
Why: a multi-language multi-proververi�ation toolJean-Christophe FilliâtreLRI { CNRS UMR 8623Universit�e Paris-Sud, Franefilliatr�lri.frAbstrat. This artile introdues the veri�ation tool Why. This toolprodues veri�ation onditions from annotated programs given as in-put. It di�ers from other systems in that it aepts several languages asinput (urrently C and ML, and Java with the help of the ompaniontool Krakatoa) and outputs onditions for several existing provers (ur-rently Coq, PVS, HOL Light and haRVey). It also provides a great safetythrough some de Bruijn riterion: one the obligations are established, aproof that the program satis�es its spei�ation is built and type-hekedautomatially.Keywords: Veri�ation, C, ML, Java1 IntrodutionThis artile introdues the veri�ation tool Why [4℄. When observed from out-side, this tool resembles many others: it takes annotated programs as input andprodues veri�ation onditions as output. However, it relies on a tehnologyand on some design hoies whih are less ommon.First, Why is not oming with its own proof tool; instead, it produes on-ditions for existing proof tools. This is partiularly important when interativeproof is needed, whih always ends up to be the ase. Writing a good proofassistant is a tremendous amount of work, whih should be left to the �eld ex-perts. Currently, Why is interfaed with three proof assistants, namely Coq [1℄,PVS [3℄ and HOL Light [10℄. The same remark atually applies as well to auto-mati deision proedures: instead of involving them inside the veri�ation tool,it is simpler to use existing tools as a bak-end. Currently,Why is interfaed withthe haRVey deision proedure [18℄. Adding a bak-end for a new proof tool isreally simple|a matter of a few hours|and the requirements over the logi arevery small|only a �rst order minimal logi is needed.If interfaing to external proof tools may inrease the trust in the veri�ationproess, it is also important to bring evidene that the veri�ation tool itself istrustworthy. This is partiularly important when the tool is disharging someobligations by itself or is involving omplex treatments for some partiular on-struts of the language (C abrupt terminations, Java or ML exeptions, et.)One solution is to embed the whole veri�ation proess inside a proof assistant.

annotated programs ML Cthe Why toolCoq PVS HOL Light haRVeyproof obligations Fig. 1. The Why toolWhy adopts a slightly di�erent approahes where a proof that the program sat-is�es its spei�ation is heked a posteriori, one all obligations are disharged,either by the user or automatially by Why itself. This hek is purely automatiand thus an be onsidered as a de Bruijn riterion.Finally, Why is not limited to one input language. It urrently aepts Cand ML programs, and Java programs with the help of the ompanion toolKrakatoa. The reason for this exibility is the hoie of ML as internal lan-guage1. Riher than the traditional imperative onstruts, ML onstruts easesymboli manipulations|not distinguishing expressions and statements, allow-ing loal variables at any plae, et.|and are used to interpret some omplexC and Java onstruts. For instane, abrupt terminations with return, breakor ontinue are niely interpreted using ML exeptions. Doing so, there is noneed to implement speial rules for these onstruts; the rules for exeptionsare giving the exepted veri�ation onditions. Another bene�t in using ML isa natural modularity of the method, using a simple extension of ML types withe�ets and spei�ations. Again, there is no need to implement a omplex rulefor funtion all; there is nothing more to do than ML typing.This paper is organized as follows. Setion 2 exposes the priniples and theo-retial foundations of the tool. Then Setion 3 details its pratial use, illustratedon an example. Setion 4 is briey introduing the veri�ation of Java programsusing the ompanion tool Krakatoa. Finally, some expeted future developmentsare desribed.2 PriniplesThe theoretial foundations of Why are detailed in the author's PhD thesis [7,9℄. Basially, Why is building a funtional interpretation of the imperative pro-gram given as input. Expressed in Type Theory, this interpretation mixes theomputational and logial parts of the program, using dependent tuples. Theomputational part is entirely built by the tool, using an e�et inferene and a1 By ML we mean a funtional programming language with side e�ets, like Caml orSML, and not a purely funtional language like Haskell.

notion of monads parameterized with e�ets. The logial part is usually inom-plete, the missing piees being preisely the proof obligations. These veri�ationonditions are simply olleted by traversing the funtional interpretation.For instane, the following Hoare triplef x > 0 ^ y > 1 g x := x+ 1; y := y � x f y > �y g (1)is translated into a proof of8x0; y0: x0 > 0 ^ y0 > 1) 9x1; y1: y1 > y0The omputational part of this proof onsists in interpreting the two assignmentsx := x+ 1 and y := y � x, as the omputation of �nal values x1 and y1 frominitial values x0 and y0. The logial part onsists in an hypothesis x0 > 0 ^ y0 > 1and a proof of y1 > y0. The latter is a veri�ation ondition. The entire prooflooks like �x0; y0: �h : x0 > 0 ^ y0 > 1:let x1 = x0 + 1 inlet y1 = y0 � x1 in(x1; y1;� : y1 > y0)where the proof obligation is denoted by a box. The exat statement of thisobligation is thusx0 > 0 ^ y0 > 1) x1 = x0 + 1) y1 = y0 � x1) y1 > y0and simpli�es, after substitution, tox0 > 0 ^ y0 > 1) y0 � (x0 + 1) > y0As illustrated by this example, the veri�ation onditions for the usual im-perative onstruts are similar to the ones given by Hoare logi. This was learlydemonstrated by verifying with Why the program Find, proved orret by Hoarehimself thirty years ago [12℄. The veri�ations onditions appeared to be exatlythe same, and the proofs were onduted in Coq following Hoare's paper in astraightforward way [8℄. But it is important to notie that Why is not imple-menting some Hoare logi, even if it seems to do so observationally.The remaining of this setion desribes the Why tehnology in more details.The Why onrete syntax is used throughout this setion.2.1 Types, programs and annotationsAnnotations are written in �rst-order logi. Terms (t) are made of onstants,variables and appliation of funtion symbols to terms:t ::= onstant j x j x�L j f(t; : : : ; t)When relevant, a variable x an be annotated with a label L, written x�l, todenote the value of a mutable x at a given program point L. It is important

to notie that f is a funtion symbol from the logial world, whih annot bede�ned or used in programs. Prediates (p) are built with the usual onstrutsof �rst-order logi:p ::= x j x(t; : : : ; t) j true j false j not p j p and p j p or p jif t then p else p j forall x : �. p j exists x : �. pIn the onditional onstrut if t then p1 else p2, t is a boolean term, not aproposition; indeed, propositions are not neessary booleans (we do not assumelassial logi a priori). For the same reason, true and false are not the twoboolean onstants (also written true and false with no possible ambiguity),but the two propositions always and never valid. Quanti�ation is limited toprimitive types.Primitive types (�) ontain a type unit with a single value void, the booleantype bool, a type int for integers, a type float for oating point numbers:� ::= unit j bool j int j float j xA type variable x stands for an abstrat type introdued by the user; it is sup-posed to be de�ned on the logial side and thus is pure (i.e. does not ontainmutable parts).Types for programs distinguish types for values (�) and types for ompu-tations (�). The former inlude primitive types, referenes, arrays and funtiontypes. The latter add a preondition, an e�et and a postondition to a valuetype. An e�et (�) is made of three lists of variables: the mutables possiblyaessed and those possibly updated.� ::= � j � ref j � array j (x:�) -> �� ::= fpg � � fpg� ::= reads x; : : : ; x writes x; : : : ; xPrograms are built from usual onstruts of ML with referenes and arrays,with no distintion between expressions and statements:e ::= fpg e fpg jt j !x j x := e j ref e j x[e℄ j x[e℄ := e j e; e j L:e jif e then e else e j let x = e in e j fun (x:�) -> e j (e e) jre x : � fvariant tg = e jwhile e do finvariant p variant tg e doneAny expression an be given pre- and postondition using the Hoare triple nota-tion fp1g e fp2g. In the postondition, the variable result is bound to the resultof the omputation and an empty label refers to the preondition point (i.e. x�stands in p2 for the value of x before the evaluation of e). The onstrut L:eexpliitly plaes a label L right before the evaluation of e, to be used in anno-tations inside e. Reursive funtions and loops are given a variant: it is a termt whih must derease for a given well-founded order relation. This relation anbe spei�ed expliitly; to simplify this presentation we assume here the usual

order relation on natural numbers. Loops an be given invariants (this is foronveniene, sine the Hoare triple already allows to annotate the loops, bothinside and outside).Typing rules losely follow those of traditional ML typing, with additionalinferene of e�ets and hek for well-formedness of pre- and postonditions. Allthese rules are given in [9℄.2.2 Aliasing exlusionThe reader may have already notied severe restritions with respet to ML.First, referenes and arrays are limited to primitive types. Seond, left valuesare limited to variables (in aessing or updating referenes or arrays). The goalbehind these restritions is to be able to get a preise e�et analysis (i.e. to knowfor eah variable separately if it is possibly aessed or modi�ed). This leads toa very preise interpretation in Type Theory and thus to very natural proofobligations, as illustrated at the beginning of this setion. Consequently, aliasingbetween di�erent mutable variables must be exluded and this is guaranteed bytyping rules. Mainly, rules for let in and funtion appliation prevent the userfrom reating an alias; see [9℄ for details.However, we show in Setion 4 that it is still possible to over all features ofML, C or Java programs, using a low level memory model.2.3 Weakest preonditionsTo get the expeted obligations, the input program must be adequately anno-tated: intermediate program points must be given the right annotations. Whydisharges the user from this painful task using a weakest preondition (WP) al-ulus. The weakest preondition of a program e for a postondition q is writtenwp(e; q).The originality of this WP alulus is its treatment of annotated subexpres-sions i.e. of Hoare triples:wp(fp0g e fq0g; q) = p0 ^ 8result : 8!: q0) qwhere ! stands for the set of variables possibly modi�ed by e. This formulationexpresses a ruial notion of modularity: as seen from outside, the Hoare triplefp0g e fq0g is a blak box with a spei�ation given by p0, q0 and its e�et, andits ode e is not examined to ompute the weakest preondition for q. Instead,a new WP alulus starts inside e with the postondition q0.In partiular, a loop and a funtion all are naturally annotated with theloop invariant and the funtion spei�ation, respetively. Thus they are seen asHoare triples by the WP alulus and do not need any speial treatment.

The weakest preondition is de�ned for the other onstruts in a usual way:wp(t; q) = q[result t℄wp(!x; q) = q[result x℄wp(x := e; q) = wp(e; q[result void;x result ℄)wp(t[e℄; q) = wp(e; q[result (aess t result)℄)wp(t[e1℄ := e2; q) = wp(e1;wp(e2; q1)[v1 result ℄)with q1 = q[result void; t (update t v1 result)℄wp(e1; e2; q) = wp(e1;wp(e2; q))wp(L:e; q) = wp(e; q)[x�L x℄wp(if e1 then e2 else e3; q) = wp(e1; if result then wp(e2; q) else wp(e3; q))wp(let x = e1 in e2; q) = wp(e1;wp(e2; q)[x result ℄)where aess and update are the purely funtional operations over the arrays asmodeled on the logial side.2.4 ExeptionsWhy also supports exeptions. For the larity of this presentation we assumea single exeption E with one argument of type int; but Why supports anunlimited number of exeptions delared by the user.First, the notion of e�et is extended to indiate the possible raise of exep-tion E: � ::= reads x; : : : ; x writes x; : : : ; x [raises E℄Postonditions are also extended to inlude a seond prediate, namely the prop-erty to be valid when exeption E is raised:� ::= fpg � � fp j E) pgFinally, the Hoare triple is extended similarly and onstruts to raise and athexeption E are added:e ::= fpg e fp j E) pg j : : : j raise (E e) j try e with E x -> e endThe notion of weakest preondition is extended aordingly. It beomes aternary operator wp(e; q; r) where q is the normal postondition and r the ex-eptional one. All rules of the WP alulus but one are unhanged i.e. r is justadded as a third argument everywhere. Only the rule for the Hoare triple mustbe adapted, as follows:wp(fp0g e fq0 j E) r0g; q; r) = p0 ^ 8result: 8!: (q0) q ^ r0) r)Two new rules are added to handle the raise and try onstruts:wp(raise (E e); q; r) = wp(e; r; r)wp(try e1 with E x -> e2 end; q; r) = wp(e1; q;wp(e2; q; r)[x result ℄)

2.5 Disharging onditions automatiallyWhy is disharging a lot of proof obligations by itself. As already mentioned,safety is ensured sine Why builds orresponding proof objets (proof terms forthe Coq logi). In partiular, it is very important to disharge tautologies omingfrom the WP alulus. By onstrution, suh tautologies lie in linear �rst-orderminimal logi, whih orrespond to the following rules�; P ` P �; P;Q ` R�; P; P) Q ` R �; P;Q ` R�; P ^Q ` R �;8x:P (x) ` P (t)�; P (t);8x; y:P (x)) Q(x; y) ` R�; P (t);8y:Q(y) ` R �;8x:(P (x) ^Q(x)) ` R�;8x:P (x);8x:Q(x) ` Rwhere x and y (resp. t) may stand for several variables (resp. several terms).Whyis implementing a goal direted proof searh using these rules, whih returns aproof objet.2.6 Verifying C programsExternally, Why aepts both ML and C programs as input. C programs arewritten in the standard ANSI C syntax and annotated using a partiular kindof C omments. Internally to the Why tool, the sole onstruts are the ML onesand C ode is translated into ML ode. Objets set apart, a similar translationis done for Java programs in the Krakatoa tool (see Setion 4). We give here anoverview of the C to ML translation.Types. Currently, only C base types (void, har, short, int, long, float anddouble), arrays and pointers are onsidered. Following the same restritions asML (see Setion 2.2), arrays and pointers are limited to base types. Type voidis mapped to ML type unit; all integer types are mapped to ML type int; bothoating point types are mapped to ML type float. In the following, � standsfor a C base type or its ML ounterpart, without distintion.C variable delarations allowed and their ML translations are given in thefollowing shema:{ global variable� [[� x℄℄ = x : � ref� [[�* x℄℄ = x : � ref� [[� x[℄℄℄ = x : � array{ loal variable� [[� x℄℄ = x : � ref{ funtion parameter� [[� x℄℄ = x : �� [[�* x℄℄ = x : � ref� [[� x[℄℄℄ = x : � arrayIn the following we write x : �1=�2 if a variable x has C type �1 and ML type �2.

Left values. The translation of a C left value e is written [[e℄℄l and de�ned by:[[x℄℄ = x if x : �=� ref[[*x℄℄ = x if x : �*=� ref[[x[e℄℄℄ = x[e℄ if x : �[℄=� arrayExpressions. The translation of a C expression e is written [[e℄℄ and de�ned by:{ [[x℄℄ = (!x if x : �=� refx otherwise{ [[e1 = e2℄℄ = (x := [[e2℄℄; !x if [[e1℄℄l = xlet i = [[e01℄℄ in x[i℄ := [[e2℄℄; x[i℄ if [[e1℄℄l = x[e01℄{ [[e1 op= e2℄℄ =(x := !x op [[e2℄℄; !x if [[e1℄℄l = xlet i = [[e01℄℄ in x[i℄ := x[i℄ op [[e2℄℄; x[i℄ if [[e1℄℄l = x[e01℄with op 2 f+; -; *; /; %; &; ^; |g. Notie that ++e is e += 1 and --e is e -= 1.{ [[e++℄℄ =(let v = !x in x := !x + 1; !v if [[e℄℄l = xlet i = [[e0℄℄ in let v = x[i℄ in x[i℄ := x[i℄ + 1; v if [[e℄℄l = x[e0℄{ [[e1, e2℄℄ = [[e1℄℄; [[e2℄℄{ [[e1 ? e2 : e3℄℄ = if [[e1℄℄ then [[e2℄℄ else [[e3℄℄{ [[e1 op e2℄℄ = let v1 = [[e1℄℄ in let v2 = [[e2℄℄ in v1 op v2with op 2 f+; -; *; /; %; &; ^; |g{ [[e1 op e2℄℄ = if [[e1 op e2℄℄b then 1 else 0with op 2 f==; !=; >; >=; <; <=; &&; ||g{ [[!e℄℄ = if [[e℄℄b then 0 else 1{ [[-e℄℄ = -[[e℄℄{ [[*x℄℄ = !x, if x : �*=� ref{ [[&x℄℄ = x, if x : �=� ref{ [[x[e℄℄℄ = x[[[e℄℄℄{ [[℄℄ = , for a onstant { [[f(e1; : : : ; en)℄℄ = let v1 = [[e1℄℄ in : : : let vn = [[en℄℄ in (f v1 : : : vn)

Boolean expressions. C does not have booleans. However, the translation is morenatural when a C expression e used as a boolean is diretly translated into anML boolean. Suh an interpretation is written [[e℄℄b and de�ned by:{ [[e1 op e2℄℄ = let v1 = [[e1℄℄ in let v2 = [[e2℄℄ in v1 op v2,with op 2 f==; !=; >; >=; <; <=g{ [[e1 && e2℄℄ = if [[e1℄℄b then [[e2℄℄b else false{ [[e1 || e2℄℄ = if [[e1℄℄b then true else [[e2℄℄b{ [[!e℄℄ = not [[e℄℄b{ [[e℄℄b = [[e℄℄ <> 0, otherwiseNote: When translating expressions and boolean expressions, oerions fromintegers to oating points are inserted when needed.Statements. The translation of a C statement s is written [[s℄℄s and de�ned by:{ [[e℄℄s = let = [[e℄℄ in void{ [[e1; e2℄℄s = [[e1℄℄s; [[e2℄℄s{ [[f �1 x1= e1; : : : �n xn= en; s g℄℄s= let x1 = ref [[e1℄℄ in : : : let xn = ref [[en℄℄ in [[s℄℄sThe onstruts break and ontinue are translated using two ML exeptionsBreak and Continue (without argument):{ [[break℄℄s = raise Break{ [[ontinue℄℄s = raise ContinueHelper funtions break(m) and ontinue(m) are de�ned asbreak(m) = try m with Break -> void endontinue(m) = try m with Continue -> void endwhenever m may raise Break or Continue, respetively, and as m otherwise.Then loops are translated as follows:{ [[for(e1; e2; s3) s℄℄s =[[e1℄℄; break(while [[e2℄℄ do ontinue([[s; s3℄℄s) done){ [[while (e) s℄℄s = break (while [[e℄℄ do ontinue([[s℄℄s) done){ [[do e while(s)℄℄s = [[s; while (e) s℄℄sFinally, abrupt returns are also translated using an ML exeption Returnwith the returned value as argument (thus, suh an exeption is introdued foreah possible returned type):{ [[return e℄℄s = raise (Return [[e℄℄){ [[f(�1 x1; : : : ; �n xn) f s g℄℄s =let f (x1:[[�1℄℄) . . . (xn:[[�n℄℄) = try [[s℄℄s with Return v -> v end

3 Pratial useWhy is run as a bath ompiler, taking input soure �les on its ommand lineand produing �les ontaining the veri�ation onditions. The prover is seletedusing a ommand line option. Input soure �les an be ML or C programs, with aommon syntax for annotations. The latter is a homemade syntax for �rst-orderprediates.ML syntax is very lose to Objetive Caml's one [2℄, with a few di�erenes:annotations are part of the syntax, enlosed with brakets; there is no typeinferene and thus types must be expliitly delared; �nally, array syntax is C-like. For instane, here is how the Hoare triple (1) given in Setion 2 is writtenin Why's ML input syntax:{ x > 0 and y > 1 } begin x := !x + 1; y := !y * !x end { y > y� }where y� is the notation for the value of y in the prestate.C programs are written in the standard ANSI C syntax and annotated usingthe distinguished kind of C omments /*� ... */. Here is for instane how theHoare triple (1) is passed to Why in C syntax:/*� x > 0 and y > 1 */ { x++; y *= x; } /*� y > y� */The goto set apart, all C onstruts are overed. C programs are only limited by:(1) the aliasing restrition already disussed in Setion 2.2; and (2) the abseneof pointer arithmeti, whih means that the notions of arrays and pointers arelearly separated.3.1 ExampleWe illustrate the use of Why on the veri�ation of the small piee of C ode givenin Figure 2. This is a funtion index whih looks for a value v in an array t ofintegers. The size of t is given as a parameter n. When v is found, an index isreturned giving one position for v in t; otherwise n is returned, meaning that vwas not found in t. The ode uses a while loop, from whih we exit with a breakas soon as v is found. (The ode ould be written with a for loop or ould usea return to terminate as soon as v is found; the annotations and proofs wouldbe exatly the same.)First, we give the funtion a spei�ation, as a preondition and a post-ondition. Both are inserted respetively before and after the funtion body. Inpartiular, the preondition learly appears after the funtion parameters, thusexpressing that they are part of the prestate. The preondition expresses that nis the size of t:/*� array_length(t) = n */Note that array length is not a C funtion; it is used inside an annotation andthus belongs to the logial world (the model), where C arrays are modeled bysome datatype for whih the size is omputable (by array length). Though C

int index(int t[℄, int n, int v) {int i = 0;while (i < n) {if (t[i℄ == v) break;i++;}return i;} Fig. 2. The C funtion indexarrays do not have a omputable size, this is a mandatory notion on the logialside to generate onditions expressing that array aesses and updates are legal,i.e. done within the array bounds. The postondition simply expresses that thereturned value is an index where v ours in t, as soon as it is within the bounds:/*� 0 <= result < n -> t[result℄ = v */The next step onsists in annotating the loop, with an invariant and a variant.The invariant expresses that v was not yet found, i.e. does not appear in tfor indies less that i. It also maintains the property 0 <= i, whih is neededto prove that the aess t[i℄ is legal. The variant is n - i (when no orderrelation is spei�ed, it defaults to the well-founded relation R on Z2 de�ned byx R y � x < y ^ 0 � y). The C ode fully annotated in given in Figure 3; notethat this is still ANSI C ode.int index(int t[℄, int n, int v) /*� array_length(t) = n */ {int i = 0;while (i < n)/*� invariant 0 <= i and forall k:int. 0 <= k < i -> t[k℄ <> vvariant n - i */ {if (t[i℄ == v) break;i++;}return i;}/*� 0 <= result < n -> t[result℄ = v */Fig. 3. The C funtion index annotatedAssuming this ode to be in searh. and a user willing to use Coq as prover,Why is simply invoked bywhy --oq searh.

A Coq �le searh why.v is produed, whih ontains �ve lemmas with emptyproofs to be �lled in. These lemmas express: (1) the legality of the array aesst[i℄; (2) the validity of the postondition when exiting the loop using break; (3)the preservation of the invariant by the loop body, together with the dereasingof the variant; (4) the validity of the invariant when entering the loop; and (5)the validity of the postondition when exiting the loop normally. All lemmas areatually automatially disharged by Coq, exept the third one whih requirestwo lines of proof sript.These obligations are exatly what the user is expeting and the internaltranslation to ML ode, inluding the use of exeptions implied by the breakonstrut, is totally transparent. This internal ML ode is given Figure 4 (itan be obtained from Why automatially). As expeted, the C ode annotationsbeome annotations for the ML ode without any hange.let index = fun (t: int array) (n:int) (v:int) ->{ array_length(t) = n }let i = ref 0 inbegintrywhile !i < n do{ invariant 0 <= i and forall k:int. 0 <= k < i -> t[k℄ <> vvariant n - i }if t[!i℄ = v then raise Break;i := !i + 1;donewith Break => void end;!iend{ 0 <= result < n -> t[result℄ = v }Fig. 4. The ML translation for funtion index3.2 AvailabilityWhy is open soure and freely available from http://why.lri.fr/. It is writtenin Objetive Caml [2℄. Doumentation inludes a tutorial, a referene manual andmany examples, all freely available from the web site.4 Verifying Java programsWhy does not handle Java programs by itself. However, this an be ahieved byusing Why in ombination with the Krakatoa tool [5℄. Developed by C. Marh�e,C. Paulin and X. Urbain, this other tool takles Java programs annotated using

the Java Modeling Language (JML for short) [15℄. Suh programs are translatedinto Why ML input ode, expressing the semantis of the original Java ode.A Coq model is produed beside. The ombined use of Why and Krakatoa isillustrated on Figure 5. JML-annotated JavaCoq model Why odeProof obligationsCoqAssisted proof
Krakatoa Why

Fig. 5. Verifying Java programs using Krakatoa and WhyThis Coq model is a low level memory model, where objets are addressesin the Java heap. This heap is modeled as a mapping from addresses to typedobjets, whih ontain primitive values or other addresses. From the point ofview of Why, there is only one mutable data, whih is the referene on theurrent state of the heap. Consequently, the anti-aliasing restritions exposed inSetion 2.2 do not apply and the whole sequential Java is overed.Currently, only the Coq output of Why is meaningful when verifying Java-JML programs using Krakatoa, sine the latter only de�nes a Coq model. Adapt-ing this model to another prover is feasible, though nontrivial.5 Future workWhy an be improved in many diretions. Here are some of the planned devel-opments.Symboli evaluation. Why is the ideal plae to perform symboli evaluation ofannotated programs. As suggested in [6℄, this is an eÆient way to debug spe-i�ations. For instane, a loop an be unrolled a given number of times andveri�ation onditions will be generated for many di�erent ontrol ow paths,orresponding to the �rst iterations of the loop. If there is a bug in the spei�a-tion or the program, it is likely to be disovered while trying to establish these

onditions, without entering the heavy proess of �nding and verifying a loop in-variant. Similarly, partial evaluation an be performed on a program where someparameters are instantiated on suitable test values and then onditions an begenerated for the resulting program, possibly leading to the early disovery of abug.Memory model. To takle all aspets of the ML and C languages|inluding datastrutures with pointers, possible aliasing, pointer arithmeti, et.|a low levelmemory model has to be designed (two models, atually, sine ML and C obvi-ously di�er on this point). Following the Krakatoa approah, the memory modelis designed entirely on the logial side and handled in programs through a globalreferene on the urrent state of the heap. (Stak variables, however, may still berepresented by loal referenes.) Then the language onstruts an be interpretedin this new framework, by mere syntati sugar. The whole tehnology|typingwith e�ets, weakest preonditions, funtional interpretation|is unhanged.Realisti integer and oating point arithmeti. Currently, integers are modeledusing arbitrary preision arithmeti provided by the provers (type Z in Coq,int in PVS and num in HOL Light). Though satisfatory in many ases, it doesnot reet the program semantis: integer overow has to be onsidered whenseriously verifying some ritial ode. Clearly, there are two main solutions. The�rst one is to preisely model the mahine behavior and its overows. This is forinstane the approah of B. Jaobs [14℄ in the ontext of the Loop projet [19℄.The seond solution is to add the neessary onditions to exlude overows.Then arbitrary preision arithmeti ould still be used on the prover side. Thisseond solution seems reasonable sine few programs may atually rely on integeroverow to behave orretly. However, we plan to implement both approahesin Why.Similarly, oating point numbers are urrently modeled using the axiomati-zation of R provided by the provers (type R in Coq and real in PVS and HOLLight). Existing axiomatizations of the IEEE 754 oating point arithmeti (byJ. Harrison in HOL Light [11℄ and by L. Th�ery in Coq [17℄) ould be used asmodels. Though really more diÆult, it is a hallenging goal to verify a oatingpoint algorithm without negleting the roundings.Module system. Why is already implementing some parts of the ML language andof its type system. It seems natural to pursue in this way and to inorporate otherML features (and then to have other languages bene�t from this, as already donefor C programs). ML module system is suh a feature. In partiular, X. Leroymodular module system [16℄ ould be niely adapted to our types with e�etand spei�ation. This would lift the notion of modularity, urrently at the levelof funtions, to the level of modules. Moreover, this would permit a greaterabstration at the level module, where the interfae ould show a model atuallyquite far from the implementation.

Aknowledgments. I am grateful to the Krakatoa authors, C. Marh�e, C. Paulinand X. Urbain, for many stimulating disussions. I also thank the very �rst Whyusers, S. Boulm�e, M. L�evy, S. Ranise and L. Th�ery, for their preious feedbak.Referenes1. The Coq Proof Assistant. http://oq.inria.fr/.2. The Objetive Caml language. http://aml.inria.fr/.3. The PVS Spei�ation and Veri�ation System. http://pvs.sl.sri.om/.4. The Why veri�ation tool. http://why.lri.fr/.5. Claude Marh�e, Christine Paulin and Xavier Urbain. The Krakatoa Tool forJML/Java Program Certi�ation. Submitted to JLAP. http://www.lri.fr/~marhe/krakatoa/.6. D. D�eharbe and S. Ranise. BDD-Driven First-Order Satis�ability Proedures.Tehnial Report 4630, INRIA, November 2002.7. J.-C. Filliâtre. Preuve de programmes imp�eratifs en th�eorie des types. Th�ese dedotorat, Universit�e Paris-Sud, July 1999.8. J.-C. Filliâtre. Formal Proof of a Program: Find. Siene of Computer Program-ming, 2001. To appear.9. J.-C. Filliâtre. Veri�ation of Non-Funtional Programs using Interpretations inType Theory. Journal of Funtional Programming, 2001. English translation of [7℄.To appear.10. John Harrison. HOL Light. http://www.l.am.a.uk/users/jrh/hol-light/.11. John Harrison. A Mahine-Cheked Theory of Floating Point Arithmeti. In In-ternational Conferene on Theorem Proving in Higher Order Logis, LNCS, pages113{130, Nie, Frane, 1999. Springer-Verlag.12. C. A. R. Hoare. Proof of a program: Find. Communiations of the ACM, 14(1):39{45, January 1971. Also in [13℄ pages 59{74.13. C. A. R. Hoare and C. B. Jones. Essays in Computing Siene. Prentie Hall,1989.14. B. Jaobs. Java's Integral Types in PVS. Manusript. http://www.s.kun.nl/~bart/PAPERS/integral.ps.Z.15. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: Abehavioral interfae spei�ation language for Java. Tehnial Report 98-06i, IowaState University, 2000.16. Xavier Leroy. A modular module system. Journal of Funtional Programming,10(3), 2000.17. Laurene Rideau Mar Daumas and Laurent Th�ery. A Generi Library forFloating-Point Numbers and its Appliation to Exat Computing. In Interna-tional Conferene on Theorem Proving in Higher Order Logis, volume 2152 ofLNCS, pages 169{184, 2001.18. Silvio Ranise and David D�eharbe. The haRVey deision proedure. http://www.loria.fr/~ranise/haRVey/.19. J. van den Berg and B. Jaobs. The LOOP ompiler for Java and JML. InT. Margaria and W. Yi (eds.), editors, Tools and Algorithms for the Construtionand Analysis of Software (TACAS, volume 2031 of LNCS, pages 299{312. Springer-Verlag, 2001.

