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Abstract

The principles of Bayesian probability and Bayesian belief networks, and their ap-
plicability for judicial reasoning are briefly explained. As an example, a Bayesian
belief network model has been constructed that compares the probabilities of two
hypothesised causes of a single-car accident. It is concluded that Bayesian belief
networks can be a suitable tool for lawyers to analyse the evidence in judicial
cases, as well as a suitable tool to train students to perform those analyses and
to avoid statistical pitfalls.

1 Introduction

A murder has been committed. The police found a button in the fist of the vic-
tim. Later on, a suspect was identified, who was probably near the scene of the
crime around te time that the crime took place. It turns out, that the suspect
owns a coat with buttons of the same type as that in the fist of the victim.
The prosecutor charges the suspect with murder, reasoning: “The perpetrator
of the crime owns a coat with the type of button that we found on the victim.
The suspect owns such a coat, hence the suspect has committed the crime”.
This reasoning scheme is called abduction. (Cause C' causes effect F; E has
been observed, hence C' has occurred). Unfortunately for the prosecutor it is
not logically valid. However, it is often the only way to reason about evidence.
The problem is that, although an abductive argument does not prove that the
proposition is true, it increases the probability of the proposition. Therefore,
abductive reasoning should be performed with probabilistic techniques. A very
suitable technique to do this is Bayesian probability. Bayesian probability calcu-
lates how the probability that a certain cause actually occurred increases, given
the prior probability that this cause occurred and abductive evidence. Although
non-statisticians may find Bayesian probability theory hard to understand, they
can use the techniques, because nowadays there exist computer programs that
perform the calculations and visualizes the results without requiring detailed



knowledge about how the calculations have to be performed. The use of these
programs may also help to avoid statistical pitfalls that sometimes happen in
courts. E.g. Wagenaar [7] presents a striking example of a known pitfall (the
prosecutors fallacy [1], explained in section 1.1.1) that occurred in a Dutch
court during a procedure where he performed an expert witness testimony.

1.1 Bayesian probability, the frequentist view and the Bayesian
view

The most common view on probability is the statistical view, in which the prob-
ability of an event is derived from repeated experiments in which the frequency
that interesting phenomena occur is analysed. This is called the frequentist
view. An alternative view is the Bayesian view, that allows to reason with
subjective beliefs estimations and provides a rule to revise ones belief when
new evidence is presented. Although reverent Thomas Bayes formulated his
rule about 250 years ago [2], the interest of scientists in the Bayesian view has
only been widely adopted during the last decade, because scientists had trouble
with the required subjective prior estimations of probability, and because the
computer power required to calculate probabilities in complex models was not
available. Bayesian reasoning is very suitable to model judicial problems. Next
sections will elaborate on both views of probability.

1.1.1 Frequentist view

Frequentists make predictions based on the observation of the frequency that
the to be predicted event occurred in the past. For example, suppose it has been
observed that 2% of a population has hair of a certain type and colour. We de-
note the observation “person x has matching hair” with character E. Then the
probability that a randomly chosen person has matching hair is P(E) = 0.02.
Suppose such a hair has been found at the scene of a crime, and there is a
suspect, whose hair type matches the hair found. If the suspect is guilty, the
probability of a match is equal to unity, and otherwise it is equal to 0.02.
These probabilities are called “conditional probabilities”. Symbolising hypoth-
esis “subject is guilty” with GG, we denote the conditional probability of a match,
given that the person is guilty or given that he is innocent as P(E|G) = 1 resp.
P(E|-G) = 0.02. A judge or jury may be interested in the inverse probabil-
ity, i.e. given a match, what is the probability that that the suspect is guilty
(i.e. P(G|E)). Calculation of the inverse probability is usually simple, but it is
not trivial. A known fallacy in this respect is the prosecutors fallacy [1]. The
prosecutor may reason: “If the suspect did not commit the crime, the chance
of a match is only 2%. Therefore the match is 98% proof that the suspect was
the perpetrator”. That this reasoning is wrong, is best illustrated by another
fallacy, the defenders fallacy, where the defender of the suspect reasons: “The
town where the crime took place has 40,000 inhabitants, so the evidence shows



that 800 persons are as likely as my client to have committed the crime, Thus,
the match contributes hardly anything to the evidence”. In fact the conditional
probability is dependent of the number of suspects. So, if all the inhabitants
of the town are as likely to have committed the crime as the sustpect, then
P(G|E) = 1/800 as the defender stated. However, if there are only 10 suspects,
who are equally likely to have committed the crime as the given suspect, then
the conditional probability is much higher: P(G|E) = 0.85, and the match of
the hairs contributes a lot to the evidence. Bayes’ rule (appendix A) allows to
do these calculations.

1.1.2 Bayesian view

Many events cannot be predicted with frequentist methods, because the fre-
quency with which they occur is too low to allow for statistical inferences.
This is usually the case in judicial procedures. However, people can still have
subjective beliefs about uncertain events. Many factors can serve to support
this belief. For instance, John has a certain belief that football club Ajenoord
will win the football match against Feyax next week. His belief is supported
by many football games that he has seen in the past. We can symbolise the
knowledge of John about the next game with the character K. If we denote the
statement that Ajenoord will win with character A, then we denote P(A|K) as
the subjective belief of a certain person that Ajenoord wins, given knowledge
K. Another football aficionado, Jill, knows that the libero of Ajenoord has just
got a flue. Her knowledge K’ about the football match is different from that of
John, and so is probably her subjective belief P(A|K'). If Jill shares her knowl-
edge with John, then John has to revise his belief. But even if John and Jill
share the same knowledge, their beliefs may differ. This is the Bayesian view
on probability. Bayes’ rule is a method to revise ones belief in a certain event,
given new knowledge.

Many people may find it hard to express their belief in numbers. They have a
feeling, that since it is not possible to indicate precisely the chance that a given
statement is true, they might better hypothesise that the statement is true
or hypothesise that it is false and then reason with this fictitious assumption.
However, a rough indication of possibilities (like “I think the chance that this
statement is true is somewhere between 85% and 95%”) is much more accurate
than a statement of belief (like “this statement is beyond reasonable doubt”).
People indicate their degree of belief in statements when they gamble. If John
accepts a bet of 10 to 1 that Ajenoord wins next football match, he indicates
that his belief in this event is better that 90%. If he does not accept a bet of
20 to 1, he indicates that his degree of belief is less than 95%.

Wagenaar [7] describes how courts could use Bayesian calculations to use expert
witness testimony to revise their opinion e.g. in the suspect being guilty. He
states, that it is the task of the court, and not of the expert, to form an opinion



about the case. It is the task of the expert to indicate the ratio of conditional
probabilities that the fact to be proven is true resp. false, given his expert
knowledge and observations. The judge incorporates these ratios in his belief in
the fact being true, using a Bayesian calculation.

1.2 Bayesian Belief Networks

The previous section elaborated on the influence that a single piece of evidence
has on the probability of a single other event. However, Bayes’ rule enables
to do probability calculations on chains of events that influence each others
probability of occurring. This is exploited in the Bayesian Belief Network (BBN).
A BBN is a directed graph of connected nodes. Every node symbolises an event
and contains a table of probability variables. Each node represents a variable.
This variable can be binary (e.g. the suspect is guilty or not), multiple-valued
(e.g. the number of goals that Ajenoord scores in a match) or continuous (e.g.
the amount of time that the sun shines on a given day). The nodes are connected
to each others with arrows, that indicate that they influence each other. BBN’s
enable us to reason about uncertainty. A decade ago the calculations needed to
propagate the probabilities through the nodes of complex BBN were prohibitively
time-consuming, but the increased capacity of modern computers has attracted
interest in the implementation of BBN’s.

2 Example of the use of Bayesian belief network

The following example has been inspired by Prakken [6], who presented a case
in which two alternative scenario’s had been presented to the court as causes of
a nocturnal car crash (Dutch Supreme-Court Decision HR 23 October 1992, NJ
1992, 813). The facts were as follows: In a single-car accident at about 3:00 am,
a car crashed against a tree. After the crash, police officers entered the scene of
the accident. They noted the following facts:

° The female driver was sitting on the ground, next to the car, and stated
three times that “he” had pulled the handbrake.
A heavily wounded passenger was sitting on the front passenger seat.
The handbrake was in pulled position.
The car had been driven through a curve in the road right before it
crashed.
There were tyre marks from blocked wheels in the curve of the road.
There were tyre marks from a skidding (yawing) car. The marks led to
the place of the accident.

Afterwards, both the driver and the passenger could not remember anything
about the accident itself. The accident took place while they were returning from
a party and the passenger had drunk alcoholic liquor. Car experts witnessed,



that in a car of the type that was involved in the accident, the rear wheels
would probably block if the handbrake was forcefully pulled during driving.

The (insurance organisation of) the passenger sued the driver as being respon-
sible for the accident and liable for the damages, because it is the duty of the
driver to keep control over the vehicle. Although generally, in a single-car ac-
cident the driver is held responsible, in this case the driver stated that the
passenger was responsible for the accident because he pulled the brake, making
the car uncontrollable.

The passenger had the burden of proof. He argued, that, under the Dutch law,
in a single-car accident the responsibility of the driver is assumed to be proven,
so that in this case the burden of proof goes to the driver. The supreme court
concluded that, in this case, because of the probability of the passenger having
pulled the handbrake, the single fact of this being a single-car accident cannot
be considered a proof for the claimant.

2.1 Abductive-logical reconstruction

Prakken built a causal structure model of this case (figure 1). Observations and

Figure 1: Causal structure for the example case, as depicted by [6].

hypotheses are depicted as ovals and arrows indicate whether facts are true
or false match other observations/hypotheses or whether they contradict each



other. True facts are indicated with a pattern of circles, and false facts with
a pattern of lines. Prakken derived from this model that the plaintiffs claim
(driver was speeding and lost control over the car) explained one observation
(presence of tyre marks), but contradicts another observation (nature of the
tyre marks) whereas the defenders claim (passenger pulled handbrake) explains
three observations (tyre marks, driver’s statement that “he” pulled the hand-
brake and the handbrake’s pulled position after the accident)) and contradicts
nothing. Prakken concludes that the defendant’s solution is better than that of
the plaintiff.

2.2 Bayesian Belief Model

Figure 2 shows a model that looks the same as that of figure 1, but in fact is

Speeding pulled brake

Figure 2: Causal structure for the example case as a Bayesian Belief Model

a Bayesian belief network. The model has been constructed with Hugin Light
(Hugin Expert, Denmark), a small version of a commercial software system that
can be freely downloaded from www.hugin.com. Every top node contains the
prior beliefs that the fact or hypothesis in the node is true or false. Daughter
nodes contain the prior conditional beliefs that they are true for every combi-
nation of truth/falsehood of the parent nodes. Two nodes that are present in
Prakken’s model have been left out of the BBN model. According to the text of
the verdict, the node “Slowing down in S-curve” seems to be no more than the
negation of the node “Speeding in S-curve”. “Speeding” means in this example
“driving with a speed that causes the driver to loose control over her vehicle”



and “Slowing down ...” means “Adjusting the speed so that the driver keeps

in control over her vehicle”. The node “Obstacles” has been left out because
obstacles are not mentioned in the verdict. Two sets of prior belief variables
have been used: one set with values that seem the most likely by the writer,
and another set, in which the values have been set in the advantage of the
plaintiff (table 1). A set in the advantage of the defendant has not been imple-
mented, because both sets resulted in outcomes that were highly in favour of
the defendant.

2.3 Comments on the prior probabilities

The prior probabilities indicate the amount of belief of the truth of the hy-
pothesis expressed by the node, when the evidence presented in the case is not
considered. For instance, in the node “Crash” the estimated possibility must
be given, that a car crashes, given that it started to skid, and the estimated
possibility must be given that a car crashes, given that it did not skid. The prior
likelihood that a car crashes in a single-car accident in a given section of a road
is extremely unlikely, and more so, if the car didn’t skid. Actually, the odds of
this happening are not important in our problem, because both the alternative
explanations of the accident assume the car to skid.

The top node drunk contains the belief that this passenger was drunk, given
that he sat in the passenger’s seat in the middle of the night, returning from a
birthday party. Considering the time of the night this is not extremely improb-
able.

Speeding, as we defined it in our problem, is a highly improbable event. Possibly
one out of 100.000 or one out of a million cars skid in a given stretch of the
road. The belief in a skidding event can be based on statistics on single-car
accidents, but a judge could possibly modify the statistic probability, e.g. when
he thinks that the driver in this case is more (or less) likely to become involved
in accidents than the mean driver, e.g. given the age and gender, the appearance
and the time of the day.

2.4 Results

Figure 3 is a figure of the BBN model, after the “objective” values have been
entered. Some of the nodes have been replaced by their probability tables. Now
we enter the fact that a crash actually happened by fixing its probability to
unity. (figure 4), According to the model, it is more probable that the crash has
been caused by speeding than by pulling the handbrake. If, however, we include
other pieces of evidence (i.e. the driver’s testimony that the passenger pulled the
handbrake), the observed pulled position of the handbrake and the fact that the
passenger was drunk, pulling the handbrake turns out to be a much more likely
cause of the accident than speeding is (figure 5). If the probabilities that are



Node Y/N 0] Plaint
Drunk Yes 0.05 0.02
No 0.95 0.98
Pulled | Drunk Yes 0.03 0.00001
No 0.97 0.99999
Pulled | =Drunk Yes 0.0 0.00001
No 1 0.99999
Speeding Yes 0.00001  0.0001
No 0.99999  0.9999
Tyre Mark nature | Speeding Yes 0.2 0.4
No 0.8 0.6
Tyre Mark nature | =Speeding Yes 0.7 0.6
No 0.3 0.4
Control-loss | Speeding Yes 1 1
No 0 0
Control-loss | =Speeding Yes 0.99999  0.9999
No 0.00001  0.9999
Wheels-lock | pulled Yes 0.8 0.5
No 0.2 0.5
Pullpos | pulled Yes 0.99 0.90
No 0.01 0.1
Pullpos | —pulled Yes 0.001 0.05
No 0.999 0.95
Testimony | pulled Yes 0.9 0.8
No 0.1 0.2
Testimony | —pulled Yes 0.03 0.1
No 0.97 0.9
Skidding | (Control loss A lock) Yes 1 1
No 0 0
Skidding | (Control loss A —lock) Yes 1 1
No 0 0
Skidding | (—=Control loss A lock) | Yes 1 1
No 0 0
Skidding | (—Control loss A —lock) | Yes 0 0
No 1 1
Tyre marks | skidding Yes 1 1
No 0 0
No 1 1
Tyre marks | - skidding Yes 0 0
No 1 1
Crash | Skidding Yes 0.2 0.2
No 0.8 0.8
Crash | - Skidding Yes 0.0001  0.0001
No 0.9999 0.9999

Table 1: Prior probabilities of the nodes.




Drunk

0.29 Drunk
Sober

| | pulled brake

9.91e-05 Pulled
Leaved

Speeding
0.01 Speeding

Testimony

na

Crash

.03 crash
not

Figure 3: Initial probabilities after entering the ”objective” values.
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Figure 4: Initial probabilities after entering the fact “crash”.
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Figure 5: Probabilities after entering the facts of the case.

most favourable for the plaintiff are filled in, it turns out that the likelihood of
the crash being caused by pulling of the handbrake (30.60%) is still comparable
to that of speeding (27.82% ).

The node “mark nature” has not been used. In the sentence it was not explic-
itly stated that the nature of the marks was proof for not speeding, but that
“[the tyre marks] give insufficient support for the suggestion of [plaintiff] that
[defendant] had speeded” and that “[the tyre marks| suggest that [defendant]
had adjusted her speed to the situation and had kept her vehicle under control”.
To use this kind of information the causality would have to be changed in the
model.

3 Discussion

In this paper a Bayesian belief network has been presented as a possible tool
to support legal reasoning, as an alternative or as a supplement to logics. The
advantage is, that the plausibility of the argumentation can be quantified.

The major difference between the Bayesian model of the car accident and the
argumentation model is, that the argumentation model provides for both hy-
potheses the facts that they explain and the facts that they don’t explain or that
they even contradict, whereas the Bayesian model provides for both hypotheses
the likelihood that they have occurred, given the facts (hence, probides more
abductive reasoning).
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The argumentation model does not give insight in how much the explanation
of a fact contributes to the evidence of the case. For instance, if it is considered
highly unlikely that after an accident the handbrake is in pulled position, the
fact that the handbrake was in pulled position contributes a lot to the credibility
of a hypothesis that explains this fact. If, on the other hand, a judge considers
it very likely that the driver has a very strong habit to pull the handbrake when
she leaves the car, so that she even does it right after an accident as the present
one, the pulled handbrake contributes less to the credibility of a hypothesis that
explains the pulled handbrake. The BBN model reflects this in a natural way.
Surprising facts contribute more evidence than unsurprising facts.

With a Bayesian model it is easy to explore the case, e.g. to analyse what the
outcome would be when all the probabilities are adjusted in favour of one or
the parties, or when they are adjusted in favour of the other party. This results
in an upper and lower limit of the probability that the event to be proven had
actually happened, and this may help the judge to form his opinion on the case.

The model could be extended with a “decision node” that calculates the “cost”
of a decision. In this case, the cost means the harm that a wrong decision
would inflict. In many cases the harm done by an unjustified positive decision
is different from the harm done by an unjustified negative decision [4]. For
instance, when a large and wealthy company claims a large sum of money from
a private individual, the damage done to the individual by an unjust allotment
is much larger than the damage done to the company by an unjust dismissal of
the claim. The decision node could calculate for both the decision for allotment
and for denial the product of the probability that the decision is wrong and
the cost of the wrong decision. In this way the computer calculates the optimal
decision in which the expectation value of the outcome has its maximum.

To be really useful for lawyers, a specialised Bayesian tool would have to be
made that facilitates easy construction of models of judicial cases, provides
support for the users and probably contains statistical material that can be
used as basis for the prior probability estimations. Such a tool would also be
very useful to train law students in exploring and evaluating judicial cases,
to get a feeling for probability and statistics, and to avoid common pitfalls in
reasoning with probability.

3.1 Objections against use of probability in judicial fact finding

The use of mathematical/statistical tools in sentencing has for a long time been
a topic of discussion. A full discussion about this issue is not within the scope of
this paper. However, some points can be raised here. One of the issues is, that
use of statistical methods by non-statisticians can lead to errors and hence, false
decisions. Kerkmeester [5] uses this as an argument to avoid use of statistical
methods in court. However, in the first place, the use of argumentation of a
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statistical character is sometimes unavoidable, and does already sometimes lead
to errors [7, 3]. A well-supported BBN could be of help to recognize and avoid
the statistical pitfalls. By explicitly modelling the problem, the computer can
clearly indicate where possible pitfalls are, and invite the user to motivate her
assumptions as clearly as possible.

Another objection against use of statistics in judicial decisions is that it is hard
to express probabilities in numbers, and that, as a result, emphasis will be put
on those factors that are easy to quantify and that other factors, that may be
really important, are neglected. However, a Bayesian model as presented in this
paper enforces the user to enter probabilities for all the factors that play a role
in the causality. Therefore, it is not expected that this would cause problems.

A Bayesian probability

Bayes’ formula can be explained as a formula to inverse conditional properties.
Suppose A and B are two events that may occur. Define P(A) as the prob-
ability that event A occurs and define P(B) as the probability that event B
occurs. Suppose further that the fact that one of the events did actually occur
influences the possibility that the other event did also occur. Let P(A, B) be
the probability that both events occured,and let P(A|B) be the conditional
probability that event A occured, given that event B did actually occur. The
probability that A and B both occur is equal to the product of the probabilities
that B occurs and the conditional probability that A occurs:

P(A,B) = P(A|B)P(B) (1)
We can interchange A and B in the previous equation:
P(A,B) = P(B|A)P(A). (2)

Hence, combining equations 1 and 2:

P(A[B)P(B) = P(B|A)P(A) (3)
and thus:
P(A[B) = P<B|A>§Ej§§ (1)

This is Bayes” equation. The simplest explanation of this equation is, that it
derives the inverse conditional probability. A more “Bayesian” interpretation
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is, that it derives how a piece of evidence should modify one’s believe in the
occurrence of event A. The following case example illustrates this: A crime has
been committed, and a carpet fibre has been found at the crime scene. It is
estimated that five percent of the households has a carpet with the same fibres.
A suspect has been identified. The best estimation of the likelihood that this
suspect committed the crime was 30%. It turns out, that the household of the
suspect contains a carpet of which the fibres match the fibre found at the scene
of the crime. Therefore, the belief in the likelihood that this subject committed
the crime must be revised. Define A as: “the suspect committed the crime”, and
B as “the fibre matches those of a carpet in the suspects household”. Assuming
that B is a certainty if A has occurred (i.e. P(B|A) = 1), the prior probabilities
are:

P(A) = 03

P(B|A)P(A) + P(B|-A)P(—A)
1x0.3+0.05x%0.7

= 0.335

3
=
[

The posterior probability that the suspect committed the crime is:
P(4)

P(A|B) = P(B!A)ﬁ (9)
0.3

= 1xm (10)

= 0.8955 (11)

This means, that the new evidence material adds a lot to the probability that
the suspect actually committed the crime. However, when, later on, it turns
out that the prior probability of guilt has no foundations (e.g. because it was
based on what later turns out to be a false witness testimony), the calculation
has to be revised. Suppose, there live 10000 persons in the neighbourhood who
are equally likely to have committed the crime as our suspect, then:

P(A) = 0.0001 (12)
P(B) = P(B|A)P(A)+ P(B|~A)P(-A) (13)
— 1% 0.0001 + 0.05 x 0.9999 (14)
= 0.0501 (15)
and
_ P(A)
P(A|B) = P(B’A)@ (16)
B 0.0001
= % 0.0501 (17)
= 0.002 (18)



The new evidence does hardly contribute anything to the probability of guilt.

In the previous example the evidence has a discrete, binary character (e.g.
evidence is present or it is not present). However, Bayes’ equation can also be
used for continuous variables that assume multiple values (e.g. the outcome of
a thrown dice can be any integer value between 1 and 6) or continuous variables
(e.g. the speed of a given car on a given road at a given moment).
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