A New Approach to Implement Proportional Share

Resource Allocation

Ion Stoica, Hussein Abdel-Wahab

Department of Computer Science
Old Dominion University
Norfolk, Virginia, 23529-0162

Technical Report 95-05

e-mail: {stoica, wahab}@cs.odu.edu

Abstract

We describe a new approach to implement proportional share resource allocation and to provide
different levels of service quality. We consider multiple clients that compete for a time-shared
resource, and we associate to each client a certain amount of funds. At the beginning of every time-
slice a client is selected and it is granted to use the resource during that time-slice. For selecting a
client, we use a new deterministic scheme that allocates time-slices to every client in proportion to
its funds. More precisely, we prove that our scheme ensures that out of m consecutive time-slices
that are allocated to all clients, the difference between the actual number of time-slices allocated to
a client and the expected one is at most proportional to log m. The algorithm is extended in order
to support different levels of service quality; at the highest level it guarantees that a client receives

a share of the resource that is both superior and inferior bounded.

1 Introduction

One of the most challenging problems in modern operating systems is to design flexible and accurate
algorithms to allocate resources among competing clients. This issue has become more important with
the emergence of new types of applications, such as multimedia and real-time, that need guaranteed
performances. To achieve this, the underlying operating system has to allocate sufficient resources to
each application. For example, in order to display video images, an application needs enough 1/0
bandwidth to transfer the data, and enough memory and CPU cycles to process and display the frames
at the specified rate.

Usually, the computation resources are shared in time (e.g. CPU, communication bandwidth) or/and
in space (e.g. memory). In these cases, an allocation algorithm needs to allocate a certain share of
a resource to each application. In order to guarantee performances, the algorithm has to ensure that
the allocated share does not drop under a specified level. This helps to support both applications with
predefined service rate objectives (e.g. multimedia) and applications that need to meet some specified
deadlines (e.g. real-time).

Recently, Waldspurger and Weihl [15] have proposed a proportional share scheduling algorithm,

called lottery scheduling. In their algorithm the resource rights are encapsulated in lottery tickets, and
every client has a certain number of tickets. At the beginning of every time-slice a lottery is held and the
client with the winning ticket is selected and granted to use the resource. Since the ticket numbers are
randomly generated, this scheme ensures that, on the average, a client receives a number of time-slices
proportional to the fraction of tickets it has. They have shown that this algorithm can be successfully
used to allocate various resources, such as processing time, I/O bandwidth, memory and access to locks.

The algorithm we present in this paper can be seen as an alternative to lottery scheduling. One of
the main differences between the two algorithms is the way in which the winning numbers are generated;
while in the lottery scheduling algorithm the numbers are generated randomly, we use a deterministic
scheme that is both efficient and attains better accuracy than the randomized scheme. Namely, we
will prove that out of m consecutive time-slices that are allocated to all clients, the difference between
the number of time-slices a client actually receives and the expected number is at most proportional to
log m within a factor less than 2. This compares favorably to the binomial distribution scheme used in
the lottery scheduling algorithm, for which the standard deviation is v/m [13].

In different contexts many other schedulers were proposed to achieve proportional share allocation.
A large class of such schedulers is based on priorily schemes [7, 5]. This was a natural approach
since almost all existing operating systems rely on the concept of priority to allocate processing time to
competing processes [11]. In this scheme a process with a higher priority has absolute precedence over
any process with lower priority. Therefore a simple extension was to dynamically change the process
priorities in order to achieve certain service rate objectives. One of the best-known schemes is decay
usage scheduling [5] that tries to ensure the fairness by increasing the priority of the processes that
have received few time-slices in the recent past. This mechanism was successfully implemented in many
operating systems, such as Unix BSD [8] and System V [1]. The main drawback of this approach is
that it does not offer a very good control of the resource share allocation over short periods of time.

At a higher level, fair share schedulers were developed to address the problem of faur resource
allocations for a large system shared by multiple users [7]. In these schemes every user receives a
certain amount of funds that is proportional to the share of the system resources allocated to it. The
fairness is achieved by dynamically changing the priorities based on the relationship between the user
consumption and the user share. As decay usage scheduling, this scheme offers a crude control of the
allocated share. Moreover, the algorithm introduces a high overhead that limits the usage of this scheme
to only large grained applications.

A different approach was proposed by microeconomic schedulers [9, 10, 14]. These schedulers use the
auction mechanism to allocate resources among the competing clients. At the beginning of every time-
slice, the resource initiates an auction at which the interested clients participate by bidding monetary
funds that increase over time. The client that offers the highest bid is awarded and therefore acquires
the resource for the next time-slice. The price per time-slice for acquiring a resource 1s directly related
to the level of competition for that resource; if the competition increases, the price also increases. In
this way, as in real economic environments, the clients are encouraged to maximize their profit, i.e. to
devote their funds to resources that are more important for them. Although, this scheduling scheme
successfully solves the resource allocation problem in distributed environments they are too complex to
efficiently implement fine-grained resource control.

This paper is organized as follows. The next section presents the algorithm in detail, and discusses
several of the possible extensions and some implementation issues. Section 3 proves some upper bounds
for the algorithm. In Section 4 we discuss simulation results and finally, our conclusions are contained

in Section 5.

2 The Algorithm

Let us consider n clients that share a common resource K. Throughout this paper the notion of
client refers to any entity that needs to share one or more computational resources in order to achieve its
objectives. Examples of such clients are: threads, processes, applications, users, or group of users. We
assume that resources can be shared either in time (e.g. processor, communication bandwidth) or space
(e.g. memory, disk storage). For the sake of simplicity we will restrict our discussion to the time-shared
resources. In this case, time is assumed to be divided into intervals, called time-slices. Associated with
each resource there is a resource manager that, at the beginning of every time-slice runs a scheduling
algorithm in order to select one of the competing clients. Once selected, the client is granted to use the
resource until the time-slice expires or until the client releases it voluntarily (e.g. it waits for an I/0O
operation to be performed). We assume that every client ¢ has a certain amount of funds #;, expressed
in monetary units, which are used to acquire the resource. Let X denote the total amount of funds of
all clients competing for the resource, i.e., X = Z?:_ol z;. Our objective is to allocate the resource to
every client in proportion to its funds. More precisely, we would like to ensure that that out of any m

consecutive time-slices that were allocated to all clients, the client ¢ to receive

z;
m— 1
u (1)
time-slices.
Let L = {xo,22,...,2,_1} * be the list containing all clients. In order to simplify the presentation

and fix the ideas, first we make the following restrictive assumptions (these assumptions will be relaxed
later):

1. All the clients arrive in the list L at the same time, and there are no other clients that leave or

join the list before all clients complete.
2. A time-slice costs ezactly one monetary unit.

3. Every client ¢ needs exzactly x; time-slices to complete.

Notice that, according to assumption 2, the cost per time-slice is independent of the number of clients
that compete for the resource. Also notice that the funds x; attributed to every client ¢ has three
different meanings: first, it is proportional to the resource share that the client should receive (Formula
1); second, it represents the maximum number of time-slices that the client could buy (Assumption 2)
and third, it represents the number of time-slices required by the client in order to complete (Assumption
3). Though for practical applications these assumptions are too restrictive, they are used as a starting
point in developing the algorithm (later, they will be gradually relaxed).

Similarly to the lottery scheduling algorithm [15], the algorithm is based on the following simple
idea: at the beginning of every time-slice a number ¢ is generated and a client 7 is selected according to

the following condition:

i—1 3
ij§t<zxj' (2)
j=0 j=0

But, unlike the lottery scheduling algorithm in which ¢ is a random generated number between 0 and
X — 1, we use a deterministic scheme that generates all the numbers between 0 and 2F — 1, where
k = [log X]. More precisely, let { be an iterator taking all the values between 0 and 2% — 1 and let ¢ be

the number generated at the [** iteration. If t < X — 1, then a client is selected according to Equation

1For simplicity we assume that z; also identifies the client 7 in the list L.

rev(l) | sel. client

~Nooh~hwWNRFRO
~NwoFkrONMO
| OO | OO

Figure 1: The time-slice allocation for a list consisting of two clients (client 0 has 4 monetary-units
and client 1 has 2 monetary-units). The first column in the table represents the iteration index I, the

second one contains the generated number rev(l), and the third one indicates the selected client.

2 and it is scheduled to use the resource for the next time-slice. On the other hand, if ¢ > X — 1, no
client is selected and the algorithm continues with the next iteration, until a number ¢ less than X is
generated (our scheme ensures that no more than one additional new iteration is required to generate
such a number). Let | = Zfz_ol b;2' be the binary representation of {. Then, at the [** iteration our
scheme generates a number ¢ that is the reverse binary representation of ! (denoted rev(l)) :

t=rev(l) = b2 1+ 51257 T 4 4 by (3)

As an example, consider a list consisting of two clients that have the initial funds zy = 4 and z; = 2,
respectively (see Figure 1). From here, we obtain X = 6, k = 3. Further, notice that when the iterator
[goes from 0 to 7 the following numbers are generated (I — rev({)): 000 — 000, 001 — 100, 010 — 010,
011 — 110, 100 — 001, 101 — 101, 110 — 011, 111 — 111. The client selected at each iteration is
shown in the last column of the table in Figure 1. Notice that at the 374 and at 7'" iterations no client
is selected since the generated numbers, 6 and 7, are greater than X — 1 = 5. Here, it is important
to make the distinction between the iteration index and the index of the time-slice that is actually
allocated. As we have noted, if a number ¢ greater than X — 1 1s generated then it is ignored and the
algorithm continues until a number less than X is generated. We can show that no more than two
consecutive iterations are needed for selecting a client. First, notice that 2¥=" < X < 2% Since the
least significant bit of the iterator [is the most significant bit of rev(l) (see Equation 3), it is clear
that all even iterations generate a number < 2¥~1 and thus select a client in the list. Therefore if the
current iteration /; does not select any client, then /; must be an odd iteration. Consequently, the next
iteration [y 4+ 1 is an even one, and a client is selected.

As we will prove in Section 3, the algorithm guarantees that out of m consecutive time-slices that
were allocated to all clients in L, the difference between the number of time-slices any client receives
and the expected one (given by Formula 1) is at most proportional to logm. This compares favorably to
the binomial distribution scheme used in lottery scheduling algorithm for which the standard deviation
is proportional to \/m.

Next, to put things in perspective, we try to explain what is the intuition behind the algorithm.
Recall that a client ¢ is selected whenever the generated number ¢ satisfies Equation 2. Next, if we
associate with every client ¢ the half-open interval [a;, a;41), where ag = 0 and a; = Z;_:ll z; (1<i<n),
then the selection condition can be reformulated as follows: a client i is selected if the generated number
t belongs to the interval [a;, a;41). Therefore the number of time-slices a client receives is equal to the
number of values generated in the corresponding interval. But, according to Formula 1, every client
should receive a number of time-slices proportional to its funds (which is exactly the size of the interval).
A straightforward strategy would be to generate a uniformly distributed sequence over the interval

[0, X —1). This ensures that a client ¢ will receive a number of time-slices that is no larger than [z;/d)]

and no smaller than |x;/d]|, where d is the distance? between the generated numbers (see Lemma 1
for details). Thus, if we are given m time-slices, we can distribute them easily among the competing
clients such that every client receives approzimately its share. This solution is good for a specified value
of m, but unfortunately it cannot be generalized for any value of m (which is the case of our problem).
The key observation is that a uniform distributed sequence maximizes the minimum distance between
any two neighbor® numbers in the sequence. Conversely, it is easy to see that given a sequence of m
numbers, the problem of finding a sequence that maximizes the minimum distance between any two
neighbors in the sequence has as solution a uniformly distributed sequence *. The algorithm is mainly
based on this idea; a new number is generated in such a way that the minimum distance between it
and the previous generated numbers is maximized. This can be easily verified for the first generated
numbers: the distance between the first two is 28~1, the minimum distance between the first four is
2k=2 etc. Generally, it can be shown that after m iterations the minimum distance between any two

generated numbers is 25~ logm1

2.1 Late Join and Early Completion

Recall that in the previous section we have made three assumptions: (1) all clients enter the competion
at the same time, (2) every time-slice costs exactly one monetary unit, and (3) every client completes
exactly after it spends all its funds. Clearly, these restrictions are not acceptable in a real system. For
example, in a dynamic environment we cannot impose that all clients should start at the same time,
or a client should terminate only after it has spent all of its funds. Therefore, in this section we relax
the first and the third assumptions. More precisely, we allow a client to enter in competition any time
(late join) and finish its computation before spending all its funds (early completion). In this case, z;
no longer represents the number of time-slices that client ¢ needs to complete. Instead it represents
only the maximum number of time-slices the client can buy (at this point assumption 2 is still valid).
Therefore, it would be better to interpret x; as an expense account from which the resource manager
withdraws a monetary unit whenever it allocates a time-slice to the client.

Again, let L = {xo,21,...,2,-1} be the list of funds of clients that compete for the resource R.
For every client i, besides the variable x; we introduce a new variable y; that counts the number of
time-slices that were allocated to client ¢ (y; is incremented, whenever client ¢ is selected). Since every
time-slice costs exactly one monetary unit, y; represents the funds the client has already spent for
buying time-slices. Now assume a new client 7 with z;; funds wants to enter in competition for the
resource R. At this time every other client ¢ in L has already spent y; from its expense account and
therefore 1t has x; — y; monetary units left. Following are the steps performed by the algorithm when

a new client joins the list:

1. Insert client ¢ in the list L.

2. Update the expense account of every client ¢ in L: z; = z; — y; and y; = 0. Notice that since

y;» = 0, the z;/ is not modified by this operation.

3. Recompute the total funds X, the number of bits £ of X, and re-initialize the iterator I: X =
Yo owi, k= [log X], 1 =0.

?The distance between two integers a, b is defined as |a — b|.
3Two numbers in the sequence S are said to be neighbors if there is no other number in S that has the value between

them. For example, in the sequence S = (1,8,2,6), 6 has two neighbors: 2 and 8, while 1 has only one neighbor: 2.

4 As a simple example, consider the sequence (2,#,10), such that 2 < # < 10. Then, the value of that maximizes
the minimum distance between any two neighbors in the sequence is clearly z = 6; in this case the minimum distance is
4= min(6 — 2,10 — 6).

We can group together all the update operations in steps 2 and 3 (i.e. updates of #;, y;, X, k and /) in
one procedure, called restart procedure. Now, the late join algorithm can be easily described as follows:
the new client is first inserted in the list and next the restart procedure 1s executed.

As an example, suppose L = {4, 2} (see Figure 1) and consider that at the beginning of the iteration
3 a new client with 7 monetary units enters in competition for the resource. Since the first client from
L has already received 2 time-slices and the second 1 time-slice, we have yo = 2, y; = 1, and therefore
2o =4—2=2, 21 =2—1=1. Thus, after the restart procedure is executed we obtain L = {2,1,7},
X=10,k=4and { =0.

Conversely, suppose a client finishes before spending all its funds. In this case we proceed similarly:

first the client is removed from the list and next the restart procedure is called.

2.2 Bounded and Unbounded-Share Services

The major limitation of the above algorithm is that a single parameter, z;, has still two meanings: it
accounts both for the funds in the client’s expense account, and for the share of the resource allocated
to that client (Formula 1). In other words, it is not possible for a client to ask for a share other than
z;/X. This policy may be too inflexible in practice. To see why, let us consider two clients; one that
has 10 monetary units and needs 10 time-slices to complete, and the other that has 100 monetary units
and requires 100 time-slices. Then, according to the previous algorithm the second client obtains a
share 10 times greater than the other, and both clients will complete at the same time. Intuitively, one
can argue that this is not fair; since both clients pay one monetary unit per time-slice, he or she would
expect that both clients would have the same share when they compete and therefore the first client
would finish 5.5 times faster® (i.e., it only takes approximately 20 time-slices instead of 110 time-slices).

To extend the algorithm, we introduce two new variables: z; that represents the share of the resource
the client ¢ should receive, and p; the price per time-slice payed by client 7. In this way, we eliminate
the last restriction of the algorithm (i.e., a time-slice costs exactly one monetary-unit).

Let X be the sum over the shares of all clients, i.e., X = Z?:_ol Z;, and let L be the list {Zo, Z1,...,Zo_1}.
Then, we simply modify the algorithm as follows: first, when the client is selected, the resource manager
considers the list L (instead of L); second, for every time-slice that the client i receives it is charged
with p;.

The algorithm can be slightly improved if we chose X to be a power of two, i.e. X = 2% In this case,
since all the generated numbers are < X, the algorithm selects a client at each iteration (provided the
list is not empty). Also the iterator { may be incremented modulo 2k (there is no need to re-initialize
it when a client enters or leaves the list).

These modifications allow us to easily support different levels of service quality, as defined below:

e share-bounded. A share-bounded service guarantees that the share of the resource allocated to a
client never drops, or exceeds some specified bound {;, and w;%, respectively, i.e., §; < & < u;. If
l; = 0 we say that the service is inferior unbounded; similarly, if u; = oo, we say that the service

1s superior unbounded.

e share-unbounded. A service is shared-unbounded if it is both inferior and superior unbounded.

5Notice that this objective can be accomplished using the previous algorithm if the first client declares that it has 100
monetary-units, instead of 10 monetary-units. In this case, it will finish 5.5 times faster than the other and will spend

exactly 10 monetary-units.
6The need for a superior bounded service may not be intuitively clear. A situation in which one can take advantage

of this service would be in designing a simple communication protocol that avoids the buffer overflow at the receiver by

imposing an upper bound for the bandwidth allocated to it.

Notice that although these services only guarantee bounds for the share allocated to every client i
(z;/X), this is enough to guarantee bounds for the number of time-slices the client ¢ actually receives,
since as we will prove in Section 3, the difference between this number and the expected number
(ma;/X) is also bounded.

Whenever a new client wants to compete for a resource, it must negotiate its share with the resource
manager. Based on a function of the resource utilization and the client requests, the resource manager
establishes a price per time-slice. For simplicity we assume that the price per time-slice does not vary
during the client life (this would be similar to a rent based mechanism). Next, let X; be the sum over
the lower bounds and X, be the sum over all finite upper bounds (not including upper bounds equal to
o0) of all clients in L. Since the resource manger guarantees that no client will have a share less than
its lower bound, we clearly have X; < X. Therefore when a new client enters in competition for the
resource, it can compete only for the remaining share, i.e. X — X;. Obviously, if the client requests a
lower bound greater than the available share, then it is refused and the client will be asked to reduced
its lower bound or to wait until enough share is available. If a new client does not specify a lower bound
(i.e., it is inferior unbounded) then it is accepted immediately. When a time-slice is allocated to client
¢ then it is charged with p;. In this paper, we will not discuss further the negotiation mechanism and
the price setting policies as they are topics of future research.

Let N denote the number of clients that are superior unbounded. Then, in the general case, the

shares of the resource are allocated according to the following rules:

1. If X, < X and N, = 0, then every client 7 receives a share equal to u;. Notice that in this case
the share (X — X,,)/X of the resource is not utilized.

2. If X,, > X and N, = 0, then every client i receives a share equal to I; + @}, where z} = u;(X —
Xl)/Xu Thus, in this case the share is allocated in two rounds. In the first round every client ¢
receives a share equal to its lower bound /;; and in the second the remaining un-allocated share

X — Xj is proportionally divided among all the clients.

3. If Ny > 0, then for any superior unbounded client ¢, take u; = #;. Next, if the new computed

X. < X, then apply rule 1; otherwise apply rule 2.

It is easy to verify that the above rules guarantee share-bounded services. Although different allocation

policies might be devised, we will not study them in this paper.

2.3 Implementation Issues

Since the scheduling algorithm is invoked at the beginning of every time-slice, its performance is critical.
In this section we briefly discuss some of the implementation issues.

First, the generation scheme can be easily implemented using only “right shift with carry” and
“left shift with carry” processor instructions. In this way a number can be generated using 2k such
operations, where k 1s the number of bits in its binary representation. Since at most 2 numbers must
be generated before a time-slice is allocated, clearly at most 4k shift operations are required.

As long as the client list remains unchanged, the most expensive operation is to search through the
list for the winning client. If the number of clients is small, then the search operation can be efficiently
implemented by using a simple linked list. On the other hand, if the number of clients is large, then a
interval tree data structure [3] that supports a logarithmic time search operation, is better suited.

When a new client joins or leaves the list, the restart procedure is invoked. Since this procedure
needs to scan all the list in order to recompute the funds and update the expense accounts for every
client, it is clearly linear in time. Notice that if much complex negotiation mechanisms are considered,

the time-complexity may increase.

3 Algorithm Analysis

In this section we prove some upper bounds for the difference between the expected number of time-
slices a client has to receive and the actual number of time-slices it receives. More precisely, consider
a static list containing n clients, i.e. L = {aq,21,...,2,-1}. Then, the main result of this section
can be stated as follows: Qut of m consecutive time-slices allocated to the clients in L, the difference
between the number of time-slices the client ¢ has to receive (i.e., ma;/X) and the number of time-slices
allocated to it is at most (1 + #;/X)([logm] + 3) (Theorem 1). Further, for the first m time-slices
that are allocated, we show that the bound can be improved to (1 4 #;/X)([logm] + 3)/2 (Lemma 4).

Mog X1 jterations, every client in L receives exactly the number of time-slices

Finally, we show that after 2
it is supposed to receive (Lemma 6). From here we suggest an improvement in the algorithm in order
to guarantee better bounds.

Let us consider the partition of the interval I = [0, X), induced by Equation 2, in n half-open
intervals I; = [a;,¢;41), 0 < ¢ < n, where ap = 0 and a; = Z;_:E z; (1 <i < n). Now, the selection
procedure can be restated as follow: the client ¢ 1s selected at iteration [if and only if the generated
number rev(l) is contained in the interval ;.

Next, let S = Seq(a,b) = {t |t = rev(l); a <1 < b} be the sequence generated by the algorithm

between a!

" and b'* iterations and, for any interval” J, let ¢(J,S) be the number of elements from
contained in J. Tt is easy to see that if S} and Sy are two disjoint sequences, then e(J,S; U S2) =
e(J,S1) + e(J, S2). Notice that the total number of time-slices received by all clients in list L can be
expressed as ¢(I,S), and the number of time-slices received by a client ¢ as ¢(I;, S). Now, the difference

between the number of time-slices a client ¢ receives and the expected number can be written as
Ty
le(s, 5) — e, 5) |- (4)

Throughout the remaining of this section we use the following notations: |S| denotes the size of the
sequence S (i.e., the number of elements in S), and |J| denotes the length of the interval J. Also, as
before, k = [log X| denotes the number of bits in the binary representation of X.

The next lemma determines the lower and upper bounds for ¢(J,.S) in the special case in which the
elements in S are uniformly distributed between 0 and 2%, and the distance between any two neighbors
is 28—k,

Lemma 1 Let S = Seq(p2*1, (p + 1)2%1), such that 0 < ky < k and 0 < p < 28=%1. Then for any
interval J C [0,2%) we have

i) < e7.8) < [(5)

Proof. Let | = Zfz_ol b;2' be the binary representation of I. Clearly, the first k — ki most significant bits
of | (p2*+ < I < (p+ 1)2%1) are identical, while the last k; bits take all the possible values between 0
and 2%1 — 1. Since from Equation 3 we have rev(l) = Zf:_ol b; 28 =11 the first k; most significant bits
of rev(l) takes all possible values between 0 and 2%t — 1, while the last & — k; bits are identical. It is
easy to see that the elements of S are uniformly distributed in the interval [0, 2%) at the distance 2% %
each from the other. From here, the Inequality 5 follows.d

In the following two lemmas we derive bounds ® for ¢(J,S), when the sequence S is either of form
Seq(p2*:, p2*t +) (Lemma 2), or of form Seq(p2** — r, p2*1) (Lemma 3), where 0 < » < 2%1.

"Throughout this section all intervals have integer limits.
8To simplify the presentation the bounds we derive in these lemmas are independent of |J|. By taking into account

the length of the interval J we can prove tighter bounds. Mainly, it can be shown that the term [log |S|] would be replace
by the term maxz([log|S|] + [log|J|] — [log|X|[],0) + 1.

Lemma 2 Let S = Seq(p2*s,p2*t + 7)), where 0 < ky < k, 0 < p < 287%1 and 0 < r < 251, Then for
any interval J C [0,2%) we have

|e(],5) =19

Proof. To keep the notation simple we prove the result for p = 0 (for p > 0 the proof is identical).

J log |S
) Dogis

Let ky = [log|S|] = [logr], and let » = Zf;al b;2!. Next, consider the monotonically increasing
sequence of integers defined by the recurrence: sg = 0 and s; = ;-1 + bkr_iQkT_i (0 < i< k). For
example, if £ = 6, r = 010110 (k, = 5), then we have s; = 000000, s; = s2 = 010000, s3 = 010100 and
sq4 = s5 = 010110. Now, consider the family of sequences S; = Seq(s;, s;41) (0 < i < k), where clearly
S=SyUS1U...USk, _1. Since the last k. — i bits of s; are zero and S; = Seq(s;, s; + bg, _;—128777 1),

by using Lemma 1 we can write

/] /]
jl_2k_]'J > C(J, SZ) < bj |—2k—j-|'
where j = k. — ¢ — 1. Notice that if b; = 1, the above equation reduces to Equation 5, otherwise

e(J,S;) = 0 since s; = s;41. Because S is the union of all sequences S;, by summation, we obtain:

kr—1

7]
ZkaZ_ wa (6)

Let ones(r) be the number of ones in the binary representation of r. Using the well-known inequalities:
[#] < x4+ 1 and |#] > & — 1, the Inequality 6 become
J J
r|2—k| —ones(r) < ¢(J,S) < r|2—k| + ones(r). (7)
Next, we derive alternative bounds for ¢(J, S). First, we compute ¢(J,U), where U = Seq(r, 2%+1)
(notice that Seq(0,2% 1) = SUU). Let s = 25+l —p = Zfr_l b:2¢ and consider the monotonically
decreasing sequence given by the recurrence: wug = 2kt = uyq — bk _ZQk r—t (0 < i < ky).
As an example, for » = 010110, we have s = 001010, and ug = u; = 100000, us = us = 011000,
ug = us = 010110. Next, define the disjoint sequences U; = Seq(u;41,w;) (0 < i < ky). From here,
proceeding similarly to the previous case, we obtain
J J
5|2—k| —ones(s) < c(J,U) < 5|2—k| + ones(s). (8)
From Lemma 1 we have [|J|/2¥=% 1] < ¢(J,SUU) < [|J]/25~%=1|. Combining this relation with
Inequality 7 and using the equality ¢(J, S) = ¢(J, SUU) — ¢(J, U), after some simple algebra we obtain
J J
r|2—k|—0nes(yJ—1l<e(],S) < r|2—k|—|—ones()+ 1. (9)

Let zeros(r) denotes the number of zeros in the binary representation of r. Then it can be shown® that

ones(s) < zeros(r) + 1 and therefore the Inequality 9 become

J J
r|2—k|—zer05()—2<e(],S) < r|2—k|—|—zer05(r) + 2. (10)
Now, by combining Inequalities 7 and 10 we obtain
r|2ik| — min(zeros(r),ones(r) + 2) < ¢(J,S) < 7°|2ik| + min(zeros(r), ones(r) + 2).

Finally, since zeros(n)+ones(r) = k, and min(z,y) < (x+y)/2, we obtain min(zeros(r), ones(r)+2) <
ky/2+ 1 = [logr]/2 + 1 which completes our proof. O

The next lemma is given without proof (the proof is very similar to the one of Lemma 2).

9 Assuming that 7 is represented on only k. + 1 bits, then s = 25711 — 7 can be interpreted as the 2-complement of r.
Therefore s can be obtained by complementing all bits of r that are to the left of the least significant (rightmost) bit of
value 1 ([12], pp. 203).

Lemma 3 Let S = Seq(p2¥r — r, p2%1), where 0 < ky < k, 1 <p < 2¥7%1 and 0 < r < 2%1. Then for
any interval J C [0,2%) we have

Il flogls
|c(J,S)—|S||2—k|| < WH.

Next we derive the upper bounds for the Expression 4 in the case of the particular sequences
S = Seq(p2*r,p2%1 + r) (Lemma 4) and S = Seq(p2*+ — », p2*1) (Lemma 5), where 0 < » < 2%1.

Lemma 4 Let S = Seq(p2¥1,p2Ft +), where 0 < ky < k, 0 < p < 267%F1 0 < » < 281 and let
m = e(I,S). Then for any interval I; C I we have

T z; [logm] +3
|c(IZ,S)—mX|<(1—|—X) 5)
Proof. First denote o = |S|/2% and B = ([log|S[])/2 + 1. Next recall that |I;| = z;, |I| = X,
I;, 1 C[0,2%) and therefore by Lemma 3 we have

aX —fB<e(l,S)<aX +p (11)
ar; — B < c(I;,S) < am; + (12)

By multiplying (11) with 2;/X and combining it with (12) we obtain

—B(1 + Y) <e(l;,S)— (I, S)} < B(1+ Y)'
Notice that the interval [p2¥1, p2%1 4+ r) contains at least [|S|/2] even integers and since |I| = X > 2F~1
we obtain m = ¢(I,5) > [|5]/2] = |S| € 2m. Finally, we have 8 = [log|S||/2 + 1 < ([logm] + 3)/2
which completes the proof. [

Lemma 5 Let S = Seq(p2%t — r p2%1), where 0 < k) < k, 1 < p < 28751 0 < r < 251, and let
m = e(I,S). Then for any interval I; C I we have

et) - m22] < 1.+ 2y o]

+2).
Proof. The proof is similar to the one of Lemma 4. There are only two minor differences. First, to
determine the bounds for ¢(7,S) and ¢(I;, S) we use Lemma 3, instead of Lemma 2. Second, notice
that the interval [p2¥1 — r, p2%1) contains at least ||S]/2] even integers and thus we have |S| < 2m + 1.
Further we can write 8 = [log|S|]/2+ 1 < ([log(2m + 1)])/2 + 1 < [logm]/2 + 2 which proves our
lemma. O

Now we are in position to prove the main results of this section. The next theorem gives the upper
bound for the difference between the number of time-slices a client 7 receives, out of any m consecutive

time-slices that were allocated to all clients in list L, and the expected number.

Theorem 1 Let S = Seq(a,b), where 0 < a < b < 2%, and let m = ¢(I, S). Then for any sub-interval
I; C I we have

e(1i, $) = m S| < (1+ Z)([log m] +3). (13)

Proof Let ky = |logb|, » = b— 21 and s = 251 — a. Next define the sequences S; = Seq(2%1 — s, 2%1)
and S = Seq(2%1 2% 4), where clearly S = S; U Ss. Since ¢(J,S) = ¢(J, S1) + ¢(J, S9), by using

Lemma 4 and Lemma 5 we obtaln

|/| [logr] [logs] 7 ||
(rts)op ——— 5 —5 <9 <(r+s)5p +

[log 5]
2

[log r]

|

|

[\
[\
N =1

10

Further we have [logr] + [logs] < [logrs]+1. Since the maximum achieved by rs is (|S|?)/4 we obtain
logrs < 2log|S| — 2, and finally we get [logrs] < [2log|S] — 2] = [2log|S]] — 2 < 2([log |S]] = 1).
From here, Inequality 13 follows directly. O

Next, we prove that after the first 2¥ consecutive iterations every client receives exactly the number

of time-slices it is supposed to get.

Lemma 6 Let S = Seq(0,2%), and let m = ¢(1, S). Then for any sub-interval I; C I we have
z;
I;,5)—m—|=0.
(01,8 = m

Proof. The proof is immediate. First notice that the function rev : P — P, where P = {l e N | 0 <
[< 2%} is a bijection. Therefore for any interval J C [0, 2%), ¢(J, S) is equal to the number of integers
it contains. But every interval I; contains exactly x; integers and the interval I contains X integers.
Thus, we have ¢(I;,S) = #; and ¢(I,S) = X which completes the proof. [0

The above lemma suggests a way to improve the algorithm in order to guarantee better bounds. Let
y be the greatest common divisor of all #; (0 < ¢ < n). Next, consider the list L' = {&f,2},..., 2/, _,}
where 2! = 2;/y (0 < i < n) and denote X’ = Z?:_ol z} and k' = [log X']. Then instead of running
the algorithm for 2% iterations over the list L, we can run the algorithm for y2kl iterations over the list
I'. After each 2% iterations, according to Lemma 4, client 7 receives x} time-slices and therefore after
Y2k’

becomes

it will receive xly = x; time-slices. Further it is easy to verify that, in this case, the Equation 17

le(I;, S) — m%| <1+ %)(ﬂog(m mod)] + 3).

4 Experimental Results

To evaluate the algorithm we use simulation. Mainly, we were interested to evaluate the allocation
accuracy, the algorithm responsiveness and the ability to guarantee the bounded-share services.

To measure the allocation accuracy, we compute the maximum difference (error) between the number
of time-slices a client actually receives and the number estimated by Formula 1. For this, we consider all
the possible lists L = {&g, @1,...,2,-1}, such that X = Zzzg_l z; < 128. Since the number of time-
slices received by client ¢ is equal to the total number of values generated in the corresponding interval
I; (see Section 3), we have performed this experiment by considering for any interval I = [0, X) all the
possible sub-intervals J C I. The maximum error we found was 3.04 and it occurred for 7 = [0, 75)
and J = [11,64). In Figure 2.a we plot the measured error versus time (here, a time-slice is assumed
to be equal to one time-unit) and the upper bound given by Lemma 4 (we use this relation because we
counted the number of time-slices received by the client beginning with iteration 0). In Figure 2.b we
show the number of time-slices allocated to the client versus time. Notice that, even in this case, that
is the worst case we found, the number of time-slices allocated to the client approximates well the line
with the slope 53/75 that represents the expected number of time-slices the client has to receive at any
moment in time.

Here, two things worth mentioned. First, the actual measurements are even much better than the
upper bound we have derived in Section 3 (that is mainly because various approximations we have
used). In fact, in all the other cases the error is strictly less than 3. Second, notice that as proved in
Lemma 5 once all X time-slices were allocated the error is 0. In other words the client receives exactly
the number of time-slices it is supposed to receive, i.e. in our case 53.

Similarly, the Figures 2.c and 2.d depict the error and the allocated time-slices, respectively, for the
case when I = [0,128) and J = [0,85). This is the worst case among all the lists of length 128. Since

in this case X = 128 = 27, the upper bound is given by Lemma 2. The maximum error we have have

11

8
_ 7]
sl - 8 60f
- 3
f - - - q’
Saf /7 £40/
() / o
/ 9
2 ’// g 207
©
0 0
0 20 40 60 0 20 40 60
time time
(@) (b)
6f 0
3100t
@
- -)
S 4 - =
R B 50
/ (]
2 f 8
! T
0 ‘ ‘ 0 ‘ ‘
0 50 100 50 100
time time
(c) (d)

Figure 2: Figure a) plots the measured error (filled line) and the estimated upper bound (dashed line)
for the case in which the L’s corresponding interval is I = [0,75) and the client’s corresponding interval
is J = [11,64). Figure b) shows the number of time-slices allocated to the client versus time, for the
same case. Figures ¢} and d) plots the error and the number of allocated time-slices for the case in
which I =1[0,128) and J =[0,85). In all figures a time-slice is equal {o one time-unit.

obtained in this case was only 2.45. Consequently, the number of allocated time-slices approximates
much better the ideal line which has the slope 85/128 (see Figure 2.d).

Another important criterion we evaluate is the algorithm responsiveness. We define the responsive-
ness as the propriety of the algorithm to rapidly adjust the client shares, when a new client arrives
or departs the list L. It is easy to see that the algorithm adapts immediately to the changes. This is
because every time a change occurs the restart procedure recomputes the share for every client, which
determine directly the allocated time-slice rates. For further investigation we have conducted a simple
experiment in which we consider a list of two clients L = {xg, 21}, where 2y = 400 and z; = 200.
After the first 200 time-slices were allocated, a new client with s = 300 joins the list. At this moment
the ratio of the allocated time-slices for the first two clients was 135 : 65 (compared to 400 : 200) and
therefore the remaining funds for the first two clients are g = 265 and z; = 135 respectively. Next,
assume the last client completes after it has received exactly 100 time-slices (this happens after 431
time-slice were allocated). If we consider only the time-slices allocated during the time interval when
all three clients were active we obtain the ratios 87 : 44 : 100 (1 : 0.505 : 1.149), which compares well
with the expected ones 265 : 135 : 300 (1 : 0.509 : 1.132). Once the client 2 completes, only the other

12

400

Client0
350 Clientl ———- g
Client2 - - -
300+ g
® 250+ |
Q
»
|
()
£ 2001
°
[
g
S 1501 |
®

=
o
o
T
\
L

50| - |

0 100 200 300 400 500 600 700
time

Figure 3: The cumulative time-slices allocated to three clients. Client 0, with 400 monetary units, and
client 1, with 200 monetary-units, begin to compete at the same time. Client 2, with 300 monetary-units,
joins the list after 200 time-slices were allocated to clients 0 and 1, respectively, and terminates after it

recewes exactly 100 time-slices.

two will remain to compete for the resource. At this point, the remaining funds are: zy = 178 and
z1 = 91. The clients complete roughly at the same time, after a total of 700 time-slices were allocated
(i.e. 400 for client 0, 200 for client 1 and 100 for client 2).

Finally, to see how the bounded-share services are ensured, we modify slightly the previous ex-
periment, i.e., we assume that the client 1 has both superior and inferior bounds equal to %, where
z1/X = 1/3. In other words, client 1 should receive exactly one third share of the resource. As can
be seen in Figure 4, the slope corresponding to client 1 is constant (1/3) and independent of the other
clients that competes for the resource. Since, in this case, client 2 competes only for the remaining
share X — Z1, it takes longer to complete than in previous test, i.e. it finishes after 483 time-slices were
allocated, instead of 431. On the other hand, client 1 completes after 598 time-slices were allocated
which is very closed to estimated value, i.e. 600 = 3 - 200. Once the client 1 completes, the client 0 can
fully use the resource (notice that the slope increases to 1) and it finishes after exactly 700 time-slice

were allocated.

5 Conclusions and Future Work

We have described a new approach to implement proportional-share resource allocation that provides a
flexible control and a high degree of accuracy in allocating shared resources among competing clients.
Specifically, we have proved that out of any m consecutive time-slices, the difference between the number
of time-slices a client ¢ receives and the expected number is less that (1 + #;/X)([logm] + 3), where
z;/X represents the share of the resource allocated to the client i. Moreover, the simulation results
show that the actual difference is much smaller. For example, among all the possible cases in which the
resource share is allocated in 1/128 increments, we found that the difference was never larger than 2.45
for any first m consecutive time-slices that were allocated (see Figure 2.c).

Further, simple extensions of the algorithm guarantee that every client receives a fraction from the

resource that can be inferior and/or superior bounded. This feature is important in supporting both,

13

400

Client0
350 Clientl1 ———- B
Client2 - - -

300 b

N
a
o
T
L

200 1

150 1

allocated time-slices

=

o

o
T
\
L

501 - J

0 100 200 300 400 500 600 700
time

Figure 4: The cumulative time-slices allocated to three clients. Client 0, with 400 monetary units, and
client 1, with 200 monetary-units, begin to compete at the same time. In addition, client 1 s guaranteed
to receive a share of 1/3. Client 2, with 300 monetary-unils, joins the list after 200 time-slices were

allocated and terminates after it receives exactly 100 time-slices.

multimedia applications that require certain rate objectives and real-time applications that have to
meet specified deadlines.

However, many other problems remain open. First, we have to consider the case in which the client
does not use the entire time-slice. As suggested in [15], a solution would be to use compensation funds,
i.e. to give the client additional funds proportional to the average fraction from the time-slices that is
not used. An alternative approach would be to charge the client with a fraction of the price that is
equal to the the fraction of the time-slice that is actually used.

Second, it will be interesting to consider both hierarchical and heterogeneous scheduling schemes.
As an example, consider the case in which the clients are grouped in several classes. Then, at a higher
level a proportional scheduler may be used to allocate resource shares to each class, while at a lower
level, among the clients in the same class, a simple scheduler (e.g. round-robin) may be used. As a
second example, consider the process-thread hierarchy. Here, similarly, a proportional scheduler may be
used to allocated CPU time-slices to each process, and in turn, the process may select a thread to run by
using a different policy. Ultimately, we think that this may be a valuable approach to implement flexible
resource management in the new generations of operating systems [2, 4] in which the applications would

be able to implement their own algorithms for managing the shares of the resources allocated to them.

References

[1] M. J. Bach. “The Design of the Unix Operating System,” Prentice-Hall, 1986.

[2] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage and E.
G. Sirer. “SPIN - An Extensible Microkerenel for Application-specific Operating System Services,”

Technical Report 94-03-03, Dept. of Comp. Science and Engineering, University of Washington,
Feb. 28, 1994.

[3] T. H. Cormen, C. E. Leiserson and R. L. Rivest. “Introduction to Algorithms,” MIT Press, 1992.

14

[4] D. R. Engler, M. F. Kaashoek and J. W. O’Toole Jr. “The Operating System as a Secure Pro-
grammable Machine,” Proc. of the Sizth SIGOPS European Workshop, 1994.

[5] J. L. Hellerstein. “Achieving Service Rate Objectives with Decay Usage Scheduling,” IEEFE Trans-
actions on Software Engineering, Vol. 19, No. 8, August 1993, pp 813-825.

[6] K. E. Drexler and M. S. Miller. “Incentive Engineering for Computational Resource Management,”
The Ecology of Computation, B. Huberman (ed.), North-Holland, 1988, pp. 231-266.

[7] J. Kay and P. Lauder. “A Fair Share Scheduler,” Communication of the ACM, Vol. 31, No. 1,
January 1988, pp 44-45.

[8] S.J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman. “The Design and Implementation
of the 4.3BSD UNIX Operating System,” Addison-Wesley, 1989.

[9] T. W. Malone, R. E. Fikes, K. R. Grant and M. T. Howard. “Enterprise: A Market-Like Task
Scheduler for Distributed Computing Environments,” The Ecology of Computation, B. Huberman
(ed.), North-Holland, 1988, pp. 177-205.

[10] M. S. Miller and K. E. Drexler. “Markets and Computation: Agoric Open System,” The Ecology
of Computation, B. Huberman (ed.), North-Holland, 1988, pp. 133-176.

[11] A. Silberschatz and P. B. Galvin. “Operating Systems Concepts,” - fourth edition, Addison-Wesley,
1994.

[12] 1. Tomek. “Introduction to Computer Organization,” Computer Science Press, 1981.

[13] R. Jain. “The Art of Computer System Performance Analysis. Techniques for Experimental Design,
Measurments, Simulation, and Modeling,” John Wiley & Sons, 1991.

[14] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart and W. S. Stornetta. “Spawn: A
Distributed Computational Economy,” IEEFE Transactions on Software Engineering, Vol. 18, No.
2, February 1992, pp. 103-117.

[15] C. A. Waldspurger and W. E. Weihl. “Lottery Scheduling: Flexible Proportional-Share Resource
Management,” Proc. of the First Symposium on Operating System Design and Implementation, pp.
1-12, November 1994.

15

