
The Concatenate Vanishes

Philip Wadler
University of Glasgow∗

December 1987 (Revised, November 1989)

This note presents a trivial transformation that can eliminate many calls of the con-
catenate (or “append”) operator from a program. The general form of the transformation
is well known, and one of the examples, transforming the reverse function, is a clas-
sic. However, so far as I am aware, this style of transformation has not previously been
systematised in the way done here.

The transformation is suitable for incorporation in a compiler, and improves the
asymptotic time complexity of some programs from quadratic to linear. There is a syntac-
tic test that determines when the transformation will succeed in eliminating a concatenate
operation.

Section 1 describes the transformation. Section 2 presents examples. Section 3 char-
acterises the transformation’s benefits. Section 4 describes related work. Section 5 con-
cludes.

1 The transformation

First, some notational preliminaries. We write concatenate as infix ++, list construction
(cons) as infix :, and the empty list as []. We write [x , y , z] as an abbreviation for
x : (y : (z : [])).

We will make use of the following laws:

(1) [] ++ x = x
(2) (x : y) ++ z = x : (y ++ z)
(3) (x ++ y) ++ z = x ++ (y ++ z)

Laws (1) and (2) provide a recursive definition of concatenate. Law (3) states that con-
catenate is associative; it may be proved from laws (1) and (2).

We now describe the transformation. The key idea is that whenever an application
of a function f may appear as the left argument of a concatenation, then we introduce a
new function f ′, satisfying the property

(∗) (f x1 . . . xn) ++ y = f ′ x1 . . . xn y

∗Author’s address: Department of Computing Science, University of Glasgow, Glasgow G12 8QQ,
Scotland. Electronic mail: wadler@cs.glasgow.ac.uk.
An earlier version of this note was distributed to the “fp” electronic mailing list, December 1987.

1

We assume that the name f ′ can be derived from the name f , and appears nowhere in
the original program.

For simplicity, we will assume that a program script is a collection of equations. For
each equation in the original program

f p1 . . . pn = e

defining f , we introduce a new equation

f ′ p1 . . . pn y = e ++ y

defining f ′. Here p1, . . . , pn are patterns, e is an expression, and y is a new variable name.
The original definition of f is replaced by

f x1 . . . xn = f ′ x1 . . . xn []

It should be clear that the new f is equal to the old f , and that f and f ′ satisfy (∗).
The script is then transformed by repeatedly applying laws (1)–(3) and each property

(∗) as rewrite rules, replacing each instance of a left-hand side by the corresponding right-
hand side. Whenever possible, law (3) should be applied before property (∗). If we also
use the property

(f ′ x1 . . . xn y) ++ z = f ′ x1 . . . xn (y ++ z)

as a rewrite rule, then the order in which rules are applied is immaterial.
When no more rewrites can be applied, the transformation is complete.
The validity of this transformation is easy to verify, as it fits directly into Burstall and

Darlington’s [BD77] classic program transformation approach.

2 Examples

2.1 Reverse

A function to reverse a list is defined by the script

reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

To apply the transformation, we first form the new definition

reverse ′ [] ys = [] ++ ys
reverse ′ (x : xs) ys = (reverse xs ++ [x]) ++ ys

We now rewrite the right-hand sides of each equation according to the rules given above:

[] ++ ys = ys (1)

(reverse xs ++ [x]) ++ ys = reverse xs ++ ([x] ++ ys) (3)
= reverse xs ++ (x : ys) (2, 1)
= reverse ′ xs (x : ys) (∗)

2

This yields the final definition,

reverse xs = reverse ′ xs []

reverse ′ [] ys = ys
reverse ′ (x : xs) ys = reverse ′ xs (x : ys)

Whereas the original definition of reverse is quadratic in the length of the input list, the
transformed definition is linear.

2.2 Tree traversal

Binary trees can be represented using the constructors Leaf and Branch, so that

Branch (Branch (Leaf 1) (Leaf 2)) (Leaf 3)

is a typical tree. Traversing a tree returns a left-to-right list of its leaves, so traversing
the above tree returns [1,2,3].

A function to traverse a tree is defined by the script

traverse (Leaf x) = [x]
traverse (Branch xt yt) = traverse xt ++ traverse yt

Applying the transformation (and omitting the details this time) yields the new script

traverse xt = traverse ′ xt []

traverse ′ (Leaf x) zs = x : zs
traverse ′ (Branch xt yt) zs = traverse ′ xt (traverse ′ yt zs)

Whereas the original definition of traverse is (in the worst case) quadratic in the size of
the input tree, the transformed definition is (in all cases) linear.

2.3 Quicksort

The traditional quicksort algorithm is defined by the script

qsort [] = []
qsort (x : xs) = qsort (below x xs) ++ [x] ++ qsort (above x xs)

where (below x xs) returns a list of all elements in xs that are less than x , and (above x xs)
returns a list of all elements in xs that are greater than or equal to x . Applying the
transformation yields the new script

qsort xs = qsort ′ xs []

qsort ′ [] ys = ys
qsort ′ (x : xs) ys = qsort ′ (below x xs) (x : qsort ′ (above x xs) ys)

where above and below are as before.

3

The original and the transformed definitions of qsort both have the same asymptotic
complexity, namely quadratic in the worst case, and n log n in the average case, where n
is the length of the input list. However, the transformed definition has a slightly better
absolute performance. Measurements made with the Orwell [WMR87] interpreter show
that the transformed definition requires about 10% less in run time, number of reductions
performed, and number of cells allocated. Measurements made with the Miranda1 [Tur85]
interpreter show a similar improvement.

2.4 Flattening a list of lists

Here are some examples of scripts not improved by the transformation. A function to
concatenate a list of lists is defined by the script

flatten [] = []
flatten (xs : xss) = xs ++ flatten xss

The transformation does not alter this script at all. Furthermore, if in the previous scripts
we had always written

flatten [xs , ys]

in place of xs ++ ys , then these scripts would not have been improved either.
A confused programmer might write the following definition:

silly xs [] = xs
silly xs (ys : yss) = silly (xs ++ ys) yss

If yss is a finite list, then

silly xs yss = xs ++ flatten yss

However, flatten requires time linear in the size of its input, whereas silly requires (in the
worst case) quadratic time. Again, this script is not altered by the transformation. So
there is at least one script involving concatenate (albeit a silly one) that the transformation
does not improve from quadratic to linear time.

2.5 Tree traversal, revisited

A different sort of tree can be represented using the constructor Spine, so that

Spine 1 [Spine 2 [], Spine 3 []]

is a typical tree. Left-to-right traversal of this tree yields [1,2,3].
A function to traverse such trees can be defined by

traverseTree (Spine x xts) = x : flatten (map traverseTree xts)

where map applies a function to each element of a list. Applying the transformation to
this script has no effect, so we might consider this another failure of the transformation
technique.

1Miranda is a trademark of Research Sofware Limited.

4

However, if we first expand the above definition into the form

traverseTree (Spine x xts) = x : traverseForest xts

traverseForest [] = []
traverseForest (xt : xts) = traverseTree xt ++ traverseForest xts

then the resulting script will be transformed in a way similar to the previous traversal
example, in this case yielding two new functions, traverseTree ′ and traverseForest ′. It
may be possible for a compiler to perform automatically an expansion like the one given
here, but we leave exploration of that issue to a future paper.

3 Characterising the transformation

It is clear that this tranformation could easily be incorporated into a compiler for a func-
tional language, and the examples suggest this may yield a significant benefit. However,
any transformation introduced into a compiler will be useless if it affects the behaviour of
the transformed programs in a way that is difficult to predict. Of course, one could always
determine the behaviour by examining the transformed script, but it is better to be able
to analyse the program in terms of the source script. This section presents a method of
doing so.

To do this, we need to classify each list-valued expression and function in a script as
either creative or plagiarizing. An expression is creative if it allocates each cons cell in
its result, as in [x , y , z], and plagiarizing if some cons cells in the result are shared with a
free-variable of the expression, as in x : y : zs . Similarly, a function definition is creative
if it allocates each cons cell in the result, and plagiarizing if some cons cells are shared
with an argument of the function. As a simple example, given the script

copy [] = []
copy (x : xs) = x : copy xs

concat [] ys = ys
concat (x : xs) ys = x : concat xs ys

then copy is creative, whereas concat is plagiarizing.
There is a simple syntactic test for creativity. Let F be a set of functions assumed to

have creative definitions. An expression is creative relative to F if it is [] or has one of
the forms

e1 : e2 and e2 is creative relative to F
e1 ++ e2 and e1 and e2 are creative relative to F
f e1 . . . en and f is in F

There are no requirements on e1, . . . , en in the last case. An expression consisting only of
a variable is not creative.

Given a script S0, let F0 be the largest set such that for each f in F0, all the right-hand
sides of f in S0 are creative relative to F0. Then the creative function definitions in S0

are just those in F0, and the creative expressions in S0 are just those that are creative

5

relative to F0. By this test, the definitions given above for reverse, traverse, and qsort
are creative, while the definition of flatten is not.

We can now characterize the benefits of the transformation for a given script. In
each expression of the form (e1 ++ e2), if e1 is creative then the occurence of ++ will be
transformed out of the script. Further, when computing asymptotic time complexity, in
each expression of the form (e1 ++ e2), if e1 is creative then the time to perform the ++
operation may be taken as constant rather than proportional to the length of e1. Using
this model, we can predict that reverse and traverse, as given above, will improve from
quadratic to linear, whereas qsort will retain the same asymptotic time complexity.

4 Related work

Sleep and Holmström [SH82] have described an ingenious implementation of concatenate.
Their run-time implementation is more flexible than the compile-time transformation
described here, but it incurs higher overhead. For example, under their method the
untransformed versions of reverse and traverse will run in linear (asymptotic) time, but
with higher (absolute) time overhead than the equivalent transformed versions. On the
other hand, the transformation described here leaves silly unchanged, and hence requiring
quadratic time, while under their method it runs in linear time. There is no harm in
using both methods: in this case, concatenate can always be taken as requiring constant
asymptotic time, while the model in Section 3 now describes when run-time overhead will
be eliminated.

The transformation given here has much the same effect as the one described in
[Hug86]. The main difference is that the transformation here is described in such a
way that it could be added to a compiler, and a precise characterisation of the effect on
efficiency has been given.

It may be possible to combine the transformation described here with the “defor-
estation” transformation [Wad88]. Doing so may eliminate some of the shortcomings
described in Sections 2.4 and 2.5.

5 Conclusions

A simple algorithm has been presented that removes many instances of concatenate from
a program. The algorithm improves some familiar algorithms, such as reversing a list or
traversing a binary tree, from quadratic to linear in terms of asymptotic time complexity.
It improves some others, like quicksort, by a constant factor. It is possible to charac-
terise those instances where the algorithm will succeed in eliminating concatenate, and to
characterise the resulting improvement (if any) in asymptotic time complexity.

Functions that convert data structures into strings often look similar to the tree traver-
sal functions transformed here, and thus are likely to yield notable improvements. John
O’Donnell tells an anecdote about a pretty-printer he once wrote, that required several
hours to run. When he applied (by hand) a transformation similar to the one described
here, the run time was reduced to less than ten minutes.

6

The transformation presented here is astonishingly simple. The first reaction on seeing
it is “that’s obvious”. However, I’ve never before heard it suggested that applications of
concatenate can be transformed away automatically, and I know of no compiler that
incorporates this transformation.

Would it be too much to suggest that the transformation is obvious only in retrospect?
Are there other obvious transformations waiting to be discovered?

Acknowledgements

I am grateful to John O’Donnell for the above anecdote, and to John Launchbury for
suggesting the quicksort example and helping to measure the improvement in efficiency.
I am particularly grateful to David Watt, who asked the critical question I had never
considered in a decade of work on program transformation: Is there an algorithm that
can make concatenate vanish?

References

[BD77] R. M. Burstall and J. Darlington, A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, January 1977.

[Hug86] J. Hughes, A novel representation of lists and its application to the function
“reverse”. Information Processing Letters, 22:141–144, March 1986.

[SH82] M. R. Sleep and S. Holmström, A short note concerning lazy reduction rules
of append. Software Practice and Experience, 12(11):1082–4, November 1982.

[Tur85] D. A. Turner, Miranda: A non-strict functional language with polymorphic
types. In G. Kahn, editor, Proceedings of the Conference on Functional Pro-
gramming Languages and Computer Architecture, Nancy, France, September
1985. LNCS 201, Springer-Verlag, 1985.

[Wad88] P. L. Wadler, Deforestation: Transforming programs to eliminate trees. In
H. Ganzinger, editor, European Symposium On Programming, Nancy, France,
March 1988. LNCS 300, Springer-Verlag, 1988. Revised version to appear in
Theoretical Computer Science.

[WMR87] P. L. Wadler, Q. Miller, and M. Raskovsky, An introduction to Orwell. Pro-
gramming Research Group, Oxford University, 1987.

7

