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The convex hull of a set of points is the smallest convex set that contains the points. This
article presents a practical convex hull algorithm that combines the two-dimensional Quick-
hull Algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the
randomized, incremental algorithms for convex hull and Delaunay triangulation. We provide
empirical evidence that the algorithm runs faster when the input contains nonextreme points
and that it uses less memory. Computational geometry algorithms have traditionally assumed
that input sets are well behaved. When an algorithm is implemented with floating-point
arithmetic, this assumption can lead to serious errors. We briefly describe a solution to this
problem when computing the convex hull in two, three, or four dimensions. The output is a set
of “thick” facets that contain all possible exact convex hulls of the input. A variation is
effective in five or more dimensions.
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1. INTRODUCTION

The convex hull of a set of points is the smallest convex set that contains
the points. The convex hull is a fundamental construction for mathematics
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and computational geometry. For example, Boardman [1993] uses the
convex hull in his analysis of spectrometry data, and Weeks [1991] uses the
convex hull to determine the canonical triangulation of cusped hyperbolic
3-manifolds. Other problems can be reduced to the convex hull—for exam-
ple, halfspace intersection, Delaunay triangulation, Voronoi diagrams, and
power diagrams. In his review article, Aurenhammer [1991] describes
applications of these structures in mesh generation, file searching, cluster
analysis, collision detection, crystallography, metallurgy, urban planning,
cartography, image processing, numerical integration, statistics, sphere
packing, and point location.
We represent a convex hull with a set of facets and a set of adjacency lists

giving the neighbors and vertices for each facet. The boundary elements of
a facet are called ridges. Each ridge signifies the adjacency of two facets. In
R3 and general position, facets are triangles, and ridges are edges.
A Delaunay triangulation in Rd can be computed from a convex hull in

Rd11. To determine the Delaunay triangulation of a set of points lift the
points to a paraboloid and compute their convex hull. The set of ridges of
the lower convex hull is the Delaunay triangulation of the original points
[Brown 1979].
The intersection of halfspaces about the origin is equivalent to the convex

hull of the points in dual space [Preparata and Shamos 1985]. To determine
the intersection of halfspaces locate an interior point by linear program-
ming (personal communication, S. Teller, 1994), translate the interior point
to the origin, transform halfspaces into points by dividing offsets into
coefficients, and compute the convex hull. Via the duality transform, each
facet of the convex hull defines a point of intersection of the halfspaces.
Recent work on convex hulls and Delaunay triangulations has focused on

variations of a randomized, incremental algorithm that has optimal ex-
pected performance [Chazelle and Matous̆ek 1992; Clarkson et al. 1993;
Edelsbrunner and Shah 1992; Guibas et al. 1992; Joe 1991; Mulmuley
1994]. Points are processed one at a time in a random order. In this article,
we propose and analyze a strategy for processing points in a more efficient
order. The result is a faster algorithm for distributions with interior points.
An incremental algorithm for the convex hull repeatedly adds a point to

the convex hull of the previously processed points. Of particular interest is
the Beneath-Beyond Algorithm [Grünbaum 1961; Kallay 1981; Preparata
and Shamos 1985]. A new point is processed in three steps. First, locate the
visible facets for the point. The boundary of the visible facets is the set of
horizon ridges for the point. A facet is visible if the point is above the facet.
Second, construct a cone of new facets from the point to its horizon ridges.
Third, delete the visible facets, thus forming the convex hull of the new
point and the previously processed points.
The original randomized incremental algorithm upon which we build was

proposed by Clarkson and Shor [1989]. They work in the dual space of
halfspace intersections. Their algorithm adds a halfspace by intersecting it
with the polytope of the previous intersections. They randomly select a
halfspace to add to the polytope. For each unprocessed halfspace, they
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maintain the list of polytope edges that intersect the halfspace. The conflict
graph is the set of all such lists. When a halfspace is processed, the conflict
graph identifies the modified edges. To reduce memory requirements to
O(n), they propose storing a single modified edge for each unprocessed
halfspace. A simple search of adjacent edges identifies the remaining
modified edges.
Our Quickhull Algorithm is a variation of Clarkson and Shor’s algorithm.

As with most of the variations, we work in the space of points and convex
hulls instead of the dual space of halfspaces and polytopes. This turns the
conflict graph into an outside set for each facet. A point is in a facet’s
outside set only if it is above the facet. As in Clarkson and Shor’s
algorithm, an unprocessed point is in exactly one outside set. Our variation
is to process the furthest point of an outside set instead of a random point.
In R2, this is the well-known Quickhull Algorithm [Bykat 1978; Eddy 1977;
Green and Silverman 1979; Preparata and Shamos 1985].
Other variations of Clarkson and Shor’s algorithm do not maintain

conflict graphs or outside sets. Instead, they retain old facets of the convex
hull with links to the new facets that replaced them. This hierarchy begins
with an initial simplex formed from d 1 1 of the input points. The
algorithms find a visible facet for a point by searching for a chain of visible
facets through the hierarchy. The chain either ends with a facet of the
current hull, or all facets of the current hull are above the point; and the
point is then discarded. These algorithms have been implemented, and
their running times are competitive with other algorithms [Fortune 1993].
We can compare Quickhull with the randomized incremental algorithms

by changing the selection step of Quickhull. If Quickhull selects a random
point instead of a furthest point, it is a randomized incremental algorithm.
In our empirical tests, Quickhull runs faster than the randomized algo-
rithms because it processes fewer interior points. Also, Quickhull reuses
the memory occupied by old facets.
Our analysis is strictly empirical. We define two balance conditions that

would guarantee behavior identical to the randomized algorithms when all
points are extreme. If the balance conditions hold, our algorithm runs on an
input of size n with r processed points in time O(n log r) for d # 3 and
O(nfr/r) for d $ 4 (fr is the maximum number of facets for r vertices). We
conjecture that this is always the case when the input precision is re-
stricted to O(log n) bits.
Empirically, the number of points processed by Quickhull is proportional

to the number of vertices in the output. Output sensitivity is important for
convex hull algorithms because the output size can be much smaller than
the worst-case size. In R2, Kirkpatrick and Seidel [1986] found an optimal
output-sensitive algorithm for the convex hull that runs in O(n log h) time,
where h is the output size. Clarkson and Shor [1989] give a 3D convex-hull
algorithm with optimal output-sensitive expected time; it was derandom-
ized by Chazelle and Matous̆ek [1992]. In higher dimensions, the best
output-sensitive algorithm is Seidel’s shelling algorithm at O(n2 1 h log n)
when h 5 V(n) [Seidel 1986], and gift-wrapping at O(nh) otherwise [Chand
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and Kapur 1970]. The Double-Description Method is the dual of the
Beneath-Beyond Algorithm [Motzkin et al. 1953]. It is the earliest incre-
mental method for computing the convex hull. It is an excellent choice in
high dimensions when the number of facets is much smaller than the
maximum number of facets for r vertices (fr) [Avis and Bremner 1995;
Fukuda and Prodon 1996].

2. THE QUICKHULL ALGORITHM

We assume that the input points are in general position (i.e., no set of d 1
1 points defines a (d 2 1)-flat), so that their convex hull is a simplicial
complex [Preparata and Shamos 1985]. We represent a d-dimensional
convex hull by its vertices and (d 2 1)-dimensional faces (the facets). A
point is extreme if it is a vertex of the convex hull. Each facet includes a set
of vertices, a set of neighboring facets, and a hyperplane equation. The (d 2
2)-dimensional faces are the ridges of the convex hull. Each ridge is the
intersection of the vertices of two neighboring facets.
Quickhull uses two geometric operations: oriented hyperplane through d

points and signed distance to hyperplane. It represents a hyperplane by its
outward-pointing unit normal and its offset from the origin. The signed
distance of a point to a hyperplane is the inner product of the point and
normal plus the offset. The hyperplane defines a halfspace of points that
have negative distances from the hyperplane. If the distance is positive, the
point is above the hyperplane.
For processing a point we use a simplification of Grünbaum’s Beneath-

Beyond Theorem [Grünbaum 1961, Theor. 5.2.1]. The randomized incre-
mental algorithms are based on this theorem.

THEOREM 2.1 (SIMPLIFIED BENEATH-BEYOND). Let H be a convex hull in
Rd, and let p be a point in Rd 2 H. Then F is a facet of conv(p ø H ) if and
only if

(1) F is a facet of H, and p is below F; or
(2) F is not a facet of H, and its vertices are p and the vertices of a ridge of

H with one incident facet below p and the other incident facet above p.

The central problem of Beneath-Beyond is determining the visible facets
efficiently. Since a facet is linked to its neighbors, locating one visible facet
allows the rest to be located quickly. Most of the randomized algorithms
use the previously constructed facets to locate the first visible facet for a
point. Our solution is simpler. After initialization, Quickhull assigns each
unprocessed point to an outside set. By definition, the corresponding facet
is visible from the point.
When Quickhull creates a cone of new facets, it builds new outside sets

from the outside sets of the visible facets. This process, called partitioning,
locates a visible new facet for each point. If a point is above multiple new
facets, one of the new facets is selected. If it is below all of the new facets,
the point is inside the convex hull and can be discarded. Partitioning also
records the furthest point of each outside set.
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Quickhull selects a nondegenerate set of points for the initial simplex. If
possible, it selects points with either a maximum or minimum coordinate.
An outline of the algorithm is given in Figure 1.
To prove the correctness of Quickhull, we first prove that a point can be

partitioned into any legal outside set. If so, extreme points of the input will
always be vertices of the output.

LEMMA 2.2. If an extreme point of the input is above two or more facets at
a partition step in Quickhull, it will be added to the hull irrespective of
which outside set it is assigned to.

PROOF. Assume the contrary, and consider an extreme point p that is
not assigned to an outside set and hence never added to the convex hull.
Since p is an extreme point, it must have been outside at least one facet of
the initial simplex. By assumption, there is a point q with p in its visible
outside sets but not in its new outside sets. So p is above a visible facet and
below all new facets for q. This implies that p is inside the convex hull and
hence not an extreme point. e

THEOREM 2.3. The Quickhull Algorithm produces the convex hull of a set
of points in Rd.

PROOF. Quickhull starts with the convex hull of d 1 1 points. Quickhull
partitions points into outside sets and picks furthest points for processing.
By Lemma 2.2, partitioning cannot prevent an extreme point from being
processed. Quickhull processes a point according to Theorem 2.1. It retains
the facets in Part (1) of the theorem, and constructs new facets as specified

Fig. 1. Quickhull Algorithm for the convex hull in Rd.
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in Part (2). It produces the convex hull of the processed points. Processing
the last point produces the convex hull of the input set. e

Most of the randomized incremental algorithms perform the same steps
as Quickhull, but in a different order. They use Beneath-Beyond on a
random permutation of the points. They locate a visible facet by a depth-
first search of the previous convex hulls. Consider the sequence of facets
tested for a point. Quickhull may test the same sequence during successive
partitions of the point into outside sets.
Edelsbrunner and Shah [1992], Joe [1991], and Boissonnat and Devillers-

Teillaud [1993] use a similar method for Delaunay triangulations. They
express their algorithm in terms of triangulations and the in-sphere test.
By the correspondence between Delaunay triangulation and convex hull,
each triangle is a facet of the convex hull, and the in-sphere test deter-
mines the visible facets for the lifted point [Brown 1979].

3. COMPARISON OF QUICKHULL WITH THE RANDOMIZED
ALGORITHMS

If Quickhull and the randomized algorithms perform essentially the same
steps, why do we prefer Quickhull? Quickhull uses less space than most of
the randomized incremental algorithms and runs faster for distributions
with nonextreme points. The main costs for these algorithms are creating
facets and computing distances. To isolate the effect of randomization on
time efficiency, we can change the processing order of Quickhull. Instead of
selecting the furthest point of an outside set, we can select a random point
from all outside sets.
This section reports the results of experiments comparing two versions of

Quickhull with and without randomization. Each test is an average and
range for 10 trials. Quickhull partitions points to the first visible facet. The
randomized version starts with a random initial simplex. In a previous
report, we compared actual time and space for Quickhull and a randomized
incremental program [Barber et al. 1993]. Those figures support our results
here.
First consider uniform random distributions projected to a sphere. Each

coordinate is selected randomly from the interval [20.5, 0.5]. The sphere is
radius 0.5 centered at the origin. All points are extreme. In R3 to R7, there
is little difference in operation counts with and without randomization.
For example, consider the convex hull of 300 uniform random points in

R5 projected to a sphere. Quickhull created 28,200 (27,600–28,700) facets
and computed 51,600 (50,200–53,100) distance tests. For the same distri-
butions, randomized Quickhull created 29,000 (28,600–29,900) facets and
computed 53,400 (51,900–55,600) distance tests. Delaunay triangulations
show similar results because all points are extreme.
Quickhull uses less memory than most of the randomized algorithms. For

the R5 example, Quickhull uses memory proportional to the 7124 output
facets, while an algorithm that retains old facets uses memory proportional
to the 29,000 (28,600–29,900) created facets.
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Figures 2–4 show the results for uniform random distributions of points
in the unit cube. In 10 trials, the convex hull of 10,000 random points had
245 (226–288) facets and 125 (115–134) vertices. Quickhull created 730
(662–831) facets while the randomized version created 2210 (1960–2440).
The randomized version performed twice as many distance tests. These
differences are due to the number of processed points. Quickhull processed
153 (141–171) points while the randomized version processed 387 (345–
421) points.
Consider the case of finding the convex hull of a set of uniform random

points in R3 projected to a sphere of radius 0.5 centered at the origin. To
these points add the vertices of a cube, also centered at the origin. As the
edge length of the cube increases, the number of extreme, cospherical
points decreases. We consider the situation when the cube has edge length
0.96. In this case, the sphere extends slightly beyond each facet of the cube.
The convex hull of 10,000 cospherical points and a 0.96 cube contains 76

(68–84) facets and 40 (36–44) vertices. Quickhull created 315 (155–807)
facets while the randomized version created 26,000 (11,900–37,600) facets.
The difference is due to the number of processed points. Quickhull pro-
cessed 74 (42–174) points while the randomized version processed 4360
(2080–6253) points. Because Quickhull processes the furthest point of each
outside set, it processes the cube’s vertices before processing most of the
cospherical points.
The randomized incremental algorithms can perform significantly worse

than expected. There are two bad cases. Each point could create many new
facets, or each search for a visible facet could visit many old facets. The

Fig. 2. Convex hull of uniformly distributed 3D points. Average and range for hyperplanes
created over 10 trials.

The Quickhull Algorithm for Convex Hulls • 475

ACM Transactions on Mathematical Software, Vol. 22, No. 4, December 1996.



first case occurs when the points of a spiral happen to be added in order.
This cannot occur for Quickhull because the end of the spiral would be
added before most of the intermediate points.

Fig. 3. Convex hull of uniformly distributed 3D points. Average and range for distance tests
over 10 trials.

Fig. 4. Convex hull of uniformly distributed 3D points. Average and range for processed
points and output vertices over 10 trials.
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For Quickhull, the second case corresponds to assigning all points to one
outside set for most partitions. We conjecture that this cannot occur if we
restrict the input precision to O(log n) bits (personal communication, V.
Milenkovic, 1994). In Rd, a point creates at least d new facets. Since
Quickhull processes the furthest point of each outside set, a sequence of
partitions to a single facet would produce a facet that is too small for the
input precision. A similar restriction holds for Quicksort using a mean
pivot. For Quicksort to be unbalanced, most of the points must consistently
fall in one of two partitions. With a mean pivot, this would require O(n) bits
of precision.
We conjecture that Quickhull iterations are average (i.e., each iteration

creates an average number of new facets whose outside sets are average
size). This defines two balance conditions. Let d be the dimension, n the
number of input points, r the number of processed points, and fr the
maximum number of facets of r vertices (fr 5 O(r d/2/d/2!) [Klee 1966]).

Definition 3.1. An execution of Quickhull is balanced if

—the average number of new facets for the jth processed point is dfj/j and
—the average number of partitioned points for the jth processed point is
d(n 2 j)/j.

To test the balance conditions statistically, we can compute the expected
number of new facets from the actual number of facets. Similarly we can
compute the expected number of partitioned points. For example, each
iteration of Quickhull on 10 trials of 6000 random cospherical points in R3

created 3.7 fewer new facets than expected (1.3 standard deviation) and
partitioned 5.4 fewer points than expected (50 s.d.). On the same distribu-
tions, randomized Quickhull created 0.1 fewer facets than expected (1.3
s.d.) and partitioned 1.4 fewer points than expected (46 s.d.).

THEOREM 3.2. Let n be the number of input points in Rd and r be the
number of processed points. If the balance conditions hold, the worst-case
complexity of Quickhull is O(n log r) for d # 3 and O(nfr /r) for d $ 4.

PROOF. There are two costs to Quickhull: adding a point to the hull and
partitioning. The dominant cost for adding a point is O(d3) work to create
hyperplanes. The dominant cost for partitioning is O(d) work to compute
distances. The total cost for adding points is proportional to the total
number of new facets created, O(d3 j51

r dfj/j). This simplifies to O(fr) (each
term is less than dfr/r, and the d/2! denominator of fr subsumes d4).
The cost of partitioning one point in one iteration is proportional to the

number of new facets. The total cost is O(d j51
r d2(n 2 j)fj/j

2). Expanding fj
yields O(d3n j51

r j d/222/d/2!). If d # 3, the sum is O(n log r). Otherwise,
each term is less than fr/r

2, and the sum is O(n fr/r). e

If r 5 n and the balance conditions hold, the cost of Quickhull is O(n log
n) for d # 3 and O(fn) otherwise. This is the same as the expected cost of
the randomized incremental algorithms [Clarkson et al. 1993].
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For Quickhull, the furthest point of an outside set is not always the
furthest point from a facet, but in many cases, it is the furthest overall and
hence an extreme point. If it is not an extreme point, then a later point will
delete it. An extreme point that deletes multiple vertices appears to occur
infrequently. For these reasons, we make the following conjecture.

Conjecture 3.3. Let n be the number of input points in Rd and v be the
number of output vertices. If the precision of the input points is O(log n),
the worst-case complexity of Quickhull is O(n log v) for d # 3 and O(n fv/v)
for d $ 4.

4. COPING WITH IMPRECISION

So far, we have followed the real-RAM model and assumed that the input
set is nondegenerate. If we implement Quickhull with floating-point arith-
metic, roundoff error and representation error may introduce degeneracies.
We briefly describe heuristic extensions of Quickhull that work well in
practice.
Quickhull partitions a point and determines its horizon facets by comput-

ing whether the point is above or below a hyperplane. We have assumed
that computations return consistent results. The existence of roundoff
errors calls this assumption into question. For example, in Figure 5 the
point may be computed to be above facets F1 and F3 and below F2. The
Beneath-Beyond step replaces F1 and F3 with five new facets. Since it does
not replace F2, the new facets contain serious geometric and topological
errors. Two of the facets are flipped upside-down, and four of the facets
meet at a ridge.

Fig. 5. Five erroneous facets when F1 and F3 are visible from P but not F2. The erroneous
facets are built from ridges a–e.
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With floating-point arithmetic, we cannot prevent such errors from
occurring, but we can repair the damage after processing a point. We use
brute force: if adjacent facets are nonconvex, one of the facets is merged
into a neighbor. Quickhull merges the facet that minimizes the maximum
distance of a vertex to the neighbor.
For example, in Figure 5 label the new facets by ridges a 2 e. Quickhull

first handles ridges with more than two facets. In this case, facets a, b, d,
and e meet at the same ridge. Quickhull repairs the fault by merging the
two closest facets, say b and d. The vertices of facet F2 and facet c are
contained in the merged facet bd, so Quickhull merges them together. The
merged facet bcd2 has only two neighbors. It is merged into the closer of
facets a and e. Say the later occurs. If facet bcde2 and facet a are clearly
convex, Quickhull is finished with this pair of facets.
We cannot use the counterclockwise test to test the convexity of nonsim-

plicial facets: the test depends on vertices coinciding with the intersection
of hyperplanes. Instead, nonsimplicial facets have a point (the centrum)
that must be clearly below the hyperplanes of neighboring facets. Except
for large facets, the centrum is the average of the vertices projected to the
hyperplane. Centrums are fixed for large facets.
The result of merging is a “thick” facet defined by a positive and negative

offset from the facet’s hyperplane. The polytope defined by the negative
offsets clearly excludes the vertices; the polytope defined by the positive
offsets clearly includes the input points. The space between the polytopes
contains the boundaries of all possible, exact convex hulls through the
points. We determine the offsets—after constructing the hull—by testing
all points near the boundary of the convex hull.
When done, Quickhull reports the maximum facet width and guarantees

that neighboring facets are clearly convex. In practice, Quickhull produces
a convex hull whose thickest facet is less than six times thicker than
merging two nonconvex simplicial facets. In R2 to R4, a ratio greater than
10 probably indicates an error.
For Rd, Quickhull repairs the following faults in this order: more than

two facets meeting at a ridge, a facet contained in another facet, a facet
with fewer than d neighbors, a facet with flipped orientation, a newly
processed point that is coplanar with an horizon facet, concave facets,
coplanar facets, and redundant vertices. It removes coplanar facets in
independent sets of merges sorted by angle. In R5 and higher, it removes
coplanar facets after constructing the hull. This may cause a poor approxi-
mation, and the hull may be wider than reported. Both events appear to be
unlikely.
Quickhull does not handle all faults from degenerate distributions. For

example, faults occur for the furthest-site Delaunay triangulation of 2000
points within 10212 of the unit circle. During construction of the corre-
sponding convex hull, two neighboring facets may span the point set with
opposite orientations. A point may be just above both facets yet remain
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distant from the precise convex hull. Later, the coplanar point may be far
above a new facet. If this occurs, Quickhull generates a warning and
reports a wide facet.
In R2, there are several robust convex hull and Delaunay triangulation

algorithms [Fortune 1989; Guibas et al. 1993; Li and Milenkovic 1990]. In
R3, Sugihara [1992] and Dey et al. [1992] produce a topologically robust
convex hull and Delaunay triangulation. Their algorithms are a variation
of Beneath-Beyond with steps to prevent topological anomalies such as in
Figure 5. The output may contain unbounded geometric faults.
There are several implementations for computing the convex hull with

precise arithmetic. The output is a triangulation. If the input is degenerate,
the output may contain simplices with zero volume. Clarkson’s hull imple-
mentation of the randomized incremental algorithm restricts the input
precision to about 15 decimal digits. The implementation computes the
exact sign of determinants [Clarkson 1992]. It is a practical solution for
precise convex hulls and Delaunay triangulations [Clarkson 1995].
We timed hull, hullio (a precursor of hull without exact arithmetic, per-

sonal communication, S. Dorward, 1992), triangle [Shewchuk 1996] (a
two-dimensional Delaunay triangulation program with exact arithmetic),
and our implementation of Quickhull (qhull 2.2) on a Silicon Graphics
100MHz R4000. These are fastest implementations known to the authors.
We used a Sun SPARCstation for performance tuning of qhull. The times
are the average and range of user CPU seconds for 10 different trials.
hull computed the Delaunay triangulations of 10,000 uniform random

points in a square in 10.23 (10.0–10.5) seconds, while qhull with merging
computed them in 6.61 (6.5–6.7) seconds. If we compare hullio and qhull
without merging, the corresponding figures are 6.2 (6.0–6.4) and 5.93
(5.8–6.1) respectively. The difference between hull and qhull with merging
is largely due to exact arithmetic. Specialized code for two dimensions is
much faster. The triangle program computes the same Delaunay triangula-
tions in 1.3 (1.3–1.4) seconds.
hull computed the convex hulls of 20,000 uniform random points in a cube

in 9.9 (8.2–10.9) seconds. hullio computed them in 4.5 (4.0–5.4) seconds.
qhull with merging computed them in 1.75 (1.6–2.1) seconds, and qhull
without merging computed them in 1.67 (1.6–1.8) seconds. These figures
support the previous comparison for uniform random points.
hull computed the convex hulls of 5000 random points on the surface of a

hypercube in 28 (26–32) seconds. They had 6700 facets on average. For the
same inputs, qhull with merging produced 1700 facets on average in 5.6
(5.2–6.0) seconds. It merged 2300 (2000–2500) facets. There was one facet
of the convex hull for each facet of the hypercube. These facets contained
4500 coplanar points on average. qhull without merging produced 4300
facets on average in 1.9 (1.7–2.0) seconds. The larger ratios between hull,
qhull with merging, and qhull without merging reflect the increased use of
exact arithmetic and facet merging.
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5. SUMMARY

Our goal is a practical algorithm for general-dimension convex hulls. We
have shown empirical evidence that the algorithm satisfies its balance
conditions and that it performs like a randomized incremental algorithm
that is output sensitive to the number of vertices. The Quickhull Algorithm
uses less space than most of the randomized incremental algorithms and
executes faster for inputs with nonextreme points.
In addition, Quickhull uses merged facets to guarantee that the output is

clearly convex. The algorithm is implemented with floating-point arith-
metic. It reports the maximum width of a merged facet. In R5 and higher,
the maximum width may be wider than reported.
We have implemented Quickhull for general dimension. The program

qhull computes convex hulls, Delaunay triangulations, Voronoi vertices,
furthest-site Voronoi vertices, and halfspace intersections. It is available
via http://www.geom.umn.edu/locate/qhull and ftp://geom.umn.edu/pub/
software/qhull.tar.Z. The program includes options for imprecise data and
arithmetic, facet area and hull volume, partial hulls, input transforma-
tions, randomization, tracing, multiple output formats, graphical output,
and execution statistics. The program can be called from within an applica-
tion.
Over the last two years, 3000 copies of qhull were retrieved via ftp. It has

been used for support structures in layered manufacturing [Allen and
Dutta 1995], classification of molecules by their biological activity, vibra-
tion control, geographic information systems, neighbors of the origin in the
R8 lattice, stress analysis, stability of robot grasps (personal communica-
tions, L. Belsis et al., 1995), spectrometry [Boardman 1993], constrained
control allocation [Bordignon and Durham 1995], robot navigation [Cucka
et al. 1995], micromagnetic modeling [Porter et al. 1996], and invariant
sets of delta-sigma modulators [Zhang et al. 1994].
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