and/or performance. In this work we have focused
on the latter, primarily because it is the easiest to measure, when the imple-
mentations of some of these algorithms are still in the early stages. Moreover,
regardless of which of these features one studies, one can take an algorithmic
approach, as in [10], or an application-level approach as we have taken. We view
these two as complementary: at the same time that it is necessary for overlay
builders to be exploring their design space, it is important for application writers
to explore the differences between designs and the ways they affect the systems
built on them.

In this paper we presented two benchmarks, find_owner and locate, evaluated
over two overlays, Chord and Tapestry. We showed that for systems storing and
retrieving blocks only from their owner nodes, find_owner provides insight into
the choice of overlay. For systems that store files larger than 1.7 MB at the
owner, there is little performance difference between Tapestry and Chord; for
systems that store files as 4 kB blocks, each on their own owner however, there is
a significant performance advantage to Tapestry. Depending on the application,
however, this performance advantage may not be sufficient enough to justify
the extra mechanism. Moreover, at least some of the latency advantage seen by
Tapestry is due to its recursive—as opposed to iterative—routing style. In our
future work, we plan to also study a recursive implementation of Chord so as to
study each of these differences separately.

Our second benchmark, locate, showed that there is still work to be done on
improving the ability of overlays to locate nearby replicas when they exist. We
hope this result motivates the designers of these algorithms to further improve
them; the correlation of throughput and ping times shown in Figure 3 indicate
that there are significant performance gains available if they do.

Our ongoing work in the short term is to extend our benchmarks to other
overlay implementations, and to track the increasing size of PlanetLab with
more measurements. However, we believe we have only scratched the surface of
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the set of interesting and important benchmarks. We have not yet examined
(for example) the cost of a new node joining a network, or the cost of one
leaving. Neither have we examined the cost of a high rate of node turnover on
a network, as highlighted by others [7,12]. Finally, we have not analyzed the
behavior of these overlays during node failure or maliciousness. The design of
good application-driven benchmarks for such cases is a rich topic for future work.
Nevertheless, we hope our existing work will help application designers to better
understand the tradeoffs in choosing an overlay, and that it will motivate further
design and implementation improvements by the networks’ designers.
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