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Abstract. Isomorphism problems often can be solved by determining orbits of a group
acting on the set of all objects to be classified. The paper centers around algorithms
for this topic and shows how to base them on the same idea, the homomorphism prin-
ciple. Especially it is shown that forming Sims chains, using an algorithmic version
of Burnside’s table of marks, computing double coset representatives, and computing
Sylow subgroups of automorphism groups can be explained in this way. The exposition
is based on graph theoretic concepts to give an easy explanation of data structures for
group actions.

1. A General Point of View

A natural goal in mathematical theories is a full description of the objects that are
investigated. This goal has been successfully achieved in some cases, for example all
finite abelian groups and with much more effort all finite simple groups.

More often one restricted the research activity firstly to more modest problems like the
pure existence of any object with some prescribed properties, for example in the case of
block-designs or even when solutions for some optimization problem are considered. A
step further was taken in combinatorics where the number of objects was determined by
ingenious methods without any relation to a direct construction idea. For example the
famous Poélya-De Bruijn method of counting orbits of a group acting on sets of mappings
allowed to determine exact or approximate numbers of different types of graphs, e.g.
especially from a more practical point of view, the number of different chemical isomers
of a certain type [57, 11, 33].

Now that scientists have more and more powerful computers available in some nontrivial
cases the construction problem itself can be attacked successfully. Thus, some of the
above mentioned finite simple groups have been constructed by the help of a computer,
where the theoretical approach gave very restrictive necessary conditions for the exis-
tence of some sporadic simple group. With respect to the mathematical description of
chemical structures to a certain extent the above mentioned counting approach could be
replaced by a construction process.

The present paper aims at an introduction into some general methods for construction
algorithms. Concrete results for special types of objects will serve as an example and
hopefully give an impact for further applications in different areas.

We restrict our attention to isomorphism problems. More formally we assume that a
group is acting on a set of objects such that the orbits are just the isomorphism classes
of objects. The stabilizer of one object then acts as a group of automorphisms on that
object. The problems considered are



1) decide whether two given objects are isomorphic, i.e. lie in the same orbit of the
g J p b
group,

(2) give a full set of representatives for the isomorphism types, i.e. a transversal from
the set of orbits.

(3) determine the stabilizer of a given object.

The method consists in exploiting structure theories for algorithmic purposes, basing
different algorithms upon the same theoretical foundation.

Let GG be a finite group, acting on some finite set ). Then the problem of determining
the set
0/G = (w9 |w e 0}

of all orbits w% = {w? | ¢ € G} can be transformed into graph theory. For that purpose
we assume that G is given by a set of generators S. We ask for algorithms determining
a set ' of representatives for /G, the set of orbits w” = {w? | ¢ € G} of G on N, by

- determining a function

f:Q— G,

which for each w € 2 computes some f(w) =g € (¢ (as a word over ) such that
w? el

- determining for each w €  a set of generators for Ng(w) = {g € G | w9 = w}, the
stabilizer of w in G.

The link to graph theory is the following definition.

1.1 Definition: Let G be a finite group acting on a set . Let G be generated by
S ={g1,...,94} for some d € N. Then the Cayley Action Graph', CAG, for (22,5) is
a graph with vertex set Q and edges (w,w?) for all g € S and w € Q. Fach edge (w,w?)
is labeled by g.

A Cayley Action Graph is a directed graph. But since each group element ¢g forms
cycles on the set of points, a point w; is reachable from a point wy if and only if wy is
reachable from w; via appropriate paths. Thus, there is no distinction between weakly
and strongly connected components of a Cayley Action Graph, and we therefore speak
of connected components.

The Cayley Action Graph is a generalization of the Cayley Graph where a group G
acts on itself by multiplication from the right. While in a Cayley Graph by the group
axioms we have only one connected component a Cayley Action Graph may have several
connected components. Since each g € G can be expressed as a word ¢ = ¢, 6i, - - . Gi,
with g;; € S, we have w? = (... (w%1)% )% Thus, w' lies in the same orbit as w if

!Termed after a suggestion of G. Butler.



and only if both lie in the same connected component of the Cayley Action Graph. The
two problems (1) and (2) stated above can now be solved by graph theoretic algorithms.
A standard approach for computing connected components of a graph solves the orbit
problem.

1.2 Proposition. Q/G can be determined in time and space

018 - d)

Proof. See, for example, [30][ p. 287], and notice that each ¢; defines up to || arcs of
the graph.

The method consists in selecting an unvisited node as a representative and constructing
by breadth-first search (or depth-first search) a spanning tree for the connected com-
ponent containing the selected node until all nodes are visited. The result is a rooted
spanning forest where the roots are the chosen representatives. We now deduce some
properties from such fixed spanning trees. For 61,65 € () the spanning trees yield paths
labeled by words wy, wy such that 6{"" = wy and 65% = wy are the corresponding roots.
The points é; and 65 lie in the same orbit iff w; = wy and then w1w2_1 transforms 6, into
0.

It is well known and easily proved that the right cosets of the stabilizer Ng(w) of one
point w in (& are in one-one correspondence to the points in the orbit of w. In terms of
the spanning tree the words labeling paths of the tree from a root w to the other points
in the connected component of w represent these cosets of Ng(w) in G.

Any element of Ng(w) can be written as a word
W =4i - -Yirs gijesv

which labels a path starting at w and returning to w. Since each point ¢ in that circle
also belongs to the chosen spanning tree, there exists already a word w(d) labeling a
tree path from w to é.

Therefore if w = wygw, for some g € S and w** = &, 6 = 6, then we have a
factorization w = wyw(8;) " w(1)gw(dy) " tw(82)wy. Here wyiw(éy) ™t w(éy )gw(d2)™", and
w(bg)ws label circles with w as starting and end point.

-
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The path label word w(é1)gw(ds)" is called a Schreier Generator of Ng(w). Since we
can apply this factorization process to the subwords wyw(é;)™" and w(é2)w, recursively,
we obtain the

1.3 Theorem (Schreier): Ng(w) is generated by Schreier generators.
For a proof see also Lemma 6.2.2 of [29] or Lemma 7.1.2 of [33].

Thus, a set of generators for Ng(w) can be obtained from the spanning tree with root
w by all elements wygw; ' where wy and w, are path labels of the tree and ¢ € S such
that w19 = w™=.

Note that we have to apply all generators ¢ € S to all points in the orbit of w to obtain
all Schreier generators. As basic tools for handling stabilizers and orbits we now have

the set of words w(é) mapping 6 onto the orbit representative and Schreier generators
for the stabilizers of the representatives.

We proposed above to use breadth-first search in the CAG to build a spanning tree.
This has the effect that a vertex which can be reached from a vertex already in the tree
by the generator currently considered will be added immediately to the tree. In a depth-
first search this vertex might be reached by some longer path lateron. So the depth of
the spanning tree should become smaller using breadth-first search. Consequently the
word-length of coset representatives of the stabilizer Ng(w) in G written as words in the
given set of generators according to the path labels of the spanning tree will be short.
A method, called double the cube, allows to find a spanning tree with an explicit upper
bound for the depth of the tree [17]. Cubes C; are constructed iteratively. The starting
point is a cube €y = {id, g1} for some generator ¢; which does not fix w. In an iteration
step C} is constructed from C;_;. One has to find first an element ¢ € S and a point
’yinwci_—llci‘l such that 9 is not contained in the set of points w1 If no such g
exists then the orbit of w is already completely determined. Otherwise we have some
element h € C1C;_; such that w" = 4. We define ¢; = h - g, apply ¢; to all points
found so far, and add the corresponding edges to new points to the spanning tree. Then
C; =01 Uit

The bound for the depth of the tree comes from the fact that |C;| = 20 if ¢4 # (C;_1. This
is clear for + = 1 and we assume it to be true for 2 — 1 where ¢ > 1. By the choice of ¢; we
know that ¢; ¢ CZ»__IICZ'_l such that no product ¢-¢; can lie in C;_; for any ¢ € (;_;. Thus
the number of elements in C; doubles in each iteration step. Since obviously C; C G,
we have an upper bound log, |G| for ¢. By a careful choice of a datastructure for the sets

wT1%=1 one obtains the following result.

Theorem A spanning tree for a CAG has an upper bound 2logy |G| for the depth of the
tree if it is constructed by the strateqy of doubling the cube.

Unfortunately the graph theoretic algorithms are not sufficient to solve our construction
problems, since even linear time and space requirements are not tolerable. Let us have
a look at a typical example.



Consider the set of multigraphs with set of vertices X = {1,2,...,n} and edge multi-
plicities up to k, k& € N. Each multigraph of this kind can be described by a mapping

IE (;() — {0,...,k}, assigning to each two-element subset {xy, 22} C X an edge mul-

tiplicity, i.e. either 0 or some z, 1 <1 < k.
Two multigraphs described by mappings f1, f2 are isomorphic if and only if there is some
permutation # € Sy, the symmetric group on X, such that f] = fs, where

a2} = Afe] 27 D)

for all {1, 25} € (;() . Thus, the orbits of Sx acting on the set of mappings

Q:{O,...,k}<)2()

are just the isomorphism types.

In many mathematical descriptions of multigraphs these are described by adjacency
matrices. We describe shortly the relation of that representation of a multigraph to our
description.

If the vertices are arranged in some fixed order, X = (1,...,n) for example, the i—th
vertex may be used to label the :—th row and the :—th column of a matrix A. For a

mapping f: (;() — {0,...,k}, describing a multigraph we define for each pair (7, j) of
indizes
Afi,g) = f({i,5})-

Then we obtain a symmetrical matrix, the adjacency matrix of f. This matrix can
easily be used as a data-structure to represent f in a computer, though a listing of the
neighbours of each vertex and the corresponding edge degrees may be less space and
time consuming.

Any permutation 7 € Sx applied to the row and column labels will produce a new
adjacency matrix A™ for a graph isomorphic to the graph described by f. Thus, Sx
acts on the set of all adjacency matrices. A™ = A is equivalent to f™ = f, such that the
automorphisms of f form the stabilizer in Sx of A and the right cosets of Autf in Sx
correspond bijectively to the different adjacency matrices of multigraphs isomorphic to

f.
Now let us return to the problem of finding representatives for all isomorphism types of

multigraphs for fixed & and n. Here the above described solution of the orbit problem
n

would require O(k<2)) space and time, which is infeasible. To solve this problem, we
have to exploit the special kind of this group action. Since similar problems occur with

other discrete structures, a general method which applies to many kinds of group actions
is in order.



In mathematics structure theories often rely on the common concept of homomorphisms.
A homomorphic image is a coarse version of the preimage structure and a sequence of
successive homomorphisms describes a series of gradually coarser versions of the original
structure. Going into the opposite direction then yields a stepwise approximation of
the structure in question. This point of view shows that mathematical structure the-
ory is a well developed mechanism for formalizing the top-down and divide-and-conquer
paradigms of computer science. Homomorphisms can well be used to develop powerful
algorithms. We formalize this observation for our problem of group actions.

1.4 Definition: Homomorphism of group actions

Let Gy be a group acting on a set 1 and Gy be a group acting on a set Q3. A pair
o = (oq,06) of mappings, where og maps Qy into Qy and og : Gy — Gy is a group
homomorphism, is a homomorphism of group actions if o is compatible with both actions,
i.e. forall g € Gy and allw € Oy

()7 = 700

If both components of o are surjective o is an epimorphism, if both components are
bijective o is an isomorphism.

If two group actions (£, (), (22, G) are isomorphic with an isomorphism o then o
carries orbit representatives and their stabilizers onto corresponding representatives and
stabilizers. Thus, if isomorphisms of group actions can be found whole sets of solutions
of the orbit problem can be used many times. This can be used to describe large sets of
solutions implicitely while still allowing an explicit listing on demand.

Often we only need one group acting on different sets. We therefore specialize to this
situation now. Let G be a group acting on two sets 2y and Q3. A mapping ¢:Qy —
is a homomorphism with respect to G if for each ¢ € G and w €

i.e. ¢ is compatible with the group action.

We remark that a homomorphism ¢ induces a homomorphism of the Cayley Action
Graph for G acting on €y to the Cayley Action Graph for (G acting on {)5. Any such
homomorphism can be exploited for our algorithmic purpose:

1.5 Lemma. Let p:Qy — Qs be a homomorphism with respect to a group G acting on

Ql and QQ.
Then w,w’" € 4 lie in the same G—orbit if and only if

(i) there exists some gy € G s.t. p(w)? = p(w') and

—1

(ii) there exists some gz € Ng(p(w)) s.t. w9 =w .



Proof. Let w9 = W' for some g € GG. Then p(w)? = p(w?) = p(w'). So let p(w)? = p(w')
and w? = w'. Then p(w) = c,o(w’)gl_l = c,o(wg)gl_l = c,o(w)ggl_l and ggi' € Ng(p(w)) and

n
$0 ¢ = g2¢1 for some gy € Ng(p(w)). Then ' = w? = w9 implies w? = W' . &

This observation allows to factorize the problem of finding orbit representatives. We
discuss the two situations where we want to determine orbit representatives firstly from
Q; and secondly from ;. We assume that we have already appropriate algorithms for
solving the problem in 25 or €, at hand, respectively.

We use the lemma for our aims of determining a set I' of representatives for Q/G,
a function f:Q — G such that w/®) € I', and determining the stabilizer Ng(v) for
each v € I'. Firstly we show how to reduce the generally large problem to a set of
comparatively small problems of the same type.

1.6 Splitting orbits.
Let : Q1 — Qy be a homomorphism with respect to a group G acting on y and §)5.

Let A be an algorithm computing ¢~ (w) for each w € Q.
Let B be an algorithm determining for A C Q4 closed under the action of U < G

(i) a set T'a of representatives for AJU,
(ii) a function fa: N\ — U such that §2©) ¢ T'x for each 6§ € A

(iii) for each 6 € U'a a set of generators for Ny (6).

Let T'y be a set of representatives for Qy /G and their respective stabilizers and let
f2: Q9 — G such that whW e, for each w € €y

Method:
Initialize I'y as empty set.

For each v € T'y
Use A to compute o~ (7).
Use B to determine a set I'1(7) of representatives for o' (7)/Na(7v)
and the corresponding stabilizers in Ng(7).
These stabilizers are already the full stabilizers in G.
Add T'1(v) to Ty.
We obtain f1: — G such that wh w er, for each w € Qy as follows:
Compute w' = p(w).
Compute fy(w').
Compute § = w),
Compute v = w2+,
Compute fa(8) for A = o' () using B,
Set fi(w) = fo(w')fal(d).



Homomorphism of Cayley Action Graphs

e
—
f2(w') f2(w')
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§
A< m» v

Of course one could apply algorithm B directly to A = @ and U = G in 1.6. The
decisive point is that the splitting technique reduces the sizes of A and U generally to
a fraction of the original size, depending on ¢. Correspondingly also the running time
will become much shorter. A detailed analysis is given in the theorem below. In many
situations most orbits of G are very long, such that the stabilizer of one point is small.
If already Ng(w) = {id} for some w € Q5 then all points in p~*(w) lie in different orbits
of GG. In this case no further call to algorithm B is necessary.

1.7 Example. As a first illustration of this strategy we again consider the multigraphs
from above. Here G = Sx acts on

)

It we forget about edge-multiplicities we obviously obtain a simpler problem. This is

formalized by ¢: {O,,k}<)2() — {0,1}<)2(), where for each f: (;() —{0,...,k}
ntian={y R

Obviously this ¢ is compatible with the group action such that the lemma applies.



So in the first step we have to find representatives for the isomorphism types of simple
graphs, i.e. multigraphs with edge multiplicities 0 or 1.

For each simple graph f the preimages under ¢ are obtained by colouring the edges with
multiplicities up to k. The next step then consists in finding the orbits of Autf, which is
just Ns, (f), on the set of all edge colourings. It is well known, that most simple graphs
have a trivial automorphism group and in such a case all colourings represent different
isomorphism types.

This approach may be refined by enlarging the highest multiplicity gradually. Then
firstly multigraphs with edge multiplicity up to 2 are constructed as described. In the
next step only edges of multiplicity 2 are coloured by multiplicity 2 or 3. Of course the
inverse is a mapping ¢ which in general reduces the highest edge multiplicity which is
allowed in that step by 1. This is always compatible with the group action such that
each single construction step only considers the problem of assigning to the elements of

some 1" C (;(
This shows:

) values from a colour set of cardinality 2 only.

1.8 Proposition: Algorithms which solve the problem of finding representatives of orbits
of a group on a set of mappings with range {0,1} and the corresponding stabilizers suffice
to solve the problem of finding representatives of the isomorphism types of multigraphs
and the corresponding stabilizers for any finite edge multiplicity.

For example colouring the complete graph with edge multiplicity up to 2 is equivalent
to the problem of finding all simple graphs.

1.9 Corollary: For any fired number of nodes only finitely many orbit problems have
to be solved up to isomorphic group action for describing all multigraphs with arbitrarily
high edge multiplicity.

Of course the proposition gives no direct description of time or space complexities. This
depends heavily on the number of solutions in each subproblem and the complexity of
the unknown algorithm which is applied in the simple steps. So the best we can give
is a relative complexity in such cases where the cardinalities of the subproblems can be
bounded. But this is a point of view which fits well to object oriented programming,
where the situation of using unknown algorithms simplifies solving many in some respect
similar problems.

In algebraic settings a homomorphism has a kernel and all image points have equally
many preimages each forming a coset of the kernel. So there are many natural situations
where we have a common global bound for the cardinalities of sets of preimages.

We therefore give a general complexity result for such situations.

1.10 Theorem. Let G act on Qq,...,Q, and let b; € N, ¢;: Q; — Q1 be surjective
homomorphisms with respect to G, |7 (w)| < b; for all w € Q5.

Let computing o7 (w) take time < ¢;.



An algorithm P may compute for each U < G and any set A on which U acts a set
R = rep(AJU) of representatives from the U—orbits on A and Ny(r) for each r € R,
in time a(|A|), where a:IN — N is monotonously increasing.

Then computing some rep(Q; /() stepweise for v =0,1,...,n takes time bounded by

n

a([S0]) + > albi) - ci - [rep(i/G).

=1
If there are b,c € N with b; < b,¢; < ¢ for all v then the time is bounded by
a([0]) + a(b) - ¢~ n - |rep(§2,/G))|
If moreover |p; ' (w)] = b,¢; = ¢ in each case then

n = 0(logs(|2])).

yielding the time bound
O(logy(|2n]) - rep(2./G)))

Again the proof is easy. For the last statement we point out that for each :
€] = b [Qiy]
such that |Q,] = 0" - |Q| and
n = logy || — logy |-

This theorem shows that under very regular conditions the application of the homo-
morphism principle reduces the time complexity logarithmically compared to the direct
application of the unknown algorithm to the original situation.

In some situations the homomorphism principle can also be used in the opposite direc-
tion. In such a case orbit representatives are known for the G—orbits on ;. For each
representative w we have a description of its stabilizer by some set of generators and for
each point § € w" a word w(§) in the generators of the whole group can be determined
mapping w to 6. (G also acts on a set )y and ¢: )y — €y is a surjective homomorphism
with respect to G. We want to obtain a corresponding description of the GG—orbits on
Q,.

1.11 Fusing orbits

Let ©: )y — €y be a surjective homomorphism with respect to a group G acting on 4
and €.

Let A be an algorithm computing ¢~ (w) for each w € Q.

Let T'y be a set of representatives for Oy /G.
Let B be an algorithm determining

10



a function

f1§Q1 — G

such that
wfl(w) - Fl

for each w € Q5.

Let Ny be an algorithm computing for each v € 'y a set of generators for Neg(7).
Method:

We obtain I'y a set of representatives for Qy/G as follows:

Initialize T'y = 0.
Choose as set A of candidates for I'y the set of all o(v) for v € T'y.

Until A is empty do
choose 6 € A and insert O into 1'y,
remove O from A,
compute p~1(9)
and for each n € ©™1(6)
compute 1 and
remove @(nf1M) from A
define fo(o(n"0M)) = fi(n)~".
return I's.
Now fy is already defined for the images of representatives from I'y.
We obtain fy: Q9 — G such that whW e, for each w € Q4 as follows:
For w € Qy compute ¢~ (w) using algorithm A.
Choose some v € o' (w) and compute fi(7).
Then fo(o(71 ) is already defined.
If o(471 ) € Ty then
return fo(w) = fi(7),

clse relurn fo(w) = fi(1) fa(p(2O)).
We obtain Ny computing for each v € I'y a set of generators for Ng(v) as follows:

Compute A = ¢~ (v) using algorithm A,
choose some 6 € A which lies in 'y,
compute a set T' of generators for Ng(6) using algorithm Nj.
For each w € A compute w¥) using algorithm B.
If N« =& then add fi(w)™ to T.

return T.

Homomorphism of Cayley Action Graphs

11



fi(n) fi(n)

fi(y)

The proof of the correctness is easy and left as an exercise. We remark that in the
computation of T the elements fi(w)™" added to T form a full set of representatives for
the right cosets of Ng(6) in Ng(v). Thus, for a mere system of generators for Ng(7)
many representatives will not be needed.

We have presented the algorithms without an explicit datastructure. Of course then
it is hard to give a concrete complexity estimation. Instead we only can give relative
complexities depending on the complexities of various unknown functions. The unknown
functions must be supplied by some class of objects and deliberately their implementa-
tion should not be known to the outside of the class. Thus, we require certain predicates
to be fulfilled by these functions and by the algorithm again produce as well functions
fulfilling certain predicates.

Our group actions require a group G and a set () together with a possibility to apply
some g € (G to any w € (). If the group action is known by the action of some generators,
for example using appropriate functions, then we can evaluate the image of any point
w under any word g1, ---¢; in these generators by computing w; = w?" and iteratively
wi =wl fori=2--- [ If the g; are stored as permutations then this evaluation needs
[ table lookups. If we have an induced group action each computation of an w; in the
iteration might need a larger amount of time, but the storing of a full permutation is
avoided. Alternatively one might have a datastructure which allows to compute a group
element ¢g equal to the given word and then apply this to the point w. The complexity
might be totally different for all cases. But the higher level algorithms presented here
could be used without knowledge of the actual datastructures in the lower levels. Of

12



course this is just the object oriented approach, we only emphasize that this approach
needs a handling of relative complexities which does not appear as self-understood in
the literature as the popular object orientation might suggest. Moreover we not only
have to give a complexity analysis for the algorithm computing orbit representatives but
also for the functions created there we have to give an estimate for their run time.

Let us look at the fusion of orbits. There we find several prerequisites for the fusion
process. Also there are not just sets of points in the result but also normalizers and
functions determining for each given point in )y a group element mapping the point
onto its orbit representative. The group elements are given as explicit products of
elements given by input functions or inverses of such elements. One can return these
products to the datastructure and leave it to the lower level to decide whether an explicit
computation of the resulting group element is appropriate or the product is to be stored
as a word. Thus we assume that applying some function f will take time a(f).
Running through I'y and computing ¢(v) needs |I'y|-a(¢) time. We assume that selecting
some candidate as the next representative to be processed takes constant time. Then
we need a(¢™!) + [¢7H(8)] - (a(fi)m + a(@) + a(invert) time for eliminating candidates
and computing f; for these points. Here we denote by invert the function which inverts
a group element.

Analogously the time for determining the stabilizers of the orbit representatives is
bounded by [T - a(¢~")(a(Na) + 67 ()| - a(fy) - a(invert))

The run time of fo will be a(¢™1) + a(f1) + a($) + a(mult)). Here we have assumed that
determining the already known group elements fi(7) and fo(é(7/1())) is included in the
bound for multiplying these two elements by mult.

A typical application of 1.11 is a constructive version of the combinatorial principle of
counting twice.

Suppose ©1: — Oy and py: ) — €y are surjective homomorphisms with respect to
a group acting on €2, £}y and ;. Then one can factorize the problem of describing the
action of GG on  via ; and via £),. Using first 1.6 for factorizing via }; and then 1.11
for fusing with y yields a description of the action of G on ;. In some applications
this indirect way is a powerful tool. We will demonstrate the principle by the problem
of computing double coset representatives after [60].

2. Double cosets
We first apply the homomorphism principle to two well known group actions, multipli-
cation of cosets by group elements and conjugation of subgroups.

Let U<V <G,and B<G. Then Q; = U\G ={Ug | g € G} and Qy; = V\G = {Vy |
g € G} are two sets on which B acts by multiplication from the right.

w:y — Q:lUg— Vyg

is a homomorphism with respect to the action of B. If V.= U/_ Uz, then ¢~ (Vg) =
{Uz;g | 1 <t < r}. So provided {xy,...,2,} is available we can use 1.6 or 1.11 to
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factorize or fuse orbits. In this way we can step up and down through the subgroup
lattice of a group and determine which elements lie in the same B—orbit, determine
complete sets of representatives for the B—orbits and compute the stabilizers in B of
points Ug.

These orbits are of special importance, since any UgB = U{Ugb | b € B} is a double
coset of U and B in (. The stabilizer Ng(Ug) is ¢~*UgN B, an intersection of subgroups.
Thus, computing stabilizers can be used to determine intersections of subgroups, see [44].
Here we are more interested in double cosets.

0.1 The Split Lemma Assume a group B is a subgroup of a group G. The group G
act transitively on a set £ and w be an arbitrarily chosen point of ). Then the orbots
of B on Q correspond bijectively to the double cosets Ng(w)\G/B by the mapping
W Ng(w)gB.

If G acts on any set Q and U is the stabilizer Ng(w) of any point w € € then
01 Ng(w)\G — w% Ng(w)g — w? is a bijection. Moreover B as a subgroup of G also
acts on w“ and on Ng(w)\G by multiplication from the right. As ¢ is a homomorphism
for B, determining the B — orbits on w®

Nea(w)\G/B.

A slightly different interpretation is that the double cosets correspond to those B—orbits
that fuse to one GG—orbit.

is equivalent to determining the double cosets

As an example consider a group B acting on a set () and ask for the orbits of B in the

2):{T|T§Q,|T|:k}forsomekEN,l<k<|Q|.IfGisthe

induced action on (

2) then GG acts transitively such that (2

symmetric group on (

ofT€<2).

Our analysis tells that

) = TY for any choice

Ne(T\G/B — (2) /B: Na(T)gB — TP

is a bijection.
If k& % then Ng(T) is a maximal subgroup of G such that 1.6 gives no reduction of
complexity. But we can choose some w € T" and obtain

U = Na(T)N Ng(w) = Nygr)(w),

a subgroup of index k in Ng(T).

This U is also contained in Ng(T — {w}) with index k& — 1. Thus, the double cosets
Na(TH)\G/B can be computed from the double cosets Ng(T — {w})\G/B via U as

described above.
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Since T'— {w} € (k ? 1) , an obvious iteration leads to (11, Tx,...,Ty), where |T;| =1

and T; C Ti41, and a series of steps in which Ng(Ti41)\G/B can be determined from
Ng(Tz)\G/B for ¢ = 1, ceey E—1.

This has been implemented by B. Schmalz [60] and for different data structures repre-
senting the acting group S. Weinrich [70].

For permutation groups we show the resulting chain of subgroups with the intermediate
subgroups U used for switching from Ng(T;) to Ng(T;41). We also have labeled the edges
describing subgroup relations by the index of the lower subgroup in the larger one.

If B= (B, Bs,..., By) is a partition of {1,...,n} into blocks B; the corresponding Young-
subgroup of S, is the normalizer Ng, (B, ..., By) of all these blocks. Then a chain of
subgroups may be selected as in the depicted example for n = 28.

528

N,y ({1, ..., 27}, {28})

N,y ({1, ..., 26}, {27,28})
N,y ({1, ..., 26}, {27}, {28})

Ns,, ({1,...,25},{26,27,28))
N ({125}, {26}, {27.28))

N,y ({1, ..., 15}, {16, ..., 28})

15

Ny ({1, ..., 14}, {15, ..., 28})
Ng,, ({1,...,14}, {15}, {16, ...,28})

The approach described above has to do orbit calculations where the number of points is
at most 28 locally in this example. The number of cosets of the two-block normalizers in
the picture are given by the binomial numbers which grow exponentially. So each local
problem is easy but one has to keep a long history of all previous results in memory.
This really limits the applicability, since usually one needs these results in no predictable
order. Thus each single call to some result in memory may cause a paging process which
soon takes too much time.

3.Conjugation and Burnside’s Lemma The second well studied group action is
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conjugation on the subgroup lattice. If U < G and ¢ € G then ¢7'Ug < G is the
subgroup conjugate to U under g.

Let G = Gy > Gy > ... > G, = {id} be a chain of normal subgroups of G, GG; <1 G. Then
for any ¢ the mapping ¢;: G;U/G; — G,_1U/G;_; for subgroups U of & is compatible with
conjugation. One can therefore apply 1.6 to describe the subgroups up to conjugation.

In an iteration step a complete system of representatives V/G;_; of subgroups of G/G;_4
is already available together with the stabilizer Ng/q,_, (V/Gi-1).

Now V/G;_1 corresponds to V' containing G;_; as a subgroup of GG. The description of
V' is usually easily computed from the representations of G and G;_1.

Algorithm 1.6 needs a routine which computes representatives U/G; for ;7' (V/G; 1))
in GG/G; under the action of Ng(V). Such a U then has the properties G U = V
and G; < U. If GG;_1 is contained in every maximal subgroup of V' then U = V is the
only possibility. Otherwise those maximal subgroups U/G; of V/G; not containing G;_4
belong to ;' (V/Gi_1).

Moreover any U/G; such that G,_1U =V is contained in some M/G;. Determining these
subgroups U is usually not easy, but in the case of p—groups G, i.e. groups of order p”™ for
some prime p and n € N this can be reduced to solving a system of linear equations and
has been implemented in the SOGOS system [44]. This paper also contains a discussion
of the case that (7 is a solvable group. Here [15] and the GAP system [16] contain more
advanced methods and implementations.

The general case may be handled using in addition the classification of finite simple
groups and their automorphism groups. Here we cannot cite all relevant literature,
already the algorithms for p—groups and soluble groups form a research area of its own,
a good introduction is [13].

Besides this obvious homomorphism onto factor groups one can also use a localization
method to obtain representatives from conjugacy classes of subgroups. Here we assign
to each group U a unique subgroup F(U), of a special structure, for example the Fitting
subgroup in the case of soluble finite groups, the generalized Fitting subgroup in the case
of all finite groups, or the Thompson subgroup in case of finite p—groups [5]. We obtain
@: £(G) — £(G) which is compatible with conjugation in . Then by 1.6 we can deduce
from a set of representatives T' of the image groups orbit representatives of Ng(T') on
the set o= !(T'). Usually 7" is normal in each U € ¢~ }(T') such that U C Ng(T). So
only Ng(T') is needed for further investigation. Since T'd Ng(T'), we can go on with
Nea(T)/T as described above. For constructive purpose this strategy has been applied
in [41] to soluble subgroups U of G'L(n,p).

In this paper we are not primarily interested in algorithms for analysing groups but only
in using group actions for classification purposes.

Now assume that i is a group acting on a set €. The next homomorphism we discuss
occurs in any situation where a group GG acts on a set ().

16



Let £(() be the lattice of subgroups of the group (. Then (i acts on £(() by conjugation.
The Galois-mapping
e: Q) — g(G)
w— Ng(w)
which sends each point onto its stabilizer is a G—Homomorphism.
Applying lemma 1.5 to this situation reduces the problem of finding orbit representati-
tives to the following steps ( see also [42]).

3.1 Approximation via subgroup lattice:

1. Compute a set of representatives from the conjugacy classes of subgroups of G. For
each representative U compute Ng(U), its normalizer in G.

2. For each representative U from step 1 compute the set o~ (U) of all points w in §)
having Ng(w) = U.

Determine the Ng(U)/U - orbits on o~ (U).

We notice that in this situation Ng(U)/U acts semiregularly on ¢~!(U), since U is by
definition the stabilizer of each w € ¢~ *(U). Thus we have an immediate consequence.

3.2 Corollary. If elements w € ¢~ *(U) are chosen uniformly at random, all orbits of
G on Q) where the point stabilizers are conjugate to U, i.e. of type U, occur with equal
probability.

Often it is much easier to determine all points w which are fixed by U, i.e. U < Ng(w),
than those which have U = Ng(w).
It is clear that

ColU) ={w |w e QAVu e Uw" =w}

and ¢! (U) are related by
(1) Uvarcy ¢~ (V) = Ca(U).
Thus o='(U) = Co(U) — UyawevCa(V).

If one is interested in cardinalities, equation 1 yields

[Ca(U)]= > ™ (V)]

VU<V

1 U<V

allows to write
0 else

Then the ¢ matrix of the lattice £(G), i.e. ((U,V) = {

these relations shortly for all subgroups:
Cal = ¢ lp™']

where

|Cal = (ICa(Un)]; [Ca(l)],.. ., |Ca(U)]),
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o™ = (e (U] 1™ (U)o [ ™ U)])
and Uy, ..., U, are all subgroups of G..

If £(G) is topologically sorted, i.e. U; < U; = ¢ < j, then ( is an upper triangular matrix
with entries 1 on the diagonal. This shows that ( has an inverse, called the Moebius
function g, such that

o7 = p-|Cal.
The remark before corollary 3.2 shows that W | (U)] is just the number of

orbits of type U. So if D is the diagonal matrix with all [Ng(U)/U|™! as entries in the
given ordering of the subgroups U,

Dy |Cql

counts the orbits by stabilizer-type.
Of course this also holds for intervals [U, G] in the subgroup lattice. In special cases we
can thus obtain results on fantastically large objects.

3.3 Corollary: If U is a mazimal not normal subgroup of G, then Cq(U) — Cqo(G) is a
full set of representatives for all orbits of type U.
This means that for such a large prescribed automorphism group U finding the fixed
points already suffices. No isomorphism test for the objects constructed in this way is
needed at all.
As we have shown above the approximation of the orbit representative problem via
subgroup lattice does not need all subgroups of G but only representatives from the
conjugacy classes of subgroups. This does not hold for the inversion technique for
determining ¢~ (U). Of course we only have to determine ¢! (U) for representatives U
of the conjugacy classes of subgroups. But if we want to determine ¢~ (U) from the set
of fixed points of U we have to subtract points fixed by any subgroup containing U. If U
is contained exactly in Vi,...,V,, from the same conjugacy class then A = U™ o~ (V})
is the set of those fixed points of U which have to be eliminated from Cq(U) in the
inversion step with respect to the conjugacy class of V. So if we know ¢y,..., ¢, such
that V9 = V. then

A=ULie (V) = UL (¢ (V)

If we are only interested in numbers, |~ (V)| = r- |[Ng(V)/V|, where there are exactly
r orbits with V' as stabilizer of some point. Then |A| =m -7 - |Ng(V)/V], and

m = S :
r-|Ne(V)/V|
Thus we must either know the number m of subgroups conjugate to V' which contain U

or the number of fixed points |A] of U that have a stabilizer conjugate to V. The formula
for m also can be interpreted as a divisibility condition, since m € N.
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The above Moebius inversion can be reduced from the lattice of all subgroups to repre-
sentatives of the conjugacy classes and even more we could reduce to only those which
in addition occur as a point stabilizer. Instead of ( we now form a matrix M which for
each (U, V) such that U < V¥ for some g € (¢ contains the entry

m(UV)=H{V?]|ge GAU <V}

Applying M~" to the vector (|Cqo(Uy)l,...,|Ca(Us)|)" of fixed point cardinalities for
these representatives yields (|~ (Uy)], ..., ¢~ (Us)|)! such that multiplying this vector
with diag( |NG(U11)/U1|, e INg(l}s)/Usl) then gives the vector r* = (r(Uy),...,r(Us))!, where
there are exactly r(U;) orbits of G on © with U; as stabilizer of some point.

The matrix M above is usually called the table of marks after Burnside [12]. It contains

only information on the subgroup lattice, not on the special group action.

The mere counting result has been described by several authors, see for example [68]. For
the Moebius Inversion on the subgroup lattice see [59]. For the constructive approach
see [42].

3.4 Lemma: Let wy,wqy € Q and g € G such that w{ = wy. Let a Sylow subgroup P of
G be contained in Ng(wi) and Ng(wsz). Then w} = wy for some n € Ng(wy).

Proof. Since P¢ < Ng(wi)! = Ng(w]) = Ng(wz), there is some @ € Ng(wz) such
that P¢ = P* by the Sylow Theorem. Then gz~' € Ng(P) and ¢ = nz. Therefore

-1
wy = w] = w]” and W = W) = ws. O

Corollary: If U contains the normalizer of a Sylow subgroup of G then Cq(U) is a full
set of representatives for all orbits where U is contained in the stabilizer of some point.

An important case where the condition of the corollary is fulfilled is the projective group
PGL(2,p) for some prime p. The projective group is the permutation representation of
the general linear group GL(2,p) on the set of all p 4 1 subspaces of dimension 1 of the
underlying vector space V' = V(2,p). The projective group has order (p + 1)p(p — 1)
and contains a Sylow p-subgroup of the full symmetric group S,41. The normalizer N
of a 1-dimensional subspace T' of V in GL(2,p) has order p(p — 1)? and contains the
centralizer of T and V/T as a normal subgroup. This centralizer is just of order p and
therefore a normal subgroup of N. If we reduce modulo the center Z of G'L(2,p) which
is of order (p — 1 we obtain that PZ/Z is a normal subgroup of NZ/Z and NZ/Z
has order p(p — 1). Now this is just the order of the normalizer of a Sylow p-subgroup
of S,41 such that PGL(2,p) contains the normalizer of a Sylow subgroup of S,41. So
whenever we construct objects where PGL(2,p) acts as a group of automorphisms in its
natural permutation representation all these objects are pairwise nonisomorphic. Often
only PSL(2,p) appears as an automorphism group. For p > 2 this group has index 2
in PGL(2,p) such that by Lemma 3.4 only the PGL(2,p) orbits of length at most 2 on
the set of fixed points of PSL(2,p) have to be considered.

We remark that the constructive approach presented here generalizes to some interesting
cases of infinite groups acting on infinite sets. The essential idea is to determine all fixed
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points of a given subgroup U, subtract all those having a larger stabilizer than U and
then determine representatives of the normalizer of U on the remaining set of points. In
the case that there are only finitely many conjugacy classes of stabilizers, a finite index
of each such stabilizer in its normalizer, and a finite number of orbits this approach leads
to a situation which can be handled by a computer algorithm. For example this is the
basis of the classifications of crystallographic groups which are of great importance in
Theoretical Physics.

It the table of marks is constructed for a full set of representatives for the conjugacy
classes of subgroups, it can be used to identify the stabilizer class of any given orbit of
(G on any set ). We have to know the vector of fixed point cardinalities of the U; on the
orbit € and obtain a resulting vector r with exactly one entry 1 for the corresponding
stabilizer class.

3.5 Example. Construction of block designs with prescribed automorphism group.

At — (v, k,A\)—design B consists of blocks of equally many elements from a set €2, which
in some sense approximates the set of all subsets of that size. The parameters make this

0 0
k),tgk,andVT€<t)

there exist exactly A blocks B € %8 such that T'C B.
Interesting parameters are for example

concrete:

0= 0.3 ¢

t— (v, k) =4 — (28,6,72).

Then any block design with these parameters must have exactly 98280 blocks. This is
easily seen by counting twice all pairs (T, B) where T' € (?) , Besand T C B.

Constructing all isomorphism types of block designs with a given parameter set like this
is usually regarded as hopeless. But as we shall see, prescribing a large automorphism
group A makes such a task feasible for a computer.

Firstly, the incidence relation T" C B for T' € (?

ie. Voo € A also T C B®. Therefore we need only consider representatives B from the

orbits of A on (2) . B € % then also B® € %8 for each ¢ € A. Also if T is contained

in exactly A(B,T) blocks of BA = {B® | a € A}, then the same is true for each T for
a € A.

) and B € % is invariant under A,

Thus, instead of all T' € ( ; ) we only consider representatives from the A-orbits, and

instead of all B € (2

A block design with a prescribed automorphism group A then is a union of some

A—orbits B; on (2) such that for a fixed set {Bj,..., B,} of representatives from

) we only consider the set of A-orbits on (2) .
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the chosen %B; for each representative T' from the A orbits on ( : ) the equation

(@) SABLT) =)

=1
holds.

The construction problem is reduced drastically by considering only orbit representa-
tives. This observation is due to Kramer-Messer [35]. These authors form a matrix M
which has a row for each orbit of A on t-subsets and a column for each orbit of A on
k-subsets. The entry in the i-th row and j-th column is just the number of k-subsets in
the j-th orbit that contain a fixed t-subset of the i-th orbit. The selection of appropri-
ate k-orbits for a £ — (v, k, A) design means to find a 0 — 1 vector u which multiplied
by M yields a vector with constant entry A. Thus, instead of considering each t-subset
and separately one reduces to only representatives from the A orbits. Analogously, only
orbits on k-subsets need to be considered.

We demonstrate this effect by a report on the construction of a 7 — (33,8,10) design.
JFrom the parameters we find that such a design consists of 5,340,060 blocks of length
8. They have to be selected out of all 13,884,156 8-subsets. Each subset T' of the set
V ={1,...,33} of cardinality 7 must be contained in exactly 10 of the chosen blocks.
To find such a design we use a large subgroup A = PI'[(2,32) of S35 as a prescribed
automorphism group, see [50]. The group A can be presented as generated by the
following two permutations:

a=(124816)(36122417)(5 10209 18)(7 14 28 25 19) (11 22 13 26 21)(15 30 29
27 23)(31)(32)(33)

f=(11830)(221 12)(3 10 28)(4 31 32)(524 14)(6 7 17)(8 25 27) (919 20)(11 15 13)(16
23 29)(22 33 26).

The order of A is 163680 such that the orbits of A have at most this length in any
permutation representation. Since in an induced action most elements of a permutation
group have only very few fixed points, the stabilizers of many points are trivial, that
is most orbits will have maximal length. Therefore by regarding orbits instead of the
points a reduction by approximately the factor |A| can be achieved. This heuristic also
holds in our example. A has 32 orbits on the set of all 7-subsets of V' and 22 of them
have maximal length. On the set of all 8-subsets of V' we find 97 orbits 74 of which have
maximal length. Orbit representatives may be computed by the approach we described
above using split and fusion. We cite the representatives from [50].
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orbits on 7-subsets of V

orbits on 8-subsets of V

Nr representative length

1. 1 2 3 4 5 6 7 81840

2. 1 2 3 4 5 6 8 163680

3. 1 2 3 4 5 6 9 163680

4. 1 2 3 4 5 6 10 163680

5. 1 2 3 4 5 6 11 163680

6. 1 2 3 4 5 6 12 163680

7. 1 2 3 4 5 6 13 163680

8. 1 2 3 4 5 6 14 81840

9. 1 2 3 4 5 6 15 81840

10. 1 2 3 4 5 6 16 163680

11. 1 2 3 4 5 6 17 163680

12. 1 2 3 4 5 6 19 81840

13. 1 2 3 4 5 6 32 163680

14. 1 2 3 4 5 7 9 163680

15. 1 2 3 4 5 7 10 163680

16. 1 2 3 4 5 7 12 163680

17. 1 2 3 4 5 7 13 163680

18. 1 2 3 4 5 7 15 81840

19. 1 2 3 4 5 7 20 163680
20. 1 2 3 4 5 7 24 81840
21. 1 2 3 4 5 8 10 163680
22. 1 2 3 4 5 8 11 163680
23. 1 2 3 4 5 8 12 163680
24. 1 2 3 4 5 8 13 163680
25. 1 2 3 4 5 8 17 81840
26. 1 2 3 4 5 8 24 163680
27. 1 2 3 4 5 8 26 163680
28. 1 2 3 4 5 9 11 163680
29. 1 2 3 4 5 9 12 163680
30. 1 2 3 4 5 9 17 32736
31. 1 2 3 4 5 10 12 32736
32. 1 2 3 4 5 11 16 32736

orbits on 8-subsets of V

Nr representative length
1. 1 2 3 4 5 6 7 8 81840
2. 1 2 3 4 5 6 7 9 163680
3. 1 2 3 4 5 6 7 10 163680
4. 1 2 3 4 5 6 7 11 163680
5. 1 2 3 4 5 6 7 12 163680
6. 1 2 3 4 5 6 7 13 163680
7. 1 2 3 4 5 6 7 14 163680
8. 1 2 3 4 5 6 7 15 163680
9. 1 2 3 4 5 6 7 16 163680
10. 1 2 3 4 5 6 7 17 163680
11. 1 2 3 4 5 6 7 18 81840
12. 1 2 3 4 5 6 7 19 163680
13. 1 2 3 4 5 6 7 32 163680
14. 1 2 3 4 5 6 8 9 163680
15. 1 2 3 4 5 6 8 10 163680
16. 1 2 3 4 5 6 8 12 163680
17. 1 2 3 4 5 6 8 13 163680
18. 1 2 3 4 5 6 8 14 163680
19. 1 2 3 4 5 6 8 15 163680
20. 1 2 3 4 5 6 8 16 163680
21. 1 2 3 4 5 6 8 17 163680
22. 1 2 3 4 5 6 8 19 163680
23. 1 2 3 4 5 6 8 20 163680
24. 1 2 3 4 5 6 8 21 163680
25. 1 2 3 4 5 6 8 23 163680
26. 1 2 3 4 5 6 8 24 163680
27. 1 2 3 4 5 6 8 26 163680
28. 1 2 3 4 5 6 8 27 163680
29. 1 2 3 4 5 6 8 30 81840
30. 1 2 3 4 5 6 8 32 163680
31. 1 2 3 4 5 6 8 33 163680

Nr representative length
32. 1 2 3 4 5 6 9 10 163680
33. 1 2 3 4 5 6 9 11 163680
34. 1 2 3 4 5 6 9 12 163680
35. 1 2 3 4 5 6 9 13 81840
36. 1 2 3 4 5 6 9 14 163680
37. 1 2 3 4 5 6 9 15 163680
38. 1 2 3 4 5 6 9 17 163680
39. 1 2 3 4 5 6 9 18 163680
40. 1 2 3 4 5 6 9 19 163680
41. 1 2 3 4 5 6 9 22 81840
42. 1 2 3 4 5 6 9 23 81840
43. 1 2 3 4 5 6 9 24 163680
44. 1 2 3 4 5 6 9 26 163680
45. 1 2 3 4 5 6 9 27 163680
46. 1 2 3 4 5 6 9 29 81840
47. 1 2 3 4 5 6 9 33 163680
48. 1 2 3 4 5 6 10 11 163680
49. 1 2 3 4 5 6 10 12 163680
50. 1 2 3 4 5 6 10 13 163680
51. 1 2 3 4 5 6 10 15 163680
52. 1 2 3 4 5 6 10 18 163680
53. 1 2 3 4 5 6 10 19 163680
54. 1 2 3 4 5 6 10 20 163680
55. 1 2 3 4 5 6 10 22 81840
56. 1 2 3 4 5 6 10 24 163680
57. 1 2 3 4 5 6 10 25 163680
58. 1 2 3 4 5 6 10 26 163680
59. 1 2 3 4 5 6 10 28 81840
60. 1 2 3 4 5 6 10 32 81840
61. 1 2 3 4 5 6 11 12 81840
62. 1 2 3 4 5 6 11 14 163680
63. 1 2 3 4 5 6 11 16 163680
64. 1 2 3 4 5 6 11 20 81840
65. 1 2 3 4 5 6 11 21 163680
66. 1 2 3 4 5 6 11 22 163680
67. 1 2 3 4 5 6 11 23 163680
68. 1 2 3 4 5 6 11 25 163680
69. 1 2 3 4 5 6 11 26 163680
70. 1 2 3 4 5 6 11 27 81840
71. 1 2 3 4 5 6 11 33 163680
72. 1 2 3 4 5 6 12 13 163680
73. 1 2 3 4 5 6 12 15 81840
74. 1 2 3 4 5 6 12 17 163680
75. 1 2 3 4 5 6 12 20 163680
76. 1 2 3 4 5 6 12 24 163680
77. 1 2 3 4 5 6 12 26 81840
78. 1 2 3 4 5 6 12 32 163680
79. 1 2 3 4 5 6 13 16 163680
80. 1 2 3 4 5 6 14 24 81840
81. 1 2 3 4 5 6 16 17 163680
82. 1 2 3 4 5 6 16 22 20460
83. 1 2 3 4 5 6 16 33 163680
84. 1 2 3 4 5 6 17 19 163680
85. 1 2 3 4 5 6 17 33 163680
86. 1 2 3 4 5 7 9 12 163680
87. 1 2 3 4 5 7 9 17 163680
88. 1 2 3 4 5 7 9 32 163680
89. 1 2 3 4 5 7 10 20 81840
90. 1 2 3 4 5 7 10 32 81840
91. 1 2 3 4 5 7 12 15 163680
92. 1 2 3 4 5 7 12 17 81840
93. 1 2 3 4 5 7 12 24 81840
94. 1 2 3 4 5 7 13 26 163680
95. 1 2 3 4 5 8 10 15 163680
96. 1 2 3 4 5 8 13 19 81840
97. 1 2 3 4 5 9 12 24 81840
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The 32 x 97 Kramer-Mesner matrix M:

2222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000
2101110000000211112111111111111000000000000000000000000000000000000000000000000000000000000000000
1110000001000100200000000001000111112112111111100000000000000000000000000000000000000000000000000
0011000000000021001000000000000100011000000100012131111111110000000000000000000000000000000000000
0001200000000000000001000001001110000000010010010011000100001121111111100000000000000000000000000
0000110000000001000000100020000001001000001100111000000101001000000110021111110000000000000000000
0000013000110100100000101001001000100020001000100101010010000001000100010010001000000000000000000
0000004200000000020000200220000000020000002000000000000200000200000000000002000200000000000000000
0000000220000000002000002000002000002000020000000020000000000200002000022020000000000000000000000
0001000121000001100100000101000000001000100010100100001000000010011100000101001011100000000000000
0000002001200010011011010000110000001101000110010000010000000000100000000100001010011000000000000
0000000200020200000002200020000200000022000000020000200000000000000000000020000000020000000000000
0000000001012000000000101000022000000000000000111000000110010110000100100100010200101000000000000
0200000000002210020000101000001111000000000100000000000000001000110010100000001000010111000000000
0010100000001001001200100000010001000002000000001001011011000100000000000001010000000102110000000
0000110011000010100001020100000000000000101000000101000000010100100000000010000000010211001110000
0011020000000010010000000100100000010001000000000001010000100000100011000010001010212000001001000
0000000220000000000240002000000000000000000000000000000000000000200220000000220200000000002000000
0000010010011000010110010011001110000100000001000001010001000000001000000101100010000000100011000
0200000200000200000200000200020002000000002020000000000000200000000000000200020000000000000020000
0001000001010011000000000001000011000100010000100001000001000011000000100000000020010031010100100
0010100000011000102001001000000001000110000101100100110000000000200000100000000000100000100000300
0200000000000001000001000000000010220100000110000000000010010010011000000100011010021000010000100
0011000000000000100001000000010100011010000001000100000010100000020100000101000000101002000100120
0000000200000000000020020000000000000020000000200000000200000000020020220000000000002000200002000
0010000000000000000110000101000000000000100000010010100002001000001101110011000000001110000002110
0000000000010000010000011010000000000010001020000000200110000200000010010000111000100110001001010
0000000000000000000010010100010110000100000100001010101100000010001010002010011000000000003001100
0000000010000001000000000010100011010001001000011100100010000001001000110001000000000111001011001
0000000005000000000000000000000000000500000000000500050000000000000000000000000000000000050000001
0000000000000000000000000000000000000000000000005000000005000000050005000000000050000000000000001
0000000000000000000000000000000000000000000000000050000000000050000000000000000000500500000500001

with the solution vectors v for A = 10 and A = 16 respectively:

0011100010100100110001101000010010000000101101100010111100000001001001010000110111011001010111000
1100011101011011001110010111101101111111010010011101000011111110110110101111001000100110101000111

To find these solutions is obviously much harder than to verify that they indeed are
solutions. The problem is an instance of the subset sum problem which is known to be
NP-complete [20]. We remark that the number of blocks in % can be computed from the
parameters and on the other hand is the sum over all orbit lengths |%;| of the selected
orbits on the k-subsets. This is just an additional linear equation for the system ().
Here we shall not discuss the problem of solving the above system of linear diophantic
equations, see [61] [6]. In our context we want to show how a large automorphism group
A can be used to solve the isomorphism problem.

Of course two ¢ — (v, k, A) designs B, %’ are isomorphic if and only if they only differ in
the names of the block entries. If the entries are taken from the same set ) this means
that there exists a permutation 7 € S such that replacing each entry in the blocks of
B by the image under 7 results in the blocks of 8’. Thus the isomorphism types can
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be described by orbits of Sq on the set of all subsets of (2) The solutions of (G)

form just the set of fixed points of A in this induced action of Sg on the set of all block
designs.

If we determine by (1) all designs with stabilizer exactly A, then the orbits of Ng,(A)/A
on this set give exactly the different isomorphism types with an automorphism group
conjugate to A in Sq.

For our above mentioned parameters this has been done by Schmalz[61] [62] where A
is one of the groups PSL(2,27), PGL(2,27), PLL(2,27), PI'L(2,27). In all these cases
Ns, (A) = PTL(2,27).

528

PTL(2,27)

PGL(2,27)
PYL(2,27)

PSL(2,27)

{vd}

The number of isomorphism types of block-designs with these automorphism groups can
be obtained by Moebius-inversion from the numbers of fixed points as we showed above.
Here Schmalz found the following concrete numbers:

10 00 1 -1 -1 1 13078960 2179701
0 £ 00 0 1 0 -1 | 704 | 232
00 1 0 0 0 1 -1 58 | 25
00 01 0 0 0 1 8 8

13078960 is the number of fixed points of PSL(2,27),
704 is the number of fixed points of PG L(2,27),
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58 is the number of fixed points of PXL(2,27), and

8 is the number of fixed points of PI'L(2,27).
No other subgroup of Syg containing any such A has any fixed point. In fact only Sag
and Ayg have to be considered. The number of isomorphism types is then given by the
resulting vector on the right hand side.
It should be remarked that Schmalz has found by these methods interesting new pa-
rameter sets for which he could determine all isomorphism types for some prescribed
automorphism group. In particular he obtained some new parameter sets with ¢ = 6.
3.6 Example.
An illustrative example is the determination of chemical isomers of a certain kind. We
consider a problem which has gained interest in the last years. Chemists were able to
produce molecules of the form of a platonian body, the dodecahedron was found as an
organic molecule about 10 years ago, and also the archimedian body obtained from an
icosahedron by cutting off each vertex and replacing it in this way by a cycle of length 5.
The resulting body is known as a football to many of us. Since B. Fuller has constructed
famous buildings with similar structures chemists often call this body a Buckminster
Fullerene.
For such a rigid body one can consider the vertices as places where some ligands may
be planted or some spin orientations may be placed. Of course turning the resulting
molecules around will transform one such constellation into a similar one with the same
chemical properties. We are thus interested in finding the different possibilities, which
can not be identified by a rotation.
Mathematically we assign to each vertex some colour, i.e. we have a
mapping

f: Vertex set — Colour set.

Two mappings f1, f; are equivalent, if and only if there exists an automorphism « of the
body such that

a™t - fi = fa

This is the mathematical problem that Pdlya treated in his famous paper “Kombi-
natorische Anzahlbestimmungen fir Gruppen, Graphen und chemische Verbindungen”
[57].

While Polya counted the orbits of a permutation group on the set of all mappings, we
are interested in the construction of a set of orbit representatives. So our approach will
be applicable to all situations where the theory of counting could be used before.

In this setting we can use equation (1) to obtain a more explicit description. Suppose
U < (G partitions () into the orbits 24,5, ..., Q;. Then exactly those mappings

f:Q —= Y Y colour set, are fixed by U, which are constant on each €);. We can therefore
give a closed form for Cya(U) :

Cya(t) = TT Uyer ()™
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Here {y}% is the unique mapping which colours each point of €; with colour y, and

Uyey {y}% is the set of all mappings which are constant on (2.
If F1 g YX1 and F2 g YX2, X1 QXQ == @, then

Fy-Fy={feYXe | flye FiAf|x,€ ).

In this way we can describe each ¢ ™!'(U) in 3.1 by subtracting from Cy«(U) all those
mappings which are constant on the orbits of any subgroup V' which is a proper overgroup
of U. We worked this out in [42] for the example of a dodecahedron. A discussion of the
Buckminster Fulleren Cg is contained in [45].

For the general Pélya situation when a group (i acts on a set F' of mappings, /' C VX, a
refinement using homomorphisms can be obtained by restricting mappings to G—orbits
on X.

It X = X;U X, and Xy, X; are invariant under G, especially if X; is a G'—orbit, then

e YT =Y H [ [y

is a G—homomorphism.

The homomorphism principle then suggests first to colour Xy, i.e. compute representa-
tives and their corresponding normalizers in G and recursively then solve the colouring
problem for X, under the action of the normalizers of representatives from Y1 /(.
Usually the normalizers are smaller than ' such that they have smaller orbits. Thus,
in the recursion the sets which have to be coloured tend to become smaller.If the nor-
malizer has become trivial then all colourings of the remaining points represent different
isomorphism types. In this case, an explicit listing of all possibilities can be replaced by
a routine which produces all these mappings one by one if needed. In case of many data
this will save memory space of a computer and thus reduce the paging necessity.

As we have seen in section 2 the double cosets AgB of two subgroups A, B of a group
G correspond to the orbits of B on A\G with respect to multiplication from the right.
Now we refine our approach by 3.1, [45] . For that purpose we need to determine for
representatives U of the conjugacy classes of subgroups of B those right cosets Ag with
Np({Ag}) = U. Again it is easier to describe instead the fixed points of U on A\G.

3.7 Lemma Let K = {g € G|AgU = Ag}. Then
!
K =J Ne(A)g:iNe(U)
=1

for appropriate g; € K. Each such g; conjugates U onto a subgroup of A which is unique
up to conjugation under Ng(A) :

gZUgZ_ISAfOTZ:L,Z

Proof. Let g € K. Then AgUg™' = A and gUg " < A. It m € Ng(A) and n € Ng(U)
then
AmgnU = mAgUn = mAgn = Amgn
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such that mgn € K. Therefore K consists of complete double cosets of Ng(A) and

Ng(U) in G. If = mgn then zUz™" is conjugate to gUg™" under m™'. &

The lemma gives a first coarse description of the fixed points of U on A\G. We have
to find elements ¢; conjugating U onto subgroups of A up to conjugation under Ng(A).
For each such g; the double coset Ni(A)g; N (U) has to be refined to give more detailed
informations on the fixed points of U.

3.8 Lemma Let

Ng(U) - Q NAg(U)J}]‘NB(U), and Ng(A) = L::J yiM(g,U),

where M(g,U) = A(Na(gUg™) N Ng(A)). Then

T S

Nea(A)gNa(U) = U U Ayigz;iNp(U).

i=17=1

For representatives x;, vy, from different double cosets of Nao(U) and Ng(U) the double
cosets Ayga;Np(U) and AygaxpNg(U) are different for any y € Ng(A). If M(g,U) =
ANc(gUg™') N Ng(A) then the union Ui_, Ay;gNa(U) is disjoint.

Part of subgroup lattice

Ne(U™)

{vd}

By this Lemma local computations in the normalizers of U and A allow to deduce from
one fixed point of U several new fixed points. We even can give a redundancy free list
of representatives in important cases.

Proof of the Lemma. The intersection Ng(gUg™) N Ng(A) is a subgroup of Ng(A)
and therefore normalizes A. Thus, M(g,U) is a subgroup of Ng(A). We claim that each
y' € yM(g,U),y € Ng(A), lies in the double coset AygNe(U).

Since Ng(gUg™) = gNg(U)g™, for each m € M(g,U) there exists some a € A and
some n € Ng(U) such that m = agng™'. Therefore

AmgNa(U) = Aagng™ gNg(U) = AgnNa(U) = AgNg(U).
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If y = ym,m e M(g,U), then y~'y’ = m and
AgNa(U) = AmgNa(U) = Ay™'y'gNa(U) = y ' Ay'gNe(U),
since y € Ng(A). This shows that

Ay'gNa(U) = yAgNa(U) = AygNe(U).

Let @, 2, € Ng(U). If 2, € Nao(U)a;Np(U) then
AygaxNp(U) = yAgayNp(U) = yAgg™ ' AgarNp(U)

=yAgg~ ' Agx;Ng(U) = Ayga;Ng(U).

If, on the other hand, AygarNp(U) = Aygax;Ng(U) then AgxNg(U) = Aga;Np(U)
and A9x, Ng(U) = A%2;Ng(U). There exist a € A,n € Np(U) such that x = a%a;n.
Then «? = :I;kn_lx;l € Ng(U) and a9 € A? imply a? € Ng(U) N A% = Nuo(U).
Therefore xy,x; € Ng(U) implies @, € Nao(U)x; Ng(U) such that Nao(U)apNg(U) =
NAg(U)l‘]‘NB(U).

We now assume that the modular law holds for M(g,U), e.g. M(g,U) = ANg(gUg™")N

Ng(A). Then from AmgNg(U) = AgNg(U) we have mg = agn for some a € A and
n € Ng(U), and m = agng™" € ANg(Ug_l). If m € Ng(A) then

m € ANg(gUqg™") N Ne(A) = A(Na(gUg™) N Na(A)).

This characterizes M(g,U) as the set of those elements m for which AmgNg(U) =
AgNe(U) holds.
Now let y,y" € Ng(A) such that Ay'gNeg(U) = AygNg(U). Then

Ay~ly'gNa(U) = y " Ay'gNe(U) = y~ ' AygNa(U) = AgNa(U).

This shows that y ™'y’ € M(g,U) and yM(g,U) = y'M(g,U). Therefore under this con-
dition the cosets yM(g,U) correspond bijectively to the double cosets AygNg(U), into
which Ng(A)gNea(U) splits. &

Of course, by the homomorphism principle fixed points which lie in the same orbit under
Ng(U) belong to the same orbit. Therefore we need not split further. Now we have to
test whether for such a coset Ag with AgU = Ag the subgroup U is the full stabilizer
in B. This holds it and only if A9 " B = U. Equivalently we could also test whether
Ag belongs to some double coset constructed for a prescribed stabilizer V' containing U
properly. Therefore we have the following result.

3.9 Theorem Let A, B < (G, and let R be a set of representatives from the conjugacy
classes of subgroups of B. Then

A\G/B = | J{Ayiga;B|U € R, Ng(A)gNa(U) € No(A\G/Na(U) and
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g Ag > U, Nuo(U)a; Ng(U) € Nag(U)\Ne(U)/Np(U) and
(ga;) "' Aga; > U,y;M(g,U) € Na(A)/M(g,U)}.

The lemma allowed to determine the fixed points of the chosen subgroup U and in an
algorithm all fixed points having a bigger stabilizer than U have to be subtracted. By the
homomorphism principle any of the remaining fixed points lie in the same double coset
if and only if they lie in the same orbit of Ng(U). The given mathematical formulation
in the theorem is descriptive and hides several constructive tasks by the set notation.

In a special situation the determination of fixed points by Lemma 3.7 becomes easy. If
there is only one conjugacy class of subgroups of A into which the subgroup U can be
conjugate in ¢ by some ¢ then by the Frattini-argument Ng(A) = AN, a)(gUg™").
This means that the subgroup M(g,U) in 3.7 is just Ng(A). Therefore in this case only
a transversal of Nag¢(U)\Ng(U)/Ng(U) has to be determined.

As an example we consider the double cosets of A = Dg with B = Dg in Sg, where we
represent Dg as generated by ¢ = (1,2,3,4,5,6,7,8,9) and ¢t = (1,2)(3,9)(4,8)(5,7).
Then A contains just one conjugacy class of subgroups of each isomorphism type oc-
curring. Since A = B we can always choose ¢ = ud for one element conjugating U into

A.

In the first case we consider /' = B. The index of Dy in its normalizer is 3 such that
we find 3 double cosets with stabilizer B of an appropriate coset of A in ;. A set of
representatives is formed by id, (2,3,5,9,8,6)(4,7), and (2,5, 8)(3,9,6).

As the next case we consider /' =< ¢ > where the normalizer coincides with that of Dg.
Then the fixed points of U are all fixed points of B such that there are no double cosets
of this stabilizer type.

The case U = S5 where S3 =< ¢®, ¢ > is isomorphic to the non abelian group of order 6
is more interesting. U has index 6 in its normalizer in G while U = Ng(U) = N4(U).
The transversal of double cosets in Ng(U) is just a transversal of the cosets of U in its
normalizer Ng(U) in this case. Thus we obtain 6 fixed points of U of which 3 are already
fixed points of B. The remaining fixed points give the double cosets of stabilizer type
S5 and may be represented by (3,9)(4,7)(5,8),(2,8)(4,7)(6,9), and (2,5)(3,6)(4, 7).
The case U = (5 where (5 =< ¢ > behaves totally different. Here U is a normal
subgroup in B and the index of B = Ng(U) in Ng(U) is 18. We have to determine a set of
representatives for the double cosets Ax Ng(U) which are contained in Ng(A)idNg(U) =
Ne(U). Since we will have to eliminate those fixed points Az of U with a larger stabilizer
than U, we integrate the determination of the stabilizer into the determination of the
fixed points. We apply the homomorphism principle in determining first the double
cosets Ng(A)x B and splitting these afterwards. These double cosets can be classified by
a prescribed stabilizer. There is only one class with stabilizer B which splits just into
the 3 fixed points of B we found above. At least one coset Ag which is a fixed point of
S5 lies outside of Ng(A), since we found that all those inside were the fixed points of B.
Therefore there must be one orbit with stabilizer S; of some coset such that the orbit
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length is 3. This orbit splits into the three orbits with stabilizer S5 that we described
above. Since the index of Ng(A) in Ng(U) is 6, there remain two points which must
lie in one orbit with stabilizer Cg. In the splitting step we find that the only stabilizer
contained in Cy of an orbit up to length 6 is U. So we obtain only one double coset with
stabilizer C5 of some point, a representative is (2,3)(4,7)(5,9)(6,8).

The last non trivial stabilizer is a cyclic group of order 2, we choose U =<t > . As in
the case of S5 also here U = Ng(U). The index in Ng(U) is 192 giving as many fixed
points. The only minimal overgroup in B is S3 with 6 fixed points. Thus < ¢t > is the
stabilizer of 186 points. We do not list representatives for these 186 double cosets.

A simple arithmetic shows that the remaining cosets fall into 1026 double cosets each
consisting of 18 cosets of A in (.

A way to obtain representatives in the latter two cases is to apply the Leiterspiel
in a simple case. For that purpose we first determine the double cosets of () =<
Na(Cs),(4,7)(5,8) > and B in G classified by stabilizer as before and then split these
into the double cosets of A and B in (. The index of () in GG is 280, A is a subgroup
of index 72 of (). The cosets fall into double cosets of the following stabilizer type: 1 of
type Dg, 3 of type S3, 12 of type <t >, and 9 with trivial stabilizer.

Since the index of A in ) is 72, each of the 9 double cosets of length 18 splits into 72
double cosets of this length of A and B in G. For the splitting of the double cosets of
length 9 we have to consider the action of < ¢ > on the set of cosets Axh into which a
coset Qh fixed by < ¢t > splits. In each of the 12 cases we get again 12 fixed points of
< t > and 30 orbits of length 2.

Thus, we have already 9+ 72+ 12% 30 = 1008 double cosets of length 18. The remaining
18 double cosets of this length come from the action of S5 on the set of 72 cosets Azh
contained in a representative coset () x h with stabilizer S5. In each of the 3 cases we get
6 orbits of length 6, i.e. double cosets of trivial stabilizer type. We remark that also in
this approach Lemma 3.7 may be applied with the smaller group U instead of B.

All computations for this example were done using the Cayley system [14].
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The example may easily be generalized to bigger dihedral groups. It demonstrates a
constructive approach to cycle permutation graphs [38] which may be described by iden-
tifying the beads of two necklaces bijectively. In [38] the number of isomorphism types is
determined by the Cauchy-Frobenius Lemma which is completely non constructive. One
can consider the necklaces as graphs with beads as vertices and edges between vertices
of which the beads are neighbours in the necklace. The identifications can be interpreted
as connections between the vertices of the two graphs. There result trivalent graphs.
In order to avoid irregular isomorphisms we distinguish the vertices of the two necklace
graphs by white and black labels respectively. Then the above described representatives
give the isomorphism types of graphs with the given labeling. For big stabilizers we find
the following graphs. First row has stabilizer Dy, second row has stabilizer S3, and the
last graph belongs to the stabilizer Cj.

The Theorem has interesting applications not only for algorithms but also for theoretical
purposes. We mentioned already the special case that U is conjugate to subgroups of
only one conjugacy class of A. If in addition A = Ng(A) then the following corollary
can be applied.

3.10 Corollary Let U < A < G, A = Ng(A), and for each g € G such that U9 < A
there exist some a € A with U9 = U®. Then there are exactly |Ng(U)|/|Na(U)| subgroups
in the conjugacy class of A containing U.

For a proof apply the theorem with B = U and note that by the assumptions only one
double coset Ng(A)idNg(U) = ANg(U) has to be split.

For example PSL(3,3) contains a Sylow-13-subgroup P of Sis. If U is the normalizer of P
in PSL(3,3) then |U| =39 and |Ng,,(P)| = |Hol(C13)| = 156. Therefore U is contained
in exactly 156/39 = 4 subgroups conjugate to PSL(3,3). Similarly the Mathieu group
My4 is a maximal subgroup of 594 and contains only one conjugacy class of subgroups
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isomorphic to PSL(2,23). Since the normalizer of PSL(2,23) in Syqis PGL(2,23), there
are exactly |PGL(2,23)|/|PSL(2,23)| = 2 subgroups conjugate to My and containing
PSL(2,23).
Double cosets appear in many applications. We discuss two general situations and some
applications.

The Fundamental Lemma Assume that the group G acts transitively on the set ()
and let U be a subgroup of (G. Then the mapping

0: (W)Y = Ng(w)gU

from the set Q/U of orbits of U/ on § to the set Ng(w)\G/U of (Ng(w), U)-double cosets
in (G is a bijection, where w € () is an arbitrarily chosen fixed reference point in {2, and
N¢(w) denotes the stabilizer of that point w.

Proof: We recall the bijection
w? = Ng(w)g

between the points in a G-orbit and the right cosets of the stabilizer Ng(w) of win G. In
this bijection a point (w?)"* = w?*, for some v € U, is mapped onto the coset Ng(w)gu.
Thus, the full orbit w9V corresponds to the set of cosets Ng(w)gu where u € U. The
union of the latter cosets forms just the double coset Ng(w)gU, which shows that 4 is a
bijection. <&

The Gluing Lemma Let w; and w, be two isomorphic objects and fo : wy — wy be a
fixed reference isomorphism. Then the set [so(w;,ws) of all isomorphisms is obtained
by appending all automorphisms of ws to fo. Let a group A act on w; and a group B
act on wy as automorphism groups. Then A x B acts on Iso(wy,w;) by f@» = a=' fb
for all f € [so(wy,wz). The mapping

¢ A\Iso(wi,wy)/B — folfo Afo)\Aut(wy)/B

sending the orbit of foo under A x B to fo(fy'Afo)oB is a bijection.

Proof: If f; is another isomorphism from wy to w; then p = f3' f; is an automorphism
of wy such that fop = f1. Also for each automorphism p of wy; the mapping fop is an
isomorphism from |omega; to wy. Now let fi = fop1 and fy = fops. Then there exists a

pair (a,b) € A x B such that fl(a’b) = fy if and only if fopy = a™! fop1b and

p2=fola” foprb € (f5 ' Afo)p B.
&
Applications to chemistry We start with an example from mathematical chemistry,
where both lemmata can be applied. The problem is the construction of all the 22

1somers of dioxine which has the chemical formula Ci,0,H,C'l,. All dioxines have a
common skeleton of three 6-rings as it is shown in the following picture.

32



Skeleton of dioxine

All the vertices of degree four represent carbon atoms ' and the two vertices of degree
two stand for oxygene atoms O. The skeleton has, as it is easy to see, eight free places
at the end of eight edges. These places are numbered 1 to 8, we call these places
free valences. According to the chemical formula C15,0,H,C'ly, these free valences are
occupied by the remaining four hydrogen atoms H and the four chlorine atoms C. The
connectivity isomers of dioxine are therefore formed by distributing these remaining
eight atoms over the free valencies in all the possible and essentially different ways. It is
clear that essentially different refers to the symmetry group of the skeleton. Thus any
bijection
{1,2,3,4,5,6,7,8} = {H,H,H,H,Cl,Cl,Cl,Cl}

from the set of free valences to the multiset of atoms mathematically describes a con-
nectivity isomer of dioxine, but not all of them are essentially different, since symmetry
operations of the skeleton map a molecule onto an equivalent one and also any permu-
tation of the atoms of the same kind does not change the connectivity isomer. Thus
we have two groups: A acting on the set of the eight free valencies by applying symme-
try operations of the skeleton and B acting on the multiset of atoms by permuting all
atoms of the same element among themselves in all possible ways. Using this and the
Gluing Lemma, we can easily solve the classification problem in question, obtaining the
essentially different maps that represent the connectivity isomers. It is easy to see that
the group A is isomorphic to Cy x 5 and B is isomorphic to Sy x S4. Using a reference
bijection which we keep fixed we get a set of representatives of the different types by
composition with representatives from the double cosets of the corresponding subgroups
of Sg. There are exactly 22 such double cosets, they yield the isomers shown in figure 1.
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Another interpretation of this problem reads as follows: The symmetric group Sy acts
transitively on the set of mappings {1,2,3,4,5,6,7,8} — {CI, H} having exactly 4
preimages of both H and Cl. The stabilizer N of a particular reference mapping ¢,
mapping the first four numbers to C'l and the latter to H, say, is the direct product of
the symmetric group on {1,2,3,4} by the symmetric group on {5,6,7,8}. By the Funda-
mental Lemma, the double cosets of this stabilizer with the permutation group Cy x (5
induced by the automorphism group of the skeleton on the set of places correspond
bijectively to the classes of mappings describing the different isomers.

This example may also be used to demonstrate another technique which is useful in
construction problems. From the index of N in Sg we find that altogether 70 mappings
have to be classified with respect to the action of a group of order 4. Each orbit cor-
responds bijectively to the cosets of the stabilizer of a chosen representative. Thus we
immediately know the length of the orbit from the order of the stabilizer . Since the
stabilizer is just formed by the automorphisms of the corresponding dioxine, we can
easily find this order. Thus the strategy is to construct new representatives and to check
if the sum of the known orbit lengths already amounts to the overall number, which is
70 in our problem. It is an easy exercise to check that the 22 isomers listed in figure I
form a complete set of representatives in our case. For the general case, this technique
is described by the following result.

The Class Equation Let a finite group G act on a finite set £. Let I" be a set of points
from pairwise different orbits. If

/|G =1/19] 3_ 1/INa(7)]

~er
then I' is a full set of orbit representatives.
Proof By the discussion above we have for a full set of representatives I' that

Q=2 1Gl/INa(v)

~el

such that a simple division yields the claimed equation. Clearly any missing summand
causes that the equation cannot hold. <&

Here is another application of the Gluing Lemma to mathematical chemistry. It amounts
to the problem of replacing a vertex of a graph by a subgraph. To the vertices in question
we assign - like in the above case - free bonds which have to match with the corresponding
bonds in the subgraph.
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Insert a Subgraph

A

The central vertex of the graph on the right hand side has to be replaced by the subgraph
on the left hand side. In order to do that (in all the possible and essentially different
ways!) we have to identify the free bonds 1,2,3,4 with the edges named a,b,c,d in the
graph in a suitable way. There are 4! = 24 possible bijections between these two sets.
We obtain equivalent results if we replace the subgraph or the graph by an isomorphic
copy. Thus we let the two automorphism groups act on the set of bijections as it is
described in the Gluing Lemma. The group acting on {1,2,3,4} is the dihedral group
D, which may be described as a wreath product of Cy by C5. Since this group has order
8, it has 3 cosets in S4. The other group, induced on the set {a, b, ¢, d}, is the Kleinian
4-group of order 4. The Kleinian 4-group is contained in the dihedral group and it is a
normal subgroup of S4. Therefore the double cosets of both groups in Sy reduce to the
cosets of Dy in S4. The corresponding results are the following graphs.

Subgraph inserted

A\

4. Sims Chains and Automorphism Groups

The last situation, where we want to discuss homomorphisms must usually first be
created. But then it proves to be a very powerful instrument.

If G acts on  then ¢ also acts on  x Q, and generally on Q* for any k € N by

(Wi, ywk)? o= (Wi, wl), for (wy,...,w) € QF,

l.e. componentwise.

In such a situation we can designate any 7' C {1,...,k}, |T'| = ¢, and project
T — QL (w01, W) = (W ws,),
where T' = {11,12,...,2:} and 73 <13 < ... < ;. Any such projection is a G—homomor-

phism, s.t. the homomorphism principle applies. We have by lemma 1.5
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(@1, wk) ~ (w0 wp)

& dgr (Wi, e, wi )9 = (wz’»l, .. ,wl’»t)/\
E|g2 ENg((wil, e ,wit)) = Cg({wil o ,wit})
(Wyen e wp)?? = (W], .o, wp )9

We can approach the orbits of GG on O by a series of projections onto some components.
It we know orbits on such projection sets, the orbits in the preimage sets can be obtained
by only looking at stabilizers and their action. This important observation is due to C.
Sims (1972)[66], who used the approach for handling large permutation groups. He chose
as projections

N S )

the mappings which in each case forget the last component.

4.1 Proposition (Sims): Let (wy,...,wi), (w),...,w;) € QF. Then there exists some
g € G such that
(Wiy.eywi)? = (Wi, ..o wy)
if and only if
wi = wy'

for some g1 € G and
for all © > 1 there are elements g; such that

Ne((wiy .o ywi))gi € Na((wry .. wi) \Na((wr, ..., wic1))

—1 —
991 i1 g
i =W

and w

A group G acts faithfully on 2 if only the identity element of ¢ fixes each point of ). We
now assume (G to act faithfully. Then we can arrange the elements of 2 in a sequence
(wi,...,w)q|) such that

Ne((wr,- .. wig)) = Ca(Q) = {id}.

Then each element of G forms just one coset of Ng((w1,...,wq))) in G, i.e. the bijection
of the cosets and the orbit of (wy,...,wyq) gives in fact a bijection between the elements
of G and the image points of (wy,...,wyg).

If # € Sg is any given permutation we can form (wy,...,wjg) = (W], w3 ,...,wf) and

decide by the above proposition whether

(wiv s 7w|/Q|)g = (wlv s 7w|Q|)
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for some ¢ € G. If and only if such a ¢ exists the given 7 lies in &, i.e. 7 = ¢~ L.

Besides this test for # € ¢ we can easily tell the order of G :

|G| = ngzll |NG(((“J17 s 7wi))\NG((w17 s 7wi—1))|

_ Hlflll %NG((W1~~M—1))|
where Ng((wq,...,wi—1)) := G for i = 1.

The first version is just the application of Lagrange’s formula |G| = |U] - [U\G| for any
U < G to the sequence of stabilizers. The second equation results from the bijection
between orbit and right cosets of a point stabilizers. We shall later see that in some
cases one can describe the orbits without listing a full set of representatives such that
the second formula is easier to evaluate.

A series

Go = Ng(()) > Gl = Ng((wl)) > ... > G|Q| = Ng((wl, .. ,w|Q|))

together with a description of the orbits of w; under G,;_; for all 7 is called a Sims
Chain. It is important to notice that each element ¢ € G has a unique representation
g = gj)9(al-1) - - - 91, where each g; is one of the chosen right coset representatives for
Ne((wiy oo ywi))\Na((wr, ... wi—1)). Thus it is easy to run through all elements. We
also note that the completeness of all sets of representatives already implies that the set
of elements of this form is multiplicatively closed.

While in our examples considered so far the acting groups were well known, in general
the situation is more complicated. As demonstrated with the example of the football
or the dodecahedron there may be some basic structure to which some new components
should be added. Then the full automorphism group G of the basic structure has an
induced action on the set of different possibilities to add new components. We can find
in such a situation by the methods presented here or some different approach like orderly
generation [58] orbit representatives of G to solve the isomorphism problem.

Therefore we now discuss techniques for constructing the automorphism group of some
finite discrete structure. Two papers that had a strong influence on our approach are
[47], using orbits of subgroups to keep the number of branches in a backtracking small,
and [51] who used iterated classification to reveal consequences of choices taken within
the backtracking strategy.

We start by showing how a Sims chain for an automorphism group can be constructed
in a simple version.

For this purpose we use a geometrical object for which automorphisms can easily be de-
scribed from our imagination. We concentrate on the description of the group, especially
the fact that the full automorphism group is described.

The algorithm starts with Ng((w1,...,wjq)) = {id} and stepwise computes

Ne((wiy ... wicq)) from Ng((we, ... w;)) fore = |Q, | —1,..., 1, where Ng(()) = G for
i = 1. By 4.1 it suffices to give representatives for the right cosets of Ng((wq,...,w;))
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in Ng((wq,...,wi—1)) in each step. Such a representative corresponds by the above

bijection to a point w; from the orbit of w; under Ng((w1, ..., w;i—1)). We thus only need
to find one appropriate automorphism fixing wy,...,w;—; and mapping w; onto w;, if it
exists.

4.2 Example. The automorphism group of a cube.
For the sequence (w1, ...,ws) we choose (1,2,3,4,5,6,7,8). We regard the cube as a rigid
body such that no reflection is allowed as an automorphism.

8 7
4 3

3 6
1 2

First we see that fixing 1 and 2 keeps the whole body fixed such that Ng((1,2)) = {ud}.
Now we prescribe 7(1) = 1 and look for the possible images of point 2. Of course. 7(2)
must be a neighbor of 7(1) = 1. Thus only #(2) € {2,4,5} have to be considered. The
identity map, a rotation by 120° with fixed points 1 and 7, and its square give the desired
representatives.

The next step prescribes the image point j of 1. For each choice of j only one mapping
has to be found. It is easily seen that the rotations

_(12345678)
P=\4 1 2 3 8 5 6 7

and

[

_(1234 678)
=\s 1 14 8 2 3 7

only need to be combined in different powers to map 1 onto each point. We obtain
therefore 8 different permutations. Since now no further step is possible, the whole
automorphism group is described. We find that its order is 3 - 8 = 24 and in fact the
isomorphism type of this group may be recognized as that of 54, the symmetric group
on 4 letters.

jop)

Like in this example the stabilizer of only a few points may already be trivial. After C.
Sims we call (wq,...,wi) a base for G if Ng((wi,...,wi)) = {¢d}. By the above analysis
(i acts regularly on the orbit of a base.

Instead of a representation of a Sims chain by one representative from each right coset
of Ng((w1,...,w;))in Ne((wr,...,wi—1)), for each ¢, M.Jerrum [32] found a description
which needs much less space.

The reason why we needed the representatives was that we wanted to decide whether
for a given ¢ there exists some m; € G,y = Ng((w1,...,w;—1)) such that W = w.
Now suppose we know all orbits of G; on € for some fixed 7. Then w = w lies in some
orbit w-1. This orbit is completely contained in w?i_l if only one point w’ € w1 can

39



be reached from w; by some 7; € GG;_1. It thus suffices to store only one permutation
7; € G; for the whole orbit w® such that w* € w%-1. Assuming w is a distinguished
representative of its orbit w®=1 and w can be reached from each point of that orbit we
only have to add the information that w™ = w;. Then from each point of w%-1 we can
reach w;.

If we look at this iterative procedure from a fixed point 6 € 2, we see that ¢ has no
attached permutation as long as ¢ is a distinguished representative. Only once ¢ can get
a permutation attached to it, mapping 6 to some other representative. In this way each
point may obtain only one assigned permutation such that only || permutations may
occur in the description of the group.

For our example we first consider the orbits of the subgroup generated by the rotation
7 by 120°.

The orbits are {1},{2,4,5},{3,6,8},{7}. We choose the smallest numbers as distin-
guished representatives and note 4™ = 2, 57 = 2,6 = 3,8 = 3. To describe the orbit
of 1 under GG in the next step we now only need to know permutations mapping 2,3,7

onto 1. The rotation p = (; § i le 2 (75 ; i) fuses all four orbits. There-

fore the point 1 can be mapped onto all other points. The former orbit representatives
2,3,7 are mapped onto 1 by the permutations p~!, p=2, prp~? respectively. Thus, for a
membership test we only need to know 7 and p and some words in these permutations.

The corresponding data structure is called a labeled branching. It can be interpreted as
a special form of the Cayley Action Graph, where we should enlarge the given set of
generators by the words we computed to label the fusion of orbits. This data structure
belongs to the Union-Find data structure family of computer science which allows a fast
handling of disjoint sets. Each set has a distinguished representative which is considered
as the root of a tree. All elements of the sets form the nodes of the tree. Contrary
to usual directed trees here arcs connecting two nodes are directed from the son to the
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parent node. This has the advantage that a node may have many sons and then the path
lengths from any node to the root of its tree will become short. Union of two disjoint
sets can be done by adding only one arc from one of the former roots to the other root.
One can add to this data structure a second family of pointers. These pointers link all
nodes of one tree to a list. The union of two trees only needs a constant amount of
additional time to keep this list if pointers to the end of the lists are maintained. With
this modification one can run through all points of the set which belong to nodes of the
same tree. For a detailed analysis of data structures for permutation groups see [4].
For a graphical representation of a permutation group in this form we may take the points
as nodes and introduce an arc from w; to w; labeled by a permutation 7 if W] = w;.
For any chain of subgroups G = Gy > G1 > ... > G}, = {id} we can represent the fusion
of orbits of G; to orbits of (G;_4 for all ¢ by such a labeled branching.

To each G; there corresponds a forest, i.e. a set of subtrees, which describes the orbits

of Gi;. For ¢ = k the forest consists of roots only. If G}y =< ﬂk_l), . ,Wﬁfj) > then

(k=1)
3 .

If the G;-orbits are already presented by trees of height < k& — ¢ then the corresponding

each orbit of G_; is represented by a tree of height < 1 with arc-labels 7

trees for (G;_; are obtained by adding arcs for permutations in (G;_; mapping the former
roots onto some point not in the existing tree. Thus the path from any node to the root
of its tree may grow only by one arc, i.e. the height may only grow by 1.

It is not true in general that any chain of subgroups can be fully described by fusions of
orbits. For example in the symmetric group 5, on the set of points {1,...,n} the cyclic
subgroup C,, = ((1,...,n)) is already transitiv, such that the chain Gy = S5, > Gy =
C, > 1 is not appropriately represented.

But for certain chains we can rely on a theorem of Wielandt which is a stronger version
of the bijection between an orbit and the cosets of the stabilizer of one point. First we
have to introduce the notion of a block.

4.3 Definition. Let a group G act on some set 2. A subset A C ) is a block of G on
Q if for each g € G ANAI=A or ANA? = ).

Let w € Q and G act transitively on . Then any subgroup U containing Ce({w})
defines a set A = w¥ = {w* |u € U}. If A9 N A # () then there exists uy,uy € U such
that w9 = w* and u;gu;’ € Cs({w}) C U. This implies g € U and A9 = A. Now let
w € A, A block. From w? = w we obtain AY N A # () and therefore A9 = A, such that
Ca({w}) € Ng(A). We obtain the following result.

4.4 Theorem (Wielandt): Let a group G act transitively on some set Q. Let w € ).
Then A — Ng(A) defines an isomorphism between the lattice of blocks containing w and
the sublattice of the subgroup lattice of G of those subgroups which contain Cg({w}).

4.5 Corollary. If a group acts on some set ) such that U C G is just the stabilizer of
one point, then any chain G = Gy > Gy > ... > G, = U of subgroups can be uniquely
presented by a labeled branching for this chain.

We apply this corollary to Gy = Ng((wq,...,wi—1)) and the point stabilizer G; =
Ne((wiy .. yw;)) in Gi_y. Then any chain of subgroups between (7; and (7;_; corresponds
to a chain of blocks. The labeled branching then describes how these blocks considered
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as orbits of the corresponding block normalizers are fused to form new blocks. Thus,
a labeled branching can be used to present any chain of subgroups which refines a
chain of point stabilizers. In order to keep intermediate steps small in our algorithms
we are usually interested in fine chains, i.e. chains which are not refinable. For an
implementation of this idea see [40].

It A is a block containing w then the mapping

c,o:wG — A% W AY

is a homomorphism with respect to the action of G on both orbits. On the other
hand each homomorphism ¢: €y — , with respect to a group action defines blocks

A by A = p7Hw) for w € Qy. Therefore the Theorem of Wielandt also describes the

homomorphisms for transitive group actions.

For a group G given by a set S of generators there is an algorithm by Atkinson [2]
which allows to find the smallest block A of (¢ containing two given points wy,ws € Q.
Basically the algorithm not only constructs A but also all blocks AY for g € G. Since
these blocks form an orbit of G on the set of all blocks, we can at the same time find a
set of Schreier generators for Ng(A).

The tool for Atkinsons algorithm is the same data structure as in the labeled branching,
i.e. the Union-Find data structure. The blocks are built by fusing disjoint subsets
which have been detected by a test for the block-property. As above these subsets are
represented by a tree and a fusion of two trees only needs one additional arc from one
of the roots to the other.

The starting point is the partition formed by {w;,w;} and each {w;} for w; € Q—{w;,wy}.
In this step choose w; as the root of the tree for {wy,w,} and all other trees consist only
of a root. The algorithm builds up the orbit of A by iteratively applying all generators
g € S to subsets A", where {wy,w2} € A C A and w is some word in S. If A% intersects
two subsets €2, ), of the present partition these subsets have to be fused by the definition
of a block. We obtain a new word wg such that A™? contains 0; and ;. If there are
already words w; such that ©; C A" then we know that A" = A" and wgwi_1 is a
Schreier generator of Ng(A) for each such i. Also if A" is already contained in some
0y and Q; € A" then wgw ' is a Schreier generator of Ng(A). The algorithm stops if
all subsets in the partition which can be reached by applying some word w in S to A
yield no more fusions.

This idea can be implemented by keeping a list L of pairs of nodes {a, 3} such that one
node is the father of the other node in some tree and still each ¢ € S has to be applied to
{a, #}. For each tree which contains at least two nodes there is a word word(p) attached
to the root p of the tree such that p € A% ?) In the beginning L consists just of
(w1,ws), there is one tree with at least two nodes, the tree containing w; and wy. The
word attached to the root wy is the empty word representing the identity element of G.

A loop is performed until the list L is empty. An iteration step of the loop consists in
taking a pair {a, 3} out of L and applying each ¢ € S to the pair. In order to decide
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whether of and (39 belong to the same tree the roots p; = root(a?) and py = root(/39)
are determined.

If p1 # p2 then the two trees have to be fused. In order to keep the height of the trees
small the tree with the lowest height becomes a subtree of the other by adding an arc
from its root to the root of the other. Then the pair (p1, p2) is added to L.

It p; = ps then no fusion is needed.

We now consider Schreier generators. Each time a pair (p1, p2) is inserted into L this pair
describes two former roots now becoming one root and one of its sons. Thus, if («, 7) is
taken out of L « is the father of 3 and both elements lie in A*"4) This implies that
p = root(a?) € Avd)s Thus, if already p € A"t for some word w; detected earlier
then word(a)gwy" is a Schreier generator of Ng(A). This applies always to the case
p1 = pe in the test. If p; # py then the new root p gets word(a)g attached to it and
only if p was already labeled by some word w; we get a Schreier generator.

Atkinsons Algorithm

Input:set S of generators of a permutation group G on a set €,
w1, wq two different points from 1.

Initialize:
Schreier — generators = ),
L= ((wlv(“J?))v

word(an) = ()
father(wy) = wy, height(wy) = 1,
forallo € Q — {w}
word(w) = Null, height(w) = 0.
Repeat [at this point all pairs in L still have to be tested]
take (o, 3) out of L
[« is the father of 3, word(a) # NULL ]
for each g € S do
p1 = root(a?); pa = root([39);
if word(py) # NULL then
insert word(a)gword(p,)™" into Schreier — generators.
if word(py) # NULL then
insert word(a)gword(py)™" into Schreier — generators.
if p1 # pa then
[thispairhas to be inserted into L, and the trees must be fused]
if height(pr) < height(p2) then
define an arc from py to po
insert (pz, p1) into L
if word(pz) = NULL and word(py) = NULL then
word(pz) = word(a)y;
if word(pz) = NULL and word(py) # NULL then
word(pz) = word(py);
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if height(p1) = height(pz) then
add 1 to height(ps);

if height(ps) < height(p1) then
define an arc from py to py
insert (p1, p2) into L
if word(p1) = NULL and word(py) = NULL then
word(py) = word(a)y;
if word(p1) = NULL and word(py) # NULL then
word(py) = word(pz2);

UNTIL L is emply.

Now the tree which contains wy contains the points of A as nodes and Schreter —
generators contains a set of Schreier generators of Ng(A).

The algorithm is easily seen to be correct, since to each pair (a, ) where 3 is a son
of a all generators have been applied such that for each tree the whole image under
each generator was considered. The overall time complexity is dominated by the search
processes for the roots. By the rule of fusing trees used any tree with & nodes has height
at most [loga(k)]. Therefore all searches can be done in O(nlog(n)) time. A more
advanced technique using path compression could reduce log(n) to a function related to
the inverse of Ackermann’s function which is at most 3 for all practical values of n.

In constructing an automorphism group G from the bottom, i.e. the identity subgroup,
one has to extend the current group (; by some new generator ¢g of GG;_;. Then ¢ fuses
some orbits of G; as we saw before in our example. To find these fusions one can intersect
each cycle of ¢ with the orbits of G;. All orbits with a nontrivial intersection have to be
fused.

In the special situation where (g, ;) has the orbits of ; as blocks these fusions are
more easily determined. Then already the image of only one point determines the set
of images of all points of that block. This set is again a block and as such it is an orbit
of G; which is easily determined by the labeled branching. To find an orbit of (¢) with
respect to its action on the set of blocks one only has to determine the image blocks in
this way for the powers of g¢.

There is a situation where such blocks occur in a natural way.

4.6 Proposition. Let N be a normal subgroup of a group G. If G acts on a set §) then
the orbits of N are blocks of G.

Proof. For ¢ € G and an orbit A = w" of N also A9 = w"9 = w9V is an orbit of N.
Since orbits are disjoint, they are blocks. <&

By the Sylow theorem each finite group G contains subgroups of the highest prime-power
orders p" dividing |G|. Thus we may whish to construct a Sylow-subgroup P of G instead
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of a full automorphism group . In this case we can refine any chain of subgroups of P
such that
P:P0>P1>...>P](:{Z'd}, Pi<]Pi—17|Pi—1/Pi|:p

for all 2.

Then we can use that the orbits of a normal subgroup of a group are blocks of the whole
group in each extension step from P; to P;_1.

For the problem of finding automorphisms the additional restriction that a Sylow-p-
subgroup is to be found gives good extra informations. If P,_y = (P, g) then ¢* € P,
and ¢ has to fuse either p blocks of equal length or leave blocks fixed. Since each F,
is assumed to be uniquely determined by its labeled branching, no ¢ € P;_; can fix all
orbits of P;.

We show how this principle works in our example of the automorphism group of the
cube. We want to construct a Sylow-2-subgroup P of the full automorphism group G.
This time we vary the problem by allowing also reflections as automorphisms.

We find that (1,2,3) is a base of the automorphism group G. Any nontrivial 7 €
Np((1,2)) has to map 3 onto some neighbor of 2 which is not fixed. Then 7 =
(1)(2)(3,6)(4,5)(7)(8) is the only choice. The cycles of 7 form the orbits of Np((1,2)).

In the next step we look for some o fixing 1 and mapping 2 onto another orbit of length
1 of Ng((1,2)). Since 2 also has to be a neighbor of 17 = 1 no such o exists. Thus
Ne((1)) = Np((1,2)).

Now we have to move 1 by some p onto some other fixed point of 7.

In addition the orbit of 1 under 7 has to be of length 2.

The first choice 17 = 2 is realized by

p=(1,2)(3,4)(5,6)(7,8).

The orbits of (7, p) are
{1,2},{3,4,5,6},{7,8}.

In the next extension step we look for some n mapping {1,2} onto the other orbit of

length 2, i.e. onto {7,8}. We choose

n=(1,7)(2,8)(3,5)(4,6).
Now we are left with only two orbits of length 4, i.e. {1,2,7,8} and {3,4,5,6}. We find

a last extension step with element « fusing these orbits:

a=(1,5,8,4)(2,6,7,3).
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For

P ={rpna)
> Np({1,2,7,8}) = (7, p,7)
> Np({1, 2}) —< p)

(
> Np((1)) = ((1 2)) = (7)
> Np((1,2,3)) = {id}

we obtain the following labeled branching:

<T7 p? 777 O{>
<7, p, N>
<T,p>

<T>

{vd}

It has to be remarked that our definition of a labeled branching differs from that given
originally by Jerrum because we note all orbits of each group in the chain. Our version
is especially useful for the construction of automorphism groups.

In our example it was easy to find automorphisms with some restrictions for the possible
image points. Generally, just this is a very difficult problem which we now consider in
more details.

Suppose some structure S; is described by a set of k—tuples (wi,...,w;) € QF with
entries from an appropriate set ). A second structure S; may be given by k—tuples
(61,...,0;) € A¥ with entries from a set A. A bijective mapping : ) — A which trans-
forms the k—tuples of 57 into the k—tuples of S5 is then an isomorphism. If in particular
S1 = S then such a @ is an automorphism. In our computation of automorphism groups
we did not only look for an arbitrary automorphism. We had additional restrictions like
wi =wi,...,w’ | =w;_; for some .

More generally we assume here that on  and on A we have sequences (21, 2,...,8)
and (A1, Ay, ..., ;) of disjoint subsets such that the mapping ¢ has to map €2; onto A;
fore=1,...,1L

We want to refine these sequences by means of the sets of tuples of the structures such
that ¢ still is compatible with these sequences.

So let S7 and S5 consist of ¢ tuples

S1= {(wit,..ywi) |i=1,...,t and w;; € O},
S = {(Bterees0) [i= 1, tand & € A} for some k € N.
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Then we can classify each S; as following. Since Q = U!_ ;. each entry w; in a tuple
(w1, ..., wi) belongs to some Qg(;). Therefore (wy,...,wi) € Qgay X gy X ... X Qgy
and also (wf,...,wf) € Agay X Ag) X ... X Aggy if ¢ is an isomorphism mapping €;
onto A; for each j. The sequences (S(1),5(2),...,5(k)) give thus a classification of the
tuples of S7 and Sy such that ¢ is compatible with these classes.

Now we use this information to refine the €); and A;. Suppose the tuples are arranged
in classes Cy,...,C, for Sy and Dy,..., D, for S, such that ¢ has to map C; onto D;.
Then for each w € © we obtain a matrix A(w) = (a;;(w)) such that

aij(w) = {(w,...,wp) € Ci| wj =wl.

Again this matrix of natural numbers is invariant under . Therefore it can be used for
refining the classes €);, A; respectively.

A simpler version can be used if 57 C (2) , 57 C (i) , l.e. 57 and S; consist of

k—element subsets of 2 and A respectively. If Q@ = Q; UQ,...UQ; then each T' € 57 is

contained in some ( al ) U...J ( al) , that means T' contains exactly a; elements from
1 I

Q, for 1 < <. Then (ay,...,qa) is invariant under ¢ and thus can be used to classify
Sy and analogously Sy into S =CyU...UC,, Sy =Dy U...UD,. For the refinement

of the €); we now count for each w € ) the subsets in the 1—th class of S; which contain

a(w) = (a1(w), ..., a,(w))

w. The vector

where

aj(w)=[{T € Cjlw e T}

can thus be used to distinguish between elements in the same class €1; of 2. This gives
a classification which is compatible with .

More generally these techniques can be combined in various ways for structures which
are defined by several components consisting of sets of tuples or subsets. One can even
allow nested structures, but this is more involved.

4.7 Example. In order to describe a cube as an oriented body in a simple manner
we note for each vertex together with a neighbor the next neighbor with respect to
the orientation. The structure thus consists of 3-tuples (a, b, ¢) where neighbor ¢ is the
next neighbor of neighbor b for vertex a. We want to determine all oriented structure
automorphisms « such that 1% = 1.

Oriented Cube

3 7 1 25 324 516 738

, - 1 54 34 7 5 78 6

\ ; 1 42 372 5281 76 3
5 6

. . 2 3 418 627 845

2 6 1 4 3 675 85 7T

1 2 2 1 13 1 6 5 2 8 7 4
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First we partition Q = {1,2,..

triples is classified:
Ch = {(17 2, 5)7 (17 574)7 (1747 2)}7 Cy = {(27 L, 3)7 (47 L, 8)7 (57 L, 6)}7
Cs=4(2,6,1),(4,3,1),(5,8,1)}, Cy: all other tuples.

JFrom this we obtain the following invariant matrices:

., 8} into @ = {1},9Qy = {2,3,...,8}. Then the set of

300 011 000 011
030 100 001 100
Al) = 003 |’ AQ2) 100 |’ AB) 010 |’ A) 100
000 122 322 122
011 000 000 000
100 001 000 001
AB) = 100 |’ A(6) 010 |’ A7) 000 |’ A(®) 010
122 322 333 322

Now « has to be compatible with the following classes of Q : @y = {1},Qy = {7},Q5 =
{37 67 8}7 Q4 = {27 47 5}

An iteration of this process results in no proper refinement of classes. Now we try to
put 2% = 4. This means that we can apply the refinement process firstly to the sequence
(1), (7). {3.6.8}. {2}, {1.5}) and secondly to ({1},{7}, {3.6,8), {4}, {2.5)). If a can
be extended to an automorphism then the elements from the ¢—th class in the first
sequence have to be mapped onto the elements of the :—th class in the second sequence.
Therefore this also holds true for the refined classes. We carry out the first classification:
Cy = {(1,2,5)}, Cy = {(1,4,2)}, C3 = {(1,5,4)}, Cy = {(7,3,8), (7,6,3), (7,8,6)},
Cs={(3,7,2)}, Cs = {(8,7,4), (6,7,5)}, C7 ={(6,2,7)}, Cs = {(3,2,4)},

Co = {(3,4,7),(8,5,7)}, Cio = {(6,5,2)}, C1u = {(8,4,5)}, Cro = {(2,1,3)}, Ci3 =
{(2,6,1)}, Cha = {(2,3,6)}, C15 = {(4,1,8),(5,1,6)}, C16 = {(4,3,1),(5,8, 1)}, C17 =
{(4,8,3),(5,6,8)}.

Now we derive refinements of the classes {3,6,8} and {2,5} : Entry 3 occurs on the
first place just once in classes 5,8,9. For entry 6 these classes are 6,7,10 and for entry
8 these classes are 6,9,11. So all three elements fall into different classes. For entry
2 these classes are 12,13,14 while entry 5 occurs on he first place in classes 15,16, 17.
Thus all resulting classes of €} consist of just one element and the same holds for the
refinement of the classes for the image structure. Therefore if a can be extended to an
automorphism then the extension is uniquely determined:

a=(1)(2,4,5)(3,8,6)(7).

The interested reader may verify that no reflection is allowed as an automorphism with
this presentation of the cube.

An implementation of this method may use lexicographical orderings of the different
types of invariants. Then forming the sequences of classes with respect to the ordering
of the invariants can be achieved by the bucketsort algorithm of computer science, see
p.80 of [33]. If n words of length & with letters from an alphabet of [ letters have to be
sorted, this algorithm takes o(k - n + 1) time. In our case we always have [ < k- n.
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4.8 Algorithm iterated classification:
Input:

1. Sequence (Q,...,Q,) forming a partition of a set Q.

2. Set S ={ty,...,t,} of k—tuples with entries from ().

Output: Sequence (4, ...,Q,), refinement of the input partition.

Method: Repeat the following steps, until the number m of classes remains constant.

1. For each tuple t € S and for each entry w; fromt determine §; s.t. w; € Q;. Form
the vector of class-indices by replacing w; by j.

2. Sort all vectors of class-indices, mark each tuple by its rank in this ordering of the
vectors. Let ¢ be the number of classes.

3. Initialize matrices A(w) of size k - ¢ with entries 0 for each w € Q.

4. Run through all tuples t = (w1, ... ,wg) and through all w; of t. Ift belongs to class
J add 1 to the entry in the j—th row and the i—th column of A(w;).

5. Sort all matrices A(w), determine the rank of each A(w) with respect to this or-
dering.

6. Run through each Q; and sort all elements w with respect to the rank of A(w). Split
each §; according to the different ranks in this ordering.

7. Determine the new number m of classes in the resulting partition of €.

Since we use bucketsort in each sorting routine, we find that each step 1. to 7. can be
performed in time 0(k - n). The overall complexity is thus 0(k-n - (r —m + 1)).

The reader may modify this algorithm for the case of k—subsets instead of k—tuples.
The iterated classification algorithm was developed for graphs by B.D. McKay. His
algorithm for computing the automorphism group of a graph seems to be the fastest
presently available, and it is widely used.

So far we have discussed the general strategy to build up a labeled branching from the
bottom and in each step to find automorphisms « for which some image points are
already prescribed or where the set of possible image points is restricted. After any
choice of an image point w® we can apply the iterated classification algorithm to make
use of the implications resulting from this choice and the structure of the given object.
The implications then generally will reduce the candidate sets of possible image points
under a. Thus, in a backtrack search the set of alternatives will be reduced.

A second source of simplifications is the part of the group of automorphisms that is
already known at the actual step.
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Let A be a group of automorphism that is already known. Suppose we want to describe
all automorphisms /3 that map a distinguished point w onto some point ¢ from a certain
candidate set A. Then if w” = § and §* = ¢ € A for some a € A the point ( can be
reached from w by applying Sa. We thus need to test only one point 6 from each orbit
of A as a candidate for w”. Therefore a labeled branching describing each orbit of A can
be used in this step.

In backtracking then the proposal w” = § has to be tested for extendability to an
automorphism. Of course we use the iterated classification but we also want to use
orbit informations to reduce the candidate set for the next step. If v € N4(6) then
W’ = §7 = 6. Thus if B can be extended to an automorphism also 37 can and B~ also
maps w onto 6. We see that the next step affords to know the orbits of N4(¢).

Generally we cannot assume that N4(6) occurs in the subgroup chain of our labeled
branching for A. Therefore the orbits of N4(6) are not known explicitely. The technique
for solving this problem is known as a base-change.

Suppose we have a labeled branching for A with respect to the base (wy, ..., w,). We need
a labeled branching for (6,w1, ... ,w,), where w; is omitted if 6 = w,. This can be achieved
by computing a labeled branching with respect to this base for A; = Ca({w1,...,w;})
stepping upwards the chain of subgroups, i.e. for = n,n—1,...,0. Arguing by induction
we assume that we have already such a labeled branching for A;. We also know the orbit
of 6 under A. Thus, we only need to find representatives for the cosets of N4, (é) in
Na(6). We extend Ny, (6) gradually to a group B which will become N4(é) eventually.
We initialize with B = N4, (6). Since the cosets of A; in A are represented in the labeled
branching, we can run with some element @ € A through a set of representatives. If
6% = & for some b € A; then ¢ = ab™! € Na(6) can be taken as a representative.
Of course ¢ fuses orbits of the already known subgroup B with N4, (§) < B < N4(9).
Thus we can represent ' = (B,c) by a labeled branching. If |C| - [64| = |A| then
C = Na(6), else we continue with the next choice of a and replace B by C. By the
theorem of Schreier (Th. 1.3) this procedure stops with the desired labeled branching.
For a detailed presentation of this technique and a timing analysis see [10].
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We have presented two possible strategies for cutting branches in the backtrack tree cor-
responding to the attempts of defining image points for an automorphism. Generally it
is difficult to find polynomial time bounds for such a backtrack strategy. At least the two
algorithms for reducing the set of candidates and thus cutting branches are polynomially
bounded. Of course in well behaved cases backtrack may find an automorphism very
fast and calling the cutting routines will slow down the algorithm then. It thus depends
on the actual application whether it is advisable to implement these procedures.

It should be noted that a further refinement of the strategy is possible again by the
homomorphism principle. Depending on the structure of the object one can look for
homomorphic images, which preserve automorphisms. Then isomorphism testing or
constructing the automorphism group can be done by 1.5 via the homomorphic im-
age. This strategy has been thoroughly carried out in the development of constructing
p—groups after M.F. Newman and his school, see [56]. In the field of graph isomorphism
testing this approach has been proposed by [49] for testing graphs with bounded degree
for isomorphism in polynomial time. Generally, many recursive strategies for construct-
ing larger objects from smaller ones can be used for this strategy, for constructions of
soluble groups see [41].

5. Orderly Generation
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Generally the problem of generating a system of representatives of all isomorphism types
of a certain class of objects has been considered by many authors. We mention only
a few approaches which are strongly related to our work. Mostly the approaches use
some kind of orderly generation of which we will present our subset oriented version
below. The basic ideas are from R. Read [58] and I. Faradzhev [19, 31], and an im-
portant step forward was made by L.A. Goldberg [21], who showed that graphs of a
prescribed number of vertices can be generated by adding vertices of maximal degree
with a polynomial delay. This was a successful attempt to use structure information
in the orderly generation approach. A different strategy had been chosen in the fa-
mous DENDRAL project which was an early version of a generator of chemical isomers
[48], [25]. There not only the number of vertices is prescribed but also the degrees of
the vertices are known. This comes from the identification of vertices with atoms of a
certain type and therefore of a certain valency. The strategy used in the DENDRAL
project can be described by the homomorphism principle. The assumed solutions can
be simplified by homomorphisms in several steps and afterwards the inverse direction
has to be followed up to construct the solutions. Thus the steps are as follows. In two
first steps the vertices of degree 1 and 2 are removed and then cyclic components are
formed by removing bridges. A mathematical analysis of the given brutto formula, i.e.
the prescribed sequence of degrees of the vertices, gives the possible number of cyclic
components, the possible edge degree series for each cyclic component, and the number
of interconnections of these components. The isomers are then built up to isomorphism
from a catalogue of cyclic structures in a number of steps using some computational
group theory, especially double coset computations. Thus, a structural analysis of the
problem allowed to break down the problem into smaller pieces which could be handled
easier.

The approach presented here for generating graphs with a prescribed degree sequence
uses the same basic tools. On one hand the mathematical idea of homomorphism is
exploited to use structure information algorithmically. This leads to a recursive con-
struction of graphs from regular graphs, which compared to DENDRAL allows an un-
bounded number of simplification steps. On the other hand orderly generation is used
in the remaining homomorphically irreducible cases. The result is a generator which is
extremely fast in many situations but which is slow compared to existing generators as
for example B.D. McKay’s makeg [52] on the basis of the well known isomorphism test-
ing program NAUTY [51] or the present MOLGEN generator [26] in smaller cases due
to the mathematical overhead. A complexity analysis still is missing and should evolve
out of a study of the best recursion strategy within the general framework presented.

We start with some basic principles and then show how they are used in generating
graphs up to isomorphism. Generally the problem of generating objects up to isomor-
phism can be interpreted as the problem of finding orbit representatives from a group
action. Since algorithms mostly also need the stabilizers of the chosen representatives,
we understand by a solution of the orbit representative problem a determination of a
set of representatives together with their stabilizers.
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We represent simple graphs as subsets from the set of all 2-element subsets of a vertex
set V. Then two such simple graphs are isomorphic iff they lie in the same orbit of Sy.
Of course we make algorithmic use of homomorphisms. But in the irreducible cases we
need another tool, i.e. orderly generation[58],[19]. We now suppose that a group G acts
on a finite set X. We impose on X an ordering < such that also the set 2% of all subsets
of X is lexicographically ordered. This ordering will not be compatible with the action
of GG, in general. It is therefore quite astonishing that it can be used in solving orbit
problems. Each orbit S for some S € 2% contains a lexicographically minimal element
So which we denote as the canonical representative with respect to <. In short we say
S € canon (2%, G) iff S < S Then we have the following fundamental lemma[27).

5.1 Lemma If S € canon(2X,G), T C S, and T < S then also T € canon (2%, G).

Thus, we only have to enlarge representatives T' of smaller cardinality by elements x
which are larger than each element in 7" to obtain candidates for representatives of
greater cardinality. This approach can be refined by noticing that there are some further
elements y larger than each element in T" which can be excluded as x.

5.2 Lemma Let T' = {xq, -+, 2}, where 11 < 25 < --- < xq. Then fory € aNolzeid)
for z; < @ < x;4y and i < t the set T U {y} is not in canon(2%X,G). If i = t then if y
is not minimal in its orbit under Ng(T) the set T U {y} is not in canon. (2%, ).

The candidates obtained after removing the cases of the preceding lemma are often called
semicanonical in the special case of graph generation [37],[24], [55].

A test for minimality for each remaining candidate S now has to decide whether there
exists some g € (G such that S9 < 5. The obvious strategy is to run through GG with ¢ until
either 59 < S or all elements of G have been tested. Of course there must be chosen some
ordering in which the elements of G have to be considered. We take a Sims chain with
respect to the set X ordered ascendingly as a base B = (by,---,b,). This chain consists
of transversals for the left cosets of G; = Ce({by,---,b;}) in Giy = C({b1,---,bi_1})
for + = n,---,1. We order these representatives r by b/. Then we can run through all
r(7; in this order of r's and for fixed r in ascending order through G, for ¢ = n,--- 1.
There is a case where some elements of (¢ need not be considered in this procedure [24].

5.3 Lemma Suppose S < SY for some subset U of G and S9 = S for some g € G.
Then also S < S9Y, since S9Y = SV,

Thus, for a subgroup U which has already been tested the whole left coset gU can be
omitted if S¢ = S is detected. Sometimes the elements of X play a different role in a
bigger context. Then one has the additional condition that each x? has to belong to a
certain class of elements of X which gives further restrictions for the choice of group
elements.

Often the required solutions have to fulfill some constraints. Then a check if these
constraints are fulfilled is usually much faster than a canonicity check and will be done
before. One may even hope that after several recursion steps with increasing ¢ only few
candidates remain for a canonicity check. The corresponding generation strategy may
lead to a larger number of candidates, since in the intermediate steps no restriction to
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extending canonical representatives only is made. Thus, if a candidate S is not minimal
in its orbit then already its predecessor may not have been minimal also. In the light of
lemma 2.4 above it is therefore useful to determine the first extension step where this non
canonicity could have been detected. Then all further extensions of this candidate must
also be rejected. Depending on the selectivity of the additional constraints a delicate
balance of steps with constraint checking only and steps with canonicity check combined
with tracing back to the earliest detection point is needed for the fastest strategy. This
has been followed up by MOLGEN [26].

Several different strategies for solving the isomer generation problem have been pur-
sued in the MOLGEN project. A first strategy followed the DENDRAL strategy [48].
There in a finite number of steps the isomers are constructed out of cyclic graphs. The
present version uses orderly generation in filling characteristic classes of rows of the ad-
jacency matrix of the graph representing an isomer [24]. For a future version we have
implemented a proposal from [25] as a preliminary step. This version is presently only
available for simple graphs[22]. The generation strategy of this version makes a more
sophisticated use of homomorphisms and combines them with the orderly generation
approach as discussed above, in the irreducible cases. This new strategy is explained in
the next section.

A graph generator

The generator relies on a strategy of determining first how all graphs with a given
degree partition can be built up recursively from regular graphs. The basic result for
this approach is the following.

5.4 Theorem Let a = (ag, a1, -+, a,) be a degree partition of a graph, i. e. there exists
a graph G having exactly a; vertices of degree v for all a;, and a; # 0. If G is any graph
with this degree partition then the a; vertices of degree j span a subgraph T and the
remaining vertices span a subgraph H, such that the degree partitions b= (bo,---,b;) of
T and ¢ = (co, -+, cm) of H fulfill the following conditions.

For each 1 € {1,--+,m}, [ #£ [ there exists a partition

a= Y ci

i+k=l

such that for all 1

C; = Z Cik.
k

There exists a matriz I with |H| columns and |T| rows such that all entries are 0 or 1
and )7; ¢, rows of sum k and bj_; columns of sum .

If on the other hand these conditions are fulfilled for degree partitions a, b, c then for all
subgraphs T with degree partition b and H with degree partition ¢ there exists a graph G
with degree partition a, having T and H as subgraphs.

There are well known criteria for a degree partition to be the degree partition of a graph
[28]. Also, the existence condition for a 0/1-matrix with the required row and column
sums can be expressed numerically without any explicit construction by the Gale-Ryser
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theorem[69, p.148,149]. Thus, one can decide in advance whether a splitting of a given
degree sequence a into two degree sequences of graphs b and ¢ will allow to construct
from two corresponding subgraphs T and H a graph (G with the required degree sequence
a.

It is also clear that the subgraphs 7" and H in such a case are uniquely determined in
any resulting graph (. Also the incidence structure I with a row for each vertex « € H
and a column for each vertex y € T" and noting an egde connecting x to y by the entry
1 in the corresponding place of I is unique. Therefore we have the homomorphism o
mapping G onto (T, H,I). Thus, we may first find all degree sequences b and ¢ and
having constructed the corresponding subgraphs find the possible incidence structures
I to form the required graphs G'.

The strategy obviously reduces the construction problem of simple graphs with pre-
scribed degree sequence to that of regular graphs and the problem of how to paste the
subgraphs T' and H together. Regular graphs are constructed by an implementation[54]
of the method of G. Brinkmann [9]. This is the fastest method known to us presently.
The problem of pasting T" and H together breaks into two main steps.

Suppose H has ¢; vertices of degree ¢ and ¢;;, of them have just k£ neighbors in 7. Then we
have to find all partitions of the set of the ¢; vertices into these subsets of ¢;;, subsets for
all k£ up to equivalence under the automorphism group of H. This can be done by orderly
generation or better by a combination of homomorphism steps and orderly generation.
It is important to notice that we will often find only a few different isomorphism types
of orbit problems in this step. Moreover, since very often the automorphism group
of H will be trivial or act trivially on this set of partitions, the solutions of one case
may be implicitely carried over to the isomorphic cases by just noting which bijections
must be applied. Also all subgraphs H with the same edge degree sequence and trivial
automorphism group can be considered as essential only one case.

Now we know the number of entries 1 in each row and each column of /. We have to
find a set of representatives of the different ways to fill this matrix up to the action
of the two automorphism groups AutH and AutT. We can first partition [ into blocks
where the corresponding vertices of each row and those of each column are in the same
orbit of the automorphism group of T' or the stabilizer of the selected partition in the
automorphism group of H. Then we have to assign to these blocks a number of 1’s that
we want to distribute there. We end up with the problem of selecting from the set of
places in the block the subsets of those which should get an entry 1. This can be done
by orderly generation. By the homomorphism principle only the stabilizer of any such
solution has to be considered in its action on the next block to fill. We may even split
that block further into the orbits of that stabilizer. Thus, again the acting groups and
the blocks become smaller by some factor until no group action appears any more.

It should be clear that a lot of different choices can be made to follow up the general
rule of first simplifying by homomorphisms and then using orderly generation in the
irreducible cases. Our implementation allows to experiment at certain stages to find a
good strategy. In the most successful combination strategies we obtain by the implicit
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handling of isomorphic cases run times of up to 10%* graphs per second on a PC, see the
small table below. We remark that we used a labeled branching datastructure and a
base change algorithm after [10] to deal with the various automorphism groups occuring
during the generation process.

Isomorphism types determined in 10 seconds

vertices | degree partition number of graphs
20 | (0,1,8,7,1,1,0,1,0,0,1) 175729
30 | (0,0,4,2,4,0,2,0,10,0,6,0,2) 2900585207520000000
50 | (0,2,10,8,11,5,8,1,2,1,0,1,1) | 192382967718269922890569744384

As in 6.4 the degree partitions give the numbers of vertices of the degrees 0, 1, ---, 12.
Each computation was interrupted after 10.15 seconds and is therefore incomplete. All
computations were done on a PC 486DX2 with 8MB of memory.

Compared to generators using only orderly generation or only few reductions by homo-
morphisms as the present MOLGEN system the new approach needs much more time
for small cases(up to 20 - 30 vertices). This is due to the overhead caused by deter-
mining the different decompositions of the given degree partition. So the methods will
have to be chosen depending on the problem size. Still some optimization is needed to
make the new generator useful. The most important point seems to be that we need
powerful constraints and ways to exploit them as early as possible to reduce the solution
space. According to the recursion steps this means to transform selection criteria for the
result graphs to criteria applicable to the subgraphs which have to be combined in the
recursion step. So one will have to study which properties are hereditary to the regular
subgraphs which are the atoms in this approach.
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6. Concluding Remarks

This note presents some techniques firstly for determining representatives from group
orbits and secondly for finding the groups of which we need the actions. We confined our
interest to the homomorphism principle and added some material on orderly generation.
Both techniques are considered as general principles which lie beyond many different
algorithms. The reader is encouraged to look for solutions of his favorite problem using
these principles as a guideline. One might even implement a general toolbox using
these techniques without knowing the actual type of objects and data structures of the
problem. Thus, an object oriented approach could rely on some methods common to a
great variety of object classes and build the generator of all objects up to isomorphism
using only these abstract methods.
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