
From the bitstream to the netlist

Jean-Baptiste Note
Département d’informatique
École Normale Supérieure
45, rue d’Ulm, 75005 Paris

jean-baptiste.note@ens.fr

Éric Rannaud
Département d’informatique
École Normale Supérieure
45, rue d’Ulm, 75005 Paris
eric.rannaud@ens.fr

ABSTRACT
We present an in-depth analysis of the Xilinx bitstream for-
mat. The information gathered in this paper allows bit-
stream compilation and decompilation. While not actu-
ally compromising current bitstream security, the easiness
of the decompilation process should raise awareness about
bitstream security issues.

Available documentation from Xilinx and some custom as-
sumptions about the bitstream format are presented and an-
alyzed, so as to first gather a database mapping bitstream
data to its related netlist elements, thanks to a suitable al-
gorithm applied to a well-chosen bitstream.

This database is then used as input to an efficient program
which can compile a bitstream from a low-level textual de-
scription or conversely decompile a bitstream to the same
textual description for any subsequent input.

The whole process of database gathering and the decom-
pilation of the bitstream format for a particular chip runs
at about the speed of bitgen compilation. The sole process
of compiling/decompiling a bitstream from/to its associated
textual description runs two orders of magnitude faster.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory—Nonsecret
encoding schemes; I.5.4 [Pattern Recognition]: Applica-
tions

General Terms
Algorithms, Documentation

Keywords
bitstream format

1. INTRODUCTION

1.1 Bitstream decompilation
In the software domain, great tools such as the GCC – tools
which were once deemed too complex to be correctly imple-
mented outside of the severe precincts of big companies –
would never have come to life if microprocessor vendors had
kept details about their instruction set architecture hidden.

In the hardware domain, lack of information from the ven-
dors about the details of their bitstream format and overall
FPGA architecture is still an impediment to research; like-
wise, it stifles wider adoption of FPGAs and cripples novel
uses of reconfigurable computing.

It is widely believed that the analysis of bitstream formats is
a daunting task. In fact, it is surprisingly easy. This paper
presents a methodological approach to bitstream reversing
illustrated with a case study on the Virtex FPGA lines from
Xilinx.

Given a few assumptions about the bitstream format, we
show in details how bitstream decompilation becomes both
very simple and very fast. These assumptions are verified for
Xilinx bitstreams. The paper is backed by proof-of-concept
software [1] which can extract textual configuration informa-
tion from the bitstreams used to program Xilinx’s Virtex-II,
Virtex-4 LXT and Virtex-5 LXT FPGAs.

1.2 Bitstream security
The full internal configuration state of SRAM-based pro-
grammable logic devices is contained in a programming file
called a bitstream. It is commonly loaded from an external
storage device on each power-up of the PLD, as the SRAM
holding the configuration state inside the PLD is volatile.
Therefore, it is often possible for an hostile end-user to in-
tercept the bitstream during its transfer across the PCB.

Netlist security is of paramount importance for most FPGA
hardware users. The programming file of the FPGA contains
the netlist information, so FPGA vendors offer strong cryp-
tography options for protecting bitstream contents. How-
ever, strong crypto support is only available on high-end
FPGAs, and some implementations require the use of an
external battery for holding the cryptographic keys [2].

Many real-world embedded projects cannot afford these very
large, expensive and power-hungry FPGAs with built-in en-
cryption. Furthermore, critical in-field projects cannot run



the risk of an external battery, which adds a sensitive single
point of failure to the hardware.

For these users, the confidentiality of the netlist relies en-
tirely upon the intricacies of the bitstream format with possi-
bly some ad-hoc concealing layers added by the users them-
selves [3]. Security through obscurity schemes are known
to be theoretically and practically flawed [4]. However, it is
generally assumed that the reverse-engineering effort needed
to get back to the netlist from a compiled bitstream is non-
trivial for FPGAs [5].

1.3 Scope of the work
Bitstream decompilation has long been known to be pos-
sible. NeoCad provided alternative design tools for Xilinx
chips. ClearLogic was able to break into Altera’s bitstream
format. To the best of our knowledge, it is however the
first time that a very simple algorithm is put forward which
realizes the decompilation task so simply.

We believe this is achieved without significantly compromis-
ing the security of any current in-field design. As will be
shown in section 5.3.1, the textual representation obtained
by a run of the software backing this paper is not a true
netlist. Furthermore, assuming that the netlist stage could
be reached, higher-level analysis tools would be required to
actually structure and make sense of the data.

The first aim of this work is to hint at FPGA vendors that,
with proper security features available, they have every-
thing to gain from openly releasing bitstream format spec-
ifications. More specifically, much more efficient software
could certainly be developed outside of vendors’ scope. Sec-
tion 5.3.2 demonstrates that bitgen-like functionality could
be much faster with a clean, optimized reimplementation
freed of legacy code.

We believe that open-source third party tools may be achiev-
able without vendor support – debit’s support for the latest
Virtex-5 architecture tends to back this claim.

The second aim of this work is to raise awareness among
FPGA users about the necessity to take security issues seri-
ously. Vendors do provide extensive solution to secure bit-
streams. Strong crypto has been mentioned; it is not the
only option: Spartan3-AN line of FPGAs from Xilinx allows
users of low-cost chips to avoid exposing their bitstream.

Lastly, we hope this work may be of use to academic re-
searchers exploring novel FPGA architectures by revealing
some internal structural details of current commercial FP-
GAs.

1.4 Paper structure
This paper is organized as follows. Section 2 reviews the
Xilinx toolflow. Section 3 summarizes some important in-
formation about the bitstream file format. Based on this,
section 4 shows the set-theoretic algorithm used to gather a
database mapping the bitstream bits to their functional role.
Section 5 goes into implementation details about how to take
advantage of this database to actually produce a netlist de-
scription from any bitstream, thus effectively decompiling a

bitstream. Section 6 takes a brief look at possible outcomes
for this work and concludes.

2. XILINX TOOLCHAIN

2.1 Xilinx workflow
FPGA bitstream generation is currently only handled by
proprietary vendor tools due to the closed nature of the bit-
stream format. In the Xilinx case, going from a netlist de-
scription of the circuit to the bitstream which embodies the
netlist is a long process which involves various programs.

Figure 1 shows how to get from an EDIF file to the final
bitstream (.bit file) which will be actually loaded into the
FPGA. The software proceeds as follows:

• it converts the EDIF file to Xilinx’s internal netlist
format, the ngd file, through ngdbuild. It can do the
same for a wide range of input netlist formats (e.g.
HDLs);

• then it performs technology mapping of the .ngd file
to a .ncd file through the map program. After this
step, the compilation process knows precisely the logic
primitives that will be used by the synthesized netlist;

• the next step is to place these primitives to actual
physical locations onto the FPGA and configure the
crossbars to correctly route the signals between prim-
itives. This is achieved through the par program;

• the last step is to translate the fully-annotated .ncd
file into the actual configuration data. The bitgen

tool handles this mapping.

Once place and route has run successfully, the .ncd file con-
tains logic configuration directives along with placement and
routing annotations which completely describe the internal
state of the FPGA. The action of bitgen is thus simply to
encode into the bitstream a subset of the information avail-
able in the .ncd (it drops, for instance, the names of the
wires).

The hard problem faced while reverse-engineering bitstreams
is that most of these file formats are proprietary; further-
more, the most important of these processing steps, place
and route, is very slow and not deterministic, making it
difficult to reliably generate slightly altered bitstreams and
observe incremental changes in order to infer the function of
the altered locations.

2.2 Xilinx XDL file format
Xilinx does provide a window into these closed formats, in
the form of the .xdl file.

The XDL file format is a clear-text representation of the ncd
file: .xdl and .ncd files can be converted back and forth with
the xdl program in recent versions1 of the Xilinx toolchain.
The designer can get access to a very low-level description
of the FPGA’s internal state through .xdl.

1using the -ncd2xdl and -xdl2ncd flags respectively



p
a
r

b
it

g
en

m
a
p

graphical view

FPGA editor

.ncd

.edn

edif file

ngdbuild

.xdl file

fully P&R’d
.bit file.ncd file.ngd file

ncd2xdl

debit

xdl2bit

Figure 1: Xilinx tool flow

The basic idea of our reverse-engineering is to leverage the
plain-text configuration data description available in the .xdl
file in order to gain insight into the associated bitstream
data. Therefore we need to understand in details the infor-
mation available in the .xdl file.

The .xdl file format is not officially documented by Xilinx.
However, the format is sufficiently simple that it can be
understood directly. Additionally, any .xdl file generated by
xdl -xdl2ncd contains comments which will help the user
in interpreting the file. The following is a summary of the
information contained in the .xdl.

2.2.1 Logic configuration information
Every configured slice in the FPGA has a corresponding
instance in the .xdl file. This instance contains the various
configurable elements of the slice, namely:

• the statically-configured muxes in the slice;

• the statically-configured inverters in the slice;

• the initial F & G LUT configuration data, if present;

• the configuration parameters for LUTs, registers, and
possibly IO pads.

The slice description additionally contains information about
wires going in and out of the slice through references to their
name.

2.2.2 Wiring configuration information
The wires interconnecting the logic blocks above are de-
scribed through nets. The FPGA contains static wires em-
bedded in its fabric; the only configurable part in the rout-
ing infrastructure are connexions between these static wires.

They are called PIPs according to Xilinx terminology, which
stands for programmable interconnect points. These are log-
ically regrouped in switch-boxes at the CLB level. Static
wires, switch-boxes and PIPs can be seen and the latter in-
dividually configured with Xilinx’s FPGA editor tool.

In the .xdl file, nets are described as the set of PIPs the
electrical signal must go through to reach the outputs of the
net from its input.

PIPs are oriented connections between wires: the electric
signal of the net goes from the start wire of the PIP to the
its end wire.

Each pip pL is therefore described as a triplet which con-
tains:

• the PIP’s switch-box’s location L;

• its start wire S = S(pL);

• its end wire E = E(pL);

and is written in the .xdl file as

pip L S -> E;

Wires are locally named, which means that wire names have
to be prefixed by their site location to get a global meaning.
As an example, the third south hex wire starts at the CLB
numbered R4C5, then spans 6 CLBs to reach the R10C5 site.
The wire is named S6BEG2 at the R4C5 site and is referred
to as S6END2 at the R10C5 site. A net going through this
wire will contain at least the following two PIPs:



pip R4C5 WIRE_X -> S6BEG2

pip R10C5 S6END2 -> WIRE_Y

2.3 Summary
The aim of the reverse-engineering effort is to find the func-
tion mapping the XDL information to the bitstream con-
tents along with its reverse function, which will allow us to
get back from the bitstream to an XDL-level representation
of the netlist. Relating logic and PIP configuration settings
to values in the bitstream is the step needed to achieve this
goal.

3. BITSTREAM FORMAT
The bitstream format itself is not as obscure as may seem.
Official documentation from Xilinx, such as the user guides
[6, 7, 8], already provides significant information on the over-
all structure of the file format.

3.1 Bitstream loading state machine
The bitstream itself is actually microcode for a simple state
machine inside the FPGA. It controls the many aspects of
configuration data handling: integrity checking, initial and
live loading, read-back. It also controls high-level boot-up
operations.

The configuration data is loaded into the FPGA chip by
blocks of data called “frames” in Xilinx’s terminology. The
first step in parsing a bitstream is extracting the raw con-
figuration frames.

In fact, only a small fraction of the micro-controller speci-
fication needs to be implemented for successfully dumping
frames from standard bitstreams. Our implementation fits
in about one thousand lines of C code. It is capable of han-
dling uncompressed, compressed and debug bitstreams, it
also checks the embedded configuration data’s CRCs.

3.2 Frame array and FAR decoding
The Frame Address Register (FAR) of the micro-controller
directs each frame to a precise location in the configuration
SRAM. The FAR value encodes the kind of site being con-
figured, its location on the FPGA, and the ordinal position
of the frame in the series configuring the site. Again, the
encoding of the FAR value is no secret and thoroughly de-
scribed in Xilinx’s “configuration guides” documents [6, 9,
10].

However, in standard bitstreams the FAR’s value is not
encoded in the bitstream for each frame. In continuous
data loading mode, the FAR is automatically incremented
from one frame to the next, and its actual value is implicit.
Though Xilinx clearly documents this“FAR auto-increment”
feature, the sequence of values run through by the FAR is
not documented.

The sequence of FAR values must be inferred from a bit-
stream in debug mode (bitgen -g DebugBitstream:Yes).
In such bitstreams, frames are loaded in FAR auto-increment
order, and the bitstream displays the FAR value for each
frame in the bitstream. It is therefore very easy to under-
stand the FAR’s auto-incrementation logic.

Once the FAR’s evolution has been understood, the pro-
gram is able to store the configuration frame into a well-
organized array indexed by the FAR value of each frame.
The -framedump flag of the debit tool does indexed frame
dumping.

3.3 Site array
The next step consists in understanding how the configu-
ration frames relate to actual physical sites on the FPGA.
Once again, the same official documentation hints at the
site-level organization and allows the careful reader to orga-
nize the bitstream configuration data by relating it to the
physical FPGA sites it configures.

The -sitedump flag of the debit tool allows site-wise con-
figuration data dumping.

In a standard Xilinx bitstream for the Virtex-II, there are
about 32 different types of sites, as Xilinx distinguishes be-
tween border sites at top, bottom, left, right and corners.
For the Virtex-4 and Virtex-5 chips, however, the situation
is clearer, with far fewer site types.

From now on, we’ll concentrate on the CLB sites for the
Virtex-II chips. They represent the vast majority of the
sites on a Virtex-II, and the ones the reader is probably
most familiar with. All methods presented can be applied
to other site types; as a matter of fact, debit [1] successfully
deals with all kinds of site present in the Virtex-II chip.

3.4 Intra-site information
The next step is to look into chip sites. The XDL format
and the FPGA editor representation both concur to show
that the CLB site configuration data contains configuration
bits for the four slices embedded in the CLB along with PIP
configuration data for the site’s switch-box.

3.4.1 LUT configuration
The position of the LUT configuration bits is already widely
known. For the Virtex-II line, see for instance [11]; very
simple exploration techniques can be used to infer the LUT
configuration bit positions for Virtex-4 and Virtex-5 devices.

The -lutdump flag of the debit tool allows LUT contents
dumping.

3.4.2 Other slice configuration elements
Other logic configuration bits as listed in 2.2.1 can be in-
ferred either by the same exhaustive exploration techniques
or by generalizing the more subtle methods described further
down in section 4 for PIP mapping.

3.4.3 Switch-box configuration
The number of bits taken up by logic configuration is no
more than 10% of the total number of configuration bits.
The bulk of the work lies in identifying the remaining 90%
of interconnect configuration bits that handle the PIPs of
the switch-boxes.

4. PIP CONFIGURATION BIT MAPPING

4.1 Available data



At this point, given an .xdl file and its associated bitstream,
the following information can be gathered for each CLB site
L: on the one hand the configuration data for L extracted
from the bitstream; and on the other hand the set of acti-
vated PIPs at L extracted from the .xdl file.

From this dataset the function which maps each PIP to its
associated configuration bits at each site must be inferred.
This problem is referred to as“PIP isolation” in the following
paragraphs.

In other words, in order to carry out “PIP isolation”, a set
of pairs (QL, CL) has to be extracted from a bitstream and
its associated .xdl file. For each site L, the first element QL

of this pair represents the activated PIPs for L, extracted
from the plain-text .xdl file, while the second element CL

represents the associated configuration data extracted from
the bitstream for the same site L.

4.2 Coherency hypothesis
We assume that the configuration data layout is highly reg-
ular, in accordance with the highly regular structure of an
FPGA. This is the most prominent hypothesis: intra-site
PIP location is coherent across all CLB sites.

What this means is that:

• the set of available pips Q is the same in each and
every CLB site L;

• the same PIP p ∈ Q when set in different sites will
yield the exact same bit configuration pattern in both
sites, which we write as Cp.

Therefore, the (QL, CL) pairs of section 4.1 represent in fact
a set of (element, image) pairs, (QL, f (QL)) instances of a
unique function f which maps PIPs to their configuration
data in the bitstream.

Our implementation shows this strong hypothesis to be cor-
rect a posteriori. It gives us the ability to cross-correlate the
information gathered from all CLB sites to infer the value
of the function f on individual PIPs.

4.3 Morphism hypothesis
The function f is defined from P (Q) to the set of configu-
ration bits for CLB sites. It enjoys many simple but very
useful properties.

First, the default value for the PIPs configuration bits is
zero, which is translated as:

f (∅) = ∅

Additionally, the configuration data for one site consists of
the bits which are set by each enabled PIP.

f (A ∪ B) = f (A) ∪ f (B)

Together, these assumption simply state that f is a mor-
phism with respect to the ∪ operator on sets.

Therefore, the function f can be reduced to its values on
singletons, that is, isolated pips, and our problem can be
expressed very easily as finding function f ’s values on in-
dividual PIPs; then its value on larger sets can be inferred
by:

∀L, CL =
[

p∈QL

f ({p}) (1)

Additionally, we reasonably assume that the continuity prop-
erty holds for the ∩ operator, yielding:

f (A ∩ B) ⊆ f (A) ∩ f (B) (2)

The fact that the equality may not hold stems from the fact
that some bits in the configuration stream may configure
several distinct PIPs. This is to be expected, for instance,
for PIPs related to a multiplexor controlling a unique output
wire.

As a particular case of (2), the pairs (QL, CL) of section 4.1
enjoy the following property:

∀(L1, L2), f (QL1
∩QL2

) ⊆ CL1
∩ CL2

(3)

These assumptions are in fact verified a posteriori by a work-
ing implementation.

4.4 Restricted injectivity hypothesis
The hypothesis introduced here is much less important than
the previous ones; it is also harder to justify ex nihilo. It
was actually found with a much less refined version of the
PIP isolation algorithm.

It has just been underlined that the function f is not an
injection. Though one configuration bit is expected to be
part of the image of several distinct PIPs, as in the multi-
plexor example of section 4.3, one may argue such collisions
will only happen between PIPs sharing the same endpoint.
Indeed, PIPs controlling the same wire are sure not to be
set at the same site for electrical reasons; thus it makes
sense to share some hardware or configuration bits between
these. Conversely, sharing configuration bits for unrelated
PIPs artificially reduces and complexifies the crossbar’s con-
nectivity.

Thus we assume (and experiments show that this assump-
tion is legitimate for Xilinx bitstreams) the following prop-
erty:

∀(p, q) ∈ Q2
, Cp ∩ Cq 6= ∅ ⇒ E(p) = E(q)

which is equivalent to:

∀(p, q) ∈ Q2
, E(p) 6= E(q) ⇒ Cp ∩ Cq = ∅ (4)



This property will be used to yield a much more efficient
algorithm when cross-correlating information between sites.

4.5 Cross-correlation algorithm
Finding an instance of a site L where p is the only PIP
set would be very convenient: in this case relating p to its
configuration bits in L is trivial. However, finding such an
occurrence for each possible p ∈ Q is virtually impossible.

By using the coherency hypothesis above, though, we can
easily compute such isolated bit values from the random
(QL, CL)L∈L

set of section 4.1. Indeed, equation (3) can be
used to try and intersect all sites containing a given PIP p
so as to isolate it:

∀p ∈ Q, I1(p) =
\

L/p∈QL

CL

⊇ f

0

@

\

L/p∈QL

QL

1

A

(5)

Hopefully
T

L/p∈QL
QL = {p}, then PIP p is successfully

isolated. In practice, the equality holds.

The algorithm can be refined by actually using the sites that
do not contain p, subtracting them from the configuration.
However, this is only possible provided the site Lk at hand
do not contain configuration bits that would interfere with
the configuration bits for p. Equation (4) shows this happens
whenever no PIP in Lk shares the same endpoint as p.

We get the slightly more complex expression:

∀p ∈ Q, I2(p) = I1(p) ∩
[

L/E(p)/∈E(QL)

¬CL

⊇ f

0

@

\

L/p∈QL

QL ∩
[

L/E(p)/∈E(QL)

¬QL

1

A

(6)

With this new formula, we increased our chances of isolating
p, that is, getting the singleton {p} in the end, which will
yield

I2(p) ⊇ f ({p})

and the equality holds in practice.

4.6 Database gathering and performance
Using the method of equation (5) on a single xc2v2000 bit-
stream of medium size yields 70% of the PIP database in
about 5 seconds.

A much better result is achieved thanks to equation (6),
which allows the gathering of all available pips in the bit-
stream in about 10 seconds.

The program bitisolation available in the debit suite im-
plements —albeit without any optimization— both of these
methods.

5. IMPLEMENTATION

5.1 Using the database
Once the database of section 4 has been gathered, decom-
piling the bitstream is still not straightforward. Sticking
with the multiplexor example, one can easily understand
that there is no direct mapping between the configuration
bit patterns and the PIP configuration. Indeed, the bit pat-
terns for a multiplexor controlled by two bits b1 and b2 could
be akin to:

{{b1, b2}, {b1}, {b2}} (7)

The fact that {b1} ⊂ {b1, b2} means that looking at the bit
patterns in order to understand which PIP is configured at
the multiplexor must be done carefully, so as not to include
spurious PIPs. For instance, trying a blind match would
include PIPs corresponding to the {b1} and {b2} configura-
tions when the configured PIP is actually {b1, b2}. In this
case, the value at bit b1 is significant whenever we look at
bit b2. This problem arises every time pips collide in the
configuration space, which can only happen, according to
property (4), when pips share the same endpoint.

5.2 Database structure
In order to avoid this potential problem, the PIP mapping
database was implemented as a two level lookup structure.
The first level is an array D indexed by the output wires E
of the pips. The array element D[E] contains control infor-
mation about all pips having E as their endpoint, namely
the set:

Control(E) =
[

S/S→E∈Q

f (S → E)

As a consequence of property (4), these sets are disjoint:

E 6= F ⇒ Control(E) ∩ Control(F ) = ∅

Additionally D[E] contains the second level of the database,
that is, the set DE of all possible startpoints:

DE =
[

S/S→E∈Q

{S}

along with, for each of these startpoints, the values of all
bits over the set Control(E). In the multiplexor example,
the programs looks at the values of the bits b1 and b2 in
all cases, and is able to distinguish between the three cases
of (7).

This method allows for a very compact database, in the
range of 150KB for the whole database of Virtex-II chips,
which includes values for all Virtex-II site types.

Running through the appropriate database for each site, the



Hardware config 5-DES, 201363 PIPs 10-DES, 431545 PIPs 20-DES, 883463 PIPs

Processor Clock-speed RAM debit bitgen debit bitgen debit bitgen

Opteron 2.2GHz 2GB 0.65s 63.54s 0.91s 101.90s 1.47s 177.08s

P-IV 1.8GHz 1GB 1.14s 166.25s 1.56s 259.58s 2.29s 464.52s

PowerPC 500MHz 256MB 3.90s N/A 6.60s N/A 9.96s N/A

ARM 220MHz 64MB 18.14s N/A 23.86s N/A 35.73s N/A

Table 1: Speed comparison of debit and bitgen

software implementation can display all configured pips for
all sites. This is the -pipdump flag of the debit tool.

Internal FPGA architecture. The database gathered cer-
tainly sheds some light into the internal structure of the
FPGA. The PIP endpoints can be divided into two cate-
gories:

• standard endpoints are actually configured by two sets
which partition the Control(E) set. An active connec-
tion is described by one active bit into each of these
sets, yielding exactly two active bits to control each
endpoint.

• multiplexed endpoints (essentially long wires) have a
more compact control, as any subset of Control(E) can
be activated to control the endpoint.

This information has been collected after a cursory glance
through the database. More sense can certainly be made of
this data; we hope FPGA architecture researchers will be
able to interpret it more thoroughly.

5.3 Comparison to existing implementations
5.3.1 Features

Bitstream reversal. The set of configured elements (pips
and logic) produced by debit are indeed sufficient to de-
scribe the configurable part of the FPGA. They lack, how-
ever, many details about the static, non-configurable internal
architecture of the FPGA to become a fully-fledged netlist.
For instance, nets should be reconstructed in order to get
a real netlist. This can only be done by knowing how ac-
tual wires are laid out inside the chip between sites, so as to
regroup pips into interconnected sets.

Bitstream synthesis. Xilinx provides the JBits [12] and
JRoute [13] tools which are able to give low-level read/write
access to the bitstream of Virtex-II devices.

JBits and JRoute are, as could be expected from DARPA-
funded research, very advanced tools yielding very impres-
sive results [14]; however they are not open-source, do not
provide access to Virtex-4 and Virtex-5 bitstreams, and un-
fortunately seem unmaintained by Xilinx.

In order to test our internal bitstream manipulation API, we
wrote the xdl2bit tool which attempts to convert an .xdl

file to its bitstream. xdl2bit is by no way complete, but
correctly writes all data associated to routing, LUT and logic
configuration in the slices to form a bitstream. The results
are encouraging, and we hope to enrich the tool sufficiently
to reach feature parity with JBits. We hope more exciting
work will be enabled by this software – in line with what
JBits once allowed.

One key feature of xdl2bit is its very small memory foot-
print. Additionally, xdl2bit is written in plain C, allowing
it to be ported to embedded platforms. Indeed, it has suc-
cessfully been run on a small ARM processor. We do not
foresee any major roadblock for a port to µBlaze, which has
however not yet been attempted.

5.3.2 Speed
As a speed comparison with existing tools from Xilinx, we
generated a bitstream with bitgen, and compared this to
the time taken by debit to yield a pseudo-XDL form of the
design. The design chosen is an array of DES kernels taken
from the opencores [15] repository. Results are shown, in
seconds, for the implementation of 5, 10 and 20 DES cores
on an xc2v8000 chip. bitgen2 was instructed to disable DRC
and to only generate the bitstream, while debit3 itself was
instructed to dump PIPs, BRAM data contents, and LUT
contents.

Table 1 sums up the results; included times are user time in
seconds as reported by the time command on a Linux plat-
form. On low-memory platforms the actual running time of
bitgen is much longer, as the system starts swapping heav-
ily; quite to the contrary debit stays within 2MB of shared
heap size. The table also presents performance results on
platforms where bitgen is not available.

This comparison may be unfair as bitgen assumedly does
some checking internally and carries information which debit

simply discards. However, controlled environment such as
embedded systems can do without the burden of this extra-
neous checking information.

6. CONCLUSION
The highly regular nature of Xilinx chips and their config-
uration space makes it very easy to relate the configuration
space of the chip to its bitstream. This regularity, and all
architectural properties used for bitstream analysis were at
first only assumptions about the internal structure of Xilinx

2command-line is bitgen -d -w -l
3command-line is debit --pipdumplut --lutdump
--bramdump



chips – which our work verified to be true. In itself, this
is offering a deep insight into Xilinx’s internal architecture.
More information useful to FPGA architecture researchers
can certainly be inferred from the mapping database.

From a software perspective, such a regularity has many
positive aspects. In particular, it allows the implementation
of very fast and low-memory footprint tools, as shown by the
debit proof-of-concept compiler and decompiler. We hope
debit will foster a wide range of software à la JBits to be
built for more recent versions of Xilinx chips.

Acknowledgements. Mark Shand’s deep knowledge of the
Xilinx tools and Unix methodology as well as his overall
benevolent guidance inspired us and framed the state of
mind that allowed this work to happen.

7. REFERENCES
[1] Debit reference implementation. [Online]. Available:

http://www.ulogic.org

[2] Xilinx, “Is your FPGA design secure?” May 2003.
[Online]. Available:
http://www.xilinx.com/publications/xcellonline

[3] T. Kean, “Secure configuration of field programmable
gate arrays,” in FPL ’01: Proceedings of the 11th
International Conference on Field-Programmable Logic
and Applications. London, UK: Springer-Verlag,
2001, pp. 142–151.

[4] S. Garfinkel and G. Spafford, Practical Unix and
Internet security (2nd ed.). Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 1996.

[5] T. Wollinger, J. Guajardo, and C. Paar, “Security on
FPGAs: State-of-the-art implementations and
attacks,” Trans. on Embedded Computing Sys., vol. 3,
no. 3, pp. 534–574, 2004.

[6] Xilinx, “Virtex-2 Platform FPGA User Guide (UG002
version 2.0),” March 2005. [Online]. Available:
http://www.xilinx.com/bvdocs/userguides/ug002.pdf

[7] ——, “Virtex-4 User Guide (UG070 version 2.0),”
January 2007. [Online]. Available:
http://www.xilinx.com/bvdocs/userguides/ug070.pdf

[8] ——, “Virtex-5 User Guide (UG070 version 2.1),”
October 2006. [Online]. Available:
http://www.xilinx.com/bvdocs/userguides/ug190.pdf

[9] ——, “Virtex-4 Configuration Guide (UG071 version
1.4),” January 2006. [Online]. Available:
http://www.xilinx.com/bvdocs/userguides/ug071.pdf

[10] ——, “Virtex-5 Configuration User Guide (UG191
version 2.1),” October 2006. [Online]. Available:
http://www.xilinx.com/bvdocs/userguides/ug191.pdf

[11] A. Upegui and E. Sanchez, “Evolving hardware by
dynamically reconfiguring Xilinx FPGAs.” in ICES,
ser. Lecture Notes in Computer Science, J. M.
Moreno, J. Madrenas, and J. Cosp, Eds., vol. 3637.
Springer, 2005, pp. 56–65.

[12] S. Guccione and D. Levi, “XBI: A Java-based interface
to FPGA hardware,” in SPIE Proceedings, Vol. 3526,
1998, pp. 97–102.

[13] E. Keller, “JRoute: A run-time routing API for FPGA
hardware.” in IPDPS Workshops, ser. Lecture Notes
in Computer Science, J. D. P. Rolim, Ed., vol. 1800.

Springer, 2000, pp. 874–881.

[14] S. Singh and P. James-Roxby, “Lava and JBits: From
HDL to bitstreams in seconds,” in IEEE Symposium
on FPGAs for Custom Computing Machines, April
2001. [Online]. Available:
citeseer.ist.psu.edu/singh01lava.html

[15] The OpenCores project. [Online]. Available:
http://www.opencores.org

http://www.ulogic.org
http://www.xilinx.com/publications/xcellonline
http://www.xilinx.com/bvdocs/userguides/ug002.pdf
http://www.xilinx.com/bvdocs/userguides/ug070.pdf
http://www.xilinx.com/bvdocs/userguides/ug190.pdf
http://www.xilinx.com/bvdocs/userguides/ug071.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
citeseer.ist.psu.edu/singh01lava.html
http://www.opencores.org

	Introduction
	Bitstream decompilation
	Bitstream security
	Scope of the work
	Paper structure

	Xilinx toolchain
	Xilinx workflow
	Xilinx XDL file format
	Logic configuration information
	Wiring configuration information

	Summary

	Bitstream format
	Bitstream loading state machine
	Frame array and FAR decoding
	Site array
	Intra-site information
	LUT configuration
	Other slice configuration elements
	Switch-box configuration


	PIP configuration bit mapping
	Available data
	Coherency hypothesis
	Morphism hypothesis
	Restricted injectivity hypothesis
	Cross-correlation algorithm
	Database gathering and performance

	Implementation
	Using the database
	Database structure
	Comparison to existing implementations
	Features
	Speed


	Conclusion
	References

