
Why: a multi-language multi-proververi�
ation toolJean-Christophe FilliâtreLRI { CNRS UMR 8623Universit�e Paris-Sud, Fran
efilliatr�lri.frAbstra
t. This arti
le introdu
es the veri�
ation tool Why. This toolprodu
es veri�
ation 
onditions from annotated programs given as in-put. It di�ers from other systems in that it a

epts several languages asinput (
urrently C and ML, and Java with the help of the 
ompaniontool Krakatoa) and outputs 
onditions for several existing provers (
ur-rently Coq, PVS, HOL Light and haRVey). It also provides a great safetythrough some de Bruijn 
riterion: on
e the obligations are established, aproof that the program satis�es its spe
i�
ation is built and type-
he
kedautomati
ally.Keywords: Veri�
ation, C, ML, Java1 Introdu
tionThis arti
le introdu
es the veri�
ation tool Why [4℄. When observed from out-side, this tool resembles many others: it takes annotated programs as input andprodu
es veri�
ation 
onditions as output. However, it relies on a te
hnologyand on some design 
hoi
es whi
h are less 
ommon.First, Why is not 
oming with its own proof tool; instead, it produ
es 
on-ditions for existing proof tools. This is parti
ularly important when intera
tiveproof is needed, whi
h always ends up to be the 
ase. Writing a good proofassistant is a tremendous amount of work, whi
h should be left to the �eld ex-perts. Currently, Why is interfa
ed with three proof assistants, namely Coq [1℄,PVS [3℄ and HOL Light [10℄. The same remark a
tually applies as well to auto-mati
 de
ision pro
edures: instead of involving them inside the veri�
ation tool,it is simpler to use existing tools as a ba
k-end. Currently,Why is interfa
ed withthe haRVey de
ision pro
edure [18℄. Adding a ba
k-end for a new proof tool isreally simple|a matter of a few hours|and the requirements over the logi
 arevery small|only a �rst order minimal logi
 is needed.If interfa
ing to external proof tools may in
rease the trust in the veri�
ationpro
ess, it is also important to bring eviden
e that the veri�
ation tool itself istrustworthy. This is parti
ularly important when the tool is dis
harging someobligations by itself or is involving 
omplex treatments for some parti
ular 
on-stru
ts of the language (C abrupt terminations, Java or ML ex
eptions, et
.)One solution is to embed the whole veri�
ation pro
ess inside a proof assistant.



annotated programs ML Cthe Why toolCoq PVS HOL Light haRVeyproof obligations Fig. 1. The Why toolWhy adopts a slightly di�erent approa
hes where a proof that the program sat-is�es its spe
i�
ation is 
he
ked a posteriori, on
e all obligations are dis
harged,either by the user or automati
ally by Why itself. This 
he
k is purely automati
and thus 
an be 
onsidered as a de Bruijn 
riterion.Finally, Why is not limited to one input language. It 
urrently a

epts Cand ML programs, and Java programs with the help of the 
ompanion toolKrakatoa. The reason for this 
exibility is the 
hoi
e of ML as internal lan-guage1. Ri
her than the traditional imperative 
onstru
ts, ML 
onstru
ts easesymboli
 manipulations|not distinguishing expressions and statements, allow-ing lo
al variables at any pla
e, et
.|and are used to interpret some 
omplexC and Java 
onstru
ts. For instan
e, abrupt terminations with return, breakor 
ontinue are ni
ely interpreted using ML ex
eptions. Doing so, there is noneed to implement spe
ial rules for these 
onstru
ts; the rules for ex
eptionsare giving the ex
epted veri�
ation 
onditions. Another bene�t in using ML isa natural modularity of the method, using a simple extension of ML types withe�e
ts and spe
i�
ations. Again, there is no need to implement a 
omplex rulefor fun
tion 
all; there is nothing more to do than ML typing.This paper is organized as follows. Se
tion 2 exposes the prin
iples and theo-reti
al foundations of the tool. Then Se
tion 3 details its pra
ti
al use, illustratedon an example. Se
tion 4 is brie
y introdu
ing the veri�
ation of Java programsusing the 
ompanion tool Krakatoa. Finally, some expe
ted future developmentsare des
ribed.2 Prin
iplesThe theoreti
al foundations of Why are detailed in the author's PhD thesis [7,9℄. Basi
ally, Why is building a fun
tional interpretation of the imperative pro-gram given as input. Expressed in Type Theory, this interpretation mixes the
omputational and logi
al parts of the program, using dependent tuples. The
omputational part is entirely built by the tool, using an e�e
t inferen
e and a1 By ML we mean a fun
tional programming language with side e�e
ts, like Caml orSML, and not a purely fun
tional language like Haskell.



notion of monads parameterized with e�e
ts. The logi
al part is usually in
om-plete, the missing pie
es being pre
isely the proof obligations. These veri�
ation
onditions are simply 
olle
ted by traversing the fun
tional interpretation.For instan
e, the following Hoare triplef x > 0 ^ y > 1 g x := x+ 1; y := y � x f y > �y g (1)is translated into a proof of8x0; y0: x0 > 0 ^ y0 > 1) 9x1; y1: y1 > y0The 
omputational part of this proof 
onsists in interpreting the two assignmentsx := x+ 1 and y := y � x, as the 
omputation of �nal values x1 and y1 frominitial values x0 and y0. The logi
al part 
onsists in an hypothesis x0 > 0 ^ y0 > 1and a proof of y1 > y0. The latter is a veri�
ation 
ondition. The entire prooflooks like �x0; y0: �h : x0 > 0 ^ y0 > 1:let x1 = x0 + 1 inlet y1 = y0 � x1 in(x1; y1;� : y1 > y0)where the proof obligation is denoted by a box. The exa
t statement of thisobligation is thusx0 > 0 ^ y0 > 1) x1 = x0 + 1) y1 = y0 � x1 ) y1 > y0and simpli�es, after substitution, tox0 > 0 ^ y0 > 1) y0 � (x0 + 1) > y0As illustrated by this example, the veri�
ation 
onditions for the usual im-perative 
onstru
ts are similar to the ones given by Hoare logi
. This was 
learlydemonstrated by verifying with Why the program Find, proved 
orre
t by Hoarehimself thirty years ago [12℄. The veri�
ations 
onditions appeared to be exa
tlythe same, and the proofs were 
ondu
ted in Coq following Hoare's paper in astraightforward way [8℄. But it is important to noti
e that Why is not imple-menting some Hoare logi
, even if it seems to do so observationally.The remaining of this se
tion des
ribes the Why te
hnology in more details.The Why 
on
rete syntax is used throughout this se
tion.2.1 Types, programs and annotationsAnnotations are written in �rst-order logi
. Terms (t) are made of 
onstants,variables and appli
ation of fun
tion symbols to terms:t ::= 
onstant j x j x�L j f(t; : : : ; t)When relevant, a variable x 
an be annotated with a label L, written x�l, todenote the value of a mutable x at a given program point L. It is important



to noti
e that f is a fun
tion symbol from the logi
al world, whi
h 
annot bede�ned or used in programs. Predi
ates (p) are built with the usual 
onstru
tsof �rst-order logi
:p ::= x j x(t; : : : ; t) j true j false j not p j p and p j p or p jif t then p else p j forall x : �. p j exists x : �. pIn the 
onditional 
onstru
t if t then p1 else p2, t is a boolean term, not aproposition; indeed, propositions are not ne
essary booleans (we do not assume
lassi
al logi
 a priori). For the same reason, true and false are not the twoboolean 
onstants (also written true and false with no possible ambiguity),but the two propositions always and never valid. Quanti�
ation is limited toprimitive types.Primitive types (�) 
ontain a type unit with a single value void, the booleantype bool, a type int for integers, a type float for 
oating point numbers:� ::= unit j bool j int j float j xA type variable x stands for an abstra
t type introdu
ed by the user; it is sup-posed to be de�ned on the logi
al side and thus is pure (i.e. does not 
ontainmutable parts).Types for programs distinguish types for values (�) and types for 
ompu-tations (�). The former in
lude primitive types, referen
es, arrays and fun
tiontypes. The latter add a pre
ondition, an e�e
t and a post
ondition to a valuetype. An e�e
t (�) is made of three lists of variables: the mutables possiblya

essed and those possibly updated.� ::= � j � ref j � array j (x:�) -> �� ::= fpg � � fpg� ::= reads x; : : : ; x writes x; : : : ; xPrograms are built from usual 
onstru
ts of ML with referen
es and arrays,with no distin
tion between expressions and statements:e ::= fpg e fpg jt j !x j x := e j ref e j x[e℄ j x[e℄ := e j e; e j L:e jif e then e else e j let x = e in e j fun (x:�) -> e j (e e) jre
 x : � fvariant tg = e jwhile e do finvariant p variant tg e doneAny expression 
an be given pre- and post
ondition using the Hoare triple nota-tion fp1g e fp2g. In the post
ondition, the variable result is bound to the resultof the 
omputation and an empty label refers to the pre
ondition point (i.e. x�stands in p2 for the value of x before the evaluation of e). The 
onstru
t L:eexpli
itly pla
es a label L right before the evaluation of e, to be used in anno-tations inside e. Re
ursive fun
tions and loops are given a variant: it is a termt whi
h must de
rease for a given well-founded order relation. This relation 
anbe spe
i�ed expli
itly; to simplify this presentation we assume here the usual



order relation on natural numbers. Loops 
an be given invariants (this is for
onvenien
e, sin
e the Hoare triple already allows to annotate the loops, bothinside and outside).Typing rules 
losely follow those of traditional ML typing, with additionalinferen
e of e�e
ts and 
he
k for well-formedness of pre- and post
onditions. Allthese rules are given in [9℄.2.2 Aliasing ex
lusionThe reader may have already noti
ed severe restri
tions with respe
t to ML.First, referen
es and arrays are limited to primitive types. Se
ond, left valuesare limited to variables (in a

essing or updating referen
es or arrays). The goalbehind these restri
tions is to be able to get a pre
ise e�e
t analysis (i.e. to knowfor ea
h variable separately if it is possibly a

essed or modi�ed). This leads toa very pre
ise interpretation in Type Theory and thus to very natural proofobligations, as illustrated at the beginning of this se
tion. Consequently, aliasingbetween di�erent mutable variables must be ex
luded and this is guaranteed bytyping rules. Mainly, rules for let in and fun
tion appli
ation prevent the userfrom 
reating an alias; see [9℄ for details.However, we show in Se
tion 4 that it is still possible to 
over all features ofML, C or Java programs, using a low level memory model.2.3 Weakest pre
onditionsTo get the expe
ted obligations, the input program must be adequately anno-tated: intermediate program points must be given the right annotations. Whydis
harges the user from this painful task using a weakest pre
ondition (WP) 
al-
ulus. The weakest pre
ondition of a program e for a post
ondition q is writtenwp(e; q).The originality of this WP 
al
ulus is its treatment of annotated subexpres-sions i.e. of Hoare triples:wp(fp0g e fq0g; q) = p0 ^ 8result : 8!: q0 ) qwhere ! stands for the set of variables possibly modi�ed by e. This formulationexpresses a 
ru
ial notion of modularity: as seen from outside, the Hoare triplefp0g e fq0g is a bla
k box with a spe
i�
ation given by p0, q0 and its e�e
t, andits 
ode e is not examined to 
ompute the weakest pre
ondition for q. Instead,a new WP 
al
ulus starts inside e with the post
ondition q0.In parti
ular, a loop and a fun
tion 
all are naturally annotated with theloop invariant and the fun
tion spe
i�
ation, respe
tively. Thus they are seen asHoare triples by the WP 
al
ulus and do not need any spe
ial treatment.



The weakest pre
ondition is de�ned for the other 
onstru
ts in a usual way:wp(t; q) = q[result  t℄wp(!x; q) = q[result  x℄wp(x := e; q) = wp(e; q[result  void;x result ℄)wp(t[e℄; q) = wp(e; q[result  (a

ess t result)℄)wp(t[e1℄ := e2; q) = wp(e1;wp(e2; q1)[v1  result ℄)with q1 = q[result  void; t (update t v1 result)℄wp(e1; e2; q) = wp(e1;wp(e2; q))wp(L:e; q) = wp(e; q)[x�L x℄wp(if e1 then e2 else e3; q) = wp(e1; if result then wp(e2; q) else wp(e3; q))wp(let x = e1 in e2; q) = wp(e1;wp(e2; q)[x result ℄)where a

ess and update are the purely fun
tional operations over the arrays asmodeled on the logi
al side.2.4 Ex
eptionsWhy also supports ex
eptions. For the 
larity of this presentation we assumea single ex
eption E with one argument of type int; but Why supports anunlimited number of ex
eptions de
lared by the user.First, the notion of e�e
t is extended to indi
ate the possible raise of ex
ep-tion E: � ::= reads x; : : : ; x writes x; : : : ; x [raises E℄Post
onditions are also extended to in
lude a se
ond predi
ate, namely the prop-erty to be valid when ex
eption E is raised:� ::= fpg � � fp j E ) pgFinally, the Hoare triple is extended similarly and 
onstru
ts to raise and 
at
hex
eption E are added:e ::= fpg e fp j E ) pg j : : : j raise (E e) j try e with E x -> e endThe notion of weakest pre
ondition is extended a

ordingly. It be
omes aternary operator wp(e; q; r) where q is the normal post
ondition and r the ex-
eptional one. All rules of the WP 
al
ulus but one are un
hanged i.e. r is justadded as a third argument everywhere. Only the rule for the Hoare triple mustbe adapted, as follows:wp(fp0g e fq0 j E ) r0g; q; r) = p0 ^ 8result: 8!: (q0 ) q ^ r0 ) r)Two new rules are added to handle the raise and try 
onstru
ts:wp(raise (E e); q; r) = wp(e; r; r)wp(try e1 with E x -> e2 end; q; r) = wp(e1; q;wp(e2; q; r)[x  result ℄)



2.5 Dis
harging 
onditions automati
allyWhy is dis
harging a lot of proof obligations by itself. As already mentioned,safety is ensured sin
e Why builds 
orresponding proof obje
ts (proof terms forthe Coq logi
). In parti
ular, it is very important to dis
harge tautologies 
omingfrom the WP 
al
ulus. By 
onstru
tion, su
h tautologies lie in linear �rst-orderminimal logi
, whi
h 
orrespond to the following rules�; P ` P �; P;Q ` R�; P; P ) Q ` R �; P;Q ` R�; P ^Q ` R �;8x:P (x) ` P (t)�; P (t);8x; y:P (x)) Q(x; y) ` R�; P (t);8y:Q(y) ` R �;8x:(P (x) ^Q(x)) ` R�;8x:P (x);8x:Q(x) ` Rwhere x and y (resp. t) may stand for several variables (resp. several terms).Whyis implementing a goal dire
ted proof sear
h using these rules, whi
h returns aproof obje
t.2.6 Verifying C programsExternally, Why a

epts both ML and C programs as input. C programs arewritten in the standard ANSI C syntax and annotated using a parti
ular kindof C 
omments. Internally to the Why tool, the sole 
onstru
ts are the ML onesand C 
ode is translated into ML 
ode. Obje
ts set apart, a similar translationis done for Java programs in the Krakatoa tool (see Se
tion 4). We give here anoverview of the C to ML translation.Types. Currently, only C base types (void, 
har, short, int, long, float anddouble), arrays and pointers are 
onsidered. Following the same restri
tions asML (see Se
tion 2.2), arrays and pointers are limited to base types. Type voidis mapped to ML type unit; all integer types are mapped to ML type int; both
oating point types are mapped to ML type float. In the following, � standsfor a C base type or its ML 
ounterpart, without distin
tion.C variable de
larations allowed and their ML translations are given in thefollowing s
hema:{ global variable� [[� x℄℄ = x : � ref� [[�* x℄℄ = x : � ref� [[� x[℄℄℄ = x : � array{ lo
al variable� [[� x℄℄ = x : � ref{ fun
tion parameter� [[� x℄℄ = x : �� [[�* x℄℄ = x : � ref� [[� x[℄℄℄ = x : � arrayIn the following we write x : �1=�2 if a variable x has C type �1 and ML type �2.



Left values. The translation of a C left value e is written [[e℄℄l and de�ned by:[[x℄℄ = x if x : �=� ref[[*x℄℄ = x if x : �*=� ref[[x[e℄℄℄ = x[e℄ if x : �[℄=� arrayExpressions. The translation of a C expression e is written [[e℄℄ and de�ned by:{ [[x℄℄ = (!x if x : �=� refx otherwise{ [[e1 = e2℄℄ = (x := [[e2℄℄; !x if [[e1℄℄l = xlet i = [[e01℄℄ in x[i℄ := [[e2℄℄; x[i℄ if [[e1℄℄l = x[e01℄{ [[e1 op= e2℄℄ =(x := !x op [[e2℄℄; !x if [[e1℄℄l = xlet i = [[e01℄℄ in x[i℄ := x[i℄ op [[e2℄℄; x[i℄ if [[e1℄℄l = x[e01℄with op 2 f+; -; *; /; %; &; ^; |g. Noti
e that ++e is e += 1 and --e is e -= 1.{ [[e++℄℄ =(let v = !x in x := !x + 1; !v if [[e℄℄l = xlet i = [[e0℄℄ in let v = x[i℄ in x[i℄ := x[i℄ + 1; v if [[e℄℄l = x[e0℄{ [[e1, e2℄℄ = [[e1℄℄; [[e2℄℄{ [[e1 ? e2 : e3℄℄ = if [[e1℄℄ then [[e2℄℄ else [[e3℄℄{ [[e1 op e2℄℄ = let v1 = [[e1℄℄ in let v2 = [[e2℄℄ in v1 op v2with op 2 f+; -; *; /; %; &; ^; |g{ [[e1 op e2℄℄ = if [[e1 op e2℄℄b then 1 else 0with op 2 f==; !=; >; >=; <; <=; &&; ||g{ [[!e℄℄ = if [[e℄℄b then 0 else 1{ [[-e℄℄ = -[[e℄℄{ [[*x℄℄ = !x, if x : �*=� ref{ [[&x℄℄ = x, if x : �=� ref{ [[x[e℄℄℄ = x[[[e℄℄℄{ [[
℄℄ = 
, for a 
onstant 
{ [[f(e1; : : : ; en)℄℄ = let v1 = [[e1℄℄ in : : : let vn = [[en℄℄ in (f v1 : : : vn)



Boolean expressions. C does not have booleans. However, the translation is morenatural when a C expression e used as a boolean is dire
tly translated into anML boolean. Su
h an interpretation is written [[e℄℄b and de�ned by:{ [[e1 op e2℄℄ = let v1 = [[e1℄℄ in let v2 = [[e2℄℄ in v1 op v2,with op 2 f==; !=; >; >=; <; <=g{ [[e1 && e2℄℄ = if [[e1℄℄b then [[e2℄℄b else false{ [[e1 || e2℄℄ = if [[e1℄℄b then true else [[e2℄℄b{ [[!e℄℄ = not [[e℄℄b{ [[e℄℄b = [[e℄℄ <> 0, otherwiseNote: When translating expressions and boolean expressions, 
oer
ions fromintegers to 
oating points are inserted when needed.Statements. The translation of a C statement s is written [[s℄℄s and de�ned by:{ [[e℄℄s = let = [[e℄℄ in void{ [[e1; e2℄℄s = [[e1℄℄s; [[e2℄℄s{ [[f �1 x1= e1; : : : �n xn= en; s g℄℄s= let x1 = ref [[e1℄℄ in : : : let xn = ref [[en℄℄ in [[s℄℄sThe 
onstru
ts break and 
ontinue are translated using two ML ex
eptionsBreak and Continue (without argument):{ [[break℄℄s = raise Break{ [[
ontinue℄℄s = raise ContinueHelper fun
tions break(m) and 
ontinue(m) are de�ned asbreak(m) = try m with Break -> void end
ontinue(m) = try m with Continue -> void endwhenever m may raise Break or Continue, respe
tively, and as m otherwise.Then loops are translated as follows:{ [[for(e1; e2; s3) s℄℄s =[[e1℄℄; break(while [[e2℄℄ do 
ontinue([[s; s3℄℄s) done){ [[while (e) s℄℄s = break (while [[e℄℄ do 
ontinue([[s℄℄s) done){ [[do e while(s)℄℄s = [[s; while (e) s℄℄sFinally, abrupt returns are also translated using an ML ex
eption Returnwith the returned value as argument (thus, su
h an ex
eption is introdu
ed forea
h possible returned type):{ [[return e℄℄s = raise (Return [[e℄℄){ [[f(�1 x1; : : : ; �n xn) f s g℄℄s =let f (x1:[[�1℄℄) . . . (xn:[[�n℄℄) = try [[s℄℄s with Return v -> v end



3 Pra
ti
al useWhy is run as a bat
h 
ompiler, taking input sour
e �les on its 
ommand lineand produ
ing �les 
ontaining the veri�
ation 
onditions. The prover is sele
tedusing a 
ommand line option. Input sour
e �les 
an be ML or C programs, with a
ommon syntax for annotations. The latter is a homemade syntax for �rst-orderpredi
ates.ML syntax is very 
lose to Obje
tive Caml's one [2℄, with a few di�eren
es:annotations are part of the syntax, en
losed with bra
kets; there is no typeinferen
e and thus types must be expli
itly de
lared; �nally, array syntax is C-like. For instan
e, here is how the Hoare triple (1) given in Se
tion 2 is writtenin Why's ML input syntax:{ x > 0 and y > 1 } begin x := !x + 1; y := !y * !x end { y > y� }where y� is the notation for the value of y in the prestate.C programs are written in the standard ANSI C syntax and annotated usingthe distinguished kind of C 
omments /*� ... */. Here is for instan
e how theHoare triple (1) is passed to Why in C syntax:/*� x > 0 and y > 1 */ { x++; y *= x; } /*� y > y� */The goto set apart, all C 
onstru
ts are 
overed. C programs are only limited by:(1) the aliasing restri
tion already dis
ussed in Se
tion 2.2; and (2) the absen
eof pointer arithmeti
, whi
h means that the notions of arrays and pointers are
learly separated.3.1 ExampleWe illustrate the use of Why on the veri�
ation of the small pie
e of C 
ode givenin Figure 2. This is a fun
tion index whi
h looks for a value v in an array t ofintegers. The size of t is given as a parameter n. When v is found, an index isreturned giving one position for v in t; otherwise n is returned, meaning that vwas not found in t. The 
ode uses a while loop, from whi
h we exit with a breakas soon as v is found. (The 
ode 
ould be written with a for loop or 
ould usea return to terminate as soon as v is found; the annotations and proofs wouldbe exa
tly the same.)First, we give the fun
tion a spe
i�
ation, as a pre
ondition and a post-
ondition. Both are inserted respe
tively before and after the fun
tion body. Inparti
ular, the pre
ondition 
learly appears after the fun
tion parameters, thusexpressing that they are part of the prestate. The pre
ondition expresses that nis the size of t:/*� array_length(t) = n */Note that array length is not a C fun
tion; it is used inside an annotation andthus belongs to the logi
al world (the model), where C arrays are modeled bysome datatype for whi
h the size is 
omputable (by array length). Though C



int index(int t[℄, int n, int v) {int i = 0;while (i < n) {if (t[i℄ == v) break;i++;}return i;} Fig. 2. The C fun
tion indexarrays do not have a 
omputable size, this is a mandatory notion on the logi
alside to generate 
onditions expressing that array a

esses and updates are legal,i.e. done within the array bounds. The post
ondition simply expresses that thereturned value is an index where v o

urs in t, as soon as it is within the bounds:/*� 0 <= result < n -> t[result℄ = v */The next step 
onsists in annotating the loop, with an invariant and a variant.The invariant expresses that v was not yet found, i.e. does not appear in tfor indi
es less that i. It also maintains the property 0 <= i, whi
h is neededto prove that the a

ess t[i℄ is legal. The variant is n - i (when no orderrelation is spe
i�ed, it defaults to the well-founded relation R on Z2 de�ned byx R y � x < y ^ 0 � y). The C 
ode fully annotated in given in Figure 3; notethat this is still ANSI C 
ode.int index(int t[℄, int n, int v) /*� array_length(t) = n */ {int i = 0;while (i < n)/*� invariant 0 <= i and forall k:int. 0 <= k < i -> t[k℄ <> vvariant n - i */ {if (t[i℄ == v) break;i++;}return i;}/*� 0 <= result < n -> t[result℄ = v */Fig. 3. The C fun
tion index annotatedAssuming this 
ode to be in sear
h.
 and a user willing to use Coq as prover,Why is simply invoked bywhy --
oq sear
h.




A Coq �le sear
h why.v is produ
ed, whi
h 
ontains �ve lemmas with emptyproofs to be �lled in. These lemmas express: (1) the legality of the array a

esst[i℄; (2) the validity of the post
ondition when exiting the loop using break; (3)the preservation of the invariant by the loop body, together with the de
reasingof the variant; (4) the validity of the invariant when entering the loop; and (5)the validity of the post
ondition when exiting the loop normally. All lemmas area
tually automati
ally dis
harged by Coq, ex
ept the third one whi
h requirestwo lines of proof s
ript.These obligations are exa
tly what the user is expe
ting and the internaltranslation to ML 
ode, in
luding the use of ex
eptions implied by the break
onstru
t, is totally transparent. This internal ML 
ode is given Figure 4 (it
an be obtained from Why automati
ally). As expe
ted, the C 
ode annotationsbe
ome annotations for the ML 
ode without any 
hange.let index = fun (t: int array) (n:int) (v:int) ->{ array_length(t) = n }let i = ref 0 inbegintrywhile !i < n do{ invariant 0 <= i and forall k:int. 0 <= k < i -> t[k℄ <> vvariant n - i }if t[!i℄ = v then raise Break;i := !i + 1;donewith Break => void end;!iend{ 0 <= result < n -> t[result℄ = v }Fig. 4. The ML translation for fun
tion index3.2 AvailabilityWhy is open sour
e and freely available from http://why.lri.fr/. It is writtenin Obje
tive Caml [2℄. Do
umentation in
ludes a tutorial, a referen
e manual andmany examples, all freely available from the web site.4 Verifying Java programsWhy does not handle Java programs by itself. However, this 
an be a
hieved byusing Why in 
ombination with the Krakatoa tool [5℄. Developed by C. Mar
h�e,C. Paulin and X. Urbain, this other tool ta
kles Java programs annotated using



the Java Modeling Language (JML for short) [15℄. Su
h programs are translatedinto Why ML input 
ode, expressing the semanti
s of the original Java 
ode.A Coq model is produ
ed beside. The 
ombined use of Why and Krakatoa isillustrated on Figure 5. JML-annotated JavaCoq model Why 
odeProof obligationsCoqAssisted proof
Krakatoa Why

Fig. 5. Verifying Java programs using Krakatoa and WhyThis Coq model is a low level memory model, where obje
ts are addressesin the Java heap. This heap is modeled as a mapping from addresses to typedobje
ts, whi
h 
ontain primitive values or other addresses. From the point ofview of Why, there is only one mutable data, whi
h is the referen
e on the
urrent state of the heap. Consequently, the anti-aliasing restri
tions exposed inSe
tion 2.2 do not apply and the whole sequential Java is 
overed.Currently, only the Coq output of Why is meaningful when verifying Java-JML programs using Krakatoa, sin
e the latter only de�nes a Coq model. Adapt-ing this model to another prover is feasible, though nontrivial.5 Future workWhy 
an be improved in many dire
tions. Here are some of the planned devel-opments.Symboli
 evaluation. Why is the ideal pla
e to perform symboli
 evaluation ofannotated programs. As suggested in [6℄, this is an eÆ
ient way to debug spe
-i�
ations. For instan
e, a loop 
an be unrolled a given number of times andveri�
ation 
onditions will be generated for many di�erent 
ontrol 
ow paths,
orresponding to the �rst iterations of the loop. If there is a bug in the spe
i�
a-tion or the program, it is likely to be dis
overed while trying to establish these




onditions, without entering the heavy pro
ess of �nding and verifying a loop in-variant. Similarly, partial evaluation 
an be performed on a program where someparameters are instantiated on suitable test values and then 
onditions 
an begenerated for the resulting program, possibly leading to the early dis
overy of abug.Memory model. To ta
kle all aspe
ts of the ML and C languages|in
luding datastru
tures with pointers, possible aliasing, pointer arithmeti
, et
.|a low levelmemory model has to be designed (two models, a
tually, sin
e ML and C obvi-ously di�er on this point). Following the Krakatoa approa
h, the memory modelis designed entirely on the logi
al side and handled in programs through a globalreferen
e on the 
urrent state of the heap. (Sta
k variables, however, may still berepresented by lo
al referen
es.) Then the language 
onstru
ts 
an be interpretedin this new framework, by mere synta
ti
 sugar. The whole te
hnology|typingwith e�e
ts, weakest pre
onditions, fun
tional interpretation|is un
hanged.Realisti
 integer and 
oating point arithmeti
. Currently, integers are modeledusing arbitrary pre
ision arithmeti
 provided by the provers (type Z in Coq,int in PVS and num in HOL Light). Though satisfa
tory in many 
ases, it doesnot re
e
t the program semanti
s: integer over
ow has to be 
onsidered whenseriously verifying some 
riti
al 
ode. Clearly, there are two main solutions. The�rst one is to pre
isely model the ma
hine behavior and its over
ows. This is forinstan
e the approa
h of B. Ja
obs [14℄ in the 
ontext of the Loop proje
t [19℄.The se
ond solution is to add the ne
essary 
onditions to ex
lude over
ows.Then arbitrary pre
ision arithmeti
 
ould still be used on the prover side. Thisse
ond solution seems reasonable sin
e few programs may a
tually rely on integerover
ow to behave 
orre
tly. However, we plan to implement both approa
hesin Why.Similarly, 
oating point numbers are 
urrently modeled using the axiomati-zation of R provided by the provers (type R in Coq and real in PVS and HOLLight). Existing axiomatizations of the IEEE 754 
oating point arithmeti
 (byJ. Harrison in HOL Light [11℄ and by L. Th�ery in Coq [17℄) 
ould be used asmodels. Though really more diÆ
ult, it is a 
hallenging goal to verify a 
oatingpoint algorithm without negle
ting the roundings.Module system. Why is already implementing some parts of the ML language andof its type system. It seems natural to pursue in this way and to in
orporate otherML features (and then to have other languages bene�t from this, as already donefor C programs). ML module system is su
h a feature. In parti
ular, X. Leroymodular module system [16℄ 
ould be ni
ely adapted to our types with e�e
tand spe
i�
ation. This would lift the notion of modularity, 
urrently at the levelof fun
tions, to the level of modules. Moreover, this would permit a greaterabstra
tion at the level module, where the interfa
e 
ould show a model a
tuallyquite far from the implementation.
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ien
e of Computer Program-ming, 2001. To appear.9. J.-C. Filliâtre. Veri�
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