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ABSTRACT
We present an analysis of modularity in aspect oriented de-
sign using the theory of modular design developed by Bald-
win and Clark [10]. We use the three major elements of
that theory, namely: i) Design Structure Matrix (DSM), an
analysis and modeling tool; ii) Modular Operators, units of
variations for design evolution; and iii) Net Options Value
(NOV), a quantitative approach to evaluate design. We
study the design evolution of a Web Services application
where we observe the effects of applying aspect oriented
modularization.

Based on our analysis we get to the following three main
conclusions. First, on the structural part, it is possible
to apply the DSM to aspect oriented modularizations in a
straightforward manner, i.e. without modifications to DSMs
basic model. This shows that aspects can, in fact, be treated
as modules of design. Second, the evolution of a design into
including aspect modules uses the modular operators pro-
posed by Baldwin and Clark, with a variant of the Inversion
operator. This variant captures taking redundant, scattered
information hidden in modules and moving it down or keep-
ing it at the same level in the design hierarchy. Third, when
calculating and comparing NOVs of the different designs of
our application, we obtained higher NOV for the design with
aspects than for the design without aspects. This shows
that, under this theory of modularity, certain aspect ori-
ented modularizations can add value to the design.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces, Object-oriented design meth-
ods; D.2.8 [Software Engineering]: Metrics—Product met-
rics; D.2.11 [Software Engineering]: Software Architec-
tures—Information hiding ; D.3.3 [Programming languages]:
Language Constructs and Features—Modules, packages
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1. INTRODUCTION
Design Structure Matrix (DSM), also known as Design

Space Matrix or Dependency Structure Matrix, is an anal-
ysis and design tool used in engineering disciplines. The
applicability of DSM in computer design is illustrated in
[10] and, particularly, in software design in [25]. There are
two fundamental components in [10]: (1) A general theory of
modularity in design with six modular operators as sources
of design variation, and DSM as a tool to model modular-
ity in complex systems; and (2) NOV (Net Options Value)
as a mathematical model to quantify the value of a modular
design. The six modular operators are:(i) Splitting, (ii) Sub-
stitution, (iii) Augmenting (Augmentation), (iv) Exclusion,
(v) Inversion, and (vi) Port(ing).

[25] extends the DSM structure by introducing Environ-
ment Parameters, and applies this extended model to the
design of KWIC (Key Words in Context), the program orig-
inally presented by Parnas in [19]. Information hidding is
achieved by defining appropriate interfaces as Design Rules,
which facilitate future changes in the design by reducing
inter-modular dependencies.

This paper contributes to these earlier works in two ways:
it takes a more realistic, modern day example compared to
KWIC, and it looks into a new form of modular construct,
Aspect [15], additionally to the conventional constructs for
creating independent modules with representations for data
structure, interface and algorithm. We demonstrate how
DSM fits as a modeling tool and NOV as a quantitative
model for evaluating design alternatives.

To illustrate this, we take an existing third party appli-
cation, identify the design parameters within it and make
changes to those parameters to obtain a design for a new
application we desire. We describe each change in terms
of one or more of the six modular operators and calculate
NOV for each design. The system we describe was devel-
oped using Java, so all possible design modifications due
to object oriented techniques are applicable to the system.
We present the modular operations we performed while in-
troducing aspects as a special case of Baldwin and Clark’s
inversion operator. We also present an estimate for the



NOV of aspect oriented modularization. We conclude by
discussing the results of our analysis, the limitations of our
work, and further work we intend to pursue in this field.

2. EXAMPLE APPLICATION
We take an example of a web application that uses web

services to meet most of its functional requirements. The ap-
plication, WineryLocator, uses web services to locate winer-
ies in California. A user can give a point of interest in Cal-
ifornia as a combination of Street Address, City and Zip
code. The address need not be exactly accurate. Once this
information is given, the user is either presented with a list
of matching locations to his/her criteria or is forwarded to
another page if the given address uniquely maps to a valid
location in California.

Once the application gets a valid starting point, the user
then can select preferences for the wineries. Based on the
preferences and the starting point the application generates
a route for a tour consisting of all the wineries that match
the criteria. The result is a set of stops in the route and a
navigable map. From the result the user can also get driving
directions.

2.1 Functional Decomposition
With the functionality described above we need the fol-

lowing types of services:

Finding Accurate Locations (List) A service that takes
an incomplete description of a location and returns ex-
act/accurate locations that match the description.

Getting List of Wineries A service that returns a list
of all the wineries around the vicinity of the start-
ing point the user is interested in. The user must be
able to filter (her)his selection according to the differ-
ent criteria (s)he wanted regarding the wineries to be
visited.

Getting Wineries Tour Once an accurate starting point
is obtained we need to get a set of wineries around that
starting location. This further breaks down as:

• Getting all the wineries stops and wineries infor-
mation that form a tour

• Getting a map for the tour that constitutes the
wineries

• Navigating the map that highlights the tour with
appropriate marks and support basic operations
like Panning and Zooming.

Driving Directions Given a route made up of locations,
we need a set of driving directions to visit all the des-
tinations in the tour.

We use an existing application for MapPoint webservices [6]
called StoreLocator 1, developed by SpatialPoint [7], as our
starting design so that we can make changes in it to get
WineryLocator. StoreLocator is similar in many ways to
WineryLocator. Given a starting point of interest, Store-
Locator displays several matching locations. Once the user
picks the starting location it generates a navigable map and
a list of all coffee stores close to that starting location within

1available online at demo.mappoint.net

a radius specified by the user. The user then can click on
each store to get driving directions from the start location.

Hence, as far as the functionalities are concerned we need
to make only two changes in StoreLocator to get WineryLo-
cator: (i) replace the coffee store search with winery search,
and (ii) present the user with a tour including the start lo-
cation and all the wineries, unlike a list of directions from
the start location to a selected store in StoreLocator.

In order to locate points of interest, such as coffee stores or
wineries, MapPoint allows their service users to either use
an already available datasource or upload new geographic
data as a custom datasource. To bring out more opportuni-
ties for design changes, we substitute this functionality from
MapPoint by our own webservice WineryFind, that provides
a list of wineries around a vicinity of an exact start location.
WineryFind also allows the users to set their search criteria
by giving different preferences related to wines and wineries.

Table 1 shows the mapping of core application functional-
ities to the available webservices. The implementation was
done in Java, using Apache AXIS [5] as well as the SOAP
[26] toolkit to access the webservices.

2.2 Subsidiary Functions
Besides the main functionalities that WineryLocator of-

fers to its end users, we consider two subsidiary functions
that the application needs to provide but that are not so
visible to the users: (1) Authentication: Before using any
of the MapPoint services the application needs to provide a
valid credential (username and password) to it. MapPoint
uses the HttpDigest authentication mechanism for this. (2)
Logging: We also introduce a logging feature in the system
as a non-functional (subsidiary) requirement to trace all the
calls made to webservices. Such feature is useful in many
scenarios that require maintaining statistics about the access
to the webservices within the application. This feature can
simply be implemented by tracing every call to a webservice
in the system.

3. REPRESENTING DESIGN STRUCTURES
WITH DSM

Figure 1 depicts the design of StoreLocator in a DSM.
Before presenting the design evolution from StoreLocator to
WineryLocator in DSMs, we first describe some fundamental
design concepts presented by Baldwin and Clark in [10],
focusing primarily in software.

3.1 Elements Of Modular Design In Software
In this paper, our interpretation of the terms like modu-

larity, architecture and hierarchy, remain the same and as
generic as that presented in [10]. Almost all of the con-
stituents of design that make up Baldwin and Clark’s the-
ory can be seen in our designs for StoreLocator and Winery-
Locator. We briefly summarize the definitions of the core
elements from [10], as they are seen in our examples. We
show all the definitions and vocabulary we borrow from [10]
in italics below.

1. Design: Design is defined as an abstract description
of the functionality and structure of an artifact. Rep-
resentations such as software architectures [21, 24] de-
sign models in UML or source code fit this definition.

2. Hierarchies: The notion of hierarchy concurs with the



Task Services Providers Method Signatures ∗∗

Finding set of exact lo-
cations

FindService MapPoint FindResults
findAddress(FindAddressSpecification)

Getting wineries
matching criteria

WineryFind local service we
developed

Destination[]
getLocationsByScore(WinerySearchOption)

Generating route from
the tour given set of
destinations

RouteService MapPoint Route calculateSimpleRoute(ArrayOfLatLong,
String /*dataSourceName*/,
SegmentPreference)

Getting a map repre-
senting a route/tour.
Also, navigating the
map

RenderService MapPoint ArrayOfMapImage getMap(MapSpecification)

Getting driving direc-
tions

RouteService MapPoint can be obtained from a Route object

∗∗ showing only the most relevant methods in format - return type web service function name (input parameter type). The types shown in the
list represent the classes in Java that maps to the types defined in the MapPoint object model. These classes were auto generated by the tool
WSDL2Java that is a part of the Apache AXIS toolkit [5].

Table 1: Mapping tasks to services.

one defined by Parnas in [20]. A module A is de-
pendent on module B if A needs to know about B
to achieve its function, i.e if B is visible to A.

3. Medium for expressing design: A designer expresses
the basic structure and configuration of design ele-
ments with a medium (s)he chooses to work with. Ex-
amples are Architecture Description Languages (ADLs)
for software architecture [18], UML for object oriented
modeling and Java for program design (code). Media
are among the highest parameters in the design hier-
archy.

4. Design parameters - the elements of design: Parame-
ters are the attributes of the artifact that govern the
variation in design. Choosing new values for param-
eters give new design options. We use Java as the
medium to express our design options, so the basic
structural constructs like classes, objects, attributes,
methods and packages all could be seen as design pa-
rameters. In our example, we remain at the granularity
of classes and interfaces.

5. Module: Structural elements that are strongly con-
nected are grouped together as a module. Modules
adhere to these three fundamental characteristics [10]:

(a) Modularity increases the range of manageble com-
plexity.

(b) Modularity allows different parts of a design to be
worked on concurrently.

(c) Modularity accomodates uncertainty.

While identifying modules in a design, we follow these
principles listed above.

A module can also be characterized by the set of tasks
it performs. A module’s task is equivalent to an oper-
ation or a service it provides.

6. Modular Operators: Baldwin and Clark define design
evolution as a value-seeking process, with the six mod-
ular operators as sources of variation. We discuss our
design changes and map them to one or more of these
six modular operators.

7. Abstraction: Abstraction hides the complexity of the
element. As a measure to reduce the complexity of de-
sign parameters, we represent complex modules (made
up of further sub-modules) as a single parameter, as
long as the details inside need not be revealed. An
example of this in our models is treating a webservice
as a single parameter.

Following the definitions for design parameters, mod-
ule and abstraction, we can use three interchangeable
terms to refer to the individual elements that consti-
tutes a design; (i)design elements, (ii)design parame-
ters, and (iii)modules. For example, if we have a mod-
ule composed of a set of simpler modules, the latter
can be can be considered as the design parameters of
the former. But, both are design elements too. Thus,
we use these three terms interchangably without the
loss of generality.

8. Interface and Design Rules: Making changes in mod-
ules that have highly interdependent structures often
requires endless tweaking as the designer tends to get
lost in the cyclic side effect one module has on others.
To avoid such cycles, decisions common to modules,
that are unlikely to change are factored out as design
rules. These design rules constitute the interfaces that
designers use to connect modules with each other.

9. Architecture: provides a framework that allows for both
independence of structure and integration of function.
In our designs, we consider frameworks for enabling
enterprise computing capabilities, such as J2EE [9],
and APIs (Application Programming Interfaces), such
as Java Servlet [8] (also a part of J2EE), as architec-
tures.

3.2 Categories Of Design Parameters
We categorize the modules in the DSMs based on our

ability to change them:

External Parameters: Parameters that we cannot mod-
ify and take for granted from some external providers.
These parameters might be replaceable with similar
parameters providing same functionality. External ser-
vices, imported libraries and frameworks fall under this



category. External parameters usually bring their own
set of design rules into the application.

Extending DSMs with environment parameters was a
major enhancement made to DSMs in [25]. We take
external Parameters to be a particular category of en-
vironment parameter as they have similar characteris-
tics.

Design Rules: Parameters we use as interface between mod-
ules and that are less likely to be changed are design
rules. Design rules can either be imported from exter-
nal parameters or designed specifically for the applica-
tion.

Application (functional) Modules: Functional units in
the system that perform application specific task(s)
are categorized as application modules.

Subsidiary Modules: We further classify modules that con-
tribute to subsidiary or secondary functionalities as
Subsidiary Modules. If a module performs both ap-
plication specific tasks as well as subsidiary tasks, we
treat it as an application module.

Application Controller: These are mostly connector mod-
ules, as they use the design rules as interface to access
the functionalities provided by the application mod-
ules, gluing them up in an application, and serving the
end users. We also put configuration modules such as
deployment descriptors in this category as they con-
tribute in assembling modules even though they do
not directly serve the end users of the system.

We believe most of the modules in modern day applica-
tions fall into one of the above categories. Furthermore,
most of the development task in today’s applications lies
within mapping application specific requirements to the im-
ported functionalities from external modules.

3.3 Conventions For DSMs
Figure 1 shows the DSM for StoreLocator. The DSMs

have been constructed as normally is done [10, 25, 1, 23].
We arrange all the design parameters in a row-column form,
with marks in those cells where we need to show the interde-
pendencies between the parameters. We have adopted the
simplest form of showing interdependencies, by putting an
’X’ mark in the relevant cell.

The DSMs and the design parameters roughly match the
application structure but there is not an exact one to one
mapping from the elements in a DSM to the syntactic con-
structs in the program. The parameters we have shown
are semantic, rather than syntactic, objects that occur to
a designer’s mind. However, all of the parameters, exclud-
ing the external ones, can be mapped to any one of these:
Java classes or interfaces, aspects written in AspectJ [2], or,
XML deployment descriptor files. In short, a DSM presents
an abstract view of module dependencies in an application.

Clustering and partitioning are two standard DSM opera-
tions to get a modular or a protomodular [10] structure from
an otherwise unmodularized DSM. Since the elements in our
DSM are taken from a readymade application, StoreLoca-
tor, they already have a basic modular structure, and these
operations do not have a very significant role in our process.

Figure 1: DSM for StoreLocator.

The only explicit clustering we do in the DSMs is to cate-
gorize the parameters into one of the parameter categories
we have listed in section 3.2.

The following list describes the graphical and visual clues
we include in our DSMs:

1. The leftmost (first) column in DSM is used to label the
clusters the parameters have been categorized based on
the classification presented in section 3.2

2. The second column lists the name of all the design
parameters

3. The third column assigns numbers to all these param-
eters for easy reference. Rest of the columns constitute
the matrix showing dependencies. The top most row
resembles the parameters by the numbers as assigned
in the third column.

4. In the matrix area (fourth column onwards), thick
solid borders in the cells set the boundary for modules,
dark dashed lines set boundaries for the interaction
areas between different categories of modules, (for ex-
ample between design rules and external parameters)
and light dotted lines are markers for individual cells.

5. Shaded group of cell(s), enclosed within a dark bor-
der, represents a group of parameters (or a single pa-
rameter) that we treat as individual modules for NOV
analysis.

6. We use a descriptive text inside a pair of opening and
closing angular bracket (e.g. < DR >) for two pur-
poses; (i) in first column to abbreviate the category
name and (ii) in second column as a stereotype to mark
the special connotation some design parameters bear.
Table 2 lists all such stereotypes we have used.

3.4 Design Hierarchy Diagrams
Figure 2 depicts the design hierarchy diagram (or simply,

hierarchy diagram) of StoreLocator. Hierarchy diagrams
and DSMs model the same structure and information about
dependencies among design elements. A hierarchy diagram
is a dependency graph of all the parameters in a design. A
parameter in a hierarchy diagram has two set of connections:
connections from above, to those parameters it depends on,
and connections from below, to those parameters that de-
pend on it.

We briefly introduce hierarchy diagrams in this section for
two reasons. First, to show all the higher level modules in
the design that remain the same across all design variants
(Figure 2). Second, because we use hierarchy diagrams to



Figure 2: Hierarchy Diagram for StoreLocator.

depict the effect of different modular operators on existing
designs (Section 5).

To avoid line cluttering in the hierarchy diagrams we have
omitted few dependencies from Figure 2. The DSM for
StoreLocator in Figure 1 show these excluded dependencies.
Furthermore, we grouped some related parameters into big
boxes, and show their common dependency with other pa-
rameters using the box that encloses them. We label, or
stereotype, special elements in hierarchy diagrams (as in the
DSMs). These labels are listed in Table 2.

Since the hierarchy diagrams get cluttered with a handful
of parameters and dependencies, we discuss all our designs
for StoreLocator and WineryLocator using DSMs.

4. TRACING DESIGN EVOLUTION WITH
DSMS

4.1 Design Goals For WineryLocator
The starting design of WineryLocator, StoreLocator, is

sufficient for the purpose of our analysis and meets the goals
we had set, namely:

1. Identifying separate functional units as application mod-
ules so that we can plug-in our own webservice provid-
ing winery information between the several function-
alities offered by the MapPoint webservices.

2. Decoupling the application controller from MapPoint’s
design rules.

3. Defining a set of simple, yet sufficient, design rules for
our application that allow us to have different imple-
mentation of application controller modules; for ex-
ample, to switch from web based to a GUI application
based on Java Swing.

4. Being able to replace each of the application modules
with an alternative implementation with the least pos-
sible side effects to the other modules.

Labels Meaning used
in

Medium as defined in section 3.1 HD
Architecture as defined in section 3.1 HD
API Application Programming

Interface
HD,
DSM

porting tool translation tool used to
convert artifacts produced
in one medium to another

HD

service Remote Webservice HD,
DSM

DD Deployment Descriptor HD,
DSM

JSP Java Server Pages HD,
DSM

Aspect A modular unit represent-
ing a crosscutting concern

HD,
DSM

Design
Rules

Java Server Pages HD,
DSM

EP External Parameters DSM
DR Design Rules DSM
AM Application Modules DSM
AC Application Controller DSM
SM Subsidiary Modules DSM

Table 2: Labels used in DSMs and Hierarchy Dia-
grams (HD).

With the required background and conventions we now
discuss the different design variants.

4.2 Identifying Basic Design Elements
DSM in Figure 1 is the starting point for our design ex-

ploration. We created these diagrams after understanding
the code structure of StoreLocator and the design rules of
MapPoint.

The list below enumerates all the design parameters and
their role in the initial design of StoreLocator shown in Fig-
ure 1 and Figure 2.

1. MapPoint Design Rules: These constitute the classes
and methods as defined in the MapPoint object model
[3], that are used to access and interact with its ser-
vices. The porting tool WSDL2Java, part of the Apache
AXIS toolkit [5] for webservices, generates all these re-
quired classes in Java from the description of the web
services expressed in XML as a WSDL (Webservices
Description Language) [27] file.

2. StoreLocator:2 This is an application module imple-
mented as a Java class. It handles the mapping of the
application tasks to the services available from Map-
Point by providing methods that take user inputs as
parameters and call the appropriate service methods to
list starting locations. It also provides access to the list
of stores, maps, map navigation functions and driving
directions. This StoreLocator module uses MapPoint’s
classes as parameters in its helper methods.

3. HttpSessionStoreLocator: Since a valid credential com-
prising of a user name and a password needs to be pro-
vided to MapPoint before using any of its services, the

2The name of this module is same as the application. When-
ever this distinction is not clear from the context, we explic-
itly specify whether we are referring to the application or
this module



StoreLocator (Old) WineryLocator (New) Changes

Figure 1 (DSM) Figure 3 (DSM) StoreLocator application modified as WineryLocator application
StoreLocator (F.1, P.6) AddressLocator (F.3, P.8) ,

WineryFinder (F.3, P.10),
RouteMapHandler
(F.3, P.11)

The composite functionality of StoreLocator module has been split
into (F.3, P.8) that locates an accurate starting address, (F.3, P.10)
that generates list of wineries (this enabled the substitution of ’store
search’ with ’winery search’) and (F.3, P.11) that generates maps and
routes.

HttpSessionStoreLocator
(F.1, P.7)

AuthAddressLocator
(F.3, P.9), Au-
thRouteMapHandler
(F.3, P.12)

Splitting of (F.1, P.6), led to the splitting of (F.1, P.7) into (F.3, P.9)
and (F.3, P.12). This split was necessary to carry on the authentication
feature (F.1, P.7) provided to (F.1, P.6) into the newly created modules
(F.3, P.9) and (F.3, P.12).

locate (F.1, P.8) startWineryFind
(F.3, P.13)

(F.1, P.8) substituted by (F.3, P.13), both provide an equivalent func-
tionality

−− searchWinery (F.3, P.14) (F.3, P.14) is a new module that help users to specify criteria for re-
fining winery search, this functionality was absent in StoreLocator.
(Addition of this module can be taken as augmentation)

display (F.1, P.9) tour (F.3, P.15) (F.3, P.15) presents the user with list of wineries and a navigable map
that constitutes a tour.

directions (F.1, P.10) directions (F.3, P.16) (F.3, P.16) presents the user with a detailed driving directions for a
tour of all the wineries, whereas, (F.1, P.10) presents the directions
from a start location to a destination.

Table 3: Changes made in StoreLocator for the first version of WineryLocator.

module StoreLocator is extended as a class HttpSes-
sionStoreLocator that adds the authentication capabil-
ity. There are no design parameters in the Mappoint
object model that reflects this authentication mecha-
nism because MapPoint relies on HttpDigest authen-
tication. This authentication mechanism is a part of
the the XML based communication protocol that web-
services use. The AXIS toolkit [5], that implements
such protocol, injects parameters that support such
protocol specific tasks in the MapPoint design rules
during the process of generating them. Consequently
HttpSessionStoreLocator depends on the Apache AXIS
API to submit the authentication credentials to Map-
Point as the parameters related to authentication come
along with Apache AXIS. This is a subtle dependency
as the otherwise unnecessary detail has to be known
to understand the full working of this authentication
mechanism.

4. HttpSessionBindingListener: This is an interface de-
fined in the Java Servlet API [8]. HttpSessionStore-
Locator implements this interface and provides meth-
ods that are called by the servlet container whenever
an object of HttpSessionStoreLocator is brought into a
session. In this way the servlet container can provide
the values for the ’username’ and ’password’, config-
ured in the deployment descriptor of the application,
to HttpSessionStoreLocator.

5. web.xml: is the deployment descriptor of the appli-
cation and stores configuration information like user
name/password values and URLs for accessing the web
services. These values are passed into HttpSession-
StoreLocator through the methods it implements from
HttpSessionBindingListener.

6. Application controller modules (JSPs, Deployment De-
scriptor): locate takes the information on starting lo-
cation, presents the matching list and picks a starting
address. It links to display for rest of the functionali-
ties. display presents the user with the matching store

locations and also a navigable map with the stores
highlighted. display takes the information on a par-
ticular store to be visited and links to directions that
displays the driving directions from the start address
to the store selected in display.

Most of the external parameters are omitted in the DSMs
as the application modules do not directly depend on them.
Since the changes we make are concentrated within the ap-
plication this omission does not affect the comprehensibility
of design evolution.

Hierarchy diagram in Figure 2 shows all the external pa-
rameters in the StoreLocator. The dependencies among
these external parameters show how porting [10] works at
higher level, enabling the interoperability of externally im-
plemented services with a custom application and how ex-
ternal design rules can be imported in applications. Most
of these external parameters remain unchanged in all of the
design variants we discuss.

4.3 First Version Of WineryLocator After Per-
forming Splitting and Substitution on Store-
Locator

We will be referring to Figures by ’F’ and Parameters by
’P’ for brevity. With this convention we can refer to any nth

parameter in a Figure m as (F.m, P.n).
Figure 3 shows the DSM for the first version of WineryLo-

cator we obtained from StoreLocator. A new set of design
rules, WineryFind Design Rules (F.3, P.7) have been im-
ported into the application for using the services provided
by the WineryFind webservice (F.3, P.2). The StoreLoca-
tor module (F.1,P.6) along with HttpSessionStoreLocator
(F.1, P.7) have been split resulting in 5 parameters (F.3, P.8
through 12). The application controller modules have been
substituted and augmented with a new module searchWin-
ery (F.3, P.14). The design changes are listed in Table 3
describing all the splitting, substitution and augmentation
made from Figure 1 to Figure 3.

4.4 Introducing Subsidiary Functionality With
Augmentation



We get to the design in Figure 4 by adding a logging
feature to the first version of WineryLocator shown in Figure
3. We introduce a new module WebServicesLogger (F.4, P.8)
that is responsible for logging the access of web services and
maintaining any pertaining statistics.

(F.4, P.9), (F.4, P.11) and (F.4, P.12) are the three mod-
ules that access the webservices. All the calls to the web-
services within these modules need to be traced and linked
to WebServicesLogger (F.4, P.8) to maintain the log.

4.5 Setting Application Specific Design Rules
For WineryLocator

The design of WineryLocator in Figure 4 is functionally
complete. It fulfills all the functional requirements that we
had set for WineryLocator in section 2. But it lacks the
design goals we listed in section 4.1. We introduce a new
set of design rules for WineryLocator to decouple the ap-
plication controller modules from MapPoint’s design rules.
This allows us to move MapPoint and WineryFind Design
rules to the External Parameters category. These new de-
sign rules are specific to WineryLocator and independent of
the MapPoint and WineryFind design rules.

Five new parameters (F.5, P.8 through 12) are introduced
as application design rules for WineryLocator. The appli-
cation controller modules (F.5, P.19 through 22), use these
application design rules as interfaces to the application mod-
ules (F.5, P.14 through 18). Table 4 lists the role of the
newly introduced design rules through the tasks they model.

Design Rules Id Models

startAddress:Address (F.5, P.8) starting location users
provide and select

matches:Address[] (F.5, P.9) collection of address
matches for the starting
location

WinerySearchOption (F.5, P.10) preferences for winery
search

Tour (F.5, P.11) tour representation for
all wineries visit includ-
ing a representation for
map

MapOperation (F.5, P.12) standard map operations
users perform

Table 4: Application specific design rules for Win-
eryLocator.

4.6 Applying Aspect Oriented Modularization
We use the two forms of modularization that Aspects 3

provide to reduce the dependencies among the modules (ap-
plication and subsidiary) in the design for WineryLocator
in Figure 5. We perform aspect oriented modularization for
two of WineryLocator’s features:

1. Logging: Using the pointcut-advise mechanism [17] we
remove the dependencies that modules (F.5, P.14),
(F.5, P.16) and (F.5, P.17) have on module (F.5, P.13).
We add a Logging aspect (F.6, P.22), that captures the
calls to the webservices directly from the design rules

3Although we conceive these modularizations with AspectJ
in mind any aspect oriented framework providing pointcut-
advise and introductions can be used for this purpose.

for MapPoint (F.6, P.6) and WineryFind (F.6, P.7).
The logging aspect, module (F.6, P.22), hooks these
calls with the module WebServicesLogger (F.6, P.21).

2. Authentication: We use introductions, also known as
open-class mechanism [17], to inject the authentica-
tion specific functionality into the application mod-
ules (F.6, P.13) and (F.6, P.8.15). This adds another
aspect, Authentication (F.6, P.23), in the final design.

With this modification we have achieved all the design
goals we had for WineryLocator.

Figure 3: DSM for WineryLocator application after
splitting and substituting the modules in StoreLo-
cator.

Figure 4: DSM for WineryLocator with logging fea-
ture after augmentation.

5. EFFECT OF ASPECTS ON DEPENDEN-
CIES

The hierarchy diagrams in Figure 7 and Figure 8 show
the effects that aspects have on module dependencies. In
both these figures the direction of the dark arrow indicates
the design change after introducing aspects. Figure 7 models
the design change that was made to perform aspect oriented
modularization to logging and Figure 8 models the same for
authentication.

Specifying interfaces and providing implementations are
common practices in software design that concur with the
notion of design rules and hidden modules. But the conse-
quence of this separation technique is that the client modules
need to be linked to the server modules (those that imple-
ment the interfaces) in some way. (To prevent any confu-



sion due to terminologies we refer to these server modules
as providers and client modules simply as clients.)

Different strategies exist to resolve these dependency is-
sues between providers and clients. Fowler discusses these in
some depth in [11] and [12], where he introduces dependency
injection as one of the solutions. Dependency injection re-
lies on Assembler modules that are responsible to connect
the client modules with implementation, thus clients become
virtually independent on implementation, they just see the
interface. Assembler modules lie lowest in the hierarchy.

Aspect oriented mechanisms eliminate the dependencies
clients have on providers by introducing aspects as new
modular structures. Aspects depend on (or see) these clients
and providers, and are responsible to provide connections
between them. Aspect oriented modularization with intro-
ductions is similar to the dependency injection technique.
The effect that the Pointcut-Advise mechanism has on de-
pendencies is similar to that of theinversion modular oper-
ator.

Figure 5: DSM for WineryLocator after introducing
application specific design rules.

Figure 6: DSM for WineryLocator after aspect ori-
ented modularization.

5.1 Aspect Oriented Modularization As A Vari-
ant Of Inversion

Figure 7: Effect of aspects with pointcut-advise
on dependencies. ’C’ represents common points in
clients accessing the providers. (Direction of the arrow

shows the change after applying aspect oriented modulariza-

tion.)

Figure 8: Effect of aspects with introduction on de-
pendencies.

Figure 9: The effect of inversion. ’R’ represents
redundant parameters/code in clients that is moved
to Architectural module after inversion.

Figure 10: Design rules for aspect oriented (AO)
modularization.

Looking into the structural changes aspect oriented mod-
ularization brings we treat it as a variant of Baldwin and
Clark’s inversion operator. Inversion has two major effects,
(i) it captures common elements hidden inside the modules,
and (ii) puts them above the existing modules as architec-
tural modules, thus changing the levels of the modules and
dependency relationships between them. A simple example
of the structural change inversion brings is shown in Figure
9.

Comparing Figure 9 (inversion) with Figure 7 and Fig-
ure 8 we can see that both inversion and aspect oriented
modularization involve capturing common parameters and
moving those common parameters to a single module. This
changes the levels of the parameters and makes aspect ori-
ented modularization similar to inversion. However, aspect
oriented modularization introduces modules (aspects) that
depend on existing modules, whereas inversion introduces
modules on which existing modules are dependent. This
makes aspect oriented modularization a variant of inversion.

5.2 Design Rules For Aspects



Figures 7 and 8 are just one of several variations of pointcut-
advise and introduction mechanisms. Particularly, in these
figures we do not see what the visible design rules for as-
pects are. In both cases aspects depend on clients or/and
providers.

In Figure 7 a small box labeled as C denotes the com-
mon points in clients accessing the providers. C is moved
into the aspect after aspect oriented modularization and it
represents two things: (i) interfaces that a provider pro-
vides, and (ii) points in clients that access such interfaces.
A typical way to design aspects following this process (as in
AspectJ) is to capture these points as joinpoints, (for exam-
ple the method names a provider provides and the method
names of clients that access the provider), that need to be
advised. Such joinpoints constitute C, and, in a way, become
design rules for the aspect. Defining design rules for aspects
implies making such joinpoints explicit. Just as architec-
tural modules emerge after sustaining a considerable design
evolution, an aspect oriented design would also result in well
defined design rules for aspect oriented modularization, as
in the structure shown in Figure 10.

6. QUANTITATIVE ANALYSIS WITH NET
OPTIONS VALUE

In this section we present the quantitative analysis of
the various design options for WineryLocator starting from
StoreLocator. Our analysis is based on a generic expression
for evaluating the option to redesign a module as developed
in [10], represented mathematically as shown below.

V = S0 + NOV1 + NOV2 + ... + NOVn (1)

NOVi = maxki{σin
1/2
i Q(ki)− Ci(ni)ki − Zi} (2)

Zi =
∑

j−sees−i

cnj (3)

Given below is a brief explanation of mathematical model
for NOV as given in [10].

• V denotes the value of a system.

• S0 is the value of the system with no modular struc-
ture, that can be normalized to 0.

• NOVi is the NOV for ith module, taken as the maxi-
mum return value possible out of k design experiments
on the ith module.

• (σin
1/2
i Q(ki)) represents the expected benefit to be

gained from the ith module. This value is assumed
to be the expected value of a random variable with a
normal distribution having a variance of σ2

i ni.

– σi is the Technical Potential of the module.

– Q(k) is the expected value of the best k indepen-
dent trails from a standard normal distribution
for all positive values in the distribution.

• (Ci(ni)) represents the cost of running a design exper-
iment on the ith module . Mathematically the cost of
an experiment is a function of the module’s complex-
ity. Thus,

– (Ci(ni)ki) is the cost of running k experiments on
the ith module.

– If N represents the total complexity of a system,
then ni, the complexity of the ith module would
be given as, mi/N , where mi is the ith module’s
contribution to N .

• (Zi) is the visibility cost, the cost to replace the ith

module.

– Mathematically, Zi =
∑

j−sees−i cjnj . It sums

up the cost to redesign each jth module contain-
ing nj parameters that depends on (sees) the ith

module.

– cj is the redesign cost per parameter for the jth

module.

6.1 NOV For Aspect Oriented Modularization
Based on the analogy between inversion and aspect ori-

ented modularization presented in section 5.1, Table 5 presents
a model for the NOV of aspect-oriented modularization,
comparing it with NOV for inversion.

NOVinv = Option Value of architectural module
- Cost of designing architectural module
- Option value lost in hidden modules’ experi-

ments
+ Cost savings in hidden modules’ experiments
- Costs of visibility

NOVasp = Option Value of Aspect Module (Aspects and
design rules for aspects)

- Cost of designing aspects and design rules for
aspects

- Option value lost in scattered code’s experi-
ments in hidden modules

+ Cost savings in scattered code’s experiments
in hidden modules

- Costs of visibility of modules on design rules
for aspects

Table 5: NOVs for inversion (NOVinv) and aspect
oriented modularization (NOVasp).

Baldwin and Clark have defined NOV expressions for all
the six modular operators. In evaluating the design options,
we have not used these individual expressions. We believe
further work is needed for these individual NOV expressions
to be directly used in evaluating various forms of fine grained
design changes made in software. Instead, we use the generic
expression for NOV (discussed earlier in this section) that
is applicable to any modular design.

6.2 Assumptions For NOV Analysis
The main objective behind our NOV analysis is to com-

pare the difference between the values of the different de-
signs, rather than to assess the individual worth of the de-
sign in terms of a market value. We believe our assumptions
give us consistent values for comparing the different designs.

We omit external parameters as modules for NOV analysis
because they are not subjected to further experimentation.
We treat all parameters under design rules as a single mod-
ule. All other design parameters are treated as individual
modules. Our assumptions for rest of the parameters are
given below.



Design Parameter Tasks #

ExternalParameters – 0
DesignRules (StoreLoca-
tor)

Provide structures that
model start location, ad-
dress matches, directions
and map

4

DesignRules (WineryLoca-
tor)

Provide structures that
model start location,
address matches, winery
search option, tour and
map

5

StoreLocator locate addresses, list
stores, provide maps,
map navigation, provide
directions

5

HttpSessionStoreLocator authentication 1
locate list location, specify start-

ing address
2

display list store, map, map navi-
gation

3

directions list directions 1
web.xml application configuration 1
AddressLocator list locations 1
AuthAddressLocator authentication 1
WineryFinder list wineries, provide op-

tions for wineries selection
2

RouteMapHandler generate maps, provide
navigation, list directions

3

AuthRouteMapHandler authentication 1
startWineryFind list location, specify start-

ing address
2

searchWinery set winery search options 1
tour list wineries, map, map

navigation
3

directions present directions 1
WebServicesLogger implement logging 1
Logging (Aspect) provide logging 1
Authentication (aspect) authentication 1

Table 6: Task list used to calculate the complexity
(ni) of individual modules. (# denotes number of
tasks.)

6.2.1 Redesign Cost Per Parameter (ci)
We assume the redesign cost of a single module to be 1

(following [10]).

6.2.2 Technical Potential (σ) Of A Module
A fundamental relation between the technical potential

σ, and cost c for (re)designing individual modules comes
from the break-even assumption of one experiment on an
unmodularized system [10]. This assumption says that in an
unmodularized system (or a system with only one module),

σN1/2Q(1)− cN = 0. With this relation we can assume the
maximum value for σ = 2.5, as we have assumed ci, redesign
cost of a single module to be 1 and Q(1) = 0.4.

Based on the observations made for σ in [25] we can say
that σ should be higher for those modules that add more
value to the system. [25] estimates the value for σ as the
system technical potential scaled by the fraction of the En-
vironment Parameters relevant to the module. Since the
external parameters we have listed represent a category of
environment parameters, we assume σ of a module to be
dependent on the number of external parameters it depends
on. Secondly, we also assume σ to be dependent on the mod-
ule’s relevance to the end users of the system. A module that

an end user directly interacts with or, benefits from, is likely
to add more value than a module that is hidden from or ir-
relevant to the users. With these assumptions we are simply
elaborating the observations made in [25] for estimating σ.

With these assumptions, we define the technical potential
to be a function given as

σi = f(ei, pi) = (ei + 1)× pi

where ei is the number of external parameters that the ith

module depends on. We add 1 to ei as we do not want
to assign σ a value of zero just because a module does not
depend on the external parameters.

pi indicates the ith module’s relevance to end users of the
system. Users directly interact with the application con-
troller modules, thus we assign them a pi value of 2. Func-
tional modules, subsidiary modules and design rules are less
visible to the users so we assign them a pi of 1. We assume
the value of pi to be 0 for web.xml since this parameter is
merely a configuration file and does not contribute much to
the system’s functionality and the end users.

We scale the value of σ for all the modules, with 2.5 as
the maximum value.

6.2.3 Module Complexity (ni)
We assume N , the complexity of the whole design, to be

the total tasks performed by all the modules in the system.
We calculate the complexity of a module by dividing the
total number of tasks it performs by N . Table 6 lists the
number of tasks for each module that we used to calculate
the complexity of individual modules.

Design Fig ID NOV Ic % Is % Iw1 %

StoreLocator 1 s 0.72 NA NA NA
WineryLocator 3 w1 1.38 91.41 91.42 NA
WineryLocator
with Logging

4 w2 1.41 2.18 95.6 2.18

WineryLocator
with design
rules for appli-
cation

5 w3 1.59 12.59 120.2 15.05

WineryLocator
with Aspects

6 w4 1.76 24.55 143.6 27.28

Table 7: NOVs for different design options. (Ic =

Cumulative increase in value, Is = Net increase in value with

respect to ’s’, Iw1 = Net increase in value with respect to

’w1’. )

6.3 Observations
The result of the NOV analysis is shown in Table 7. The

NOV increased with each of our subsequent designs, but
the highest increment was observed after aspect oriented
modularization. The assumptions we made in calculating
the parameters for NOV analysis reflect our design goals
and how we value different categories of modules. Thus, the
NOV for each design can be taken as a measure of its quality
with respect to the design goals we have set.

A closer look at the NOVs of all the modules for different
experiments gives more insight on the effect aspects have on
the value of the overall design. Figure 11 allows us for a finer
analysis of NOV results, as it shows the option values of each
module in our last two designs, before and after introducing
aspects. Each curve represents the variation of NOV of a



Figure 11: Charts showing the effect of aspect oriented modularization on option values.

module for ten different experiments [10]. The highest peak
in each curve denotes the value a module contributes to the
NOV of the overall design. Sum of all the peak values of all
the curves give the NOV.

We can see that after aspect oriented modularization the
NOV curves for existing application modules (such as
RouteMapHandler) go down. The increase in overall NOV
for WineryLocator after aspect oriented modularization is
due to the NOV of newly introduced aspects, Logging and
Authentication.

Another important observation to make is the NOV curve
for the module WebServicesLogger, that goes up after as-
pect oriented modularization. This increase is significantly
higher than the NOV changes for other modules, but, does
not yet contribute to the total NOV of the system, because
the curve stays below zero in both of the graphs. Our as-
sumptions led to a lower technical potential of 1 for Web-
ServicesLogger. We also calculated NOVs by assigning the
same technical potential of 2.5 for all modules and obtained
the same changes in NOVs in all the designs, with the high-
est NOV for the final design with aspects. With this new
assignment, the NOV of WebServicesLogger went higher (up
to 0.36). This shows that a different set of heuristics, that
gives a higher value of σ for WebServicesLogger, can make
its NOV curve go above zero.

We can conclude from these results that aspect oriented
modularization made augmentation more profitable even if
the added modules had comparatively low technical poten-
tial. Without aspects, the newly added modules would need
to have higher technical potential to achieve the same in-
crease in the overall value of design. In short, aspects added
value to an existing design in our case.

We are well aware that it is too early to generalize the
above conclusion for all scenarios where aspects can be ap-
plied, especially based on our single experiment and early
estimates for heuristics. However, we believe that the results
would be very similar for designs that match our example

in terms of design goals and structure.

7. LIMITATIONS AND FURTHER WORK
The assumptions we made in section 6.2 lack formal or

empirical verification; they are based on assumptions made
in [25], as well as on our own reasoning. Standard techniques
to estimate parameters for NOV and richer models for NOV
for software are issues of further research in this field.

Our analysis of NOV for the various designs is based on
the general expression to calculate NOV of a modular design
rather than the NOV expressions for the individual opera-
tors. We followed this approach because we still need to
have a precise understanding about how a NOV for a design
change resulting in a different dependency strucutre, other
than the modular operators model, should be expressed in
terms of these individual NOV for the operators. For ex-
ample, we cannot exactly pick which operator models the
design change we presented in section 4.5 (from Figure 4
to Figure 5). We can treat it as a refinement of inversion,
that previously had created the design rules in Figure 3 and
4, but accurate evaluation cannot be done without a precise
NOV expression that models this change in the design. Such
problems arise as we move into finer granularity of design
changes and thus need to investigate the feasibility of mod-
eling and evaluating finer design changes with Baldwin and
Clark’s theory (for example, various form of small and big
refactorings [13]) . We need to understand how far (or deep)
we can go with these basic operators, and in particular with
NOV, in considering fine grained design changes in software.

In this paper we have only considered two aspect oriented
techniques, pointcut-advise and introductions. We intend
to investigate the structure of dependencies and modular-
ity in several other models for representing aspects, using
techniques and theories presented in related works, such as
[16] , [22], [4], [17] and [14]. We believe such research ef-
forts will contribute in discovering standard techniques to
define design rules for aspects and help us understand the
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implications these design rules have on the overall value of
an aspect oriented design.

We observed that it is tedious and error prone to work
with DSMs and NOV analysis without proper tool support.
We believe DSM can be implemented as an interactive and
direct manipulation tool for software design. We intend to
look into the issues of scalability and possibilities for al-
ternative representations of design in DSM. We also plan
to incorporate advanced features of DSMs such as numer-
ical DSMs with dependencies classified according to their
strength and modeling software with various types of DSMs
using component-based and team-based DSMs [1]. With
these, we intend to investigate whether DSM can be fur-
ther extended as a tool for real software practitioners and
designers.

We are currently investigating modular dependencies based
on the true nature of aspects. With a rigorous analysis based
on, (i) what form of aspect is used, (ii) where the aspect is
applied (or, how it relates to other existing modules), and
(iii) how the aspect is applied (such as various kinds of join-
points/pointcuts), we can augment a model like Net Options
Value, for example, by providing a classiication scheme for
assigning values for the strength of dependencies. We be-
lieve such efforts would lead us to a more accurate evaluation
and analysis of aspect oriented designs.

8. CONCLUSIONS
Our work contributes to the earlier work by Sullivan et.al

[25]. We have provided a realistic and modern example, and
presented an intuition to estimate values for parameters such
as technical potential. Our main contribution, however is
our analysis of aspect oriented modularization and its effect
on the value of the overall design. We have demonstrated
that: (i) DSMs are capable of modeling dependencies in
design including those with aspects, (ii) Design changes can
be expressed in terms of the modular operators and (iii) We
can perform NOV analysis to compare design alternatives.
Finally, we have observed that introducing aspects increased
the value of an already modularized design in a non-trivial
example we studied.
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