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Abstract 

The concept of model slicing is introduced as a means 
to support maintenance through the understanding, 
querying, and analysis of large UML models.  The 
specific models being examined are class models as 
defined in the Unified Modeling Language (UML).  
Model slicing is analogous to classical program slicing.  
In program slicing the computational behavior at a 
statement involving variables specified by the slicing 
criteria defines the context.  Since UML class models do 
not explicitly embody any behavioral aspect by 
themselves, models slices are computed in a context-free 
manner.  The paper defines context-free model slicing 
and presents an algorithm for computing slices on class 
models.  Concrete applications of model slicing to 
address particular software maintenance questions are 
presented to support the usefulness and validity of the 
method. 

1. Introduction  
There is an ever increasing importance being put on 

design models to support the evolution of large software 
systems.  Design models are being maintained and 
updated from initial development as well as being reverse 
engineered to more accurately reflect the state of 
evolving systems. 

The advent of usable tools and standards to support 
design models is obviously making the storage and 
maintenance of these models realizable for development 
teams.  The Unified Modeling Language (UML) supplies 
us with a number of models that are commonly used in 
the construction and long-term evolution of large-scale 
software systems.  Tools such as Rational Rose, 
ArgoUML, etc. greatly assist in the representation, 
development, and maintenance of these models.  In 
particular, UML class models are very useful for 
understanding and maintaining existing systems, mostly 
due to their concrete mapping to the source-code.  
Unfortunately, UML tools do not support source-to-

model consistency checking very well, and they often fail 
to accurately reverse engineer class models.  However, 
project teams have integrated these tools into their 
software processes and a great deal of effort is being 
expended to reverse engineer these design models and to 
maintain consistency of these large models with the 
actual source.   

Herein lies the problem.  A class model for a large 
system is typically comprised of thousands of classes and 
relationships.  Viewing the entire model at one time is 
impractical and typically of little use for a particular 
maintenance task. 

In reality, designs are initially developed and 
presented via a large-number of small UML class 
diagram (10-15 classes).  Each diagram (sub-model) 
typically describes a feature or concern of the system 
design or functionality.  The union of these diagrams 
represents the entire system design. 

In the case of a purely reverse engineered model no 
smaller diagrams exist.  Meaningful diagrams are 
constructed by hand from the model as needed.  
Alternatively, if diagrams do exist from initial 
development they may be wholly inadequate for a given 
maintenance task. 

It is now becoming apparent that there is need for 
methods and tools to assist in generating sub-models 
based on specific maintenance tasks.  This is much akin 
to the tools we currently have for examining source code.  
There are many mature tools for querying and browsing 
source code.  Such tools include fact-extractors, program 
dependency graphs generators, call graph analyzers, and 
program slicers.  These tools are used to help reduce the 
amount of code that needs to be examined and 
understood to address the problem at hand.  Our work is 
aimed at providing similar support for maintenance at the 
design level (i.e., for UML class models). 

There are few, if any, existing methods (or tools) for 
supporting the automated or semi-automated extraction 
of meaningful subsets of a class model.  Currently, this is 
done manually.  An engineer must wade through the 
entire class model and (using some tool) construct a 
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specific class diagram within the context of this model.  
While a diagram may exist that is close to what is desired 
(e.g., the entire class hierarchy for a particular concept) it 
may be far too unwieldy and include many classes of 
little interest or consequence to the problem at hand (e.g., 
entity classes contained by all classes in an inheritance 
hierarchy).  

In the work presented here, we introduce a method to 
automatically generate a subset of a UML class model 
based on a user-defined criterion.  The goal of this work 
is to allow us to automatically extract a pertinent and 
meaningful UML class diagram from a very large UML 
class model.  In the next section (2) we describe and 
formally define our approach to UML class model 
slicing.   

Concrete applications of this approach are given in 
section 3.  In this section we formulate a number of 
specific maintenance questions in terms of model slicing.  
The questions deal with such activities as: 

• discovering relationships between classes; 
• finding classes that implement a method with a 

known bug; and 
• finding classes augmented by metric values to 

identify potential refactorings. 
Related work on program slicing, examining subsets 

of UML diagrams, and feature location are discussed in 
section 4.  Conclusions are given in section 5.  

2. UML Model Slicing 
Our method is rooted in the classical definition of 

program slicing but extends that concept to address the 
multi-graph nature of the UML metamodel.  In general, 
we term this approach model slicing.  However, since 
class models are devoid of explicit behavioral 
information (by themselves) we further define the 
concept of context-free model slicing.  Program slicing 
has the implicit context of the definition-use relationship 
with respect to a supplied slicing criterion.  In model 
slicing of a UML class model, we must specify some sort 
of non-behavioral aspect to construct the slice.  In short, 
model slices are defined via a generalized slicing 
criterion that is specified with predicates over the 
model’s features. 

Program slicing, as defined in [20], takes a program 
and a slicing criteria to compute a slice or subset of the 
source code.  More formally, given a slicing criterion, 
s(v, n) with a set of variables v and a location of a 
statement of interest s, program slicing determines a set 
of statements contributing directly or indirectly to the 
values of variables, v, before the statement s is executed.  
Those resultant statements comprise the program slice.  
Statements in a program slice have a specific behavioral 
context.  In this case, the behavior is the statements 
affected by or affecting the states of the variables 

involved in a computation at a particular point in a 
program.  These statements included in the program slice 
are those extracted from the investigation of the 
definition-use relationship (i.e., statements with 
definition and usage of variables given in the slicing 
criteria). 

It should be noted the definition-use relationship is the 
only relationship of interest in program slicing.  This is 
evident in the definition of the program-slicing criteria.  
The slicing criterion does not provide any means for the 
explicit specification of relationships other than 
definition-use relationship.  The usage of this relationship 
is implicitly assumed.  This assumption restricts program 
slicing to the singular relationship among the elements 
(statements) of the source code. 

UML model slicing extends this concept of program 
slicing via a generalized, albeit more complex, slicing 
criteria.  These extensions elevate the capabilities of 
program slicing from the source-code level to UML 
structural models (i.e., class models) and behavioral 
models (i.e., sequence, collaboration, and state behavior 
models).  All elements and relationships defined in the 
UML metamodel can be used in the computations of a 
model slice.  This includes elements such as classes, 
packages, components and operations, and relationships 
such as associations, dependencies and generalizations.  
The slicing criteria for the extended domain must account 
for all the elements and relationships available in the 
UML metamodel. 

Unlike program slicing, model slicing does not 
necessarily require the physical location of an element of 
interest (i.e., an observation point of a behavior).  UML 
class models, representing only abstracted structural 
elements, contain no behavioral elements (e.g., instances 
of classes or statements).  However, other views such as 
sequence diagrams, object diagrams, and collaborations 
define contexts in which objects may be explicitly 
located.  In these cases, we define context to be the 
location of the object.  The context can be a particular set 
of scenarios in which a set of objects are involved or a 
particular range in the lifeline of a set of objects when 
dealing with an interaction model such as one pictured by 
a sequence diagram. 

Here, we distinguish between slicing of models that 
require or do not require context information and 
introduce the terms context-free and context-sensitive 
slices.  The context-free slices are applicable to models 
that do not require a context for the computation of a 
model slice.  Context-sensitive slices are applicable to 
models that do require such context information.  Here 
we focus on the definition of context-free model slicing 
and reserve the definition of context-sensitive slicing for 
future work (as it requires the former definition at the 
very least). 

 2 of 10 



Kagdi, Maletic, Sutton  ICSM’05 Submission 

2.1. Context-free Model Slice The dimension-set, D = ∀r∈ R | (PD(M) ∧ T(M) ∧ 
B(M)) specifies the relationships of interest (a.k.a., 
dimensions) to be included in the slice and traversed in 
its computation.  The predicate PD defines which 
relationships are included in the slice.  The predicate 
T(M) defines a terminating condition of the computation 
with respect to each of, or all, the relationships.  The 
bounding predicate B(M) is the computational upper 
bound on the path length between elements with respect 
to each of, or all the relationships, of the slice. 

A context-free model slice is defined primarily to 
encapsulate static and structural aspects of a UML model 
and precludes the inclusion of behavioral, computation, 
or interaction information.  For the purpose of model 
slicing, we define a model, M, as a directed multi-graph 
M = (E, R, Γ) where  

• E = {e1, e2,.., en} is the finite set of elements,  
• R = {r1, r2,...,rm} is the finite set of relationships,  

Consider a hypothetical UML class model with 
classes and relations.  To extract a subset of the model, 
with a class named ClassA and all its base classes 
involved in a generalization relation up to level 2, the 
predicates for the slicing criteria are specified as follows, 

• Γ:R⇒E×E is a function that maps elements to 
elements via a relationship.  Γ:R⇒E×E defines 
multiple relations between each element.  The 
relations ri and rj are multiple relations on the 
same elements if Γ(ri) = Γ(rj). 

PI(M) := e ⊇ {(name, ”ClassA”)} Each element, e  is defined by a finite set of properties 
i {p1, p2 … pk}, such that each element has a finite set of 
properties.  Likewise each relation, r is defined by a finite 
set of  properties {p1, p2, … pk}.  Each property, pi is an 
ordered pair that defines a name and a value (e.g., {(type, 
Class), (name, “stack”)…}). 

PS(M) := T 
PD(M) := r ⊇ {(type, “Generalization”)} 
T(M):= F 
B(M):= ∀r∀e∃ e’∈E | Γ (r)≡( e, e’)  

∧ |path(e, e’,r)| ≤2 
The computation of a slice proceeds along a given 

dimension (i.e., relationship type) of the multi-graph, 
injecting elements into the model slice according to the 
specification in the slicing criteria.  All three predicates 
must be satisfied together, that is I ∧ S ∧ D must hold 
true for all ei and ri in M’.  The computation of the slice 
ends when one of two conditions is met: the termination 
condition for the computation or the bounding conditions 
for each dimension.  For example, the computation could 
end if a class of a certain stereotype or name is 
encountered (the first condition is met) or there are no 
more elements to be found along a dimension’s path (the 
second condition is met).  Furthermore, the computation 
can be bounded by the length of the path traversed in 
each dimension.  

The model consists of a finite set of elements E and a 
finite set of relationships R.  The set E contains instances 
of all metamodel elements such as class, namespace, 
package, component etc., and the set R provides all 
instances of relationships including association, 
generalization, dependency, etc.  These correspond to the 
meta-classes defined in the UML metamodel.  As can be 
seen from the above definition elements and relationships 
are both first class entities.   

The elements and relations are mapped with the 
function, Γ.  Given a relationship ri, the mapping Γ tells 
which elements are its end points.   

A property of a member of the set E could be the type 
of element such as (type, Class), and a property of a 
member of the set R could be the type of the relationship 
such as (type, Generalization).  Thus, this definition of 
model makes the elements and relations along with their 
property sets available for model slicing 

2.2. Context-free Model Slicing Algorithm 

The algorithm given in Fi  computes a context-free 
model slice and starts with the computation of initial 
elements set E

gure 1

I from the specification PI.  All the 
members of set EI are included in the element set E’ of 
the slice.  The computation of the slice considers one 
element of the set EI at a time for traversal.  The 
algorithm proceeds in a breath-first (i.e., level order) 
traversal of the model with the initial element ei 
considered to be at level 0.  For each element at a level, 
all the elements at the next level involved in relations 
(satisfying the dimension predicates PD ∧ B(M) ∧ 
¬T(M)) are considered as candidates for inclusion in the 
slice.  All the elements satisfying the element selection 
predicate PS and the homogenous path criteria (further 
discussed in property 10 of section 2.3) are included in 

The context-free model slice, Scf, of a given UML 
model M, is defined as a function over a model and 
determined by the specified slicing criteria, Ccf., 

Scf(M, Ccf) = M’ = (E’, R’, Γ’) ⊆ M 
The context-free slicing criteria Ccf is defined as a 

triple of constrains that must all be satisfied to construct 
M’.  

Ccf = (I, S, D) 
The initial-element set, I = ∀e∈ E | PI(M) specifies 

the initial elements of the slice.  The predicate PI(M) is 
constructed to be satisfied for elements in the initial set. 

The selected-element set, S = ∀e∈ E | PS(M) specifies 
the elements selected for inclusion in the resultant slice.  
The predicate PS(M) is defined so that only elements of 
interest are selected.   
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the slice   Also, the relation between the element at the 
next level satisfying the above conditions and the 
element under consideration at a current level, is included 
in the slice.  After all the relations and the elements 
involved at the current level are considered, the algorithm 
moves to the next level.  The level traversal terminates 
when the terminating predicate T(M) is met or the upper 
bound specified by the bounding predicate B(M) is 
achieved.  All the above steps are repeated for each 
element in the initial element set and a final slice Scf is 
obtained on completion. 

2

d
1

2

3

4

5

dimension is implicitly defined by the semantics of 
each relationship in the UML metamodel.  For 
example the metamodel defines generalization and 
specialization to be separate dimensions of the same 
inheritance relationship.  Therefore, model slicing 
views generalization and specialization as different 
dimensions. 

6. A tautology for the dimension predicate PD indicates 
all the relations are of interest irrespective of their 
properties such as role or stereotype information and 
the entire model needs to be traversed to compute 

 

Procedure Scf (M, Ccf) 
E’= ∅ 
R’= ∅ 
Scf = (E’, R’) 
EI = {ei|∀ei∈ E [PI(M)]} ; compute initial elements set 
EI ⊆ E’; include the initial set in the slice 
for each ei∈ EI ∧  ei≠∅ ; compute slice for each initial element 
 l = 0 ; start with the level 0 
 el = ei ; only element at level 0 

do BFT of M starting at ei ; perform breadth first traversal of the model 
(El+1, Rl+1)  =  {el+1 ∈ E, rl+1∈ R | (rl+1∈ D ∧ Γ(rl+1)≡( el ,el+1) ∧ Hpath(ei, el+1 ,rl+1) ∧ PS(M) )} ; all 
elements at the next level and relations satisfying the dimension relationships, inclusion condition, and having homogenous 
path 
  El+1 ⊆ E’ ; include the elements 

  , Rl+1 ⊆ R’; include the relations 
l = l+1; go to the next level 

return Scf 
Figure 1.  Context-free model slicing algorithm 
.3. Properties of a Model Slice 

The following properties are derived from the 
efinition of a model slice, Scf: 
. A slice may contain gaps in the path along a 

dimension.  The computation of the slice does not 
stop if it encounters an element not satisfying the 
predicate PS; rather the computation continues in the 
specified dimension, excluding the elements that fail 
to satisfy the selection criteria.., 

. A tautology for the selection predicate PS  indicates 
all the elements along the dimensions satisfying the 
dimension predicate, PD are included in the model 
slice. 

. If the initial element predicate, PI, is equivalent to 
the selection predicate PS, the resultant slice is 
identical to the initial element set. 

. Every element included in the model slice must 
satisfy one or both of the predicates, PI or PS.  This 
gives the following invariant of the model slice, 

∀ e∈ E’  | (PI (M) ∨ PS ( M)) 
. There is no explicit specification of directionality in 

the dimension predicate PD.  Directionality of a 

the model slice.  In this case, the selection predicate, 
PS, will be evaluated for every element reachable 
along a path from elements in the initial element set, 
EI. 

7. The dimensions given by the dimension predicate, 
PD are specified only with respect to the initial 
elements satisfying the initial element predicate, PI.  
Thus, the elements included in the slice through the 
satisfaction of PS are not recursively traversed for all 
relations of interest but only for those of the initial 
elements.  For example, suppose that a derived class 
is involved in only generalization while the 
immediate base class is involved in generalization 
and association.  If the derived class is the initial 
element than a slice, with respect to entire 
association and generalization relations, involves 
only traversal of the generalization relation of the 
base as the derived class is not involved in any 
associations.  This implies another implicit condition 
for an element to be included in the slice.  Not only 
is the element required to satisfy the selection 
predicate, PS, but there must be a homogenous path 
(i.e., a path in the same dimension) from the initial 
element to elements included during traversal.  
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However, the resultant slice may not contain all 
elements along the path (i.e., it has gaps).  The 
homogenous path condition (Hpath) is stated below, 
Hpath(ei, ej ,r) = ∀ m | Γ( r)≡ ( em,em+1) where 

 i<=m <j 
ei is the initial element 
ej is the element considered to be included in the 
slice 

8. Each kind of relation in the dimension specification 
is allowed to have a different terminating predicate 
,T(M) and bounding predicate, B(M). 

9. The literal value F, for the terminating predicate, 
T(M) indicates that there is no termination condition 
for the slice and computation for slice must continue 
until the bounding predicate, B(M) is satisfied for all 
relations. 
until the bounding predicate, B(M) is satisfied for all 
relations. 

10. The traversal of each element satisfying the initial 
element predicate, PI occurs in a breadth-first 
manner.  The traversal fans out in levels, and all the 
relations and elements at a level are considered 
before moving to the next level. 

10. The traversal of each element satisfying the initial 
element predicate, PI occurs in a breadth-first 
manner.  The traversal fans out in levels, and all the 
relations and elements at a level are considered 
before moving to the next level. 

11. A tautology for the bounding predicate, B(M) 
specifies the traversal along the dimension 
relationship(s) terminates if there exist no more 
elements along that path (e.g., reaching the root of an 
inheritance hierarchy while traversing a 
generalization dimension). 

11. A tautology for the bounding predicate, B(M) 
specifies the traversal along the dimension 
relationship(s) terminates if there exist no more 
elements along that path (e.g., reaching the root of an 
inheritance hierarchy while traversing a 
generalization dimension). 
∃ ¬ (path(ei, e, r) > path(ei, ej, r)) where ∃ ¬ (path(ei, e, r) > path(ei, ej, r)) where 
 elements ei, ej are already visited and  elements ei, ej are already visited and 
 element e is not visited along a relation r    element e is not visited along a relation r   
It is possible and valid for the final slice to have 
elements (relations) that do not satisfy the 
terminating predicate T(M).  The elements (relations) 
to be included in the slice are only governed by the 
selection predicate PS (PD).  The slice may terminate 
early because of the bounding predicate B(M) is met 
before the terminating predicate T(M).  . 

It is possible and valid for the final slice to have 
elements (relations) that do not satisfy the 
terminating predicate T(M).  The elements (relations) 
to be included in the slice are only governed by the 
selection predicate PS (PD).  The slice may terminate 
early because of the bounding predicate B(M) is met 
before the terminating predicate T(M).  . 

3. Applying Model Slicing 3. Applying Model Slicing 
In this section, we demonstrate by example the 

ability of model-slicing to satisfy questions that can be 
asked of UML class models during software 
maintenance.  Three applications are given dealing with 
design understanding, fault location, and metric 
relevance.  These applications of model slicing are 
relatively simple to give the reader an understanding of 
our method and a feeling of how it can be used to assist 
in addressing particular tasks.  Larger applications of 
model slicing require sophisticated tool support to 
formulate the criteria and are beyond the scope of this 
presentation.   

In this section, we demonstrate by example the 
ability of model-slicing to satisfy questions that can be 
asked of UML class models during software 
maintenance.  Three applications are given dealing with 
design understanding, fault location, and metric 
relevance.  These applications of model slicing are 
relatively simple to give the reader an understanding of 
our method and a feeling of how it can be used to assist 
in addressing particular tasks.  Larger applications of 
model slicing require sophisticated tool support to 
formulate the criteria and are beyond the scope of this 
presentation.   

These examples were constructed by hand and 
verified with a proof-of-concept implementation of the 
model slicing algorithm.  All the applications presented 

here operate on a portion of the UML metamodel.  This 
is a domain many readers are familiar with and should 
enable them to follow along without lengthy explanation 
of the domain. 

These examples were constructed by hand and 
verified with a proof-of-concept implementation of the 
model slicing algorithm.  All the applications presented 

here operate on a portion of the UML metamodel.  This 
is a domain many readers are familiar with and should 
enable them to follow along without lengthy explanation 
of the domain. 
  

Figure 2.  The model slice is shown within the grey 
boxes.  The levels reflect the traversal of two 

relationships and represent the iterations of the 
slicing algorithm.  The class Class is not included in 

the slice. 

Figure 2.  The model slice is shown within the grey 
boxes.  The levels reflect the traversal of two 

relationships and represent the iterations of the 
slicing algorithm.  The class Class is not included in 

the slice. 

Figure 2

3.1. Design Understanding 3.1. Design Understanding 

Question:Question:  How can a programmer discover 
relationships between a specific class and other classes 
in a UML system model? 

Programmers, when faced with such problems, 
might typically browse through project software artifacts 
including reference manuals, UML class diagrams, and 
source code to discover relationships between one class 
and its associates (base classes, aggregations, 
dependencies, etc.).  Rarely, even in good software 
documentation, is this information localized for easy 
consumption.  Model slicing can be used as a query 
mechanism to provide concise views of the 
programmer’s informational needs.  Consider a snippet 
of the UML metamodel shown in .  A 
programmer looking for the inheritance hierarchy and 
immediate associations of the Classifier class could use 
the following slicing criteria to determine related classes. 

PI(M) := e ⊇ {(name, ” Classifier”)} 
PS(M) := T 
PD(M) := r ⊇ [R1∨  R2] 
R1= {(type, “Generalization”)} 
R2= {(type, “Association”)} 
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T(M):= F 
B(M):= (∀r⊇ R1)∨  

    (∀r⊇ R2 ∧ (∀e ∃ e’∈E |path(e, e’, r)| ≤1))  
 
The computation of the model slice begins with the 

computation of the initial element set, EI, from the 
specification, PI, and results in only one class, Classifier.  
The two relationships computed from the predicate PD 
are Generalization and Association.  The predicate B(M) 
indicates the bounding condition for the traversal of these 
relationships.  The Association relationship is bounded at 
the first level, whereas the Generalization relationship is 
bounded only when the traversal has exhausted all the 
elements in the Generalization path (refer to item 11 of 
slice characteristics in Section 2.3).  The terminating 
condition, T(M), is assigned the value F to indicate no 
explicit termination condition. 

slice characteristics in Section 2.3).  The terminating 
condition, T(M), is assigned the value F to indicate no 
explicit termination condition. 
  

Figure 3.  The model slice is contained in the gray 
box.  The slice reflects the first base class 

implementing the validate method. 

Figure 3.  The model slice is contained in the gray 
box.  The slice reflects the first base class 

implementing the validate method. 

Figure 3

Before executing the breadth-first-traversal in the 
slicing algorithm, the slice consists of elements in the 
initial set, shown by the level zero in .  
Following the algorithm given in F , the traversal 
starts with Classifier and considers elements at level one.  
The relationships traversed to the candidate elements are 
shown in bold.  The algorithm selects two elements along 
the Generalization path (Namespace and 
GeneralizableElement) and one element along the 
Association path (Feature).  After the first iteration, the 
slice now includes those elements contained in level zero 
and those contained in level one.  In the second iteration 
of the algorithm, only elements involved in the 
Generalization relationship are considered because the 
bounding condition of the Association relationship was 

satisfied at level one.  All the elements in the 
Generalization relationship at this level are included in 
the slice and are shown to be contained in level 2.  The 
computation of the model slice terminates after this 
iteration as there are no more elements in the 
Generalization path.  The final slice is depicted in 

, consisting of all elements contained within the 
outermost level. 

Before executing the breadth-first-traversal in the 
slicing algorithm, the slice consists of elements in the 
initial set, shown by the level zero in .  
Following the algorithm given in F , the traversal 
starts with Classifier and considers elements at level one.  
The relationships traversed to the candidate elements are 
shown in bold.  The algorithm selects two elements along 
the Generalization path (Namespace and 
GeneralizableElement) and one element along the 
Association path (Feature).  After the first iteration, the 
slice now includes those elements contained in level zero 
and those contained in level one.  In the second iteration 
of the algorithm, only elements involved in the 
Generalization relationship are considered because the 
bounding condition of the Association relationship was 

satisfied at level one.  All the elements in the 
Generalization relationship at this level are included in 
the slice and are shown to be contained in level 2.  The 
computation of the model slice terminates after this 
iteration as there are no more elements in the 
Generalization path.  The final slice is depicted in 

, consisting of all elements contained within the 
outermost level. 
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The class, Feature, is included as part of Association 
because aggregation is a kind of association in the UML 
metamodel.  Note the Association computation is not 
transitive as only the immediate associations of Classifier 
are considered (i.e., Feature).  Associations of base 
classes are not considered for the slice.  If those 
associations are of interest, the base classes must be 
included in the initial element set of the slicing criteria. 

The class, Feature, is included as part of Association 
because aggregation is a kind of association in the UML 
metamodel.  Note the Association computation is not 
transitive as only the immediate associations of Classifier 
are considered (i.e., Feature).  Associations of base 
classes are not considered for the slice.  If those 
associations are of interest, the base classes must be 
included in the initial element set of the slicing criteria. 

3.2. Fault Localization 3.2. Fault Localization 

Question:Question: How can a programmer find classes that 
implement a specifically named method, in one of which 
a bug is known to exist? 

In certain application domains such as user interface 
frameworks, it is common for overloaded methods in 
derived classes to call the same methods of their base 
classes.  In this example, we consider a similar call chain 
that is used to validate a model against the UML well-
formed rules and other OCL constraints.  As shown in 

, classes requiring additional validation overload 
the validate() method to check metaclass-specific 
features..  Calculating a model slice for the entire 
inheritance hierarchy may result in too many classes.  In 
this case, the programmer would want to refine the 
slicing criteria to return a smaller set of elements relevant 
to their query.  This gives the programmer options when 
composing the criteria.  Should the slicing algorithm 
terminate on the first class that implements method or 
include all classes that implement the method?  This 
example considers two cases:  

1) Include all classes in the inheritance hierarchy 
and stop when the first base class implementing 
the method is found and 

2) Include only classes that implement the method and 
traverse the entire inheritance hierarchy.   igure 1igure 1

The slicing criteria for the first case are given below: 
PI(M) := e ⊇ {(name, ” Classifier”)} 
PS(M) := T 
PD(M) := r ⊇ {(type, “Generalization”)} 
T(M):= et ⊇ {(implements, ”validate”)} 
B(M):= T  
The specification states that the algorithm starts with 

Classifier (i.e., PI specification) and traverses the 
Generalization path including all the classes found 
during this traversal in the model slice until the first class 
implementing the specified method (i.e., the termination 
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predicate is met) is found.  Here, the value of B(M) 
indicates the worst case situation in which the entire 
Generalization path must be traversed to find candidate 
elements for the slice.  The slice computation terminates 
when the first element (i.e., base class) implementing the 
method named validate() is found, or the path is 
exhausted.  The selection predicate, PS, indicates that all 
candidate elements are included in the slice.  Thus the 
slice will contain classes on the traversal path that do not 
actually implement the specified method.  The final slice, 
obtained by applying the model slicing algorithm, is 
shown in  and consists of all elements contained 
within the outermost level. 

Figure 3

 

Figure 4.  The gray boxes (each level representing 
iterations of the algorithm) gives the model slice after 

searching for all base classes implementing the 
validate method. 

Figure 4Figure 4

Notice the base class Namespace is included in the 
slice.  Because Namespace and GeneralizableElement are 
at the same level in the traversal, the inclusion of 
Namespace depends on the specific traversal order of 
classes at this level.  If Namespace occurs before 
GeneralizableElement then it is included in the slice.  
Here, we assume the order of traversal is from left to 
right so Namespace is included in the final slice. 

ersal, the inclusion of 
Namespace depends on the specific traversal order of 
classes at this level.  If Namespace occurs before 
GeneralizableElement then it is included in the slice.  
Here, we assume the order of traversal is from left to 
right so Namespace is included in the final slice. 

Now consider the slicing criteria for the second case: Now consider the slicing criteria for the second case: 
PI(M) := e ⊇ {(name, ” Classifier”)} PI(M) := e ⊇ {(name, ” Classifier”)} 
PS(M) := es ⊇ {(implements, ” validate”)} PS(M) := es ⊇ {(implements, ” validate”)} 
PD(M) := r ⊇ {(type, “Generalization”)} PD(M) := r ⊇ {(type, “Generalization”)} 
T(M):= T T(M):= T 
B(M):= T B(M):= T 
  
In this case, the only classes included in the slice are 

those that implement the method (i.e., determined by the 
selection predicate PS).  Also, the slice computation 

continues until the entire Generalization path is 
exhausted.  The final slice is shown in , 
consisting of elements contained within the outermost 
level.  Note that the path from Classifier to Namespace is 
represented in bold.  This indicates that the algorithm 
actually followed the path, visiting the Namespace class.  
However, the selection criteria are not met and so the 
class is not included in the final slice.  

In this case, the only classes included in the slice are 
those that implement the method (i.e., determined by the 
selection predicate PS).  Also, the slice computation 

continues until the entire Generalization path is 
exhausted.  The final slice is shown in , 
consisting of elements contained within the outermost 
level.  Note that the path from Classifier to Namespace is 
represented in bold.  This indicates that the algorithm 
actually followed the path, visiting the Namespace class.  
However, the selection criteria are not met and so the 
class is not included in the final slice.  

3.3. Metric Relevance Slicing 3.3. Metric Relevance Slicing 

Question:Question: How can a software engineer find classes in 
a software design by metric analysis to identify potential 
refactorings? 

The ability of a software engineer to locate and 
analyze classes for potential refactorings is critical to 
reengineering activities.  The engineer must know the 
design relevant to the classes targeted for refactoring and 
the impact the refactoring may have on related classes.  
As shown, model slicing has the ability to extract regions 
of interest from a UML model.  However, in this 
example, we augment a typical UML model with LCOM 
(lack of cohesion metric) [4] values in order to provide 
additional analytic functionality in the slicing criteria and 
therefore, the ability to answer questions of this nature. 

 

Figure 5.  The initial model slice for classes 
augmented with LCOM values of 2 or greater is 

shown as a gray box. 

Figure 5 shows a model augmented with LCOM 
values.  These values are simply treated as attributes of 
classes in which they appear.  The following slicing 
criteria obtain a slice of classes with LCOM values 
greater than 2 in the inclusive inheritance hierarchy of 
elements in the initial set (i.e., the Generalization and 
Specialization relationships are both traversed). 
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PI(M) := e ⊇ {(LCOM, 2)} 
PS(M) := e ⊇ {(LCOM, gte(2))} 
PD(M) := r ⊇ [R1∨  R2] 
R1= {(type, “Generalization”)} 
R2= {(type, “Specialization”)} 
T(M):= T 
B(M):= T 
 
Note the specification of the selection predicate, PS, 

includes an evaluation function, gte, which is responsible 
for evaluating the numeric comparison between the 
elements LCOM value and the constant value 2. 

The initial model slice is show in , containing 
only Classifier.  Had there been other classes in the 
model with LCOM values of 2, they would also be 
included in the initial element set.  After computing the 
slice, the result is shown in , consisting of all 
elements contained within the outermost level. 

Figure 5

Figure 6

Figure 6.  The final model slice for classes with 
augmented LCOM values greater than or equal to 2. 

 

4. Related Work 
A variety of artifacts are produced or derived 

throughout the software development life cycle.  These 
artifacts may include design models such as UML class 
models, source code, and additional models representing 
various aspects of the software at different abstraction 
levels.  Most maintenance or evolution tasks (e.g., 
corrective maintenance, perfective maintenance) require 
only the most relevant parts of these artifacts.  However, 
extracting this subset may utilize information from other 
artifacts or their derived abstractions.  The ability to 
extract relevant subsets of artifacts is typically a 
prerequisite for answering many types of questions about 

the artifacts and understanding their contents.  
Additionally, these subsets are often utilized to construct 
models with higher levels of abstraction. 

In this section, we examine existing techniques for 
extracting relevant subsets of software artifacts at the 
source code and UML design levels.  We classify and 
discuss proposed or available methods for subset 
extraction/identification, based on their targeted 
abstraction (i.e., the artifact itself or a derived abstraction 
of the artifact such as a control flow graph). 

4.1. Program Slicing 

Most related to our work presented in this paper is 
program slicing.  It is a technique to extract a subset of a 
program.  Source code models such as data flow, control 
flow and dependency graphs are utilized in computing 
program slices [8, 20].  Thus, program slicing is an 
effective mechanism to extract source code parts by 
utilizing information available only at the source code 
level.  Program slicing techniques for object-oriented 
software is described in [11].  In this work, the program 
is represented in the form of the system dependency 
graph (SDG).  Here, SDG is extended to represent class, 
inheritance, interactions, and polymorphism extracted 
from the source code.  The slicing algorithm is then 
applied on SDG with the slicing criteria modified to 
allow for slicing based on data member variable or 
method of a class.  However, the granularity of slice is at 
a statement-level. 

In [17] the combination of statement-level slicing 
within a class and a class level slicing for a collection of 
classes along an inheritance relation (i.e., class hierarchy) 
is considered within a context of a usage of classes.  The 
desired slice is the one with only classes and statements 
within classes relevant to its usage in a particular context.  
Program slicing has demonstrated its applicability in 
debugging, testing, differencing source code versions, 
integration of software modules [8], impact analysis [6, 
18], and other software engineering applications. 

However, program slicing is not applicable to UML 
design models as it is only capable of addressing the 
source code, not higher levels of abstraction such UML 
models or other derived abstractions.  Without further 
extension and refinement, program slicing has limited 
capabilities in these domains. 

It should be noted that other approaches such as call 
graph analysis, concept analysis, and clustering have 
rarely, if ever, been applied with regards to these higher 
level abstractions, particularly UML models. 

4.2. Querying UML Models 

Just as there are methods to query and extract 
information from source code, a variety of tools and 
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techniques have been proposed to perform similar 
activities on UML models.  In this subsection, we discuss 
existing methods to query and extract information from 
UML class models – the subset of a model that deals with 
the structural design of the system (i.e., classes, 
attributes, and operations).  These approaches include 
constraint and query languages, XML processing, and 
model processing. 

The UML object constraint language (OCL) [1, 7, 19] 
allows querying of UML models.  It is primarily used for 
model validation and constraint checking.  Recent work 
in Model Driven Architecture (MDA) has proposed using 
OCL as a query language to satisfy the query component 
to the QVT (Query/View/Transformation) specifications 
[2].  As a query language, OCL can be used to extract 
model elements that satisfy some condition (e.g., all 
abstract classes in a model). 

Many approaches to querying UML models involve 
analysis or operations on the XML-based interchange 
format for UML models, XMI [10, 13, 16].  These 
approaches apply XML processing techniques such as 
XPath, XQuery and XSLT to extract data from the XMI 
files.  This approach is similar to those used in XML-
based source code or AST analysis. 

Other approaches involve model analysis in the 
context of additional semantic information.  In [9] a 
metric-based approach is proposed to derive subparts of 
UML class diagrams.  A high level view of the subparts 
exhibiting a particular metric-based feature such as 
coupling (referred to as a coupling diagram) is obtained, 
and then classes within a particular range of metric 
values are extracted and visualized via a diagram.  This 
approach is particularly good at “pruning” large UML 
diagrams to show only the relevant classes in the 
diagram.  However, this approach is very limited in the 
types of pruning that can be done. 

Other approaches involve the use of additional 
languages and technologies to query or validate UML 
models.  In [12], OCL expressions are translated to SQL 
statements to query and evaluate models stored in a 
relational database.  In [15], Python and OCL are used 
together to provide more procedural control for the 
evaluation of such queries.  

Concept location, a human intensive activity is used to 
search for and find classes in the UML class diagrams 
[14] and/or units of source code.  These approaches use 
the Abstract System Dependence Graph (ASDG) [3]  of 
classes that are affected because of a problem domain 
level concept or feature change.  In this approach a user 
decides the starting component, next related component 
to visit, and inclusion candidates in the list of affected 
components.  This can be used to locate features in the 
design or source code level. 

The concept analysis and cluster analysis techniques 
can be used in conjunction with model slicing to identify 

concepts and clusters in the UML models.  The model 
slices provides an alternative approach to obtaining 
context information needed for concept analysis.  The 
criteria used to compute model slices can also be used as 
a basis for clustering criteria.  Moreover, model slicing 
can be used to automate a great deal of the human 
intensive components of concept location.  The selective 
representation problem in [9] extracts a higher level view 
(i.e., a coupling diagram) of the model based on the 
desired metric value such as CBO [5] to select a subset of 
classes.  However, model slicing requires no such higher 
level views as such information is considered as part of 
the model itself. 

5. Conclusions & Future Work 
In this paper we introduced the concept of model 

slicing pertaining to UML class models.  The work 
generalizes the concept of program slicing so that it can 
be applied to more abstract models.  The ultimate goal is 
to provide an automatic mechanism that will enable 
developers to extract task-specific UML sub-models by 
giving specification in terms of UML-level constructs.  
This type of approach will support the development of 
sophisticated tools to automatically extract meaningful 
sub-models of large system design model so they can be 
visualized or analyzed to facilitate maintenance and 
evolution tasks.   

Three applications are given to demonstrate the 
usefulness of model slicing for the purpose of obtaining 
information about a class model.  Current techniques to 
obtain similar information from class models consist 
either of manual inspection or very specialized one-time 
solutions that can not be applied broadly.  Our approach 
addresses the problem of extracting relevant subsets of a 
class model in a very general manner.  While these 
examples may be limited in their scope, it is conceivable 
that the underlying capabilities of model slicing can 
support a much wider range of software engineering 
tasks such as impact analysis with respect to a design 
model. 

Model slicing is realized as a set of predicates that 
specify a slicing criterion.  As can be seen, even in 
simple examples, this specification can be difficult to 
articulate.  We envision that languages such as OCL can 
be used to implement the predicates required to compute 
the model slices. 

In this vein, we are extending our prototype 
implementation of the model slicing algorithm and plan 
to apply it to large models of real systems (e.g., an open 
source systems such as HippoDraw).  The tool is built 
using our in-house developed Open Modeling 
Framework (OMF) and the Python scripting language.  
OMF is a framework for the storage and representation of 
UML models.  Alternatively, one can also build an 
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implementation on top of Rational Rose as a plugin using 
VBScripts.  In the future we plan to further investigate 
the usefulness of UML model slicing through a set of 
question-and-answer experiments with existing software 
systems. 

We are actively investigating the concept of context-
sensitive slicing of UML models using a behavioral 
model, such as a sequence diagram that is implicitly 
linked to the static class model.  This will result in a slice 
of the class model in the context of the modeled 
behavior.  We feel this has much promise in producing 
relevant sub-models.  However, the work presented here 
is a necessary prerequisite to realizing a context-sensitive 
slice. 
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