
Type Debugging in the Hindley/Milner System with

Overloading

Peter J. Stuckey ∗, Martin Sulzmann †and Jeremy Wazny ‡

August 20, 2003

Abstract

We introduce a novel approach for debugging ill-typed programs in the Hindley/Milner
system. We map the typing problem for a program to a system of constraints each attached to
program code that generates the constraints. We use reasoning about constraint satisfiability
and implication to find minimal justifications of type errors, and to explain unexpected types
that arise. Through an interactive process akin to declarative debugging, a user can track
down exactly where a type error occurs. We are able to capture various extensions of the
Hindley/Milner system such as type annotations and Haskell-style type class overloading.
The approach has been implemented as part of the Chameleon system.

1 Introduction

Strongly typed languages provide the user with the convenience to significantly reduce the number
of errors in a program. Well-typed programs can be guaranteed not to “go wrong” [24], with
respect to a large number of potential problems. However, programs are often not well-typed,
and therefore must be modified before they can be accepted. Unfortunately, it can be difficult to
determine why a program has been rejected.

Traditional inference algorithms depend on a particular traversal of the syntax tree. Therefore,
inference frequently reports errors at locations which are far away from the actual source of the
problem. The programmer is forced to tackle the problem of correcting her program unaided. This
can be a daunting task for even experienced programmers; beginners are often left bewildered.

Despite recent efforts, see e.g. [3, 23], we believe there remains a lot of scope for improvement.
For example, previous works exclude Haskell-style overloading [31] which can be naturally handled
by our approach (see e.g. Examples 2 and 7), and is a serious cause for consternation for beginning
Haskell programmers.

The novelty of our approach lies in mapping the entire typing problem, including type classes
and extensions, to a set of constraints. Program locations are attached to individual constraints.
By employing some simple constraint reasoning steps we are able to narrow down the source of
the type error. We demonstrate our approach via a simple example.

Example 1 Consider the following annotated program where we use numbers to refer to individual
program locations.

∗Department of Computer Science and Software Engineering, University of Melbourne, 3100, Australia,
pjs@cs.mu.oz.au

†School of Computing, National University of Singapore S16 Level 5, 3 Science Drive 2, Singapore 117543,
sulzmann@comp.nus.edu.sg

‡Department of Computer Science and Software Engineering, University of Melbourne, 3100, Australia,
jeremyrw@cs.mu.oz.au

1

p4 = (f2 ’a’1)3

f7 True5 = True6

Each expression is translated into a set of constraints, each of which has an attached justification
in this case a program location number, and a type variable representing its type. For example,
expression (f2 ’a’1)3 is translated to constraint (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3 with type
t3. Note that we introduce for each function symbol f a predicate symbol f . So, for example f(t2)2
refers to an instance of function f at location 2 where t2 refers to the particular instance type.

Each function definition is translated to a Constraint Handling Rule (CHR) [6]. More specif-
ically, we make use of CHR simplification rules. For example, in case of the above program we
find

p(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

The left-hand side of the first rule consists of the predicate p(t4) where t4 refers to the type of
function p. The right-hand side consists of the constraints generated out of the program text
representing the type of p. The ⇐⇒ symbol can be read as logical equivalence. Operationally the
rules are read as defining replacements, you may replace the left hand side by the right hand side.
We keep applying rules until no further rules are applicable.

For example, we can infer the type of expression p8 by applying the above CHRs to the initial
constraints store p(t)8 where 8 stands for a hypothetical program location. Here is the final result.

p(t)8
−→ t = t4, (t1 = Char){1,8}, f(t2){2,8}(t2 = t1 → t3){3,8},

(t4 = t3){4,8}

−→ t = t4, (t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8},
(t2 = t1 → t3){3,8}, (t6 = Bool){6,2,8},
(t7 = t5 → t6){7,2,8}, (t4 = t3){4,8}

In the first step, the constraint p(t)8 matches the left hand side of the first CHR. We replace
p(t)8 by the right hand side. In addition, we add the matching equation t = t4. Note how the
justification from p(t)8 is added to each justification set. In the final step, the constraint f(t2){2,8}

matches the left hand side of the second CHR.
Note that constraints are unsatisfiable in the final store. Indeed, p is not well-typed. By

collecting justifications attached to unsatisfiable constraints we are able to narrow down the possible
source of the type error. A minimal unsatisfiable subset of the resulting constraints is (t1 =
Char){1,8}, t2 = t7, (t5 = Bool){5,2,8}, (t7 = t5 → t6){7,2,8}, (t2 = t1 → t3){3,8}. Hence the
system underlines the program location {1, 2, 3, 5, 7} (ignoring 8 since we did not provide it in the
program)

p = f ’a’

f True = True

indicating that the program must be changed in at least one of these locations to be corrected. 2

Haack and Wells [9] in parallel proposed a very similar approach to that above, mapping the
typing problem to Herbrand constraints. The advantage of using CHRs arises when we extend the
approach to handle Haskell-style overloading [31].

Example 2 Consider the following program making use of the Haskell type class Eq.

data Erk = Erk

class (Eq a)1 where (==) :: (a->a->Bool)2

instance (Eq a)3 => Eq [a]

f4 x5 = x6 ==7 [Erk]8

2

For simplicity, we left out the instance body. The important point to note is that we also annotate
class and instance declarations. The translation to CHRs yields the following.

(==)(t) ⇐⇒ (Eq a)1, (t = a → a → Bool)2
Eq [a] ⇐⇒ (Eq a)3
f(t4) ⇐⇒ (tx = t5)5, (tx = t6)6, (t8 = [Erk])8, (==)(t7)7, t7 = t6 → t8 → t9, (t4 = t5 → t9)4

The first rule represents the (justified) method of the class declaration. The second rule models
the instance declaration. We have an instance of Eq on type [a] iff we have an instance on type
a. Note that the right-hand side of the rule is justified. We refer to [27] for a detailed discussion
of how CHRs can be used to model Haskell-style type classes and its various extensions. The last
rule (slightly simplified because of infix application) represents the type of f.

Type inference for expression f10 proceeds as follows. We use left-hand side symbols of CHRs
to index rules.

f(t)10
−→f t = t4, (tx = t5)5,10, (tx = t6)6,10, (t8 = [Erk])8,10, (==)(t7)7,10, (t7 = t6 → t8 → t9)10,

(t4 = t5 → t9)4,10

−→(==) t = t4, (tx = t5)5,10, (tx = t6)6,10, (t8 = [Erk])8,10, t7 = t′, (Eq a)7,10,1,
(t′ = a → a → Bool)7,10,2, (t7 = t6 → t8 → t9)10, (t4 = t5 → t9)4,10

−→Eq t = t4, (tx = t5)5,10, (tx = t6)6,10, (t8 = [Erk])8,10, t7 = t′, a = [a′], (Eq a′)7,10,1,3,
(t′ = a → a → Bool)7,10,2, (t7 = t6 → t8 → t9)10, (t4 = t5 → t9)4,10

Note that we rename rules before application. In the last step, we replace (Eq a)7,10,2 by a =
[a′], (Eq a′)7,10,1,3 because equality constraints in the store imply that a must be a list type.

We can build the type of f by simplifying constraints. That is, apply most general unifier to
constraints in final store. This yields Eq Erk => [Erk]->Bool. Note that the Hugs system reports

ERROR test.hs:10 - Instance of Eq Erk required for definition of f

In our system we can ask for an explanation for why the offending class constraint appears. Instead
of minimal unsatisfiable subsets we simply search for minimal implicants. Justifications attached
to minimal implicants allows us to narrow down the possible source of the unexpected type.

For example, we are interested in why f has type Eq Erk => a for some a. The constraint

(t8 = [Erk])8,10, t7 = t′, a = [a′], (Eq a′)7,10,1,3, (t
′ = a → a → Bool)7,10,2, (t7 = t6 → t8 → t9)10

is a minimal implicant of Eq Erk. Hence, we know that locations {1, 2, 3, 7, 8} are responsible for
the occurrence of Eq Erk locations {1, 2, 3, 7, 8} are responsible for the occurrence of Eq Erk. The
system reports the following.

data Erk = Erk

class Eq a where (==) :: a->a->Bool

instance Eq a => Eq [a]

f x = x == [Erk]

2

In summary, our type inference algorithm generates equational and user-defined constraints
out of expressions. Constraints are justified by the program location where they originated from.
These locations are retained during CHR solving. Simple reasoning steps on constraints, such as
finding minimal unsatisfiable subsets and minimal implicants, allows us to identify problematic
program locations. The current paper is an extended version of [28].

Our contributions are:

3

• We give a translation of the typing problem for Hindley/Milner which includes Haskell-style
overloading into CHRs.

• We refine CHR solving by keeping track of justifications, i.e. program locations, attached to
constraints.

• We provide formal results of soundness and completeness of our inference scheme via CHR
solving.

• We identify some simple constraint reasoning steps as sufficient to locate the minimal set of
contributing locations in case of a type error or unexpected result.

• Our approach is the first to:

– explain the locations that lead to a type having a certain shape,

– explain subsumption and ambiguity failure,

– handle Haskell-style overloading (and indeed more complex type extensions [27]).

• We provide an interactive type debugger implementing the above ideas as part of the Chameleon
system [30].

The rest of the paper is organized as follows. We first describe the debugging features sup-
ported by the Chameleon debugging system, with only informal explanations about how they are
implemented. Then we give the formal underpinning to the system. In Section 3 we introduce
types and constraints, followed by a formal definition of constraint solving in terms of Constraint
Handling Rules (CHRs) in Section 4. We show how to translate a Hindley/Milner typing problem
with Haskell-style overloading into a system of CHRs in Section 5, and then how we use this for
type inference and checking in Section 6. Our main results are stated in Section 6.1. In Section 7,
we discuss how simple constraint reasoning steps support type debugging of programs. Related
work is discussed in Section 8. We conclude in Section 9. An implementation of our type debugger
is available via [30].

2 The Chameleon Type Debugger

In this section we explain the features of the Chameleon type debugger. The Chameleon sys-
tem [30] supports a Haskell-style language with its own overloading mechanism [27]. Currently,
the Chameleon system does not allow for the debugging of errors in the definitions of type classes
and instances.1 Chameleon does of course allow us to debug the usage of classes and instances.

The debugger makes use of two kinds of constraint reasoning. In order to explain why a type
error arises it determines minimal unsatisfiable subsets of a set of constraints. In order to explain
why an expression has a certain type it determines a minimal implicant of a set of constraints.
Details of these operations can be found in Section 7.

2.1 Error Explanation

We can ask for the type of an expression e using the command type e. If e has no type this displays
the parts of the program which cause the error. It translates e into a set of constraints C. The
constraint C is executed with respect to the CHRs P of the translated program, by exhaustively

1To do so requires a well-understood check of the confluence of the CHRs [1]. This is straightforward for
CHRs arising from Haskell 98 classes and instances, but termination issues arise when arbitrary programmed type
extensions are allowed. Currently, we also do not check for the monomorphism restriction and some other Haskell
98 specific context restrictions.

4

applying the rules in P to obtain a new constraint C′. We denote this execution by C −→∗
P C′. If

C′ is satisfiable it displays the type of e. Otherwise the system determines a minimal unsatisfiable
subset of C′ (simply the first one detected) and displays the justifications for that set.

We support two basic approaches to displaying the justifications of an error.
Local explanation restricts attention to the expression for which the type error is detected, all

locations outside this expression are ignored. If the expression is a single function name, we restrict
attention to the function definition. Local explanation is useful for top-down exploratory style of
type debugging which we believe is more natural. Indeed while using local explanations the system
in fact simplifies all constraints arising from each other function, which considerably simplifies the
calculation of minimal unsatisfiable subsets and minimal implicants.

Example 3 Returning to Example 1, using local explanation the CHR for f(t) is treated as
f(t) ⇐⇒ t = Bool → Bool and the minimal unsatisfiable subset is (t1 = Char){1.8}, (t2 =
Bool → Bool){2,8}, (t2 = t1 → t3){3,8}. The resulting justification 1, 2, and 3 is the same as
before (restricted to locations in p), but less constraints are generated. The resulting explanation
is p = f ’a’ 2

Global explanation is more expensive to compute but allows the user to explore an error in
a bottom-up manner. Here all the justification information is used to determine an error. The
system highlights positions involved in one minimal unsatisfiable subset, and can highlight those
positions that occur in all minimal unsatisfiable subsets differently from those not occurring in all.

Example 4 Consider the following program:

foldl f z [] = [z]

foldl f z (x:xs) = foldl f (f z x) xs

flip f x y = f y x

reverse = foldl (flip (:)) []

palin xs = reverse xs == xs

where palin is intended to be a function from a list to a Boolean value. It should return True if
its argument is a palindrome. Hugs [16] reports the following:

ERROR Ex1.hs:6 - Type error in application

*** Expression : xs == reverse xs

*** Term : xs

*** Type : [a]

*** Does not match : [[a]]

*** Because : unification would give infinite type

telling us no more than that there is an error within palin.
By using global error explanation, we can get an immediate picture of the program sites which

interact to cause this error. In the following debugger query, one global explanation of the type
error is given by the underlined code. Locations which appear in all minimal unsatisfiable subsets
are underlined twice, while those which only appear in the selected minimal unsatisfiable subset
are underlined once. Note that the “real” cause of the error does occur in all unsatisfiable subsets,
and in our experience this is usually the case where there is one “real” error.

Ex1.hs> :set global

Ex1.hs> :type palin

type error - contributing locations

foldl f z [] = [z]

foldl f z (x:xs) = foldl f (f z x) xs

5

flip f x y = f y x

reverse = foldl (flip (:)) []

palin xs = reverse xs == xs

By starting from any of these sites, the programmer is able to work towards the true cause of
the error - in any direction. In this case, the problem is that the first clause of foldl should not
return a list, [z], but rather z. Correspondingly, the offending location is double-underlined.

If we had taken a local approach to error explanation here, the result would have been specific
to only the definition of palin. We would then have to proceed in a top-down fashion, from
definition to definition, towards the offending expression.

2

The system naturally handles type class extensions that can be expressed by CHRs.

Example 5 Functional dependencies in class constraints are useful for preventing ambiguity. Con-
sider a multi-parameter collection class Collect a b where type b is a collection of elements of
type a. The class definition is

class Collect a b where

empty :: b

insert :: a -> b -> b

member :: a -> b -> Bool

As defined this class is flawed, since the type of empty :: Collect a b => b is ambiguous. Type
variable a appears only in the constraint component. This leads to difficulties when implementing
Haskell-style overloading [19]. Functional dependencies allow us to overcome this problem, by
stating that b functionally determines a. Hugs [16] supports functional dependencies.

class Collect a b | b -> a where ...

This functional dependency can be expressed by a CHR propagation rule.

Collect a b, Collect a′ b =⇒ a = a′

The =⇒ symbol is read as logical implication. Operationally the rule is read as, if you have a
match for the left hand side you may add the right hand side. The above rule states that if there
are two Collect constraints with the same second argument, we enforce that their first arguments
are identical.

Consider the following program which tries to check if a Float is a member of a collection of
Ints.

f g x y = if member (x::Float) (insert (1::Int) y)

then g x else y

The constraints for f imply Collect Int t and Collect F loat t which causes the propagation
CHR to fire adding the information that Int = Float causing a type error to be detected. The
justification of the error is reported as:

Ex9.hs> :type f

type error - contributing locations

f g x y = if member (x::Float) (insert (1::Int) y)

then g x else y

rule(s) involved: Collect a b, Collect a’ b ==> a = a’

6

The system could be straightforwardly extended to report the source of the CHR involved—the
functional dependency b -> a. 2

Example 6 A strength of our system is to be able to support almost arbitrary type class exten-
sions. This is made possible through the extensible type system [27] underlying our approach.
Consider

f x y = x / y + x ‘div‘ y

The inferred type is f :: (Integral a, Fractional a) => a -> a -> a rather than immedi-
ately causing a type error. We would like to state that the Integral and Fractional classes must
be disjoint. This can be expressed via the following CHR.

Integral a, Fractional a =⇒ False

Then, the type debugger reports the following.

Ex10.hs> :t f

type error - contributing locations

f x y = x / y + x ‘div‘ y

rule(s) involved: Integral a, Fractional a ==> False

2

2.2 Type Explanation

Another important feature of the debugger is to explain how various types arise, even when there
are no type errors. This allows the user to ask “why does this expression have such a type”?
We can ask to explain the type t of expression e using the command explain (e) (D ⇒ t). The
system builds the constraints C for expression e and executes C −→∗

P C′ and then checks whether

C′ ⊃ ∃̃te
(te = t, D) where te is the type variable corresponding to e and ∃̃te

quantifies everything
except te. That is the inferred type for e is stronger than that we are asking to explain. If this is
the case it determines a minimal subset of C′ which causes the implication and displays the set of
justifications for this set, in a global or local fashion just as for type error explanation.

In the following example we use this capability to explain an error arising from a missing
instance.

Example 7 Consider the following program illustrating a classic beginners error with Haskell

sum [] = []

sum (x:xs) = x + sum xs

The Hugs system generates the error

ERROR Ex11.hs:9 - Illegal Haskell 98 class constraint in inferred type

*** Expression : sum

*** Type : Num [a] => [[a]] -> [a]

The inferred type has a class constraint that is non-variable and has no instance. This is completely
opaque to a beginning Haskell programmer.

We can generate an explanation for the error by looking for a reason for (e.g. minimal set of
constraints implying) the constraint Num [a]. Asking the type debugger

Ex11.hs> :explain sum (Num [] =>)

sum [] = []

sum (x:xs) = x + sum xs

7

Clearly indicating the problem arises from the [] of the body of the first rule interacting with +

and the recursive call to sum. 2

Example 8 Returning to Example 5, the Hugs error message is

ERROR Ex9.hs:10 - Constraints are not consistent with

functional dependency

*** Constraint : Collects Float a

*** And constraint : Collects Int a

*** For class : Collects a b

*** Break dependency : b -> a

This gives very little information to the programmer about the error. In our system we can ask
where the constraints arise from:

Ex9.hs> :explain f (Collects Float =>)

f g x y = if member (x::Float) (insert (1::Int) y)

then g x else y

Note that even though the constraint system is unsatisfiable, a minimal implicant correctly
determines a useful justification of the constraint. 2

2.3 Subsumption and Ambiguity Explanation

We also support two further forms of explanations which arise in the context of user-provided type
annotations and Haskell-style overloading.

2.3.1 Subsumption Failure

Chameleon supports explicit type annotations of the form f::C=>t. We must ensure that the
annotated type is “subsumed” by the inferred type. In other words, the annotated type cannot be
more general than the (most general) inferred type. Our aim is to provide enough information to
the user to resolve such a problem if it occurs.

When a subsumption error occurs, it is because a stronger type has been inferred than that
provided. We highlight those locations in the program which cause this stronger type to be inferred.

Example 9 The following program has been annotated with a type which is too general.

insert :: a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) | x > y = y : insert x ys

| otherwise = x : y : ys

The inferred type of insert is Ord a => a -> [a] -> [a]. The Ord constraint is missing
from the declared type. Chameleon reports:

insert.ch:1: ERROR: inferred type does not subsume declared type

declared: a -> [a] -> [a] inferred: Ord(a) => a -> [a] -> [a]

insert :: a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) | x > y = y : insert x ys

| otherwise = x : y : ys

8

This indicates that the problem lies with the use of >. We cannot use > in insert with that
declared type.

2

Note that typically this form of error reporting will cause the debugger to highlight only loca-
tions in a function’s definition - we trust that the type declaration accurately reflects the program-
mer’s intended type for the function, and we highlight the locations which disagree. It is possible
however, that information in the declared type itself might contribute to the problem. In such a
case, the problematic parts of the declared type will also be highlighted.

Example 10 Consider the following program:

f :: a -> b -> (c,d)

f x y = x

The annotation given to f is too general. Clearly if x has type (c,d), then it cannot also have
type a, as declared. As such, there is a conflict between the type declaration and the program.

Chameleon reports:

f :: a -> b -> (c, d)

f x y = x

This shows that the problem involves the two occurrences of x and the distinct types they have
been given.

In this case either the type or the definition may be altered to resolve the problem. 2

2.3.2 Ambiguity

In Haskell, a type scheme is ambiguous if there are variables which appear in its context, but not
in its type. Typically these ambiguities are resolved by the programmer providing an explicit type
declaration at some point in the program. We are interested in reporting program sites whose types
include variables which appear within ambiguous constraints. By highlighting those locations, we
can direct the program to the sites which either need to be reworked or type-annotated.

Example 11 Consider the following program which has an ambiguous type.

p u = (show x, f x)

where x = read u

y = x

f = undefined

The inferred type of p is (Read(b), Show(b)) => [Char] -> ([Char],a). Notice how vari-
able b does not occur in the type component, only in the constraints, hence the type is ambiguous.
To resolve this problem, the programmer must know which program sites are responsible for the
ambiguous type variables. They can then be annotated with specific types - indicating the actual
instances of show and read that are required.

When this program is loaded, Chameleon will report:

p u = (show x, f x)

where x = read u

y = x

f = undefined

This indicates that some of those locations have to be altered to fix the program. For example,
replacing x = read u by

9

x :: String

x = read u

would be sufficient. 2

Note that Haskell’s monomorphism restriction is not enforced in Chameleon. Consequently,
the type of x in the above program is forall a. Read a => a. In Haskell it would have the
monomorphic type Read a => a. This distinction is significant, since it means that the Chameleon
type debugger may not find all locations whose types contain variables that Haskell would consider
ambiguous.

Example 12 Returning to the previous program, we note that since x has a monomorphic type
in Haskell, it would be possible to fix the ambiguity problem by annotating any occurrence of x. If
Chameleon supported the monomorphism restriction, it would highlight the following sites when
reporting the ambiguity error.

p u = (show x, f x)

where x = read u

y = x

f = undefined

Indeed, adding a type annotation to the definition of y would resolve the problem in Haskell,
but not in Chameleon. 2

2.4 Referring to Local Variables

In order to track down type errors interactively it is often useful to be able to find the types and
explain the types of variables local to a function definition. Current interactive Haskell systems
only permit references to variables bound at the top-level. The debugger allows the syntax f;r to
refer to variable r local to the definition of f . If there are multiple equations (patterns) for the
definition for f we can select one using the notation f;n;r where n is an integer pattern number.
By default if there are multiple equations, and no pattern number is given, the first where the local
variable exists is used. Local variables inside nested scopes can also be referred to.

Example 13 Consider the program

f (x:xs1) = True

f xs2 ys = let h xs3 = xs ++ xs

g ys = ys ++ xs

in h ys ++ g (xs ++ ys)

Then f;1;xs refers to xs1, while f;2;xs refers to xs2. By default f;xs refers to xs1. In addition
f;2;h;xs and f;h;xs refer to xs3. 2

2.5 Type Addition

While the explain command allows users to ask why a location has a type of a particular shape,
the declare command allows users to ask why not of a location and a type. The declare f
(C ⇒ t) command adds constraints x = t, C where x is the type of f to the CHR program defining
f .

Example 14 Returning to Example 7, we can get another explanation for the erroneous type of
sum by adding the expected type.

10

Ex11.hs> :declare sum ([Int] -> Int)

Ex11.hs> :type sum

type error - contributing locations

sum :: [Int] -> Int

sum [] = []

we are shown those locations which are in conflict with the newly declared type, as well as the
parts of the added type which conflict. 2

2.6 Source-Based Debugger Interface

Although an interactive debugging system provides users with the means to quickly pose a number
of consecutive queries, narrowing in on the target, it might also be viewed as a slightly heavy
handed interface to the debugger. An interactive system necessarily interrupts the typical, edit-
compile programming cycle, which may be distracting. Furthermore, it may at times seem quite
awkward to keep type exploration separate from the program source itself.

To this end we have provided an alternative means to interact with the debugger, by allowing
for commands to appear naturally within the source program. At this time we have support for
type e where e is an expression written e::?. And we support explain e (D ⇒ t), where e is an
expression and D ⇒ t is a type scheme, written e::?D => t.

Entire declarations can be queried by writing such a command at the same scope as the declara-
tion (with a declaration name in place of an expression.) These queries are collected and processed
in textual order. They do not effect the semantics of the program in which they are embedded,
merely the compiler’s output.

Example 15 Consider the following, modified, snippet of the program presented in Example 4.

reverse ::?

reverse = foldl (flip (:)) []

When we attempt to compile this code, using the non-interactive system, we would get, in
addition to the usual type error message, the following output:

reverse :: [a] -> [[a]]

Further modification of the program might lead to the following, which involves an explain-
style query:

reverse ::?

reverse = (foldl (flip (:)) []) ::? -> [[]]

The corresponding output would be:

reverse :: [a] -> [[a]]

foldl (flip (:)) [] ::? -> [[]]

because of: foldl (flip (:)) []

2

2.7 Declarative Debugging Interface

Chameleon also includes a simplistic declarative debugging interface. We can invoke the declara-
tive debugging interface on an expression e with a type error using the command debug e. The
declarative debugger works like a declarative debugger for a logic program [26], localizing the error
by finding a function whose type is wrong, but all the functions used in its definitions are correct.
A similar feature is also provided by [15, 3].

11

(Var) C, Γ ⊢ v : σ (v : σ ∈ Γ) (Let)
C, Γ ⊢ e : σ C, Γ.x : σ ⊢ e′ : τ ′

C, Γ ⊢ let x = e in e′ : τ ′

(Abs)
C, Γ.x : t1 ⊢ e : t2

C, Γ ⊢ λx.e : t1 → t2
(App)

C, Γ ⊢ e1 : t1 → t2 C, Γ ⊢ e2 : t1

C, Γ ⊢ e1e2 : t2

(∀ Intro)
C ∧ D, Γ ⊢ e : t ā 6∈ fv(Γ, C)

C, Γ ⊢ e : ∀ā.D ⇒ t
(∀ Elim)

C, Γ ⊢ e : ∀ā.D ⇒ t′ F |= C ⊃ [t̄/ā]D

C, Γ ⊢ e : [t̄/ā]t′

Figure 1: Hindley/Milner with Constraints

Example 16 Consider the program of Example 4 once more. The declarative debugger trace
might be

Ex1.hs> :debug palin

reverse :: [a] -> [[a]]

Ex1.hs: is this type correct> n

flip :: (a -> b -> c) -> b -> a -> c

Ex1.hs: is this type correct> y

foldl :: (a -> b -> a) -> a -> [b] -> [a]

Ex1.hs: is this type correct> n

type error - contributing locations

foldl f z [] = [z]

foldl f z (x:xs) = foldl f (f z x) xs

2

The declarative debugging interface, chooses a minimal unsatisfiable subset, and asks the user
about types of functions involved in this set, from the top down to discover where the error actually
lies. It then shows the justifications of the error in this function. Note that since it uses a minimal
unsatisfiable subset, it will never ask questions about functions not involved in this subset. This
is not the case for the system of [3], since it does not determine minimal unsatisfiable subsets.

3 Types and Constraints

We consider an extension of the Hindley/Milner system with constraints.

Expressions e ::= f | x | λx.e | e e | let f = e in e
Types t ::= a | t → t | T t̄
Type Schemes σ ::= τ | ∀ᾱ.C ⇒ t
Constraints C ::= t = t | U t | C ∧ C

W.l.o.g., we assume that λ-bound and let-bound variables have been α-renamed to avoid name
clashes. We commonly use x, y, z, . . . to refer to λ-bound variables and f, g, h, . . . to refer to user-
and pre-defined functions. Both sets of variables are recorded in a variable environment Γ. Note
that we consider Γ as an (ordered) list of elements, though we commonally use set notation. We
denote by {x1 : σ1, . . . , σn : tn}.σ : t the environment {x1 : σ1, . . . , σn : tn, σ : t}.

12

Our type language consists of variables a, type constructors T and type application, e.g. T a.
We use common notation for writing function and list types. A type scheme is of the form ∀ā.C ⇒ t
where ā refers to the set of bound variables, C is a set of constraints and t is a type. When C is
omitted it is considered to be True.

We make use of two kinds of constraints—equations and user-defined constraints. An equation
is of the form t1 = t2, where t1 and t2 are types. A user-defined constraint is one of U t1 · · · tn where
U is a predicate symbol and t1, . . . , tn are types, or p(t) where p is a predicate symbol and t a type.
The reason for the two forms of user-defined constraints is simply to have different notation for user-
defined constraints for indicating the types of functions, and user-defined constraints specifying
some other program properties.

Conjunctions of constraints are often treated as sets of constraints. We assume a special (always
satisfiable) constraint True representing the empty conjunction of constraints, and a special never-
satisfiable constraint False. If C is a conjunction we let Ce be the equations in C and Cu be the
user-defined constraints in C. We assume the usual definitions of substitution, most general unifier
(mgu), etc. [21].

We consider the standard Hindley/Milner system extended with constraints. The typing rules
(Figure 1) are essentially the ones from HM(X) [25, 29]. In rule (Var), we assume that v either
refers to a λ- or let-bound variable. In rule (∀ Intro), we build type schemes by pushing in the
“affected” constraints. Note that we slightly deviate from the standard HM(X) (∀ Intro). However,
the current rule is good enough for a lazy language. We refer to [25] for a detailed discussion. In
rule (∀ Elim), we assume that F refers to a first-order formula specifying relations among user-
defined constraints, |= denotes the model-theoretic entailment relation and ⊃ stands for logical
implication. We generally assume that F can be described by a set of CHRs.

4 Constraint Handling Rules with Justifications

We will translate the typing problem to a constraint problem where the meaning of the user-defined
constraints is defined by Constraint Handling Rules (CHRs) [6]. CHRs manipulate a global set of
primitive constraints, using rewrite rules of two forms

simplification c1, . . . , cn ⇐⇒ d1, . . . , dm

propagation c1, . . . , cn =⇒ d1, . . . , dm

where c1, . . . , cn are user-defined constraints, and d1, . . . , dm are constraints.
The logical interpretation of the rules is as follows. Let x̄ be the variables occurring in

{c1, . . . , cn}, and ȳ be the other variables occurring in the rule. The logical reading is

simplification ∀x̄((c1 ∧ · · · ∧ cn) ↔ ∃ȳ (d1 ∧ · · · ∧ dm))

propagation ∀x̄((c1 ∧ · · · ∧ cn) ⊃ ∃ȳ (d1 ∧ · · · ∧ dm))

In our use of the rules, constraints occurring on the right hand side of rules have attached
justifications (program locations). We extend the usual derivation steps of Constraint Handling
Rules to maintain justifications.

A simplification derivation step applying a renamed rule instance r ≡ c1, . . . , cn ⇐⇒ d1, . . . , dm

to a set of constraints C is defined as follows. Let E ⊆ Ce be such that the most general unifier
of E is θ. Let D = {c′1, . . . , c

′
n} ⊆ Cu, and suppose there exists substitution σ on variables in r

such that {θ(c′1), . . . , θ(c
′
n)} = {σ(c1), . . . , σ(cn)}, that is a subset of Cu matches the left hand side

of r under the substitution given by E. The justification J of the matching is the union of the
justifications of E ∪ D.

13

Then we create a new set of constraints C′ = C − {c′1, . . . , c
′
n} ∪ {θ(c′1) = c1, . . . , θ(c

′
n) =

cn, (d1)+J , . . . , (dn)+J}. Note that the equation θ(c′i) = ci is shorthand for θ(s1) = t1, . . . , θ(sm) =
tm where c′i ≡ p(s1, . . . , sm)J′ and ci ≡ p(t1, . . . , tm). The annotation +J indicates that we add
the justification set J to the original justifications of each di. The other constraints (the equality
constraints arising from the match) are given empty justifications. Indeed, this is sufficient. The
connection to the original location in the program text is retained by propagating justifications to
constraints on the rhs only.

A propagation derivation step applying a renamed rule instance r ≡ c1, . . . , cn =⇒ d1, . . . , dm

is defined similarly except the resulting set of constraints is C′ = C ∪ {θ(c′1) = c1, . . . , θ(c
′
n) =

cn, (d1)+J , . . . , (dn)+J}.
A derivation step from global set of constraints C to C′ using an instance of rule r is denoted

C −→r C′. A derivation, denoted C −→∗
P C′ is a sequence of derivation steps using rules in P

where no derivation step is applicable to C′. The operational semantics of CHRs exhaustively
apply rules to the global set of constraints, being careful not to apply propagation rules twice on
the same constraints (to avoid infinite propagation). For more details on avoiding repropagation
see e.g. [1].

5 Translation to Constraint Handling Rules

Our approach to type inference follows [4] by translating the typing problem into a constraint
problem. However, in contrast to [4] where translation results in a set of Horn clauses, we map the
typing problem to a set of Constraint Handling Rules (CHRs) [6].

For each definition f = e, we introduce a CHR of the form f(t, l) ⇐⇒ C. The type parameter
t refers to the type of f whereas l refers to the set of types of λ-bound variables in scope. The
reason for l is that we must ensure that λ-bound variables remain monomorphic. The constraint C
contains the constraints generated out of expression e plus some additional constraints restricting
l. We use list notation (on the level of types) to refer to the “set” of types of λ-bound variables.
In order to avoid confusion with lists of values, we write 〈l1, . . . , ln〉 to denote the list of types
l1, . . . , ln. We write 〈l|r〉 to denote the list of types with head l and tail r.

The following example provides some details about our translation scheme in case of nested
definitions. The basic idea is to employ some form of λ-lifting on the level of types.

Example 17 Consider

k z = let h w = (w,z)

f x = let g y = (x,y)

in (g 1, g True, h 3)

in f z

In a first attempt, a (partial) description of the resulting CHRs might look as follows. For simplicity,
we leave out the constraints generated out of expressions. We commonly write tx to denote the
type of λ-bound variable x.

(k) k(t, l) ⇐⇒ l = 〈〉, . . .
(h) h(t, l) ⇐⇒ l = 〈tz〉, . . .
(f) f(t, l) ⇐⇒ l = 〈tz〉, . . .
(g) g(t, l) ⇐⇒ l = 〈tz , tx〉, . . .

Note that the λ parameter l refers exactly to the set of types of all free (λ) variables in scope.
Hence, at instantiation sites we need to specify correctly the set of types of λ-bound variables in

14

scope. Consider expression. (g 1, g True, h 3). Among others, we generate (justifications are
omitted for simplicity)

g(t1, l1), l1 = 〈tz, tx〉, t1 = Int → t′1,
g(t2, l2), l2 = 〈tz, tx〉, t2 = Bool → t′2,
h(t3, l3), l3 = 〈tz〉, t3 = Int → t′3, . . .

It seems unnecessary to keep track of the exact set of types of λ-variables for each function defini-
tion. Indeed, a simple trick allows us to maintain only a list of λ-variables for all functions. The
set of types of lambda-bound variables in scope for function definitions is simply left “open”. The
set of types of lambda-bound variables at function instantiation sites corresponds to the “full” set
of types of lambda-bound variables in scope. Our actual translation yields the following result.

(k) k(t, l) ⇐⇒ l = r, t = t1 → t2, f(t, l1), l1 = 〈tz〉, t1 = tz
(h) h(t, l) ⇐⇒ l = 〈tz|r〉, t = tw → (tw, tz)

(f) f(t, l) ⇐⇒ l = 〈tz|r〉, t = (t′1, t
′
2, t

′
3), g(t1, l1),

l1 = 〈tz , tx〉, t1 = Int → t′1,
g(t2, l2), l2 = 〈tz, tx〉, t2 = Bool → t′2,
h(t3, l3), l3 = 〈tz, tx〉, t3 = Int → t′3

(g) g(t, l) ⇐⇒ l = 〈tz, tx|r〉, t = ty → (tx, ty)

For example, in rule (h) we require that variable z is in scope plus possibly some more variables
(see underlined constraint). Please observe that in rule (f), we pass in the (somewhat redundant)
variable tx as part of the l parameter at the instantiation site of h (see double-underlined con-
straint). There is no harm in doing so, because there is no reference to variable tx on the right
hand side of rule (h). 2

The translation of the typing problem consists of two procedures for generating constraints out
of expressions and generating CHRs for function definitions. We assume that individual expressions
are annotated with unique numbers, i.e. program locations.

Constraint generation is formulated as a logical deduction system with clauses of the form
Γ, e ⊢Cons (C t) where environment Γ and expression e are input parameters and constraint C
and type t are output parameters. See Figure 2 for details. For example, in rule (Var-f) we generate
an “instantiation” constraint. The constraint f(t, l), l = 〈tx1

, . . . , txn
〉 demands on instance of f

on type t where (tx1
, . . . , txn

) refers to the set of types of λ-bound variables in scope. The actual
type of f will be described by a CHR where the set of types of λ-bound variables is left open. Note
that the order of types of lambda-bound variables matters.

Generation of CHRs is formulated as logical deduction system with clauses of the form Γ, e ⊢Cons

P where environment Γ and expression e are input parameters and the set P of CHRs is the output
parameter. See Figure 3 for details.

In the following, we discuss how to adjust our translation scheme in case of some type extensions.
For brevity we omit the (uninteresting) l argument for λ-bound variables, whose role is orthogonal
to these extensions.

5.1 Type Annotations

We add explicit type annotations to our language of expressions.

Expressions e ::= . . . | let
f :: σ
f = e

in e

Note that (e :: σ) can be viewed as syntactic sugar for

let
f :: σ
f = e

in f

15

(Var-x)
(x : t1) ∈ Γ t2 fresh

Γ, xl ⊢Cons ((t2 = t1)l t2)

(Var-f) {x1 : tx1
, . . . , xn : txn

}, fl ⊢Cons (f(t, l)l, l = 〈tx1
, . . . , txn

〉 t)

(Abs)
Γ.x : t1, e ⊢Cons (C t2) t1, t3, t4 fresh

Γ, (λxl1 .e)l2 ⊢Cons (C, (t3 = t4 → t2)l2 , (t1 = t4)l1 t3)

(App)
Γ, e1 ⊢Cons (C1 t1) Γ, e2 ⊢Cons (C2 t2) t3 fresh

Γ, (e1 e2)l ⊢Cons (C1, C2, (t3 = t1 → t2)l t3)

(Let)
Γ, e2 ⊢Cons (C t)

Γ, let f = e1 in e2 ⊢Cons (C t)

Figure 2: Justified Constraint Generation

(Var) Γ, v ⊢Def ∅

(Abs)
t fresh Γ.x : t, e ⊢Def P

Γ, λx.e ⊢Def P

(App)
Γ, e1 ⊢Def P1 Γ, e2 ⊢Def P2

Γ, e1 e2 ⊢Def P1 ∪ P2

(Let)

Γ, e1 ⊢Def P1 Γ, e2 ⊢Def P2

Γ, e1 ⊢Cons (C t) Γ = {x1 : t1, . . . , xn : tn} r fresh

P = P1 ∪ P2 ∪ {f(t, l) ⇐⇒ C, l =< t1,tn|r >}

Γ, let f = e1 in e2 ⊢Def P ′

Figure 3: Rule Generation for Hindley/Milner

where f is a fresh identifier. The typing rule for the additional language construct is standard.

(Let-Annot)

C, Γ ⊢ e : σ C, Γ.f : σ ⊢ e′ : τ ′

C, Γ ⊢ let
f :: σ

f = e
in e′ : τ ′

As it is common, we often leave universal quantifiers implicit. That is, f :: C ⇒ t is a short-hand
for f :: ∀ā.C ⇒ t where ā = fv(C, t).

16

Type inference for type annotations generates two CHRs instead of one.

(Let-Annot)

Γ, e1 ⊢Cons (C t) Γ = {x1 : t1, . . . , xn : tn} r fresh

Γ, e2 ⊢Def P

P ′ = P ∪ {fa(t, l) ⇐⇒ (t = ta)i, (Ca)i}∪

{f(t, l) ⇐⇒ fa(t, l), C, l =< t1,tn|r >}

Γ, let
(f :: Ca ⇒ ta)i

f = e1

in e2 ⊢Def P ′

We will need to check that the annotated type (represented by fa) is “subsumed” by the inferred
type (represented by f). Details will be discussed in Section 6.2.

Example 18 Consider the program

(g :: [Char] -> Bool)1

g8 ((x2:3)4xs5)6 = True7

The CHR generated for g from the annotation is simply

ga(x) ⇐⇒ (x = [Char] → Bool)1

The CHR generated for g is

g(t8) ⇐⇒(t2 = tx)2, (t3 = a → [a] → [a])3,
(t3 = t2 → t4)4, (t5 = txs)5, (t4 = t5 → t6)6,
(t7 = Bool)7, (t8 = t6 → t7)8, ga(t8)

2

5.2 Multiple Clauses

The (possibly multiple) definitions for a single function are joined using another CHR. If there are
m definitions of f , numbered fi1 , . . . , fim

then the final CHR rule for f is

f(x) ⇐⇒ fi1(x), . . . , fim
(x)

Note the lack of justifications, which will be collected from the rules for fi1 , . . . , fin
.

5.3 Recursive Functions

We consider recursive functions.

Expressions e ::= . . . | letmono f = e in e | letpoly
f :: σ
f = e

in e

For simplicity, we introduce distinct language construct for monomorphic and polymorphic recur-
sive functions. Note that we require explicit type annotations for polymorphic recursive functions
to ensure decidable type inference [14]. Note that in our implementation and example programs,
we only make use of one “let” construct. We can distinguish between monomorphic, polymorphic
recursive and other let-defined functions by a simple dependency analysis and checking for the
presence of explicit type annotations.

17

The typing rules are standard.

(Let-Mono)
C, Γ ⊢ et C, Γ.f : t ⊢ e′ : t′

C, Γ ⊢ letmono f = e in e′ : t′

(Let-Poly)

C, Γ.f : σ ⊢ e : σ C, Γ.f : σ ⊢ e′ : τ ′

C, Γ ⊢ letpoly
f :: σ

f = e
in e′ : τ ′

We illustrate the necessary changes for rule generation by some examples. If we were to naively
apply the scheme outlined before to the translation of recursive programs, our type inference
procedure would become undecidable. In short, a CHR derivation, in such a situation, would
never terminate.

Example 19 Consider the program:

f (x, y) = g (x, y)

g (x, y) = f (y, x)

Applying the standard translation, we would generate something like the following.

f(tf) ⇐⇒ g(tg), tg = (tx, ty) → tr, tf = (tx, ty) → tr
g(tg) ⇐⇒ f(tf), tf = (ty, tx) → tr, tg = (tx, ty) → tr

Note that these rules are simplified versions of what our translation scheme would actually generate.
If we were to attempt a CHR derivation involving either rule, it is clear that it would never
terminate. 2

To circumvent this problem, we enforce monomorphic recursion for functions without type
annotations in Chameleon. Consequently, this allows us to replace the user constraints involved in
cycles with monomorphic types. We do this by unfolding cyclical user constraints.

Example 20 We return to the two CHRs generated above, with the knowledge that the calls to
f and g within their bodies are involved in a cycle.

We begin with the rule for f above, and apply the simplification rule for g to the rhs constraints,
obtaining the following:

f(tf) ⇐⇒ f(t′f), t
′
f = (t′y, t′x) → t′r, t

′
g = (t′x, t′y) → t′r,

tg = t′g, tg = (tx, ty) → tr, tf = (tx, ty) → tr

The newly added constraints are shown in boldface. The constraint tg = t′g represents the matching
of the type in the g user constraint and the type in the head of the g rule. Finally, to break the
cycle we replace the call to f with a constraint asserting that t′f is the same type as we have already
found for f - hence the monomorphism.

f(tf) ⇐⇒ t′f = tf , t
′
f = (t′y, t′x) → t′r, t

′
g = (t′x, t′y) → t′r,

tg = t′g, tg = (tx, ty) → tr, tf = (tx, ty) → tr

The same procedure would then be carried out for the g rule. 2

We are able to type polymorphic recursive programs, given that the programmer has supplied
sufficient type declarations.

18

Example 21 Consider the function:

f :: [a] -> Bool

f [] = True

f (x:xs) = f [xs]

Note that the type annotation is necessary. In such a case, our translation (simplified) yields the
following.

fa(t) ⇐⇒ t = [a] → Bool
f(t) ⇐⇒ f1(t), f2(t)
f1(t) ⇐⇒ t = [a] → Bool
f2(t) ⇐⇒ t = [a] → t1, t2 = [[a]] → t1, fa(t2)

To break the cycle, we employ the annotated CHR for the recursive call. 2

In general, rule generation for polymorphic recursive function is the same as for type annotated
let definitions. In case of monomorphic recursive functions, we need to unfold CHRs.2 Constraint
generation needs to adjusted in case of rule (Var-f) in Figure 2. We need to distinguish between
function identifiers with and without type annotation.

(Var-f)
f has no type annotation

{x1 : tx1
, . . . , xn : txn

}, fl ⊢Cons (f(t, l)l, l = 〈tx1
, . . . , txn

〉 t)

(Var-f-Annot)
f has a type annotation

{x1 : tx1
, . . . , xn : txn

}, fl ⊢Cons (fa(t, l)l, l = 〈tx1
, . . . , txn

〉 t)

5.4 Overloading

For an in-depth treatment of the translation of Haskell-style class and instance declarations to
CHRs we refer the interested reader to [27, 8].

The translation from declarations to CHRs is

instance (C => TC t)l0
where TC t ⇐⇒ Cl0

f = e

class (C => TC x)l1
where TC x =⇒ Cl1

f :: (C ⇒ t)l2
fa(y) ⇐⇒ y = t, Cl2

, (TC x)l2

The appropriate location (l0, l1 or l2) is added as justification to all constraints on the right
hand side. A missing constraint C is treated as True. Note that we use upper-case letters for
user-defined type class constraints, and lower-case letters for user-defined constraints referring to
function definitions.

Example 22 Given the class and instance declarations below,

class (Eq a)50 where

(==) :: a -> a -> Bool51

class (Eq a => Ord a)52 where

(>) :: a -> a -> Bool53

instance (Ord a => Ord [a])54 where

[] > = False

2In fact, in our implementation we perform unfolding on the fly. That is, the CHR solver detects and breaks
cycles.

19

(:) > [] = True

(x:xs) > (y:ys) = x > y || x == y && xs > ys

instance (Ord Bool)55 where

True > False = True

> = False

we generate the following CHRs

Eq a =⇒ True
eqa(t51) ⇐⇒ (t51 = a → a → Bool)51, (Eq a)51

Ord a =⇒ (Eq a)52
gta(t53) ⇐⇒ (t53 = a → a → Bool)53, (Ord a)53
Ord [a] ⇐⇒ (Ord a)54

Ord Bool ⇐⇒ True

We assume eq represents the type of Eq’s member function (==) and gt represents the type of
Ord’s member function (>). Note that CHRs arising from the type annotations appearing in the
classes have a missing implicit class constraint added.

Note we would also generate constraints for the code defining the instance methods for > and
check this versus the annotation constraints for gt. 2

The proof of correctness of these rules in modeling the class constraints can be found in [8].
Note that our type debugging approach also immediately extends to more complicated approaches
to overloading that can be expressed as CHRs [27].

We generally assume that CHRs are confluent. A set of CHRs is confluent if any sequence of
derivation steps leads to the same final constraint store. This condition holds trivially for CHRs
generated from the Hindley/Milner subset of our language. The same is true for any valid set of
Haskell 98 [10] class and instance declarations.

6 Type Inference via CHR Solving

Consider type inference for a function definition f = e. We execute the goal f(t, l) using the CHR
program P created, i.e. f(t, l) −→∗

P C, and build φ, the most general unifier of Ce (the set of
equations in C). Let ā = fv(φCu) \ fv(φl) (Cu refers to the set of user-defined constraints in C).
These are the variables we will quantify over; we specifically exclude types of λ-bound variables.
We can then build the type scheme, f :: ∀ā φCu ⇒ φt.

Note that in our scheme we are a bit more “lazy” in detecting type errors compared to other
formulations.

Example 23 Consider

e = let f = True True

in False

Our (simplified) translation to CHRs yields

f(t) ⇐⇒ t1 = Bool, t1 = t2 → t3, t2 = Bool, t3 = t
e(t) ⇐⇒ t = Bool

For simplicity, we omit justifications and the l parameter. Note that type inference for expression
e succeeds, although function f is ill-typed. There is no occurrence of f in the let body, hence we
never execute the CHR belonging to f. In a traditional approach, type inference for e proceeds by

20

first inferring the type of f immediately detecting that f is not well-typed. Note that our approach
is still type-safe for a lazy language. Additionally, we could require that all defined functions must
be type correct, by simply executing the corresponding CHRs. 2

In the following example, we give a precise account of the interplay between CHR solving and
justifications attached to constraints.

Example 24 Consider the following program, together with the class and instance declarations
of Example 22

lteq10 x1 y2 = (not7 ((x4 >3)5 y6)8)9

not :: Bool -> Bool16

where (>) is part of the Ord class. The translation process yields (again for simplicity we ignore
the λ-bound variables argument):

lteq(t10) ⇐⇒ (t1 = tx)1, (t2 = ty)2, gt(t3,)3, (t4 = tx)4,
(t3 = t4 → t5)5, (t6 = ty)6, not(t7)7,
(t5 = t6 → t8)8, (t7 = t8 → t9)9,
(t10 = t1 → t2 → t9)10

not(t16) ⇐⇒ (t16 = Bool → Bool)16

These rules are generated directly from the program text.
Type inference for (lteq22 [w17]18)23 generates the constraints

(t17 = tw)17, (t18 = [t17])18, lteq(t22)22, (t22 = t18 → t23)23
This is the initial constraint which we run the CHR program on. For the first step, we find E = ∅
and D = {lteq(t22)22} means we can apply the first rule above leading to

(t17 = tw)17, (t18 = [t17])18, t10 = t22, (t1 = tx){1,22},
(t2 = ty){2,22}, gt(t3){3,22}, (t4 = tx){4,22}, (t3 = t4 → t5){5,22},
(t6 = ty){6,22}, not(t7){7,22, (t5 = t6 → t8){8,22},
(t7 = t8 → t9){9,22}, (t10 = t1 → t2 → t9){10,22},
(t22 = t18 → t23)23

For brevity, we show the whole derivation in a simplified form, just showing θ(Cu)∧t23 = θ(t23)
where θ is the mgu of Ce for C at each step, and omit justifications. That is, we only show the user-
defined constraints and the top type variable t23, under the effect of the equations in C ignoring
justifications.

lteq([tw] → t23), t23 = t23

−→lteq not(t8 → t9), gt([tw] → t2 → t8), (t23 = t2 → t9)

−→not gt([tw] → t2 → Bool), t23 = t2 → Bool

−→gt Ord [tw], t23 = [tw] → Bool

−→Ord [a] Ord tw, t23 = [tw] → Bool

−→Ord a Ord tw, Eq tw, t23 = [tw] → Bool

In other words the type inferred for the original expression is (Ord a, Eq a) => [a] -> Bool.
Note that we are more “verbose” than e.g. Hugs [16] which would report Ord a => [a] -> Bool.
Clearly, the constraint Eq a is “redundant”, since every instance of Ord must be an instance of
Eq as specified by the class declaration for Ord. In [27], we show how to remove such redundant
constraints. However, for type debugging purposes it is desirable to keep all constraints for better
type explanations.

21

The fourth step in the derivation is the only one requiring a non-empty set E of equations to
justify the match. The constraint D = {(Ord a1){3,22,53}} matches the left hand side of the rule
Ord [a2] ⇐⇒ (Ord a2)54. The minimal set of equations E ⊆ C where θ = mgu(E) is such that
θ(a1) has the form [t′] is

(t1 = tx){1,22}, (t53 = a1 → a1 → Bool){3,22,53}, t3 = t53,
(t4 = tx){4,22}, (t3 = t4 → t5){5,22}, t10 = t22, (t18 = [t17])18,
(t10 = t1 → t2 → t9){10,22}, (t22 = t18 → t23)23

The total justifications of E ∪ D are {1, 3, 4, 5, 10, 18, 22, 23, 53}. Hence we replace the constraint
(Ord a1){3,22,53} by

[a2] = a1, (Ord a2){1,3,4,5,10,18,22,23,53,54}

2

The following examples shows that some simple constraint reasoning steps allow us to identify
all those program locations which actually contribute to the final result.

Example 25 Consider the following partially annotated program.

f1 g2 x3= ((g4 True5)6, (g7 x8)9, (g10 True11)12)

The (simplified) translation to CHRs yields

f(t1) ⇐⇒ (t2 = tg)2, (t3 = tx)3, (t1 = t2 → t3 → (t6, t9, t12))1,
(t4 = tg)4, (t5 = True)5, (t4 = t5 → t6)6,
(t7 = tg)7, (t8 = tx)8, (t7 = t8 → t9)9,
(t10 = tg)10, (t11 = True)11, (t10 = t11 → t12)12

We find that

(t2 = tg)2, (t3 = tx)3, (t1 = t2 → t3 → (t6, t9, t12))1,
(t4 = tg)4, (t5 = True)5, (t4 = t5 → t6)6,
(t7 = tg)7, (t8 = tx)8, (t7 = t8 → t9)9

 ⊃ ∃̄t1C

where C refers to the right-hand side of the above rule. That is, constraints (t10 = tg)10, (t11 =
True)11, (t10 = t11 → t12)12 are not necessary to establish the final result. Indeed, we can replace
locations {10, 11, 12} by undefined :: a without changing the final result. 2

Another interesting point to note is that our type inference scheme for polymorphic recursive
function is more relaxed compared to the one found in some other established type checkers.

Example 26 Consider the following program. For simplicity, we omit justifications.

e :: Bool

e = g

f :: Bool -> a

f = g

g = f e

In the case of Hugs, the following error reported is:

ERROR "mr.hs":8 - Type error in function binding

*** Term : f

*** Type : Bool

*** Does not match : Bool -> a

22

The problem reported here stems from the fact that within the mutually recursive binding
group consisting of e, f and g, f is assigned two ununifiable types, Bool and Bool → a: the first
because it must have the same type as g, which according to e must be Bool; and the second
because of its type declaration.

Our translation scheme is more liberal than this, in that g’s type within e and f may be
different. Essentially, we only require that the type of a variable be identical at all locations within
the mutually recursive subgroup if a type declaration has been provided for that variable.

(Simplified) Translation of the above program to CHRs yields.

ea(t) ⇐⇒ t = Bool
e(t) ⇐⇒ g(t)
fa(t) ⇐⇒ t = Bool → a
f(t) ⇐⇒ g(t)
g(t) ⇐⇒ ea(te), fa(tf), tf = te → Bool

It is clear from the above that there are no cycles present amongst these rules. We can use them
to successfully infer a type for any of the variables in the program.

In fact, our translation scheme is similar to [18] where type inference of binding groups proceeds
as follows:

1. Extend the type environment with the type signatures. In this case f::forall a. Bool

-> a and e::Bool.

2. Do type inference on the bindings without type signatures, in this case g = f e. Do gener-
alisation too, and extend the environment, giving g :: forall a. a.

3. Now, and only now, do type inference on the bindings with signatures.

2

6.1 Main Results

We can state soundness and completeness of type inference for the Hindley/Milner system as
described in Figure 1. We assume that the type of predefined functions is recorded as a CHR. For
example, map :: (a->b)->[a]->[b] is represented by

map(t, l) ⇐⇒ t = (a → b) → ([a] → [b]).

Theorem 1 (Soundness and Completeness) Let P1 be a set of CHRs describing all predefined
functions, Γ be an environment containing all free variables, e be an expression and t be a type.
Then, we have that Γ ⊢ e : t iff Γ, e ⊢Cons (C t′) for some constraint C and type t′ and
Γ, e ⊢Def P2 for some set P2 of CHRs such that C −→∗

P1∪P2
D and φt′ = t with φ m.g.u. of D

where we consider fv(Γ) as Skolem constants.

Proof: Here is a proof sketch. More details will be added later.

1. The statement is easy to verify for the simply-typed fragment. We generate the
correct constraints out of expression.

2. Consider let: W.l.o.g., we assume that all nested lets are lambda-lifted. Almost,
direct analogy to our translation. We simply need a slightly stronger induction
hypothesis where we compare type schemes.

2

23

Note that in the above theorem we did not make use of any other CHRs besides those arising
through our rule generation algorithm. Soundness holds in general for arbitrary type extensions
expressible in terms of CHRs. In general, we need to impose some sufficient conditions on CHRs
(e.g. termination and confluence which are trivially satisfied by the CHRs describing the standard
Hindley/Milner system) to guarantee completeness. For example, in [27] we have identified a
class of CHRs suitable for modeling Haskell-style overloading which enjoy complete type inference.
There are certainly further classes of “complete” CHRs. We plan to pursue this topic in future
work.

An important property of our inference scheme is that by inspecting justifications attached
to minimal implicants in the final store we can identify all “essential” program locations (see
Example 25). In the following theorem, we make use of a function just(D) to extract all the
justifications attached to constraints in D.

Theorem 2 (Minimal Contributing Locations) Let Γ be an environment, e be an expression,
P be a set of CHRs, C and D be constraints and t be a type such that Γ, e ⊢Cons (C t), Γ, e ⊢Def

P and C −→∗
P D. For any subset D′ ⊆ C where [[P]] |= D′ ⊃ ∃̄tD we set J = just(D)\just(D′).

We replace all locations J in e by “undefined”. The resulting expression is denoted e′. Then,
Γ, e′ ⊢Cons (C′ t′) for some constraint C′ and type t′ such that [[P]] |= ∃̄fv(Γ) D ↔ ∃̄fv(Γ) D′

where C′ −→∗
P D′.

Proof: Here is a proof sketch. More details will be added later.

1. First consider simply-typed fragment (only primitive functions, i.e. local explana-
tion only) straightforward here because

• we know constraint generation is correct,

• assumptions ensure that we can leave out all non-relevant constraints (which
originate from non-relevant locations which in turn are replaced by undefined
which in turn yield (t, True), i.e. does not contribute anything)

2. Extends to let-polymorphism. We simply assume global explanation.

2

The above theorem justifies our debugging methods in case of a type error and unexpected
result.

Corollary 1 Identifying minimal unsatisfiable constraints is sufficient for error explanation.

Corollary 2 Identifying minimal implicants is sufficient for type explanation.

We refer to Section 7 for a description of the two essential constraint operations.

6.2 Subsumption and Unambiguity Checking

Note that in case of type annotations, type inference needs to perform a subsumption check.
We compare a type annotation for function f versus the function definition by simply testing the
following. We begin with the inferred type ∀ā.C ⇒ t, and the annotated type ∀ā′.C′ ⇒ t′. W.l.o.g.,
we assume that t and t′ are variables. For example, ∀ā.C ⇒ t can always be transformed into
the equivalent type scheme ∀ā, a.(C, t = a) ⇒ a where a is a fresh variable. We build constraints
C1 ≡ C′, t′ = a, a = a′, and C2 ≡ C1, C, t = a′ and run them both in the solver. That is,
C1 −→∗

P D1 and C1 −→∗
P D1. Let V = fv(C′, t′, ∀ā.C ⇒ t). These are the variables which

we must ensure are not more general in the declared type than in the inferred. For the check to

24

succeed, D1 and D2 must be equivalent wrt V . That is, |= (∃̄V D1) ↔ (∃̄V D2). This is the method
outlined in [27]. There, we prove correctness of our method and identify some sufficient conditions
under which the subsumption check is complete.

This check might fail for two reasons. There is either an unmatched user-defined constraints
in D2 or D2 contains additional type information about variables V . Note that a third reason
might be that constraint D2 is unsatisfiable. However, such a situation will be handled by our
error explanation mechanism (i.e. computing minimal unsatisfiable constraints).

In the first case, we simply use the justifications of the unmatched constraint to highlight the
possible source of the subsumption error (see Example 9).

In the second case, let φ1 be m.g.u. of D1 and φ2 be m.g.u of D2. We then find a set of
equations which represent the additional type information present in D2, namely {a = φ2a | a ∈
V, |= ∃fv(φ1a).φ1a = φ2a}. For each such equation, we find a minimal subset of D2 which implies
it. See Section 7.2 for the algorithm which does this.

Alternatively, we could build

{a = τ3 | a ∈ V, |= ∃fv(φ1a).φ1a = φ2a, τ3 anti-unifier of φ1a and φ2a}

and continue with the same reasoning steps. We leave a detailed discussion for future work.

Example 27 Consider the following program repeated from 2.3.1, but now with individual loca-
tions annotated:

f1 :: a2 -> b3 -> (c5,d6)4

f7 x8 y9 = x10

We would generate the following (simplified) CHRs from this program:

f(t0) ⇐⇒ fa(t1)1, fi(t7)7, (t0 = t1)0, (t0 = t7)0
fa(t1) ⇐⇒ (t1 = a → b → p)1, (p = (c, d))4, (a = t2)2, (b = t3)3, (c = t5)5, (d = t6)6
fi(t7) ⇐⇒ (t7 = e → f → g)7, (e = t8)8, (f = t9)9, (g = t8)10

Let fa(t1) −→ Ca and f(t0) −→ Ci.
Consequently, we build the type schemes: fa :: ∀fv(Ca).Ca ⇒ t1, and fi :: ∀fv(Ci).Ci ⇒ t0. We
can now perform the subsumption check.

We build constraints, C1 = Ca, t1 = a, a = a′ and C2 = C1, Ci, t0 = a′, and let ā = fv(Ca) ∪
{a, a′}. Let C1 −→ D1 and C2 −→ D2, and φ1 = mguD1, φ2 = mguD2.

We then begin looking for variables in ā which are more instantiated in the inferred than in
the declared constraints. We will eventually find that φ1(t2) = t2, but φ2(t2) = (t4, t5). To
explain this, we must find the minimal subset of D2 which implies that t2 = (t4, t5). This set is:
(t1 = a → b → p)1, (a = t2)2, (p = (c, d))4, (c = t5)5, (d = t6)6, (t7 = e → f → g)7, (e = t8)8, (g =
t8)10, (t0 = t1)0, (t0 = t7)0

We highlight locations: 1,2,4,5,6,7,8,10 as below:

f1 :: a2 -> b3 -> (c5,d6)4

f7 x8 y9 = x10

2

In case of overloading, we must also ensure that type schemes are unambiguous. Not enforcing
this condition would make the semantics of such programs non-deterministic. For Haskell 98 this
equates to checking that variables appearing within the context of the type scheme must also
appear within the type. In [27], we have identified a general criteria to test for unambiguity
of type schemes. Given a type scheme ∀ā.C ⇒ t, we build a renaming ρ of variables ā, run

25

C, ρC, t = ρt −→∗ D, and check if |= D → a = ρa, for all a in ā. In other words, we are checking
that instantiating variables in the type component also instantiates all variables in the constraints.
For details, we refer to [27].

Variables, ā for which this does not hold, are ambiguous. Let A be the set of all ambiguous
variables. We report program sites whose type contains an ambiguous type variable by computing
the locations of all variables v ∈ fv(D) such that |= D ⊃ v = t′ and ∃a ∈ fv(t′) ∧ a ∈ ā for some
type t′.

Example 28 Consider the following program, which has the ambiguous type (Show a, Read a) ⇒
String → b:

p u1 = (p3 (show5 (read7 u8)6)4)2

The whole process is as follows. First we generate the following (simplified) rule from the program
above. The rules for read and show (defined elsewhere) are also shown below.

p(t) ⇐⇒ show(t5), read(t7), t3 = t, t3 = t4 → t2, t5 = t6 → t4, t7 = t8 → t6, t8 = t1, t = t1 → t2
read(t) ⇐⇒ t = String → a, Read a
show(t) ⇐⇒ t = a → String, Show a

Inferring p’s type, we perform the derivation p(t) −→∗ C where

C = { t7 = String → a′, Read a′, t5 = a → String, Show a, t3 = t, t3 = t4 → t2, t5 = t6 → t4,
t7 = t8 → t6, t8 = t1, t = t1 → t2}

In this (simplified) case we build the type scheme ∀ā.C ⇒ t, where ā = fv(C). We now
run our unambiguity checking algorithm to determine which of the quantified type variables are
ambiguous and appear in an ambiguous constraint. In our example, we find that variables a and
a′ are ambiguous. The following locations have types which include either of these variables: 5
(t5 = a → String), 6 (t6 = a) and 7 (t7 = String → a). The debugger would display:

p u1 = (p3 (show5 (read7 u8)6)4)2

This indicates that we could fix this program by providing more type information at locations
5, 6 or 7. The following is one possibility.

p u = p ((show::Int->String) (read u))

2

7 Constraint Operations

The type debugger make use of two essential manipulations of the constraints generated from
the CHR derivation: finding a minimal unsatisfiable subset of an unsatisfiable constraint set, and
finding a minimal subset that implies some give constraint (which may be used if the constraints
are satisfiable or unsatisfiable). Based on Theorem 2, justifications attached to those minimal sets
refer to problematic program locations.

7.1 Minimal Unsatisfiable Subsets

Assume type inference fails. That is, we have that C −→∗
P D for some constraint C and D where

D is unsatisfiable. For D to be unsatisfiable it must be that De is unsatisfiable, since user-defined
constraints only contribute new equations.

26

We are interested in finding a minimal subset E of De such that E is unsatisfiable. An un-
satisfiable set is minimal if the removal of any constraint from that set leaves it satisfiable. The
Chameleon system simply finds an arbitrary minimal unsatisfiable subset. We also determine which
constraints in this set are present in all minimal unsatisfiable subsets.

We can naively determine minimal unsatisfiable subsets by testing each possible subset. This
is impractical. Using an incremental equation solver (as all unification algorithms are) we can
quickly determine a minimal unsatisfiable subset of D by adding the equations one at a time and
detecting the first time the set is unsatisfiable. The last added equation must be involved in the
minimal unsatisfiable subset. Applying this principle repeatedly results in:

min unsat(D)

M := ∅
while satisfiable(M) {

C := M

while satisfiable(C)
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪ {e} }
return M

We can straightforwardly determine which constraints e ∈ M must occur in all minimal unsatis-
fiable subsets, since this is exactly those where D − {e} is satisfiable. The complexity (for both
checks) is O(|D|2) using an incremental unification algorithm. A detailed analysis of the problem
of finding all minimal unsatisfiable constraints can be found in [7].

Ultimately, we are interested in the justifications attached to minimal unsatisfiable constraints.
This will allow us to identify problematic locations in the program text.

Example 29 Consider the final constraint of Example 1.

(t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8}, (t6 = Bool){6,2,8},
(t7 = t5 → t6){7,2,8}, (t2 = t1 → t3){3,8}, (t4 = t3){4,8}

The system of constraints is detected as unsatisfiable as the second last constraint (t2 = t1 →
t3){3,8} is added. Hence (t4 = t3){4,8} can be excluded from consideration. Solving from the
beginning, starting with (t2 = t1 → t3){3,8}, unsatisfiability is detected at (t7 = t5 → t6){7,2,8}. In
the next iteration, starting with (t7 = t5 → t6){7,2,8} and (t2 = t1 → t3){3,8}, unsatisfiability is
detected at (t5 = Bool){5,2,8}. Therefore, (t6 = Bool){6,2,8} can be excluded. The final result M is

(t1 = Char){1,8}, t2 = t7, (t5 = Bool){5,2,8},
(t7 = t5 → t6){7,2,8}, (t2 = t1 → t3){3,8}

Note that M is the only minimal unsatisfiable constraint for this example. 2

7.2 Minimal Implicants

We are also interested in finding minimal systems of constraints that ensure that a type has a
certain shape.

Assume that C −→∗
P D where |= D ⊃ ∃ā.F unexpectedly, where F is a conjunction of equa-

tions. We want to identify a minimal subset E of D such that |= E ⊃ ∃ā.E. The algorithm for
finding minimal implicants is highly related to that for minimal unsatisfiable subsets.

The code for min impl is identical to min unsat except the test satisfiable(S) is replaced by
¬implies(S, ∃ā.D′).

27

min impl(D)

M := ∅
while ¬implies(M,∃ā.D′) {

C := M

while ¬implies(C,∃ā.D′)
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪ {e} }
return M

The test implies(M, ∃ā.D′) can be performed as follows. If D′ is a system of equations only, we
first add Me to an incremental equation solver, and then add D them and check that no variable
apart from those in ā is further bound from the state with M .

If D′ includes user defined constraints, then for each user-defined constraint ci ∈ D′
u we nonde-

terministically choose a user-defined constraint c′i ∈ M . We then check that implies(M, ∃ā.(D′
e ∪

{ci = c′i}) holds as above. We need to check all possible choices for c′i (although we can omit those
which obviously lead to failure, e.g. ci = Eq a and c′i = Ord b).

8 Related Work

The most conservative approach to improving type error information involves modifying the order
in which substitutions take place within traditional inference algorithms. The standard algorithm,
W , tends to find errors too late in its traversal of a program [20, 33], since it delays substitutions
until as late as possible. W has been generalized [20] so that the point at which substitutions are
applied can be varied. Despite this, there are cases where it is not clear which variation provides
the most appropriate error report. Moreover, all of these algorithms suffer from a left-to-right bias
when discovering errors during abstract syntax tree (AST) traversal.

One way to overcome this problem, as we have seen, is to avoid the standard inference algorithms
altogether and focus directly on the constraints involved. Although our work bears a strong
resemblance to [11, 12, 13], our aims are different. We attempt to explain errors involving advanced
type system features, such as overloading, whereas [13], who are developing a beginner-friendly
version of Haskell, choose to ignore such features by design. Furthermore, they focus on producing
non-interactive error messages, and do not consider mechanisms for providing type explanations.

In [22], graphs are used to represent type information, again, independently of any particular
program traversal. This work allows generation of potentially more useful type error messages,
again without any opportunity for user interaction.

A number of “error explanation systems” [2, 5, 32] allow the user to examine the process by
which specific types are inferred. By essentially recording the effects of the inference procedure on
specific types a step at a time, a complete history can be built up. One common shortcoming of
such systems is the excessive size of explanations. Although complete, such explanations are full
of repetitive and redundant information which can be a burden to deal with. Furthermore, since
these systems are layered on top of an existing inference algorithm, they suffer from the same AST
traversal bias. In contrast, when asked to explain why an expression has a particular type, our
system finds precisely those locations which have contributed.

Chitil [3] describes a compositional type explanation system based on the idea of principal
typings [17]. In his system a user can explore the types of subexpressions by manually navigating
through the inference tree. This is very similar to our form of declarative debugging (Section 2.7).
Note that our form of type explanation allows us to automatically identify contributing program
locations.

Independently, Haack and Wells [9] also discuss finding of minimal unsatisfiable subsets which
allows them to find problematic program locations. However, they only consider error explanations.
That is, in their system it is not possible to explain why functions have a type of a certain shape.

28

Furthermore, their approach applies to the Hindley/Milner system only whereas our approach is
applicable to Haskell-style type classes and its various extensions.

9 Conclusion

We have presented a flexible type debugging scheme for Hindley/Milner typable programs which
also includes Haskell-style overloading. The central idea of our approach is to translate the typing
problem to a constraint problem, i.e. a set of CHRs. We have demonstrated that CHRs is a suffi-
ciently rich constraint language to encode the typing problem for a wide range of Hindley/Milner
style system. Type inference is phrased in terms of CHR solving. Our approach has the advantage
that we are not dependent on a fixed traversal of the abstract syntax tree. Constraints can be
processed in arbitrary order which makes a flexible traversal of the syntax tree possible.

In case of a type error (or unexpected result), we find minimal unsatisfiable constraints (minimal
implicants). Justifications, i.e. program locations, attached to constraints allow us to identify
problematic program expressions. The approach has been fully implemented [30].

There is much further work to do in improving the system. This includes adding features such
as: allowing the user to trace the CHR type inference derivation, and explaining each step in the
derivation, and using the minimal unsatisfiable subsets to generate better error messages. In par-
ticular, we plan to include some heuristics to catch common errors. The Helium [13] programming
environment includes a database of common mistakes which is searched for a match when a type
error occurs. This allows meaningful error messages and suggestions on how to fix the error to be
presented. Using minimal unsatisfiable subsets to search in the database should allow us to detect
more generic common mistakes.

References

[1] S. Abdennadher. Operational semantics and confluence of constraint propagation rules. In
Proc. of CP’97, volume 1330 of LNCS, pages 252–266. Springer-Verlag, 1997.

[2] M. Beaven and R. Stansifer. Explaining type errors in polymorphic languages. In ACM Letters
on Programming Languages, volume 2, pages 17–30, December 1993.

[3] O. Chitil. Compositional explanation of types and algorithmic debugging of type errors. In
Proc. of ICFP’01, pages 193–204. ACM Press, 2001.

[4] B. Demoen, M. Garćıa de la Banda, and P. J. Stuckey. Type constraint solving for parametric
and ad-hoc polymorphism. In Proc. of the 22nd Australian Computer Science Conference,
pages 217–228. Springer-Verlag, 1999.

[5] D. Duggan and F. Bent. Explaining type inference. Science of Computer Programming,
27(1):37–83, 1996.

[6] T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and Trends,
volume 910 of LNCS. Springer-Verlag, 1995.

[7] M. Garćıa de la Banda, P.J. Stuckey, and J. Wazny. Finding all minimal unsatisfiable con-
straints. In Proc. of PPDP’03. ACM Press, 2003. To appear.

[8] K. Glynn, P. J. Stuckey, and M. Sulzmann. Type classes and constraint handling
rules. In Workshop on Rule-Based Constraint Reasoning and Programming, 2000.
http://xxx.lanl.gov/abs/cs.PL/0006034.

29

[9] C. Haack and J. B. Wells. Type error slicing in implicitly typed, higher-order languages. In
Proc. of ESOP’03, volume 2618 of LNCS, pages 284–301. Springer-Verlag, 2003.

[10] Haskell 98 language report. http://research.microsoft.com/Users/simonpj/haskell98-
revised/haskell98-report-html/.

[11] B. Heeren and J. Hage. Parametric type inferencing for Helium. Technical Report UU-CS-
2002-035, Utrecht University, 2002.

[12] B. Heeren, J. Hage, and D. Swierstra. Generalizing Hindley-Milner type inference algorithms.
Technical Report UU-CS-2002-031, Utrecht University, 2002.

[13] Helium home page. http://www.cs.uu.nl/ afie/helium/.

[14] Fritz Henglein. Type inference with polymorphic recursion. Transactions on Programming
Languages and Systems, 15(1):253–289, April 1993.

[15] F. Huch, O. Chitil, and A. Simon. Typeview: a tool for understanding type errors. In
M. Mohnen and P. Koopman, editors, Proceedings of 12th International Workshop on Imple-
mentation of Functional Languages, pages 63–69. Aachner Informatik-Berichte,, 2000.

[16] Hugs home page. haskell.org/hugs/.

[17] . Jim. What are principal typings and what are they good for? In ACM Press, editor, Proc.
of POPL’96, pages 42–53, 1996.

[18] M. Jones. Typing haskell in haskell. In Haskell Workshop, September 1999.

[19] M. P. Jones. Coherence for qualified types. Research Report YALEU/DCS/RR-989, Yale
University, Department of Computer Science, September 1993.

[20] O. Lee and K. Yi. A generalized let-polymorphic type inference algorithm. Technical Mem-
orandum ROPAS-2000-5, National Creative Research Center, Korea Advanced Institute of
Science and Technology, March 2000.

[21] K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction. MIT Press,
1998.

[22] B.J. McAdam. Graphs for recording type information. Technical Report ECS-LFCS-99-415,
The University of Edinburgh, 1999.

[23] B.J. McAdam. Generalising techniques for type debugging. In Trends in Functional Program-
ming, pages 49–57, March 2000.

[24] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, Dec 1978.

[25] M. Odersky, M. Sulzmann, and M Wehr. Type inference with constrained types. Theory and
Practice of Object Systems, 5(1):35–55, 1999.

[26] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[27] P. J. Stuckey and M. Sulzmann. A theory of overloading. In Proc. of ICFP’02, pages 167–178.
ACM Press, 2002.

[28] P.J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging in haskell. In Proc. of
Haskell Workshop’03. ACM Press, 2003. To appear.

30

[29] M. Sulzmann. A General Framework for Hindley/Milner Type Systems with Constraints. PhD
thesis, Yale University, Department of Computer Science, May 2000.

[30] M. Sulzmann and J. Wazny. Chameleon. http://www.comp.nus.edu.sg/~sulzmann/chameleon.

[31] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Proc. of POPL’89,
pages 60–76. ACM Press, 1989.

[32] M. Wand. Finding the source of type errors. In Proc. of POPL’86, pages 38–43. ACM Press,
1986.

[33] J. Yang, J. Wells, P. Trinder, and G. Michaelson. Improved type error reporting. In Proceedings
of 12th International Workshop on Implementation of Functional Languages, pages 71–86,
2000.

31

