
A New Approach to Implement Proportional ShareResource AllocationIon Stoica, Hussein Abdel-WahabDepartment of Computer ScienceOld Dominion UniversityNorfolk, Virginia, 23529-0162Technical Report 95-05e-mail: fstoica, wahabg@cs.odu.eduAbstractWe describe a new approach to implement proportional share resource allocation and to providedi�erent levels of service quality. We consider multiple clients that compete for a time-sharedresource, and we associate to each client a certain amount of funds. At the beginning of every time-slice a client is selected and it is granted to use the resource during that time-slice. For selecting aclient, we use a new deterministic scheme that allocates time-slices to every client in proportion toits funds. More precisely, we prove that our scheme ensures that out of m consecutive time-slicesthat are allocated to all clients, the di�erence between the actual number of time-slices allocated toa client and the expected one is at most proportional to logm. The algorithm is extended in orderto support di�erent levels of service quality; at the highest level it guarantees that a client receivesa share of the resource that is both superior and inferior bounded.1 IntroductionOne of the most challenging problems in modern operating systems is to design exible and accuratealgorithms to allocate resources among competing clients. This issue has become more important withthe emergence of new types of applications, such as multimedia and real-time, that need guaranteedperformances. To achieve this, the underlying operating system has to allocate su�cient resources toeach application. For example, in order to display video images, an application needs enough I/Obandwidth to transfer the data, and enough memory and CPU cycles to process and display the framesat the speci�ed rate.Usually, the computation resources are shared in time (e.g. CPU, communication bandwidth) or/andin space (e.g. memory). In these cases, an allocation algorithm needs to allocate a certain share ofa resource to each application. In order to guarantee performances, the algorithm has to ensure thatthe allocated share does not drop under a speci�ed level. This helps to support both applications withprede�ned service rate objectives (e.g. multimedia) and applications that need to meet some speci�eddeadlines (e.g. real-time).Recently, Waldspurger and Weihl [15] have proposed a proportional share scheduling algorithm,1

called lottery scheduling. In their algorithm the resource rights are encapsulated in lottery tickets, andevery client has a certain number of tickets. At the beginning of every time-slice a lottery is held and theclient with the winning ticket is selected and granted to use the resource. Since the ticket numbers arerandomly generated, this scheme ensures that, on the average, a client receives a number of time-slicesproportional to the fraction of tickets it has. They have shown that this algorithm can be successfullyused to allocate various resources, such as processing time, I/O bandwidth, memory and access to locks.The algorithm we present in this paper can be seen as an alternative to lottery scheduling. One ofthe main di�erences between the two algorithms is the way in which the winning numbers are generated;while in the lottery scheduling algorithm the numbers are generated randomly, we use a deterministicscheme that is both e�cient and attains better accuracy than the randomized scheme. Namely, wewill prove that out of m consecutive time-slices that are allocated to all clients, the di�erence betweenthe number of time-slices a client actually receives and the expected number is at most proportional tologm within a factor less than 2. This compares favorably to the binomial distribution scheme used inthe lottery scheduling algorithm, for which the standard deviation is pm [13].In di�erent contexts many other schedulers were proposed to achieve proportional share allocation.A large class of such schedulers is based on priority schemes [7, 5]. This was a natural approachsince almost all existing operating systems rely on the concept of priority to allocate processing time tocompeting processes [11]. In this scheme a process with a higher priority has absolute precedence overany process with lower priority. Therefore a simple extension was to dynamically change the processpriorities in order to achieve certain service rate objectives. One of the best-known schemes is decayusage scheduling [5] that tries to ensure the fairness by increasing the priority of the processes thathave received few time-slices in the recent past. This mechanism was successfully implemented in manyoperating systems, such as Unix BSD [8] and System V [1]. The main drawback of this approach isthat it does not o�er a very good control of the resource share allocation over short periods of time.At a higher level, fair share schedulers were developed to address the problem of fair resourceallocations for a large system shared by multiple users [7]. In these schemes every user receives acertain amount of funds that is proportional to the share of the system resources allocated to it. Thefairness is achieved by dynamically changing the priorities based on the relationship between the userconsumption and the user share. As decay usage scheduling, this scheme o�ers a crude control of theallocated share. Moreover, the algorithm introduces a high overhead that limits the usage of this schemeto only large grained applications.A di�erent approach was proposed bymicroeconomic schedulers [9, 10, 14]. These schedulers use theauction mechanism to allocate resources among the competing clients. At the beginning of every time-slice, the resource initiates an auction at which the interested clients participate by bidding monetaryfunds that increase over time. The client that o�ers the highest bid is awarded and therefore acquiresthe resource for the next time-slice. The price per time-slice for acquiring a resource is directly relatedto the level of competition for that resource; if the competition increases, the price also increases. Inthis way, as in real economic environments, the clients are encouraged to maximize their pro�t, i.e. todevote their funds to resources that are more important for them. Although, this scheduling schemesuccessfully solves the resource allocation problem in distributed environments they are too complex toe�ciently implement �ne-grained resource control.This paper is organized as follows. The next section presents the algorithm in detail, and discussesseveral of the possible extensions and some implementation issues. Section 3 proves some upper boundsfor the algorithm. In Section 4 we discuss simulation results and �nally, our conclusions are containedin Section 5. 2

2 The AlgorithmLet us consider n clients that share a common resource R. Throughout this paper the notion ofclient refers to any entity that needs to share one or more computational resources in order to achieve itsobjectives. Examples of such clients are: threads, processes, applications, users, or group of users. Weassume that resources can be shared either in time (e.g. processor, communication bandwidth) or space(e.g. memory, disk storage). For the sake of simplicity we will restrict our discussion to the time-sharedresources. In this case, time is assumed to be divided into intervals, called time-slices. Associated witheach resource there is a resource manager that, at the beginning of every time-slice runs a schedulingalgorithm in order to select one of the competing clients. Once selected, the client is granted to use theresource until the time-slice expires or until the client releases it voluntarily (e.g. it waits for an I/Ooperation to be performed). We assume that every client i has a certain amount of funds xi, expressedin monetary units, which are used to acquire the resource. Let X denote the total amount of funds ofall clients competing for the resource, i.e., X = Pn�1i=0 xi. Our objective is to allocate the resource toevery client in proportion to its funds. More precisely, we would like to ensure that that out of any mconsecutive time-slices that were allocated to all clients, the client i to receivemxiX (1)time-slices.Let L = fx0; x2; : : : ; xn�1g 1 be the list containing all clients. In order to simplify the presentationand �x the ideas, �rst we make the following restrictive assumptions (these assumptions will be relaxedlater):1. All the clients arrive in the list L at the same time, and there are no other clients that leave orjoin the list before all clients complete.2. A time-slice costs exactly one monetary unit.3. Every client i needs exactly xi time-slices to complete.Notice that, according to assumption 2, the cost per time-slice is independent of the number of clientsthat compete for the resource. Also notice that the funds xi attributed to every client i has threedi�erent meanings: �rst, it is proportional to the resource share that the client should receive (Formula1); second, it represents the maximum number of time-slices that the client could buy (Assumption 2)and third, it represents the number of time-slices required by the client in order to complete (Assumption3). Though for practical applications these assumptions are too restrictive, they are used as a startingpoint in developing the algorithm (later, they will be gradually relaxed).Similarly to the lottery scheduling algorithm [15], the algorithm is based on the following simpleidea: at the beginning of every time-slice a number t is generated and a client i is selected according tothe following condition: i�1Xj=0 xj � t < iXj=0xj : (2)But, unlike the lottery scheduling algorithm in which t is a random generated number between 0 andX � 1, we use a deterministic scheme that generates all the numbers between 0 and 2k � 1, wherek = dlogXe. More precisely, let l be an iterator taking all the values between 0 and 2k � 1 and let t bethe number generated at the lth iteration. If t � X � 1, then a client is selected according to Equation1For simplicity we assume that xi also identi�es the client i in the list L.3

0 2 5 7

x = 4 x = 2

0 2 7

sel. client

0
1
2
3
4
5
6
7

0
4
2
6
1
5
3
7

1 3 4 6

0 1
0
1
0
−
0
1
0
−

l rev(l)Figure 1: The time-slice allocation for a list consisting of two clients (client 0 has 4 monetary-unitsand client 1 has 2 monetary-units). The �rst column in the table represents the iteration index l, thesecond one contains the generated number rev(l), and the third one indicates the selected client.2 and it is scheduled to use the resource for the next time-slice. On the other hand, if t > X � 1, noclient is selected and the algorithm continues with the next iteration, until a number t less than X isgenerated (our scheme ensures that no more than one additional new iteration is required to generatesuch a number). Let l = Pk�1i=0 bi2i be the binary representation of l. Then, at the lth iteration ourscheme generates a number t that is the reverse binary representation of l (denoted rev(l)) :t = rev(l) = b02k�1 + b12k�2 + : : :+ bk�1: (3)As an example, consider a list consisting of two clients that have the initial funds x0 = 4 and x1 = 2,respectively (see Figure 1). From here, we obtain X = 6, k = 3. Further, notice that when the iteratorl goes from 0 to 7 the following numbers are generated (l ! rev(l)): 000! 000, 001! 100, 010! 010,011 ! 110, 100 ! 001, 101 ! 101, 110 ! 011, 111 ! 111. The client selected at each iteration isshown in the last column of the table in Figure 1. Notice that at the 3rd and at 7th iterations no clientis selected since the generated numbers, 6 and 7, are greater than X � 1 = 5. Here, it is importantto make the distinction between the iteration index and the index of the time-slice that is actuallyallocated. As we have noted, if a number t greater than X � 1 is generated then it is ignored and thealgorithm continues until a number less than X is generated. We can show that no more than twoconsecutive iterations are needed for selecting a client. First, notice that 2k�1 < X < 2k. Since theleast signi�cant bit of the iterator l is the most signi�cant bit of rev(l) (see Equation 3), it is clearthat all even iterations generate a number � 2k�1 and thus select a client in the list. Therefore if thecurrent iteration l1 does not select any client, then l1 must be an odd iteration. Consequently, the nextiteration l1 + 1 is an even one, and a client is selected.As we will prove in Section 3, the algorithm guarantees that out of m consecutive time-slices thatwere allocated to all clients in L, the di�erence between the number of time-slices any client receivesand the expected one (given by Formula 1) is at most proportional to logm. This compares favorably tothe binomial distribution scheme used in lottery scheduling algorithm for which the standard deviationis proportional to pm.Next, to put things in perspective, we try to explain what is the intuition behind the algorithm.Recall that a client i is selected whenever the generated number t satis�es Equation 2. Next, if weassociate with every client i the half-open interval [ai; ai+1), where a0 = 0 and ai =Pi�1j=1 xj (1 � i � n),then the selection condition can be reformulated as follows: a client i is selected if the generated numbert belongs to the interval [ai; ai+1). Therefore the number of time-slices a client receives is equal to thenumber of values generated in the corresponding interval. But, according to Formula 1, every clientshould receive a number of time-slices proportional to its funds (which is exactly the size of the interval).A straightforward strategy would be to generate a uniformly distributed sequence over the interval[0; X � 1). This ensures that a client i will receive a number of time-slices that is no larger than dxi=de4

and no smaller than bxi=dc, where d is the distance2 between the generated numbers (see Lemma 1for details). Thus, if we are given m time-slices, we can distribute them easily among the competingclients such that every client receives approximately its share. This solution is good for a speci�ed valueof m, but unfortunately it cannot be generalized for any value of m (which is the case of our problem).The key observation is that a uniform distributed sequence maximizes the minimum distance betweenany two neighbor3 numbers in the sequence. Conversely, it is easy to see that given a sequence of mnumbers, the problem of �nding a sequence that maximizes the minimum distance between any twoneighbors in the sequence has as solution a uniformly distributed sequence 4. The algorithm is mainlybased on this idea; a new number is generated in such a way that the minimum distance between itand the previous generated numbers is maximized. This can be easily veri�ed for the �rst generatednumbers: the distance between the �rst two is 2k�1, the minimum distance between the �rst four is2k�2, etc. Generally, it can be shown that after m iterations the minimum distance between any twogenerated numbers is 2k�dlogme.2.1 Late Join and Early CompletionRecall that in the previous section we have made three assumptions: (1) all clients enter the competionat the same time, (2) every time-slice costs exactly one monetary unit, and (3) every client completesexactly after it spends all its funds. Clearly, these restrictions are not acceptable in a real system. Forexample, in a dynamic environment we cannot impose that all clients should start at the same time,or a client should terminate only after it has spent all of its funds. Therefore, in this section we relaxthe �rst and the third assumptions. More precisely, we allow a client to enter in competition any time(late join) and �nish its computation before spending all its funds (early completion). In this case, xino longer represents the number of time-slices that client i needs to complete. Instead it representsonly the maximum number of time-slices the client can buy (at this point assumption 2 is still valid).Therefore, it would be better to interpret xi as an expense account from which the resource managerwithdraws a monetary unit whenever it allocates a time-slice to the client.Again, let L = fx0; x1; : : : ; xn�1g be the list of funds of clients that compete for the resource R.For every client i, besides the variable xi we introduce a new variable yi that counts the number oftime-slices that were allocated to client i (yi is incremented, whenever client i is selected). Since everytime-slice costs exactly one monetary unit, yi represents the funds the client has already spent forbuying time-slices. Now assume a new client i0 with xi0 funds wants to enter in competition for theresource R. At this time every other client i in L has already spent yi from its expense account andtherefore it has xi � yi monetary units left. Following are the steps performed by the algorithm whena new client joins the list:1. Insert client i0 in the list L.2. Update the expense account of every client i in L: xi = xi � yi and yi = 0. Notice that sinceyi0 = 0, the xi0 is not modi�ed by this operation.3. Recompute the total funds X, the number of bits k of X, and re-initialize the iterator l: X =Pni=0 xi, k = dlogXe, l = 0.2The distance between two integers a, b is de�ned as ja� bj.3Two numbers in the sequence S are said to be neighbors if there is no other number in S that has the value betweenthem. For example, in the sequence S = (1;8;2;6), 6 has two neighbors: 2 and 8, while 1 has only one neighbor: 2.4As a simple example, consider the sequence (2; x;10), such that 2 � x � 10. Then, the value of x that maximizesthe minimum distance between any two neighbors in the sequence is clearly x = 6; in this case the minimum distance is4 = min(6� 2;10� 6). 5

We can group together all the update operations in steps 2 and 3 (i.e. updates of xi, yi, X, k and l) inone procedure, called restart procedure. Now, the late join algorithm can be easily described as follows:the new client is �rst inserted in the list and next the restart procedure is executed.As an example, suppose L = f4; 2g (see Figure 1) and consider that at the beginning of the iteration3 a new client with 7 monetary units enters in competition for the resource. Since the �rst client fromL has already received 2 time-slices and the second 1 time-slice, we have y0 = 2, y1 = 1, and thereforex0 = 4� 2 = 2, x1 = 2� 1 = 1. Thus, after the restart procedure is executed we obtain L = f2; 1; 7g,X = 10, k = 4 and l = 0.Conversely, suppose a client �nishes before spending all its funds. In this case we proceed similarly:�rst the client is removed from the list and next the restart procedure is called.2.2 Bounded and Unbounded-Share ServicesThe major limitation of the above algorithm is that a single parameter, xi, has still two meanings: itaccounts both for the funds in the client's expense account, and for the share of the resource allocatedto that client (Formula 1). In other words, it is not possible for a client to ask for a share other thanxi=X. This policy may be too inexible in practice. To see why, let us consider two clients; one thathas 10 monetary units and needs 10 time-slices to complete, and the other that has 100 monetary unitsand requires 100 time-slices. Then, according to the previous algorithm the second client obtains ashare 10 times greater than the other, and both clients will complete at the same time. Intuitively, onecan argue that this is not fair; since both clients pay one monetary unit per time-slice, he or she wouldexpect that both clients would have the same share when they compete and therefore the �rst clientwould �nish 5:5 times faster5 (i.e., it only takes approximately 20 time-slices instead of 110 time-slices).To extend the algorithm, we introduce two new variables: �xi that represents the share of the resourcethe client i should receive, and pi the price per time-slice payed by client i. In this way, we eliminatethe last restriction of the algorithm (i.e., a time-slice costs exactly one monetary-unit).Let �X be the sum over the shares of all clients, i.e., �X =Pn�1i=0 �xi, and let �L be the list f�x0; �x1; : : : ; �xn�1g.Then, we simply modify the algorithm as follows: �rst, when the client is selected, the resource managerconsiders the list �L (instead of L); second, for every time-slice that the client i receives it is chargedwith pi.The algorithm can be slightly improved if we chose �X to be a power of two, i.e. �X = 2�k. In this case,since all the generated numbers are < �X, the algorithm selects a client at each iteration (provided thelist is not empty). Also the iterator l may be incremented modulo 2�k (there is no need to re-initializeit when a client enters or leaves the list).These modi�cations allow us to easily support di�erent levels of service quality, as de�ned below:� share-bounded. A share-bounded service guarantees that the share of the resource allocated to aclient never drops, or exceeds some speci�ed bound li, and ui6, respectively, i.e., li � �xi � ui. Ifli = 0 we say that the service is inferior unbounded; similarly, if ui =1, we say that the serviceis superior unbounded.� share-unbounded. A service is shared-unbounded if it is both inferior and superior unbounded.5Notice that this objective can be accomplished using the previous algorithm if the �rst client declares that it has 100monetary-units, instead of 10 monetary-units. In this case, it will �nish 5:5 times faster than the other and will spendexactly 10 monetary-units.6The need for a superior bounded service may not be intuitively clear. A situation in which one can take advantageof this service would be in designing a simple communication protocol that avoids the bu�er overow at the receiver byimposing an upper bound for the bandwidth allocated to it.6

Notice that although these services only guarantee bounds for the share allocated to every client i(xi=X), this is enough to guarantee bounds for the number of time-slices the client i actually receives,since as we will prove in Section 3, the di�erence between this number and the expected number(mxi=X) is also bounded.Whenever a new client wants to compete for a resource, it must negotiate its share with the resourcemanager. Based on a function of the resource utilization and the client requests, the resource managerestablishes a price per time-slice. For simplicity we assume that the price per time-slice does not varyduring the client life (this would be similar to a rent based mechanism). Next, let �Xl be the sum overthe lower bounds and �Xu be the sum over all �nite upper bounds (not including upper bounds equal to1) of all clients in L. Since the resource manger guarantees that no client will have a share less thanits lower bound, we clearly have �Xl � �X . Therefore when a new client enters in competition for theresource, it can compete only for the remaining share, i.e. �X � �Xl. Obviously, if the client requests alower bound greater than the available share, then it is refused and the client will be asked to reducedits lower bound or to wait until enough share is available. If a new client does not specify a lower bound(i.e., it is inferior unbounded) then it is accepted immediately. When a time-slice is allocated to clienti then it is charged with pi. In this paper, we will not discuss further the negotiation mechanism andthe price setting policies as they are topics of future research.Let Ns denote the number of clients that are superior unbounded. Then, in the general case, theshares of the resource are allocated according to the following rules:1. If �Xu � �X and Ns = 0, then every client i receives a share equal to ui. Notice that in this casethe share (X � �Xu)= �X of the resource is not utilized.2. If �Xu > �X and Ns = 0, then every client i receives a share equal to �li + x0i, where x0i = ui(�X ��Xl)= �Xu. Thus, in this case the share is allocated in two rounds. In the �rst round every client ireceives a share equal to its lower bound li, and in the second the remaining un-allocated share�X � �Xl is proportionally divided among all the clients.3. If Ns > 0, then for any superior unbounded client i, take ui = xi. Next, if the new computed�Xu � �X , then apply rule 1; otherwise apply rule 2.It is easy to verify that the above rules guarantee share-bounded services. Although di�erent allocationpolicies might be devised, we will not study them in this paper.2.3 Implementation IssuesSince the scheduling algorithm is invoked at the beginning of every time-slice, its performance is critical.In this section we briey discuss some of the implementation issues.First, the generation scheme can be easily implemented using only \right shift with carry" and\left shift with carry" processor instructions. In this way a number can be generated using 2k suchoperations, where k is the number of bits in its binary representation. Since at most 2 numbers mustbe generated before a time-slice is allocated, clearly at most 4k shift operations are required.As long as the client list remains unchanged, the most expensive operation is to search through thelist for the winning client. If the number of clients is small, then the search operation can be e�cientlyimplemented by using a simple linked list. On the other hand, if the number of clients is large, then ainterval tree data structure [3] that supports a logarithmic time search operation, is better suited.When a new client joins or leaves the list, the restart procedure is invoked. Since this procedureneeds to scan all the list in order to recompute the funds and update the expense accounts for everyclient, it is clearly linear in time. Notice that if much complex negotiation mechanisms are considered,the time-complexity may increase. 7

3 Algorithm AnalysisIn this section we prove some upper bounds for the di�erence between the expected number of time-slices a client has to receive and the actual number of time-slices it receives. More precisely, considera static list containing n clients, i.e. L = fx0; x1; : : : ; xn�1g. Then, the main result of this sectioncan be stated as follows: Out of m consecutive time-slices allocated to the clients in L, the di�erencebetween the number of time-slices the client i has to receive (i.e., mxi=X) and the number of time-slicesallocated to it is at most (1 + xi=X)(dlogme + 3) (Theorem 1). Further, for the �rst m time-slicesthat are allocated, we show that the bound can be improved to (1 + xi=X)(dlogme+ 3)=2 (Lemma 4).Finally, we show that after 2dlogXe iterations, every client in L receives exactly the number of time-slicesit is supposed to receive (Lemma 6). From here we suggest an improvement in the algorithm in orderto guarantee better bounds.Let us consider the partition of the interval I = [0; X), induced by Equation 2, in n half-openintervals Ii = [ai; ai+1), 0 � i < n, where a0 = 0 and ai = Pi�1j=0 xj (1 � i � n). Now, the selectionprocedure can be restated as follow: the client i is selected at iteration l if and only if the generatednumber rev(l) is contained in the interval Ii.Next, let S = Seq(a; b) = ft j t = rev(l); a � l < bg be the sequence generated by the algorithmbetween ath and bth iterations and, for any interval7 J , let c(J; S) be the number of elements from Scontained in J . It is easy to see that if S1 and S2 are two disjoint sequences, then c(J; S1 [S2) =c(J; S1) + c(J; S2). Notice that the total number of time-slices received by all clients in list L can beexpressed as c(I; S), and the number of time-slices received by a client i as c(Ii; S). Now, the di�erencebetween the number of time-slices a client i receives and the expected number can be written asjc(Ii; S) � c(I; S)xiX j: (4)Throughout the remaining of this section we use the following notations: jSj denotes the size of thesequence S (i.e., the number of elements in S), and jJ j denotes the length of the interval J . Also, asbefore, k = dlogXe denotes the number of bits in the binary representation of X.The next lemma determines the lower and upper bounds for c(J; S) in the special case in which theelements in S are uniformly distributed between 0 and 2k, and the distance between any two neighborsis 2k�k1.Lemma 1 Let S = Seq(p2k1 ; (p + 1)2k1), such that 0 � k1 < k and 0 � p < 2k�k1. Then for anyinterval J � [0; 2k) we have b jJ j2k�k1 c � c(J; S) � d jJ j2k�k1 e: (5)Proof. Let l =Pk�1i=0 bi2i be the binary representation of l. Clearly, the �rst k�k1 most signi�cant bitsof l (p2k1 � l < (p + 1)2k1) are identical, while the last k1 bits take all the possible values between 0and 2k1 � 1. Since from Equation 3 we have rev(l) =Pk�1i=0 bi2k�i�1, the �rst k1 most signi�cant bitsof rev(l) takes all possible values between 0 and 2k1 � 1, while the last k � k1 bits are identical. It iseasy to see that the elements of S are uniformly distributed in the interval [0; 2k) at the distance 2k�k1each from the other. From here, the Inequality 5 follows.In the following two lemmas we derive bounds 8 for c(J; S), when the sequence S is either of formSeq(p2k1 ; p2k1 + r) (Lemma 2), or of form Seq(p2k1 � r; p2k1) (Lemma 3), where 0 < r < 2k1.7Throughout this section all intervals have integer limits.8To simplify the presentation the bounds we derive in these lemmas are independent of jJj. By taking into accountthe length of the interval J we can prove tighter bounds. Mainly, it can be shown that the term dlog jSje would be replaceby the term max(dlog jSje+ dlog jJje � dlog jXje;0) + 1. 8

Lemma 2 Let S = Seq(p2k1 ; p2k1 + r), where 0 � k1 < k, 0 � p < 2k�k1 and 0 < r < 2k1 . Then forany interval J � [0; 2k) we have jc(J; S) � jSj jJ j2k j < dlog jSje2 + 1:Proof. To keep the notation simple we prove the result for p = 0 (for p > 0 the proof is identical).Let kr = dlog jSje = dlog re, and let r = Pkr�1i=0 bi2i. Next, consider the monotonically increasingsequence of integers de�ned by the recurrence: s0 = 0 and si = si�1 + bkr�i2kr�i (0 < i � kr). Forexample, if k = 6, r = 010110 (kr = 5), then we have s0 = 000000, s1 = s2 = 010000, s3 = 010100 ands4 = s5 = 010110. Now, consider the family of sequences Si = Seq(si ; si+1) (0 � i < kr), where clearlyS = S0 [S1 [: : :[Skr�1. Since the last kr � i bits of si are zero and Si = Seq(si ; si+ bkr�i�12kr�i�1),by using Lemma 1 we can write bjb jJ j2k�j c � c(J; Si) � bjd jJ j2k�j e:where j = kr � i � 1. Notice that if bj = 1, the above equation reduces to Equation 5, otherwisec(J; Si) = 0 since si = si+1. Because S is the union of all sequences Si, by summation, we obtain:kr�1Xi=0 bib jJ j2k�i c � c(J; S) � kr�iXi=0 bid jJ j2k�i e: (6)Let ones(r) be the number of ones in the binary representation of r. Using the well-known inequalities:dxe < x+ 1 and bxc > x� 1, the Inequality 6 becomer jJ j2k � ones(r) < c(J; S) < r jJ j2k + ones(r): (7)Next, we derive alternative bounds for c(J; S). First, we compute c(J; U), where U = Seq(r; 2kr+1)(notice that Seq(0; 2kr+1) = S [U). Let s = 2kr+1 � r = Pkr�1i=0 b0i2i and consider the monotonicallydecreasing sequence given by the recurrence: u0 = 2kr+1, ui = ui�1 � b0kr�i2kr�i (0 < i � kr).As an example, for r = 010110, we have s = 001010, and u0 = u1 = 100000, u2 = u3 = 011000,u4 = u5 = 010110. Next, de�ne the disjoint sequences Ui = Seq(ui+1; ui) (0 � i < kr). From here,proceeding similarly to the previous case, we obtains jJ j2k � ones(s) < c(J; U) < s jJ j2k + ones(s): (8)From Lemma 1 we have djJ j=2k�kr�1e � c(J; S [U) � bjJ j=2k�kr�1c. Combining this relation withInequality 7 and using the equality c(J; S) = c(J; S [U)� c(J; U), after some simple algebra we obtainr jJ j2k � ones(s) � 1 < c(J; S) < r jJ j2k + ones(s) + 1: (9)Let zeros(r) denotes the number of zeros in the binary representation of r. Then it can be shown9 thatones(s) � zeros(r) + 1 and therefore the Inequality 9 becomer jJ j2k � zeros(r) � 2 < c(J; S) < r jJ j2k + zeros(r) + 2: (10)Now, by combining Inequalities 7 and 10 we obtainr jJ j2k �min(zeros(r); ones(r) + 2) < c(J; S) < r jJ j2k +min(zeros(r); ones(r) + 2):Finally, since zeros(n)+ones(r) = kr andmin(x; y) � (x+y)=2, we obtainmin(zeros(r); ones(r)+2) �kr=2 + 1 = dlog re=2 + 1 which completes our proof.The next lemma is given without proof (the proof is very similar to the one of Lemma 2).9Assuming that r is represented on only kr + 1 bits, then s = 2kr+1 � r can be interpreted as the 2-complement of r.Therefore s can be obtained by complementing all bits of r that are to the left of the least signi�cant (rightmost) bit ofvalue 1 ([12], pp. 203). 9

Lemma 3 Let S = Seq(p2k1 � r; p2k1), where 0 � k1 < k, 1 � p < 2k�k1 and 0 < r < 2k1 . Then forany interval J � [0; 2k) we have jc(J; S) � jSj jJ j2k j < dlog jSje2 + 1:Next we derive the upper bounds for the Expression 4 in the case of the particular sequencesS = Seq(p2k1 ; p2k1 + r) (Lemma 4) and S = Seq(p2k1 � r; p2k1) (Lemma 5), where 0 < r < 2k1 .Lemma 4 Let S = Seq(p2k1 ; p2k1 + r), where 0 � k1 < k, 0 � p < 2k�k1, 0 < r < 2k1, and letm = c(I; S). Then for any interval Ii � I we havejc(Ii; S) �mxiX j < (1 + xiX)dlogme + 32 :Proof. First denote � = jSj=2k and � = (dlog jSje)=2 + 1. Next recall that jIij = xi, jIj = X,Ii; I � [0; 2k) and therefore by Lemma 3 we have�X � � < c(I; S) < �X + � (11)�xi � � < c(Ii; S) < �xi + � (12)By multiplying (11) with xi=X and combining it with (12) we obtain��(1 + xiX) < c(Ii; S)� c(I; S)xiX < �(1 + xiX):Notice that the interval [p2k1; p2k1+ r) contains at least djSj=2e even integers and since jIj = X > 2k�1we obtain m = c(I; S) � djSj=2e) jSj � 2m. Finally, we have � = dlog jSje=2 + 1 � (dlogme + 3)=2which completes the proof.Lemma 5 Let S = Seq(p2k1 � r; p2k1), where 0 � k1 < k, 1 � p < 2k�k1, 0 < r < 2k1 , and letm = c(I; S). Then for any interval Ii � I we havejc(Ii; S) �mxiX j < (1 + xiX)(dlogme2 + 2):Proof. The proof is similar to the one of Lemma 4. There are only two minor di�erences. First, todetermine the bounds for c(I; S) and c(Ii; S) we use Lemma 3, instead of Lemma 2. Second, noticethat the interval [p2k1 � r; p2k1) contains at least bjSj=2c even integers and thus we have jSj � 2m+ 1.Further we can write � = dlog jSje=2 + 1 � (dlog(2m + 1)e)=2 + 1 < dlogme=2 + 2 which proves ourlemma.Now we are in position to prove the main results of this section. The next theorem gives the upperbound for the di�erence between the number of time-slices a client i receives, out of any m consecutivetime-slices that were allocated to all clients in list L, and the expected number.Theorem 1 Let S = Seq(a; b), where 0 � a < b < 2k, and let m = c(I, S). Then for any sub-intervalIi � I we have jc(Ii; S) �mxiX j < (1 + xiX)(dlogme + 3): (13)Proof Let k1 = blog bc, r = b� 2k1 , and s = 2k1 � a. Next de�ne the sequences S1 = Seq(2k1 � s; 2k1)and S2 = Seq(2k1 ; 2k1 + r), where clearly S = S1 [S2. Since c(J; S) = c(J; S1) + c(J; S2), by usingLemma 4 and Lemma 5 we obtain(r + s) jJ j2k � dlog re2 � dlog se2 � 72 < c(J; S) < (r + s) jJ j2k + dlog re2 + dlog se2 + 72 :10

Further we have dlog re+dlog se � dlog rse+1. Since the maximumachieved by rs is (jSj2)=4 we obtainlog rs � 2 log jSj � 2, and �nally we get dlog rse � d2 log jSj � 2e = d2 log jSje � 2 � 2(dlog jSje � 1).From here, Inequality 13 follows directly.Next, we prove that after the �rst 2k consecutive iterations every client receives exactly the numberof time-slices it is supposed to get.Lemma 6 Let S = Seq(0; 2k), and let m = c(I, S). Then for any sub-interval Ii � I we havejc(Ii; S) �mxiX j = 0:Proof. The proof is immediate. First notice that the function rev : P ! P , where P = fl 2 N j 0 �l < 2kg, is a bijection. Therefore for any interval J � [0; 2k), c(J; S) is equal to the number of integersit contains. But every interval Ii contains exactly xi integers and the interval I contains X integers.Thus, we have c(Ii; S) = xi and c(I; S) = X which completes the proof.The above lemma suggests a way to improve the algorithm in order to guarantee better bounds. Lety be the greatest common divisor of all xi (0 � i < n). Next, consider the list L0 = fx00; x01; : : : ; x0n�1gwhere x0i = xi=y (0 � i < n) and denote X 0 = Pn�1i=0 x0i and k0 = dlogX 0e. Then instead of runningthe algorithm for 2k iterations over the list L, we can run the algorithm for y2k0 iterations over the listL0. After each 2k0 iterations, according to Lemma 4, client i receives x0i time-slices and therefore aftery2k0 it will receive x0iy = xi time-slices. Further it is easy to verify that, in this case, the Equation 17becomes jc(Ii; S) �mxiX j < (1 + xiX)(dlog(m mod y)e + 3):4 Experimental ResultsTo evaluate the algorithm we use simulation. Mainly, we were interested to evaluate the allocationaccuracy, the algorithm responsiveness and the ability to guarantee the bounded-share services.To measure the allocation accuracy, we compute the maximumdi�erence (error) between the numberof time-slices a client actually receives and the number estimated by Formula 1. For this, we consider allthe possible lists L = fx0; x1; : : : ; xn�1g, such that X =Pi=n�1i=0 xi � 128. Since the number of time-slices received by client i is equal to the total number of values generated in the corresponding intervalIi (see Section 3), we have performed this experiment by considering for any interval I = [0; X) all thepossible sub-intervals J � I. The maximum error we found was 3:04 and it occurred for I = [0; 75)and J = [11; 64). In Figure 2.a we plot the measured error versus time (here, a time-slice is assumedto be equal to one time-unit) and the upper bound given by Lemma 4 (we use this relation because wecounted the number of time-slices received by the client beginning with iteration 0). In Figure 2.b weshow the number of time-slices allocated to the client versus time. Notice that, even in this case, thatis the worst case we found, the number of time-slices allocated to the client approximates well the linewith the slope 53=75 that represents the expected number of time-slices the client has to receive at anymoment in time.Here, two things worth mentioned. First, the actual measurements are even much better than theupper bound we have derived in Section 3 (that is mainly because various approximations we haveused). In fact, in all the other cases the error is strictly less than 3. Second, notice that as proved inLemma 5 once all X time-slices were allocated the error is 0. In other words the client receives exactlythe number of time-slices it is supposed to receive, i.e. in our case 53.Similarly, the Figures 2.c and 2.d depict the error and the allocated time-slices, respectively, for thecase when I = [0; 128) and J = [0; 85). This is the worst case among all the lists of length 128. Sincein this case X = 128 = 27, the upper bound is given by Lemma 2. The maximum error we have have11

0 20 40 60
0

2

4

6

8

time

er
ro

r

0 20 40 60
0

20

40

60

time

al
lo

ca
te

d
tim

e−
sl

ic
es

0 50 100
0

50

100

time

al
lo

ca
te

d
tim

e−
sl

ic
es

0 50 100
0

2

4

6

time

er
ro

r

(a) (b)

(c) (d)Figure 2: Figure a) plots the measured error (�lled line) and the estimated upper bound (dashed line)for the case in which the L's corresponding interval is I = [0; 75) and the client's corresponding intervalis J = [11; 64). Figure b) shows the number of time-slices allocated to the client versus time, for thesame case. Figures c) and d) plots the error and the number of allocated time-slices for the case inwhich I = [0; 128) and J = [0; 85). In all �gures a time-slice is equal to one time-unit.obtained in this case was only 2.45. Consequently, the number of allocated time-slices approximatesmuch better the ideal line which has the slope 85=128 (see Figure 2.d).Another important criterion we evaluate is the algorithm responsiveness. We de�ne the responsive-ness as the propriety of the algorithm to rapidly adjust the client shares, when a new client arrivesor departs the list L. It is easy to see that the algorithm adapts immediately to the changes. This isbecause every time a change occurs the restart procedure recomputes the share for every client, whichdetermine directly the allocated time-slice rates. For further investigation we have conducted a simpleexperiment in which we consider a list of two clients L = fx0; x1g, where x0 = 400 and x1 = 200.After the �rst 200 time-slices were allocated, a new client with x3 = 300 joins the list. At this momentthe ratio of the allocated time-slices for the �rst two clients was 135 : 65 (compared to 400 : 200) andtherefore the remaining funds for the �rst two clients are x0 = 265 and x1 = 135 respectively. Next,assume the last client completes after it has received exactly 100 time-slices (this happens after 431time-slice were allocated). If we consider only the time-slices allocated during the time interval whenall three clients were active we obtain the ratios 87 : 44 : 100 (1 : 0:505 : 1:149), which compares wellwith the expected ones 265 : 135 : 300 (1 : 0:509 : 1:132). Once the client 2 completes, only the other12

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

time

al
lo

ca
te

d
tim

e−
sl

ic
es

Client 0

Client 1 −−−−

Client 2 − − −

Figure 3: The cumulative time-slices allocated to three clients. Client 0, with 400 monetary units, andclient 1, with 200 monetary-units, begin to compete at the same time. Client 2, with 300 monetary-units,joins the list after 200 time-slices were allocated to clients 0 and 1, respectively, and terminates after itreceives exactly 100 time-slices.two will remain to compete for the resource. At this point, the remaining funds are: x0 = 178 andx1 = 91. The clients complete roughly at the same time, after a total of 700 time-slices were allocated(i.e. 400 for client 0, 200 for client 1 and 100 for client 2).Finally, to see how the bounded-share services are ensured, we modify slightly the previous ex-periment, i.e., we assume that the client 1 has both superior and inferior bounds equal to �x1, where�x1= �X = 1=3. In other words, client 1 should receive exactly one third share of the resource. As canbe seen in Figure 4, the slope corresponding to client 1 is constant (1=3) and independent of the otherclients that competes for the resource. Since, in this case, client 2 competes only for the remainingshare �X � �x1, it takes longer to complete than in previous test, i.e. it �nishes after 483 time-slices wereallocated, instead of 431. On the other hand, client 1 completes after 598 time-slices were allocatedwhich is very closed to estimated value, i.e. 600 = 3 � 200. Once the client 1 completes, the client 0 canfully use the resource (notice that the slope increases to 1) and it �nishes after exactly 700 time-slicewere allocated.5 Conclusions and Future WorkWe have described a new approach to implement proportional-share resource allocation that provides aexible control and a high degree of accuracy in allocating shared resources among competing clients.Speci�cally, we have proved that out of anym consecutive time-slices, the di�erence between the numberof time-slices a client i receives and the expected number is less that (1 + xi=X)(dlogme + 3), wherexi=X represents the share of the resource allocated to the client i. Moreover, the simulation resultsshow that the actual di�erence is much smaller. For example, among all the possible cases in which theresource share is allocated in 1=128 increments, we found that the di�erence was never larger than 2:45for any �rst m consecutive time-slices that were allocated (see Figure 2.c).Further, simple extensions of the algorithm guarantee that every client receives a fraction from theresource that can be inferior and/or superior bounded. This feature is important in supporting both,13

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

time

al
lo

ca
te

d
tim

e−
sl

ic
es

Client 0

Client 1 −−−−

Client 2 − − −

Figure 4: The cumulative time-slices allocated to three clients. Client 0, with 400 monetary units, andclient 1, with 200 monetary-units, begin to compete at the same time. In addition, client 1 is guaranteedto receive a share of 1=3. Client 2, with 300 monetary-units, joins the list after 200 time-slices wereallocated and terminates after it receives exactly 100 time-slices.multimedia applications that require certain rate objectives and real-time applications that have tomeet speci�ed deadlines.However, many other problems remain open. First, we have to consider the case in which the clientdoes not use the entire time-slice. As suggested in [15], a solution would be to use compensation funds,i.e. to give the client additional funds proportional to the average fraction from the time-slices that isnot used. An alternative approach would be to charge the client with a fraction of the price that isequal to the the fraction of the time-slice that is actually used.Second, it will be interesting to consider both hierarchical and heterogeneous scheduling schemes.As an example, consider the case in which the clients are grouped in several classes. Then, at a higherlevel a proportional scheduler may be used to allocate resource shares to each class, while at a lowerlevel, among the clients in the same class, a simple scheduler (e.g. round-robin) may be used. As asecond example, consider the process-thread hierarchy. Here, similarly, a proportional scheduler may beused to allocated CPU time-slices to each process, and in turn, the process may select a thread to run byusing a di�erent policy. Ultimately, we think that this may be a valuable approach to implement exibleresource management in the new generations of operating systems [2, 4] in which the applications wouldbe able to implement their own algorithms for managing the shares of the resources allocated to them.References[1] M. J. Bach. \The Design of the Unix Operating System," Prentice-Hall, 1986.[2] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage and E.G. Sirer. \SPIN - An Extensible Microkerenel for Application-speci�c Operating System Services,"Technical Report 94-03-03, Dept. of Comp. Science and Engineering, University of Washington,Feb. 28, 1994.[3] T. H. Cormen, C. E. Leiserson and R. L. Rivest. \Introduction to Algorithms," MIT Press, 1992.14

[4] D. R. Engler, M. F. Kaashoek and J. W. O'Toole Jr. \The Operating System as a Secure Pro-grammable Machine," Proc. of the Sixth SIGOPS European Workshop, 1994.[5] J. L. Hellerstein. \Achieving Service Rate Objectives with Decay Usage Scheduling," IEEE Trans-actions on Software Engineering, Vol. 19, No. 8, August 1993, pp 813-825.[6] K. E. Drexler and M. S. Miller. \Incentive Engineering for Computational Resource Management,"The Ecology of Computation, B. Huberman (ed.), North-Holland, 1988, pp. 231-266.[7] J. Kay and P. Lauder. \A Fair Share Scheduler," Communication of the ACM, Vol. 31, No. 1,January 1988, pp 44-45.[8] S. J. Le�er, M. K. McKusick, M. J. Karels and J. S. Quarterman. \The Design and Implementationof the 4.3BSD UNIX Operating System," Addison-Wesley, 1989.[9] T. W. Malone, R. E. Fikes, K. R. Grant and M. T. Howard. \Enterprise: A Market-Like TaskScheduler for Distributed Computing Environments," The Ecology of Computation, B. Huberman(ed.), North-Holland, 1988, pp. 177-205.[10] M. S. Miller and K. E. Drexler. \Markets and Computation: Agoric Open System," The Ecologyof Computation, B. Huberman (ed.), North-Holland, 1988, pp. 133-176.[11] A. Silberschatz and P. B. Galvin. \Operating Systems Concepts," - fourth edition, Addison-Wesley,1994.[12] I. Tomek. \Introduction to Computer Organization," Computer Science Press, 1981.[13] R. Jain. \The Art of Computer System Performance Analysis. Techniques for Experimental Design,Measurments, Simulation, and Modeling," John Wiley & Sons, 1991.[14] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart and W. S. Stornetta. \Spawn: ADistributed Computational Economy," IEEE Transactions on Software Engineering, Vol. 18, No.2, February 1992, pp. 103-117.[15] C. A. Waldspurger and W. E. Weihl. \Lottery Scheduling: Flexible Proportional-Share ResourceManagement," Proc. of the First Symposium on Operating System Design and Implementation, pp.1-12, November 1994.
15

