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Abstract

Over the last decade, significant advances have been made in
compilation technology for capitalizing on instruction-level
parallelism (ILP).  The vast majority of ILP compilation
research has been conducted in the context of general-
purpose computing, and more specifically the SPEC
benchmark suite.  At the same time, a number of
microprocessor architectures have emerged which have
VLIW and SIMD structures that are well matched to the
needs of the ILP compilers.  Most of these processors are
targeted at embedded applications such as multimedia and
communications, rather than general-purpose systems.
Conventional wisdom, and a history of hand optimization of
inner-loops, suggests that ILP compilation techniques are
well suited to these applications.  Unfortunately, there
currently exists a gap between the compiler community and
embedded applications developers.  This paper presents
MediaBench, a benchmark suite that has been designed to fill
this gap.  This suite has been constructed through a three-step
process: intuition and market driven initial selection,
experimental measurement to establish uniqueness, and
integration with system synthesis algorithms to establish
usefulness.

1 Introduction

Modern advances in compiler technology for instruction-
level parallelism (ILP) have significantly increased the
ability of compilers to capitalize on the opportunities for
parallel execution that exist in many programs.  Key
technologies, such as trace scheduling [1], superblock
scheduling [2], hyperblock scheduling [3], and software
pipelining [4] are in the process of migrating from research
labs to product groups.  While a significant opportunity
exists for further advances, the current state-of-the-art has
been shown to be rather effective on a wide range of
applications.

At the same time, a number of new microprocessor
architectures have been introduced that present the hardware
structures desired by most ILP compilers.  For example,
while Texas Instruments considers the new TMS320C6X
(’C6X) to be a DSP [5], the architecture is similar to the
Multiflow Trace [6].  Key features of the ’C6X include
predicated instruction execution, a VLIW ISA, and a split
register file.  Example features from other architectures
include multi-gauge arithmetic (or variable-width SIMD)
found in the family of MPACT architectures from Chromatic
[7] and the (now defunct) designs from MicroUnity [8].
The new class of mediaprocessor architectures [9] combines
some of the features of DSP devices (e.g. saturating
arithmetic and the ability to issue multiple operations
concurrently) with those of more general purpose processors
which make them good targets for compilation (e.g. large
regular register files and modern models for condition
codes).  While these devices seem to be good targets for
high-level compilation, the architectures have features that
clearly are geared toward multimedia and communications
systems.

Unfortunately, the vast majority of ILP research has focused
on general-purpose computing, and in particular the integer
SPEC benchmark [10].  While these applications have
provided a good vehicle for directing existing research, they
do not capture all of the essential elements of modern
embedded multimedia and communications applications.
We have developed the MediaBench suite to address this
need.  The initial goals of MediaBench are to:

1. Accurately represent the workload of emerging
multimedia and communications systems.

2. Focus on portable applications written in high-level
languages, as processor architectures and software
developers are moving in this direction.

3. Precisely establish the benefits of MediaBench
compared to existing alternatives, e.g. integer SPEC.

4. Develop a tool that is effective for system evaluation
as well as system synthesis.



For the majority of these applications, current development
involves hand optimization of assembly language routines
for the most critical inner loops.  This approach is also
needed for the current class of ILP architectures with SIMD
structures.  The key to implementing these hand
optimizations is identifying codes without loop carried
dependencies, i.e. those that are vectorizable, and then
applying software pipelining.  These two issues are well
understood by modern ILP compilers.  Once these know
techniques become part of the tool chain it will simply a
matter of time and education before hand optimization
becomes as outdated for these applications as it has for
general-purpose computing.

The remainder of this paper is organized as follows.  Section
2 discusses the relevant previous work.  Section 3 presents
the approach used for selecting components of MediaBench,
and discusses the essential components of each application.
Section 4 contrasts fundamental execution characteristics of
MediaBench and the integer SPEC suite.  Both of these
benchmark suites are used to drive a synthesis experiment in
section 5, which validates the need for and effectiveness of
the overall approach.  Finally, section 6 presents some
concluding remarks.

2 Previous Work

Existing high-level benchmarks can generally be broken
down into application domains.  The SPEC benchmarks were
specifically developed to assist in commercial evaluation and
marketing of desktop computing systems [11].  Database
systems are typically evaluated using the TPC benchmarks
[12].  Similar examples exist for Windows applications,
network performance and I/O.  However, no effective high-
level benchmark exists for either general embedded systems
or applications that have a strong DSP component.  The
benchmark which is most commonly cited for embedded
systems performance is Dhrystones [13], which is known to
be almost completely unrepresentative of any actual
workload.  In fact, Dhrystones is of such little value that it
has been abandoned for use in general-purpose systems,
although that was the original target domain.  Performance
evaluation of embedded systems is further complicated by
the common use of Dhrystones/mW.  Power consumption
measurements are strongly dependent on external memory
traffic, bus loading and the computation workload.  These
problems are exacerbated by the fact that Dhrystones is a
small benchmark and does not stress the memory system.
Consequently, the metric Dhrystones/mW is the ratio of two
unreliable metrics.

Most DSP system evaluation has been focused on assembly
language or the use of small kernels, e.g. DSPstone [14].
Saghir et al. developed a mix of low level kernels and small
applications with the goal of compiler evaluation and system
synthesis [15].   Their suite emphasizes kernel codes and
low-level filter operations much more than MediaBench.

Furthermore, no clear comparison is made to an existing
benchmark suite to establish the value of the new code base.

A number of researchers have used benchmark suites to drive
automatic synthesis of embedded systems [16, 17].  We
know of no study that evaluated the distinctiveness of a
benchmark suite by comparing it to an existing option.
Without this step, one cannot evaluate the unique benefits of
a particular suite.

MediaBench is first suite focus on complete applications for
multimedia and communications systems, as well as the first
to use only high-level language in order to stress compilation
technology.  Furthermore, this paper presents a philosophy
for benchmark design that is more rigorous than the ad hoc
methods use previously.

3 MediaBench Components

MediaBench is composed of complete applications coded in
high-level languages.  All of the applications are publicly
available, making the suite available to a wider user
community.  MediaBench 1.0 contains 19 applications culled
from available image processing, communications and DSP
applications.  However, the MediaBench suite is an evolving
tool that will be adjusted and augmented as more codes that
are representative become available. The current components
include:

JPEG: JPEG is a standardized compression method for full-
color and gray-scale images. JPEG is lossy, meaning that the
output image is not exactly identical to the input image.  Two
applications are derived from the JPEG source code; cjpeg
does image compression and djpeg, which does
decompression.

MPEG: MPEG2 is the current dominant standard for high-
quality digital video transmission.  The important computing
kernel is a discrete cosine transform for coding and the
inverse transform for decoding.  The two applications used
are mpeg2enc and mpeg2dec for encoding and decoding
respectively.

GSM: European GSM 06.10 provisional standard for full-
rate speech transcoding, prI-ETS 300 036, which uses
residual pulse excitation/long term prediction coding at 13
kbit/s.  GSM 06.10 compresses frames of 160 13-bit samples
(8 kHz sampling rate, i.e. a frame rate of 50 Hz) into 260
bits.

G.721 Voice Compression: Reference implementations of
the CCITT (International Telegraph and Telephone
Consultative Committee) G.711, G.721 and G.723 voice
compressions.

PGP: PGP uses "message digests" to form signatures. A
message digest is a 128-bit cryptographically strong one-way
hash function of the message (MD5). To encrypt data, it uses
a block-cipher IDEA, RSA [18] for key management and
digital signatures.



PEGWIT: A program for public key encryption and
authentication. It uses an elliptic curve over GF(2255), SHA1
for hashing, and the symmetric block cipher square [18].

Ghostscript: An interpreter for the PostScript language.  The
single application for Ghostscript is gs, which does file I/O
but no graphical display.

Mesa: Mesa is a 3-D graphics library clone of OpenGL.  All
display output functions were removed from the library and
demo programs included in the package. Three applications
are used: mipmap [19] which executes fast texture mapping
using precomputed filter results, osdemo which executes a
standard rendering pipeline, and texgen which generates a
texture mapped version of the Utah teapot.

RASTA:  A program for speech recognition that supports the
following techniques: PLP, RASTA, and Jah-RASTA. The
technique handles additive noise and spectral distortion
simultaneously, by filtering the temporal trajectories of a
non-linearly transformed critical band spectrum.

EPIC: An experimental image compression utility. The
compression algorithms are based on a bi-orthogonal
critically sampled dyadic wavelet decomposition and a
combined run-length/Huffman entropy coder. The filters
have been designed to allow extremely fast decoding without
floating-point hardware

ADPCM:  Adaptive differential pulse code modulation is
one of the simplest and oldest forms of audio coding.

A web page (accessed through
http://www.icsl.ucla.edu/~billms) has been constructed that
contains all of the information necessary for acquiring,
understanding and using the MediaBench suite.  A precise
set of input test files has been selected for each application.

4 Performance Characteristics

The goal of this phase of the project is to empirically test
whether the MediaBench suite is quantitatively different
from SPECint for some set of metrics which architects
generally agree are important.  This is the first step in
validating the intuition behind our hypothesis.  SPECint 1995
was selected because it is the most credible alternative,
though in principle this technique of testing for uniqueness
can be applied to any other benchmark suite.  The JPEG code
is common to both benchmark suites.

Performance evaluation began by executing each application
under two different execution environments on two different
processor architectures.  The IMPACT tool suite [20] was
used to collect execution characteristics for the HPPA
processor architecture.  We used a single-issue processor
along with direct-mapped 16KB caches with 32-byte lines.
Impact provides cycle-level simulation of the processor.

It has been widely reported that SPECint does not stress
instruction caches [21].  Nonetheless, we expected
MediaBench to provide even less stress since the

applications were generally intended for embedded
execution.  The raw performance numbers (Figure 1) indicate
that while both suites achieve extremely high instruction
cache hit rates, MediaBench is better able to capitalize on the
available caches.  This phenomenon is highlighted by sorting
the instruction cache hit rates along with the mean hit rates.
Partly because of the effectiveness of caching for both suites,
the standard deviation intersect; in fact, the SPECint standard
deviation covers the MediaBench mean value.  None the less,
the instruction cache hit rates are statistically different under
the students T-test.

Data caches are more effective for reads on MediaBench
than SPECint, while they are less effective for writes.
However, the summary variance is high, as is the variance
for writes.  This is due in part to three applications:
rawcaudio, rawdaudio and compress.  On the one hand, all
three of these applications generate streams of data so it is
not surprising that write hit rates would be rather low.
However, a number of the MediaBench applications also
produce write streams, and yet achieve much higher hit rates;
e.g. PGP and Pegwit.  The data cache does not do write
allocate, although there is a combining write buffer.  This
phenomenon can be seen in the bus utilization for the three
applications, which is relatively low.  Data cache read hits
show a statistical difference between MediaBench and
SPECint, though there is none for either writes or the
summary performance.
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Figure 1: Instruction cache variation

Our initial intuition for MediaBench was that instruction
caches would work well and data references would be
cleanly divided into highly cacheable constants and
uncachable data streams.  The combined cache results seem
to validate these expectations.  We had no expectations for
the trend in bus utilization, since the various cache effects
serve to both increase (data streams) and decrease
(instructions and data constants) memory traffic.  The data
presents a surprising result: the difference in mean bus
utilization between MediaBench and SPECint is statistically
significant.  Figure 2 graphs the sorted values of bus



utilization along with the two mean values.  SPECint
requires almost 300% more bus bandwidth than
MediaBench.  Only pegwitdec surpasses the mean for
SPECint; this traffic appears to be a direct consequence of
relatively low instruction cache hit rates.  None of the
SPECint applications matches the mean bus utilization for
MediaBench.  This result matches the design of many
embedded processor systems with relatively narrow memory
buses and fewer memory devices.
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Figure 2: Bus utilization variation

DSP and communications codes are generally characterized
by more time spent in loop-intensive structures, and thus one
may expect a higher rate of branch instructions.  In fact, the
branching rates are approximately equal for the two suites,
with large overlap when considering the variance.  A similar
result is seen with the utilization of integer ALUs.  Neither
branch nor integer ALU instruction rates shows a statistically
significant difference in means.

Figure 3 graphs the sorted IPC rates and the two means.  The
data matches the traditional expectation of DSP applications,
i.e. a large amount of ILP.  While the means appear to be
relatively similar, the variance is low and there is a strongly
significant statistical difference between mean values.
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Figure 3: IPC variation

In summary, nine metrics were selected based on availability
from the performance tools and intuition.  Of these nine, four
showed means that differed between MediaBench and
SPECint to a degree that is statistically significant.

5 Synthesis Validation

We believe that MediaBench is a unique and useful suite
from an important and underrepresented applications area.
The runtime characteristics presented in the last section
establish that there are clear statistical differences between
MediaBench and the next most reasonable benchmark suite:
SPECint.  Our final component for evaluating MediaBench is
to use it along with SPECint to drive a system-on-a-chip
synthesis experiment.  If the resulting systems are
functionally different we will know that the suite adds value
to the practice of designing embedded systems.

The synthesis process adopted here is similar to those
currently being pursued in the CAD research community [22,
23].  The goal of this experiment is to evaluate the usefulness
of the MediaBench suite, not to present a fundamental new
approach to system synthesis.

One of the most pressing demands on embedded system
designers is to reduce cost, in large part through reducing die
size.  Because of this concern, we have decided to focus on a
system with simple single-issue RISC processor core and on-
chip cache memories.  The synthesis experiment will
optimize the cache architecture in order to maximize the ratio
of performance to cost.  The equation used to evaluate
performance/cost is:

)*(*)( yMissPenaltMissesnCountInstructioCacheAreaCoreArea
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=

By normalizing to an IPC, this expression avoids the
problem of application weighting that would be introduced
with a direct Delay*Cost measure.  It should be noted that
while application weighting is an appropriate technique for
synthesizing a specific embedded system, MediaBench
contains applications that likely would not be combined
together (e.g. Pegwit and PGP).  Additionally, because most
of these codes operate on real-time data streams, the runtime
is highly dependent on the size of the available test files.

The processor core is based on the IBM 40x PowerPC cores,
with an estimated size of 8 mm2 in 0.5um technology [24].
Cache area is calculated using the Cache Design Tools [25].
We assume that the external memory bus is wide enough to
satisfy a fundamental read operation with a single
transaction.  Thus, the penalty for a miss is simply the main
memory latency.  For the experiments here we use a value of
10 clocks.

This experiment is focused on sizing the cache memory.
Each cache is direct mapped with 16-byte lines.  The
instruction and data caches were independently sized
between 1KB and 16KB.  The area cost for each cache
configuration can be fixed statically, while each application



has a different performance level.   Performance measures
were calculated for each application on each of the 25 cache
configurations.  By itself, the inverse cost function produces
a peak at 1KB and 1KB, with a drop down to 16KB and
16KB.  At the same time, the Performance surface shows a
peak at 16KB/16KB and is minimized at 1KB/1KB, though
the function is more complicated than the inverse cost.  Both
of these functions are monotonic.
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Figure 4: SPECint Performance/Cost vs. cache size
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Figure 5: MediaBench Performance/Cost vs. cache size

The Performance/Cost numbers for each configuration were
aggregated through the arithmetic mean.  The results of this
experiment are shown in Figure 4 for SPECint and Figure 5
for MediaBench.  The Performance/Cost surface for SPECint
reflects the benefits of increased instruction cache.  The
optimal design point is a 2KB instruction cache with a 1KB
data cache.  Additionally, the 2KB instruction cache is

always a superior choice than the corresponding 1KB
instruction cache.  The surface also shows a slight upturn
when the instruction cache is increased from 8KB to 16KB
for several sizes of data caches, as a set of applications cache
their working sets.  None of these cache configurations
approaches the optimal point, however.  Clearly, for SPECint
the performance benefits of large caches do not compensate
for the increased cost.  It is important to note that the
Performance/Cost for SPECint is non-monotonic.

The Performance/Cost surface for MediaBench reflects the
reduced stress on both instruction and data caches.  While
performance does climb for increased cache size, it is never
able to compensate for the additional cost.  Consequently, the
smallest cache configuration (1KB and 1KB) proves to be
optimal.  Further experiments are under way to investigate
the design space covered by smaller caches.

If SPECint were used to synthesize an embedded system for
multimedia and communications applications, such as that
represented by the MediaBench applications, the system
designers would invest too much in instruction caches.  The
resulting chip would be 18% larger than the optimal design
that is synthesized from MediaBench.

6 Conclusions

Significant advances in ILP compilation have resulted in
tools that effectively identify and extract parallelism from
within applications.  At the same time, a number of new
microprocessor architectures have been introduced that
incorporate features which are well matched to these
compilers.  Most of these microprocessors are targeted to
new-media applications, combining DSP and
communications tasks with multimedia services.
Unfortunately, most ILP compilers have been tested and
developed in the context of general-purpose applications,
particularly SPECint, rather than these embedded
applications.  A new benchmark suite is needed to capture
the essential characteristics of these multimedia and
communications applications.

The MediaBench suite fills this need.  MediaBench is
composed of full applications, not toy programs or code
kernels.  Each component of MediaBench is available
through the Internet.  Furthermore, each of these applications
is coded in a high level language and has been compiled by
multiple independent compilers for multiple processor
architectures.

The resulting performance shows different characteristics
from the most common alternative suite, i.e. SPECint.  In
particular, the performance difference is statistically
significant in at least four important areas: achieved
instructions-per-clock, instruction cache hit rate, data cache
read hit rate, and memory bus utilization.

The final step in validating MediaBench involved using it
and SPECint to drive a system synthesis experiment.  A
traditional experiment was conducted to optimize system
Performance/Cost across a range of cache configurations.



The resulting optimization surface for SPECint and
MediaBench showed significantly different characteristics,
and resulted in different system configurations.  In particular,
the instruction cache is two times too large for the system
synthesized by SPECint.
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