
Kagdi, Maletic, Sutton ICSM’05 Submission

Context-Free Slicing of UML Class Models

Huzefa Kagdi, Jonathan I. Maletic, Andrew Sutton
Department of Computer Science

Kent State University
Kent Ohio 44242

{hkagdi, jmaletic, asutton}@cs.kent.edu

Abstract

The concept of model slicing is introduced as a means
to support maintenance through the understanding,
querying, and analysis of large UML models. The
specific models being examined are class models as
defined in the Unified Modeling Language (UML).
Model slicing is analogous to classical program slicing.
In program slicing the computational behavior at a
statement involving variables specified by the slicing
criteria defines the context. Since UML class models do
not explicitly embody any behavioral aspect by
themselves, models slices are computed in a context-free
manner. The paper defines context-free model slicing
and presents an algorithm for computing slices on class
models. Concrete applications of model slicing to
address particular software maintenance questions are
presented to support the usefulness and validity of the
method.

1. Introduction
There is an ever increasing importance being put on

design models to support the evolution of large software
systems. Design models are being maintained and
updated from initial development as well as being reverse
engineered to more accurately reflect the state of
evolving systems.

The advent of usable tools and standards to support
design models is obviously making the storage and
maintenance of these models realizable for development
teams. The Unified Modeling Language (UML) supplies
us with a number of models that are commonly used in
the construction and long-term evolution of large-scale
software systems. Tools such as Rational Rose,
ArgoUML, etc. greatly assist in the representation,
development, and maintenance of these models. In
particular, UML class models are very useful for
understanding and maintaining existing systems, mostly
due to their concrete mapping to the source-code.
Unfortunately, UML tools do not support source-to-

model consistency checking very well, and they often fail
to accurately reverse engineer class models. However,
project teams have integrated these tools into their
software processes and a great deal of effort is being
expended to reverse engineer these design models and to
maintain consistency of these large models with the
actual source.

Herein lies the problem. A class model for a large
system is typically comprised of thousands of classes and
relationships. Viewing the entire model at one time is
impractical and typically of little use for a particular
maintenance task.

In reality, designs are initially developed and
presented via a large-number of small UML class
diagram (10-15 classes). Each diagram (sub-model)
typically describes a feature or concern of the system
design or functionality. The union of these diagrams
represents the entire system design.

In the case of a purely reverse engineered model no
smaller diagrams exist. Meaningful diagrams are
constructed by hand from the model as needed.
Alternatively, if diagrams do exist from initial
development they may be wholly inadequate for a given
maintenance task.

It is now becoming apparent that there is need for
methods and tools to assist in generating sub-models
based on specific maintenance tasks. This is much akin
to the tools we currently have for examining source code.
There are many mature tools for querying and browsing
source code. Such tools include fact-extractors, program
dependency graphs generators, call graph analyzers, and
program slicers. These tools are used to help reduce the
amount of code that needs to be examined and
understood to address the problem at hand. Our work is
aimed at providing similar support for maintenance at the
design level (i.e., for UML class models).

There are few, if any, existing methods (or tools) for
supporting the automated or semi-automated extraction
of meaningful subsets of a class model. Currently, this is
done manually. An engineer must wade through the
entire class model and (using some tool) construct a

 1 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

specific class diagram within the context of this model.
While a diagram may exist that is close to what is desired
(e.g., the entire class hierarchy for a particular concept) it
may be far too unwieldy and include many classes of
little interest or consequence to the problem at hand (e.g.,
entity classes contained by all classes in an inheritance
hierarchy).

In the work presented here, we introduce a method to
automatically generate a subset of a UML class model
based on a user-defined criterion. The goal of this work
is to allow us to automatically extract a pertinent and
meaningful UML class diagram from a very large UML
class model. In the next section (2) we describe and
formally define our approach to UML class model
slicing.

Concrete applications of this approach are given in
section 3. In this section we formulate a number of
specific maintenance questions in terms of model slicing.
The questions deal with such activities as:

• discovering relationships between classes;
• finding classes that implement a method with a

known bug; and
• finding classes augmented by metric values to

identify potential refactorings.
Related work on program slicing, examining subsets

of UML diagrams, and feature location are discussed in
section 4. Conclusions are given in section 5.

2. UML Model Slicing
Our method is rooted in the classical definition of

program slicing but extends that concept to address the
multi-graph nature of the UML metamodel. In general,
we term this approach model slicing. However, since
class models are devoid of explicit behavioral
information (by themselves) we further define the
concept of context-free model slicing. Program slicing
has the implicit context of the definition-use relationship
with respect to a supplied slicing criterion. In model
slicing of a UML class model, we must specify some sort
of non-behavioral aspect to construct the slice. In short,
model slices are defined via a generalized slicing
criterion that is specified with predicates over the
model’s features.

Program slicing, as defined in [20], takes a program
and a slicing criteria to compute a slice or subset of the
source code. More formally, given a slicing criterion,
s(v, n) with a set of variables v and a location of a
statement of interest s, program slicing determines a set
of statements contributing directly or indirectly to the
values of variables, v, before the statement s is executed.
Those resultant statements comprise the program slice.
Statements in a program slice have a specific behavioral
context. In this case, the behavior is the statements
affected by or affecting the states of the variables

involved in a computation at a particular point in a
program. These statements included in the program slice
are those extracted from the investigation of the
definition-use relationship (i.e., statements with
definition and usage of variables given in the slicing
criteria).

It should be noted the definition-use relationship is the
only relationship of interest in program slicing. This is
evident in the definition of the program-slicing criteria.
The slicing criterion does not provide any means for the
explicit specification of relationships other than
definition-use relationship. The usage of this relationship
is implicitly assumed. This assumption restricts program
slicing to the singular relationship among the elements
(statements) of the source code.

UML model slicing extends this concept of program
slicing via a generalized, albeit more complex, slicing
criteria. These extensions elevate the capabilities of
program slicing from the source-code level to UML
structural models (i.e., class models) and behavioral
models (i.e., sequence, collaboration, and state behavior
models). All elements and relationships defined in the
UML metamodel can be used in the computations of a
model slice. This includes elements such as classes,
packages, components and operations, and relationships
such as associations, dependencies and generalizations.
The slicing criteria for the extended domain must account
for all the elements and relationships available in the
UML metamodel.

Unlike program slicing, model slicing does not
necessarily require the physical location of an element of
interest (i.e., an observation point of a behavior). UML
class models, representing only abstracted structural
elements, contain no behavioral elements (e.g., instances
of classes or statements). However, other views such as
sequence diagrams, object diagrams, and collaborations
define contexts in which objects may be explicitly
located. In these cases, we define context to be the
location of the object. The context can be a particular set
of scenarios in which a set of objects are involved or a
particular range in the lifeline of a set of objects when
dealing with an interaction model such as one pictured by
a sequence diagram.

Here, we distinguish between slicing of models that
require or do not require context information and
introduce the terms context-free and context-sensitive
slices. The context-free slices are applicable to models
that do not require a context for the computation of a
model slice. Context-sensitive slices are applicable to
models that do require such context information. Here
we focus on the definition of context-free model slicing
and reserve the definition of context-sensitive slicing for
future work (as it requires the former definition at the
very least).

 2 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

2.1. Context-free Model Slice The dimension-set, D = ∀r∈ R | (PD(M) ∧ T(M) ∧
B(M)) specifies the relationships of interest (a.k.a.,
dimensions) to be included in the slice and traversed in
its computation. The predicate PD defines which
relationships are included in the slice. The predicate
T(M) defines a terminating condition of the computation
with respect to each of, or all, the relationships. The
bounding predicate B(M) is the computational upper
bound on the path length between elements with respect
to each of, or all the relationships, of the slice.

A context-free model slice is defined primarily to
encapsulate static and structural aspects of a UML model
and precludes the inclusion of behavioral, computation,
or interaction information. For the purpose of model
slicing, we define a model, M, as a directed multi-graph
M = (E, R, Γ) where

• E = {e1, e2,.., en} is the finite set of elements,
• R = {r1, r2,...,rm} is the finite set of relationships,

Consider a hypothetical UML class model with
classes and relations. To extract a subset of the model,
with a class named ClassA and all its base classes
involved in a generalization relation up to level 2, the
predicates for the slicing criteria are specified as follows,

• Γ:R⇒E×E is a function that maps elements to
elements via a relationship. Γ:R⇒E×E defines
multiple relations between each element. The
relations ri and rj are multiple relations on the
same elements if Γ(ri) = Γ(rj).

PI(M) := e ⊇ {(name, ”ClassA”)} Each element, e is defined by a finite set of properties
i {p1, p2 … pk}, such that each element has a finite set of
properties. Likewise each relation, r is defined by a finite
set of properties {p1, p2, … pk}. Each property, pi is an
ordered pair that defines a name and a value (e.g., {(type,
Class), (name, “stack”)…}).

PS(M) := T
PD(M) := r ⊇ {(type, “Generalization”)}
T(M):= F
B(M):= ∀r∀e∃ e’∈E | Γ (r)≡(e, e’)

∧ |path(e, e’,r)| ≤2
The computation of a slice proceeds along a given

dimension (i.e., relationship type) of the multi-graph,
injecting elements into the model slice according to the
specification in the slicing criteria. All three predicates
must be satisfied together, that is I ∧ S ∧ D must hold
true for all ei and ri in M’. The computation of the slice
ends when one of two conditions is met: the termination
condition for the computation or the bounding conditions
for each dimension. For example, the computation could
end if a class of a certain stereotype or name is
encountered (the first condition is met) or there are no
more elements to be found along a dimension’s path (the
second condition is met). Furthermore, the computation
can be bounded by the length of the path traversed in
each dimension.

The model consists of a finite set of elements E and a
finite set of relationships R. The set E contains instances
of all metamodel elements such as class, namespace,
package, component etc., and the set R provides all
instances of relationships including association,
generalization, dependency, etc. These correspond to the
meta-classes defined in the UML metamodel. As can be
seen from the above definition elements and relationships
are both first class entities.

The elements and relations are mapped with the
function, Γ. Given a relationship ri, the mapping Γ tells
which elements are its end points.

A property of a member of the set E could be the type
of element such as (type, Class), and a property of a
member of the set R could be the type of the relationship
such as (type, Generalization). Thus, this definition of
model makes the elements and relations along with their
property sets available for model slicing

2.2. Context-free Model Slicing Algorithm

The algorithm given in Fi computes a context-free
model slice and starts with the computation of initial
elements set E

gure 1

I from the specification PI. All the
members of set EI are included in the element set E’ of
the slice. The computation of the slice considers one
element of the set EI at a time for traversal. The
algorithm proceeds in a breath-first (i.e., level order)
traversal of the model with the initial element ei
considered to be at level 0. For each element at a level,
all the elements at the next level involved in relations
(satisfying the dimension predicates PD ∧ B(M) ∧
¬T(M)) are considered as candidates for inclusion in the
slice. All the elements satisfying the element selection
predicate PS and the homogenous path criteria (further
discussed in property 10 of section 2.3) are included in

The context-free model slice, Scf, of a given UML
model M, is defined as a function over a model and
determined by the specified slicing criteria, Ccf.,

Scf(M, Ccf) = M’ = (E’, R’, Γ’) ⊆ M
The context-free slicing criteria Ccf is defined as a

triple of constrains that must all be satisfied to construct
M’.

Ccf = (I, S, D)
The initial-element set, I = ∀e∈ E | PI(M) specifies

the initial elements of the slice. The predicate PI(M) is
constructed to be satisfied for elements in the initial set.

The selected-element set, S = ∀e∈ E | PS(M) specifies
the elements selected for inclusion in the resultant slice.
The predicate PS(M) is defined so that only elements of
interest are selected.

 3 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

the slice Also, the relation between the element at the
next level satisfying the above conditions and the
element under consideration at a current level, is included
in the slice. After all the relations and the elements
involved at the current level are considered, the algorithm
moves to the next level. The level traversal terminates
when the terminating predicate T(M) is met or the upper
bound specified by the bounding predicate B(M) is
achieved. All the above steps are repeated for each
element in the initial element set and a final slice Scf is
obtained on completion.

2

d
1

2

3

4

5

dimension is implicitly defined by the semantics of
each relationship in the UML metamodel. For
example the metamodel defines generalization and
specialization to be separate dimensions of the same
inheritance relationship. Therefore, model slicing
views generalization and specialization as different
dimensions.

6. A tautology for the dimension predicate PD indicates
all the relations are of interest irrespective of their
properties such as role or stereotype information and
the entire model needs to be traversed to compute

Procedure Scf (M, Ccf)
E’= ∅
R’= ∅
Scf = (E’, R’)
EI = {ei|∀ei∈ E [PI(M)]} ; compute initial elements set
EI ⊆ E’; include the initial set in the slice
for each ei∈ EI ∧ ei≠∅ ; compute slice for each initial element
 l = 0 ; start with the level 0
 el = ei ; only element at level 0

do BFT of M starting at ei ; perform breadth first traversal of the model
(El+1, Rl+1) = {el+1 ∈ E, rl+1∈ R | (rl+1∈ D ∧ Γ(rl+1)≡(el ,el+1) ∧ Hpath(ei, el+1 ,rl+1) ∧ PS(M))} ; all
elements at the next level and relations satisfying the dimension relationships, inclusion condition, and having homogenous
path
 El+1 ⊆ E’ ; include the elements

 , Rl+1 ⊆ R’; include the relations
l = l+1; go to the next level

return Scf
Figure 1. Context-free model slicing algorithm
.3. Properties of a Model Slice

The following properties are derived from the
efinition of a model slice, Scf:
. A slice may contain gaps in the path along a

dimension. The computation of the slice does not
stop if it encounters an element not satisfying the
predicate PS; rather the computation continues in the
specified dimension, excluding the elements that fail
to satisfy the selection criteria..,

. A tautology for the selection predicate PS indicates
all the elements along the dimensions satisfying the
dimension predicate, PD are included in the model
slice.

. If the initial element predicate, PI, is equivalent to
the selection predicate PS, the resultant slice is
identical to the initial element set.

. Every element included in the model slice must
satisfy one or both of the predicates, PI or PS. This
gives the following invariant of the model slice,

∀ e∈ E’ | (PI (M) ∨ PS (M))
. There is no explicit specification of directionality in

the dimension predicate PD. Directionality of a

the model slice. In this case, the selection predicate,
PS, will be evaluated for every element reachable
along a path from elements in the initial element set,
EI.

7. The dimensions given by the dimension predicate,
PD are specified only with respect to the initial
elements satisfying the initial element predicate, PI.
Thus, the elements included in the slice through the
satisfaction of PS are not recursively traversed for all
relations of interest but only for those of the initial
elements. For example, suppose that a derived class
is involved in only generalization while the
immediate base class is involved in generalization
and association. If the derived class is the initial
element than a slice, with respect to entire
association and generalization relations, involves
only traversal of the generalization relation of the
base as the derived class is not involved in any
associations. This implies another implicit condition
for an element to be included in the slice. Not only
is the element required to satisfy the selection
predicate, PS, but there must be a homogenous path
(i.e., a path in the same dimension) from the initial
element to elements included during traversal.

4 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

However, the resultant slice may not contain all
elements along the path (i.e., it has gaps). The
homogenous path condition (Hpath) is stated below,
Hpath(ei, ej ,r) = ∀ m | Γ(r)≡ (em,em+1) where

 i<=m <j
ei is the initial element
ej is the element considered to be included in the
slice

8. Each kind of relation in the dimension specification
is allowed to have a different terminating predicate
,T(M) and bounding predicate, B(M).

9. The literal value F, for the terminating predicate,
T(M) indicates that there is no termination condition
for the slice and computation for slice must continue
until the bounding predicate, B(M) is satisfied for all
relations.
until the bounding predicate, B(M) is satisfied for all
relations.

10. The traversal of each element satisfying the initial
element predicate, PI occurs in a breadth-first
manner. The traversal fans out in levels, and all the
relations and elements at a level are considered
before moving to the next level.

10. The traversal of each element satisfying the initial
element predicate, PI occurs in a breadth-first
manner. The traversal fans out in levels, and all the
relations and elements at a level are considered
before moving to the next level.

11. A tautology for the bounding predicate, B(M)
specifies the traversal along the dimension
relationship(s) terminates if there exist no more
elements along that path (e.g., reaching the root of an
inheritance hierarchy while traversing a
generalization dimension).

11. A tautology for the bounding predicate, B(M)
specifies the traversal along the dimension
relationship(s) terminates if there exist no more
elements along that path (e.g., reaching the root of an
inheritance hierarchy while traversing a
generalization dimension).
∃ ¬ (path(ei, e, r) > path(ei, ej, r)) where ∃ ¬ (path(ei, e, r) > path(ei, ej, r)) where
 elements ei, ej are already visited and elements ei, ej are already visited and
 element e is not visited along a relation r element e is not visited along a relation r
It is possible and valid for the final slice to have
elements (relations) that do not satisfy the
terminating predicate T(M). The elements (relations)
to be included in the slice are only governed by the
selection predicate PS (PD). The slice may terminate
early because of the bounding predicate B(M) is met
before the terminating predicate T(M). .

It is possible and valid for the final slice to have
elements (relations) that do not satisfy the
terminating predicate T(M). The elements (relations)
to be included in the slice are only governed by the
selection predicate PS (PD). The slice may terminate
early because of the bounding predicate B(M) is met
before the terminating predicate T(M). .

3. Applying Model Slicing 3. Applying Model Slicing
In this section, we demonstrate by example the

ability of model-slicing to satisfy questions that can be
asked of UML class models during software
maintenance. Three applications are given dealing with
design understanding, fault location, and metric
relevance. These applications of model slicing are
relatively simple to give the reader an understanding of
our method and a feeling of how it can be used to assist
in addressing particular tasks. Larger applications of
model slicing require sophisticated tool support to
formulate the criteria and are beyond the scope of this
presentation.

In this section, we demonstrate by example the
ability of model-slicing to satisfy questions that can be
asked of UML class models during software
maintenance. Three applications are given dealing with
design understanding, fault location, and metric
relevance. These applications of model slicing are
relatively simple to give the reader an understanding of
our method and a feeling of how it can be used to assist
in addressing particular tasks. Larger applications of
model slicing require sophisticated tool support to
formulate the criteria and are beyond the scope of this
presentation.

These examples were constructed by hand and
verified with a proof-of-concept implementation of the
model slicing algorithm. All the applications presented

here operate on a portion of the UML metamodel. This
is a domain many readers are familiar with and should
enable them to follow along without lengthy explanation
of the domain.

These examples were constructed by hand and
verified with a proof-of-concept implementation of the
model slicing algorithm. All the applications presented

here operate on a portion of the UML metamodel. This
is a domain many readers are familiar with and should
enable them to follow along without lengthy explanation
of the domain.

Figure 2. The model slice is shown within the grey
boxes. The levels reflect the traversal of two

relationships and represent the iterations of the
slicing algorithm. The class Class is not included in

the slice.

Figure 2. The model slice is shown within the grey
boxes. The levels reflect the traversal of two

relationships and represent the iterations of the
slicing algorithm. The class Class is not included in

the slice.

Figure 2

3.1. Design Understanding 3.1. Design Understanding

Question:Question: How can a programmer discover
relationships between a specific class and other classes
in a UML system model?

Programmers, when faced with such problems,
might typically browse through project software artifacts
including reference manuals, UML class diagrams, and
source code to discover relationships between one class
and its associates (base classes, aggregations,
dependencies, etc.). Rarely, even in good software
documentation, is this information localized for easy
consumption. Model slicing can be used as a query
mechanism to provide concise views of the
programmer’s informational needs. Consider a snippet
of the UML metamodel shown in . A
programmer looking for the inheritance hierarchy and
immediate associations of the Classifier class could use
the following slicing criteria to determine related classes.

PI(M) := e ⊇ {(name, ” Classifier”)}
PS(M) := T
PD(M) := r ⊇ [R1∨ R2]
R1= {(type, “Generalization”)}
R2= {(type, “Association”)}

 5 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

T(M):= F
B(M):= (∀r⊇ R1)∨

 (∀r⊇ R2 ∧ (∀e ∃ e’∈E |path(e, e’, r)| ≤1))

The computation of the model slice begins with the

computation of the initial element set, EI, from the
specification, PI, and results in only one class, Classifier.
The two relationships computed from the predicate PD
are Generalization and Association. The predicate B(M)
indicates the bounding condition for the traversal of these
relationships. The Association relationship is bounded at
the first level, whereas the Generalization relationship is
bounded only when the traversal has exhausted all the
elements in the Generalization path (refer to item 11 of
slice characteristics in Section 2.3). The terminating
condition, T(M), is assigned the value F to indicate no
explicit termination condition.

slice characteristics in Section 2.3). The terminating
condition, T(M), is assigned the value F to indicate no
explicit termination condition.

Figure 3. The model slice is contained in the gray
box. The slice reflects the first base class

implementing the validate method.

Figure 3. The model slice is contained in the gray
box. The slice reflects the first base class

implementing the validate method.

Figure 3

Before executing the breadth-first-traversal in the
slicing algorithm, the slice consists of elements in the
initial set, shown by the level zero in .
Following the algorithm given in F , the traversal
starts with Classifier and considers elements at level one.
The relationships traversed to the candidate elements are
shown in bold. The algorithm selects two elements along
the Generalization path (Namespace and
GeneralizableElement) and one element along the
Association path (Feature). After the first iteration, the
slice now includes those elements contained in level zero
and those contained in level one. In the second iteration
of the algorithm, only elements involved in the
Generalization relationship are considered because the
bounding condition of the Association relationship was

satisfied at level one. All the elements in the
Generalization relationship at this level are included in
the slice and are shown to be contained in level 2. The
computation of the model slice terminates after this
iteration as there are no more elements in the
Generalization path. The final slice is depicted in

, consisting of all elements contained within the
outermost level.

Before executing the breadth-first-traversal in the
slicing algorithm, the slice consists of elements in the
initial set, shown by the level zero in .
Following the algorithm given in F , the traversal
starts with Classifier and considers elements at level one.
The relationships traversed to the candidate elements are
shown in bold. The algorithm selects two elements along
the Generalization path (Namespace and
GeneralizableElement) and one element along the
Association path (Feature). After the first iteration, the
slice now includes those elements contained in level zero
and those contained in level one. In the second iteration
of the algorithm, only elements involved in the
Generalization relationship are considered because the
bounding condition of the Association relationship was

satisfied at level one. All the elements in the
Generalization relationship at this level are included in
the slice and are shown to be contained in level 2. The
computation of the model slice terminates after this
iteration as there are no more elements in the
Generalization path. The final slice is depicted in

, consisting of all elements contained within the
outermost level.

Figure 2

Figure
2

Figure 2

Figure
2

The class, Feature, is included as part of Association
because aggregation is a kind of association in the UML
metamodel. Note the Association computation is not
transitive as only the immediate associations of Classifier
are considered (i.e., Feature). Associations of base
classes are not considered for the slice. If those
associations are of interest, the base classes must be
included in the initial element set of the slicing criteria.

The class, Feature, is included as part of Association
because aggregation is a kind of association in the UML
metamodel. Note the Association computation is not
transitive as only the immediate associations of Classifier
are considered (i.e., Feature). Associations of base
classes are not considered for the slice. If those
associations are of interest, the base classes must be
included in the initial element set of the slicing criteria.

3.2. Fault Localization 3.2. Fault Localization

Question:Question: How can a programmer find classes that
implement a specifically named method, in one of which
a bug is known to exist?

In certain application domains such as user interface
frameworks, it is common for overloaded methods in
derived classes to call the same methods of their base
classes. In this example, we consider a similar call chain
that is used to validate a model against the UML well-
formed rules and other OCL constraints. As shown in

, classes requiring additional validation overload
the validate() method to check metaclass-specific
features.. Calculating a model slice for the entire
inheritance hierarchy may result in too many classes. In
this case, the programmer would want to refine the
slicing criteria to return a smaller set of elements relevant
to their query. This gives the programmer options when
composing the criteria. Should the slicing algorithm
terminate on the first class that implements method or
include all classes that implement the method? This
example considers two cases:

1) Include all classes in the inheritance hierarchy
and stop when the first base class implementing
the method is found and

2) Include only classes that implement the method and
traverse the entire inheritance hierarchy. igure 1igure 1

The slicing criteria for the first case are given below:
PI(M) := e ⊇ {(name, ” Classifier”)}
PS(M) := T
PD(M) := r ⊇ {(type, “Generalization”)}
T(M):= et ⊇ {(implements, ”validate”)}
B(M):= T
The specification states that the algorithm starts with

Classifier (i.e., PI specification) and traverses the
Generalization path including all the classes found
during this traversal in the model slice until the first class
implementing the specified method (i.e., the termination

 6 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

predicate is met) is found. Here, the value of B(M)
indicates the worst case situation in which the entire
Generalization path must be traversed to find candidate
elements for the slice. The slice computation terminates
when the first element (i.e., base class) implementing the
method named validate() is found, or the path is
exhausted. The selection predicate, PS, indicates that all
candidate elements are included in the slice. Thus the
slice will contain classes on the traversal path that do not
actually implement the specified method. The final slice,
obtained by applying the model slicing algorithm, is
shown in and consists of all elements contained
within the outermost level.

Figure 3

Figure 4. The gray boxes (each level representing
iterations of the algorithm) gives the model slice after

searching for all base classes implementing the
validate method.

Figure 4Figure 4

Notice the base class Namespace is included in the
slice. Because Namespace and GeneralizableElement are
at the same level in the traversal, the inclusion of
Namespace depends on the specific traversal order of
classes at this level. If Namespace occurs before
GeneralizableElement then it is included in the slice.
Here, we assume the order of traversal is from left to
right so Namespace is included in the final slice.

ersal, the inclusion of
Namespace depends on the specific traversal order of
classes at this level. If Namespace occurs before
GeneralizableElement then it is included in the slice.
Here, we assume the order of traversal is from left to
right so Namespace is included in the final slice.

Now consider the slicing criteria for the second case: Now consider the slicing criteria for the second case:
PI(M) := e ⊇ {(name, ” Classifier”)} PI(M) := e ⊇ {(name, ” Classifier”)}
PS(M) := es ⊇ {(implements, ” validate”)} PS(M) := es ⊇ {(implements, ” validate”)}
PD(M) := r ⊇ {(type, “Generalization”)} PD(M) := r ⊇ {(type, “Generalization”)}
T(M):= T T(M):= T
B(M):= T B(M):= T

In this case, the only classes included in the slice are

those that implement the method (i.e., determined by the
selection predicate PS). Also, the slice computation

continues until the entire Generalization path is
exhausted. The final slice is shown in ,
consisting of elements contained within the outermost
level. Note that the path from Classifier to Namespace is
represented in bold. This indicates that the algorithm
actually followed the path, visiting the Namespace class.
However, the selection criteria are not met and so the
class is not included in the final slice.

In this case, the only classes included in the slice are
those that implement the method (i.e., determined by the
selection predicate PS). Also, the slice computation

continues until the entire Generalization path is
exhausted. The final slice is shown in ,
consisting of elements contained within the outermost
level. Note that the path from Classifier to Namespace is
represented in bold. This indicates that the algorithm
actually followed the path, visiting the Namespace class.
However, the selection criteria are not met and so the
class is not included in the final slice.

3.3. Metric Relevance Slicing 3.3. Metric Relevance Slicing

Question:Question: How can a software engineer find classes in
a software design by metric analysis to identify potential
refactorings?

The ability of a software engineer to locate and
analyze classes for potential refactorings is critical to
reengineering activities. The engineer must know the
design relevant to the classes targeted for refactoring and
the impact the refactoring may have on related classes.
As shown, model slicing has the ability to extract regions
of interest from a UML model. However, in this
example, we augment a typical UML model with LCOM
(lack of cohesion metric) [4] values in order to provide
additional analytic functionality in the slicing criteria and
therefore, the ability to answer questions of this nature.

Figure 5. The initial model slice for classes
augmented with LCOM values of 2 or greater is

shown as a gray box.

Figure 5 shows a model augmented with LCOM
values. These values are simply treated as attributes of
classes in which they appear. The following slicing
criteria obtain a slice of classes with LCOM values
greater than 2 in the inclusive inheritance hierarchy of
elements in the initial set (i.e., the Generalization and
Specialization relationships are both traversed).

 7 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

PI(M) := e ⊇ {(LCOM, 2)}
PS(M) := e ⊇ {(LCOM, gte(2))}
PD(M) := r ⊇ [R1∨ R2]
R1= {(type, “Generalization”)}
R2= {(type, “Specialization”)}
T(M):= T
B(M):= T

Note the specification of the selection predicate, PS,

includes an evaluation function, gte, which is responsible
for evaluating the numeric comparison between the
elements LCOM value and the constant value 2.

The initial model slice is show in , containing
only Classifier. Had there been other classes in the
model with LCOM values of 2, they would also be
included in the initial element set. After computing the
slice, the result is shown in , consisting of all
elements contained within the outermost level.

Figure 5

Figure 6

Figure 6. The final model slice for classes with
augmented LCOM values greater than or equal to 2.

4. Related Work
A variety of artifacts are produced or derived

throughout the software development life cycle. These
artifacts may include design models such as UML class
models, source code, and additional models representing
various aspects of the software at different abstraction
levels. Most maintenance or evolution tasks (e.g.,
corrective maintenance, perfective maintenance) require
only the most relevant parts of these artifacts. However,
extracting this subset may utilize information from other
artifacts or their derived abstractions. The ability to
extract relevant subsets of artifacts is typically a
prerequisite for answering many types of questions about

the artifacts and understanding their contents.
Additionally, these subsets are often utilized to construct
models with higher levels of abstraction.

In this section, we examine existing techniques for
extracting relevant subsets of software artifacts at the
source code and UML design levels. We classify and
discuss proposed or available methods for subset
extraction/identification, based on their targeted
abstraction (i.e., the artifact itself or a derived abstraction
of the artifact such as a control flow graph).

4.1. Program Slicing

Most related to our work presented in this paper is
program slicing. It is a technique to extract a subset of a
program. Source code models such as data flow, control
flow and dependency graphs are utilized in computing
program slices [8, 20]. Thus, program slicing is an
effective mechanism to extract source code parts by
utilizing information available only at the source code
level. Program slicing techniques for object-oriented
software is described in [11]. In this work, the program
is represented in the form of the system dependency
graph (SDG). Here, SDG is extended to represent class,
inheritance, interactions, and polymorphism extracted
from the source code. The slicing algorithm is then
applied on SDG with the slicing criteria modified to
allow for slicing based on data member variable or
method of a class. However, the granularity of slice is at
a statement-level.

In [17] the combination of statement-level slicing
within a class and a class level slicing for a collection of
classes along an inheritance relation (i.e., class hierarchy)
is considered within a context of a usage of classes. The
desired slice is the one with only classes and statements
within classes relevant to its usage in a particular context.
Program slicing has demonstrated its applicability in
debugging, testing, differencing source code versions,
integration of software modules [8], impact analysis [6,
18], and other software engineering applications.

However, program slicing is not applicable to UML
design models as it is only capable of addressing the
source code, not higher levels of abstraction such UML
models or other derived abstractions. Without further
extension and refinement, program slicing has limited
capabilities in these domains.

It should be noted that other approaches such as call
graph analysis, concept analysis, and clustering have
rarely, if ever, been applied with regards to these higher
level abstractions, particularly UML models.

4.2. Querying UML Models

Just as there are methods to query and extract
information from source code, a variety of tools and

 8 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

techniques have been proposed to perform similar
activities on UML models. In this subsection, we discuss
existing methods to query and extract information from
UML class models – the subset of a model that deals with
the structural design of the system (i.e., classes,
attributes, and operations). These approaches include
constraint and query languages, XML processing, and
model processing.

The UML object constraint language (OCL) [1, 7, 19]
allows querying of UML models. It is primarily used for
model validation and constraint checking. Recent work
in Model Driven Architecture (MDA) has proposed using
OCL as a query language to satisfy the query component
to the QVT (Query/View/Transformation) specifications
[2]. As a query language, OCL can be used to extract
model elements that satisfy some condition (e.g., all
abstract classes in a model).

Many approaches to querying UML models involve
analysis or operations on the XML-based interchange
format for UML models, XMI [10, 13, 16]. These
approaches apply XML processing techniques such as
XPath, XQuery and XSLT to extract data from the XMI
files. This approach is similar to those used in XML-
based source code or AST analysis.

Other approaches involve model analysis in the
context of additional semantic information. In [9] a
metric-based approach is proposed to derive subparts of
UML class diagrams. A high level view of the subparts
exhibiting a particular metric-based feature such as
coupling (referred to as a coupling diagram) is obtained,
and then classes within a particular range of metric
values are extracted and visualized via a diagram. This
approach is particularly good at “pruning” large UML
diagrams to show only the relevant classes in the
diagram. However, this approach is very limited in the
types of pruning that can be done.

Other approaches involve the use of additional
languages and technologies to query or validate UML
models. In [12], OCL expressions are translated to SQL
statements to query and evaluate models stored in a
relational database. In [15], Python and OCL are used
together to provide more procedural control for the
evaluation of such queries.

Concept location, a human intensive activity is used to
search for and find classes in the UML class diagrams
[14] and/or units of source code. These approaches use
the Abstract System Dependence Graph (ASDG) [3] of
classes that are affected because of a problem domain
level concept or feature change. In this approach a user
decides the starting component, next related component
to visit, and inclusion candidates in the list of affected
components. This can be used to locate features in the
design or source code level.

The concept analysis and cluster analysis techniques
can be used in conjunction with model slicing to identify

concepts and clusters in the UML models. The model
slices provides an alternative approach to obtaining
context information needed for concept analysis. The
criteria used to compute model slices can also be used as
a basis for clustering criteria. Moreover, model slicing
can be used to automate a great deal of the human
intensive components of concept location. The selective
representation problem in [9] extracts a higher level view
(i.e., a coupling diagram) of the model based on the
desired metric value such as CBO [5] to select a subset of
classes. However, model slicing requires no such higher
level views as such information is considered as part of
the model itself.

5. Conclusions & Future Work
In this paper we introduced the concept of model

slicing pertaining to UML class models. The work
generalizes the concept of program slicing so that it can
be applied to more abstract models. The ultimate goal is
to provide an automatic mechanism that will enable
developers to extract task-specific UML sub-models by
giving specification in terms of UML-level constructs.
This type of approach will support the development of
sophisticated tools to automatically extract meaningful
sub-models of large system design model so they can be
visualized or analyzed to facilitate maintenance and
evolution tasks.

Three applications are given to demonstrate the
usefulness of model slicing for the purpose of obtaining
information about a class model. Current techniques to
obtain similar information from class models consist
either of manual inspection or very specialized one-time
solutions that can not be applied broadly. Our approach
addresses the problem of extracting relevant subsets of a
class model in a very general manner. While these
examples may be limited in their scope, it is conceivable
that the underlying capabilities of model slicing can
support a much wider range of software engineering
tasks such as impact analysis with respect to a design
model.

Model slicing is realized as a set of predicates that
specify a slicing criterion. As can be seen, even in
simple examples, this specification can be difficult to
articulate. We envision that languages such as OCL can
be used to implement the predicates required to compute
the model slices.

In this vein, we are extending our prototype
implementation of the model slicing algorithm and plan
to apply it to large models of real systems (e.g., an open
source systems such as HippoDraw). The tool is built
using our in-house developed Open Modeling
Framework (OMF) and the Python scripting language.
OMF is a framework for the storage and representation of
UML models. Alternatively, one can also build an

 9 of 10

Kagdi, Maletic, Sutton ICSM’05 Submission

implementation on top of Rational Rose as a plugin using
VBScripts. In the future we plan to further investigate
the usefulness of UML model slicing through a set of
question-and-answer experiments with existing software
systems.

We are actively investigating the concept of context-
sensitive slicing of UML models using a behavioral
model, such as a sequence diagram that is implicitly
linked to the static class model. This will result in a slice
of the class model in the context of the modeled
behavior. We feel this has much promise in producing
relevant sub-models. However, the work presented here
is a necessary prerequisite to realizing a context-sensitive
slice.

6. Acknowledgements
This research was supported, in part, by a grant from

the National Science Foundation (CCR-02-04175).

7. References
[1] Akehurst, D. H. and Bordbar, B., "On Querying UML Data
Models with OCL", in Proceedings Fourth International
Conference on the Unified Modeling Languages (UML'01),
Toronto, Canada, October 1-5 2001, pp. 91-103.

[2] Appukkutan, B., Tratt, L., Clark, T., Reddy, S., Venkatesh,
R., Evans, A., Maskeri, G., Sammut, P., and Willans, J., "QVT-
Partners Revised Submission to MOF 2.0
Query/View/Transformations RFP", Object Management
Group, Document ad/03-08-08, August 2003.

[3] Chen, K. and Rajlich, V., "Case Study of Feature Location
Using Dependece Graph", in Proceedings 8th International
Workshop on Program Comprehension (IWPC'00), Limerick,
Ireland, June 2000 2000, pp.

[4] Chidamber, S. R. and Kemerer, C. F., "Towards a Metrics
Suite for Object Oriented Design", in Proceedings OOPSLA'91,
1991, pp. 197-211.

[5] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite for
Object Oriented Design", IEEE Transactions on Software
Engineering, 20, 6, 1994, pp. 476-493.

[6] Gallagher, K. and Lyle, J., "Using Program Slicing in
Software Maintenance", Transactions on Software Engineering,
17, 8, August 1991 1991, pp. 751-762.

[7] Gogolla, M. and Richters, M., "On Constraints and Queries
in UML", in Proceedings Workshop on the Unified Modeling
Language - Technical Aspects and Applications, Mannheim,
Germany, November 10-11 1997, pp. 109-121.

[8] Horwitz, S. and Reps, T. W., "The Use of Program
Dependence Graphs in Software Engineering", in Proceedings
International Conference on Software Engineering (ICSE),
Melbourne, Australia, May 11 - 15 1992, pp. 392 - 411.

[9] Kollmann, R. and Gogolla, M., "Metric-Based Selective
Representation of UML Diagrams", in Proceedings Sixth
European Conference on Software Maintenance and
Reengineering(CSMR'02), Budapest, Hungary, March 11 - 13
2002, pp. 89-98.

[10] Kurtev, I. and van der Berg, K., "Model Driven
Architecture Based XML Processing", in Proceedings ACM
Symposium on Document Engineering (DOCENG'03),
Grenoble, France, 2003, pp. 246-248.

[11] Larsen, L. and Harrold, M. J., "Slicing object-oriented
software", in Proceedings Proceedings of the 18th international
conference on Software engineering (ICSE96), Berlin,
Germany, March 25 -29, 1996 1996, pp. 495 - 505.

[12] Marder, U., Ritther, N., and Steiert, H.-P., "A DBMS-
based Approach for Automatic Checking of OCL Constraints",
in Proceedings OOPSLA'99 Workshop on Rigourous Modeling
and Analysis with the UML: Challenges and Limitations,
Denver, Colorado, November 1-5 1999, pp.

[13] Peltier, M., Bézivin, J., and Guillaume, G., "MTRANS: A
general framework, based on XSLT, for model
transformations", in Proceedings ETAPS'01 Workshop on
Transformations in UML, Genova, Italy, April 7 2001, pp.

[14] Rajlich, V. and Wilde, N., "The Role of Concepts in
Program Comprehension", in Proceedings International
Workshop on Program Comprehension (IWPC 2002), Paris,
France, June 27 - 29 2002, pp. 271-278.

[15] Siikarla, M., Peltonen, J., and Selonen, P., "Combining
OCL and Programming Languages for UML Model
Processing", in Proceedings UML'03 Workshop on OCL 2.0 -
Industry Standard or Scientific Playground?, San Francisco,
California, October 21 2003, pp.

[16] Stevens, P., "Small-Scale XMI Programming: A
Revolution in UML Tool Use?" Automated Software
Engineering, 10, 1, January 2003 2003, pp. 7-21.

[17] Tip, F., Cho, J. D., Field, J., and Ramalingam, G., "Slicing
Class Hierarchies in C++", in Proceedings Proceedings of the
11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA96), San Jose, California, United States, October 06 -
10, 1996 1996, pp. 179 - 197.

[18] Tonella, P., "Using a Concept Lattice of Decomposition
Slices for Program Understanding and Impact Analysis",
Transactions on Software Engineering, 29, 6, June 2003 2003,
pp. 495-509.

[19] Warmer, J. and Kleppe, A., The Object Constraint
Language : Precise Modeling with UML, 1st ed., Addison-
Wesley Pub Co, 1998.

[20] Weiser, M., "Program slicing", in Proceedings
International Conference on Software Engineering (ICSE'81),
San Diego, California, March 09 - 12 1981, pp. 439 - 449.

 10 of 10

	Introduction
	UML Model Slicing
	Context-free Model Slice
	Context-free Model Slicing Algorithm
	Properties of a Model Slice

	Applying Model Slicing
	Design Understanding
	Fault Localization
	Metric Relevance Slicing

	Related Work
	Program Slicing
	Querying UML Models

	Conclusions & Future Work
	Acknowledgements
	References

