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The agent-based approach emphasizes the importance of learning through
organism-environment interaction. This approach is part of a recent trend in compu-
tational models of learning and development toward studying autonomous organ-
isms that are embedded in virtual or real environments. In this paper we introduce
the concepts of online and offline sampling and highlight the role of online sampling
in agent-based models. After comparing the strengths of each approach for modeling
particular developmental phenomena and research questions, we describe a recent
agent-based model of infant causal perception. We conclude by discussing some
of the present limitations of agent-based models and suggesting how these chal-
lenges may be addressed.  2001 Academic Press

Computational models of learning and development are playing an in-
creasingly critical role in child development research (Cassidy, 1990;
Clark & Karmiloff-Smith; 1993; Edelman, 1987; Elman et al., 1996; McClel-
land, 1995; Newell & Molenaar, 1998; Parisi, 1996; Plunkett & Sinha, 1992;
Quartz & Sejnowski, 1998; Ramsey & Stich, 1991; Rutkowska, 1987, 1993;
Simon & Halford, 1995). As a class of methodological tools, these models
(1) reveal many of our fundamental assumptions regarding organism-
environment interaction, (2) provide insight into multitimescale and multi-
level dynamic systems, and, more generally, (3) both inform and are in-
formed by concurrent behavioral research. To help illustrate the wide range
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TABLE 1
Survey of Recent Computational Models of Development, by Developmental Domain

Developmental
domain Subdomain Study

Physical knowledge Objects Dehaene & Changeux, 1989
Luger, Wishart, & Bower, 1984
Mareschal, Plunkett, & Harris, 1999
Munakata, 1998
Munakata, McClelland, Johnson, & Siegler,

1997
Space Hiraki, Sashima, & Phillips, 1998

Numerical knowlege Number per- Dehaene & Changeux, 1993
ception Peterson & Simon, 2000

Arithmetic Simon, 1998
Balance scale McClelland, 1989

Raijmakers, van Koten, & Molenaar, 1996
Shultz, Mareschal & Schmidt 1994

Seriation Mareschal & Shultz, 1993
Conservation Hartelman, van der Maas, & Molenaar,

1998
Shultz, 1998

Classes and categories Perceptual Mareschal & French, 2000
categorization Quinn & Johnson, 1997

Language and Speech perception Christiansen, Allen, & Seidenberg, 1998
cognition

Syntax Elman, 1993
Plunkett & Marchman, 1991
Rumelhart & McClelland, 1986

Semantics and MacWhinney & Chang, 1995
lexical growth Plunkett, Sinha, Moller, & Strandsby, 1992

Regier, 1996
van Geert, 1991

Motor control Reaching Berthier, 1996
Kuperstein, 1991
Schlesinger, Parisi, & Langer, 2000
Sporns & Edelman, 1993
Vos & Scheepstra, 1993

of developmental phenomena that are open to simulation, Table 1 lists a
brief sample of recent computational models.

Rather than re-present the basic features of computational models in psy-
chology, as well as their importance for studying developmental phenomena,
we refer the interested reader to excellent introductory reviews by Elman et
al. (1996) and Simon and Halford (1995). Instead, our primary goal is to
propose a new conceptual approach that expands on the existing array of
computational models available to developmental researchers.
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The agent-based approach spans a multidisciplinary group of researchers
and theorists in cognitive science, incorporating ideas from evolutionary bi-
ology, robotics, linguistics, philosophy, neuroscience, psychology, and nu-
merous other disciplines. A general theme across much of this work is the
embodied or situated agent, an artificial or real organism that possesses a
physical body and interacts with its environment by receiving sensory signals
and producing motor outputs. From the perspective of developmental pro-
cesses, the critical feature of agent-based models is the concept of online
sampling, a computational procedure that enables autonomous agents to ef-
fectively control the sequence of sensory patterns they receive from the envi-
ronment.

We begin by introducing the concepts of online and offline sampling. In
the second section, we identify some of the developmental issues that each
approach is ideally suited to address. In particular, we focus on the role of
online sampling in agent-based models, and how employing an agent-based
perspective can advance our understanding of development. Section three
follows with an in-depth discussion and analysis of a recent agent-based
model of infant causal perception, which illustrates many of the key features
of the agent-based approach. In the final section, we discuss some of the
present limitations of agent-based models and suggest how these challenges
may be addressed.

OFFLINE AND ONLINE SAMPLING

The general goal of most computational models of development is to in-
vestigate how experience changes behavior. To this end, a ubiquitous feature
of most models is the idea of an organism that receives sensory data from
the environment, produces a response, and uses environmental feedback to
improve its response. Typically, models equate ‘‘experience’’ with short ex-
changes or interactions with the environment, generated according to a sam-
pling rule that dictates how sensory data vary over time.

In this section, we introduce a formal system for describing an arbitrary
sampling rule, and use the system to illustrate two general classes of sam-
pling rules. First, we define the input space I as the set of m possible input
patterns, and it as a sequence of patterns sampled from I over a time interval
t. More formally, it ∈ I. Similarly, ot ∈ O for the sequence of outputs pro-
duced by the model in response to the corresponding inputs. When t 5 m, the
entire set of input patterns is exhaustively sampled (a single sweep through I
is normally referred to as an epoch). An important question concerns how
the input sequences it are generated. Typically, it is selected according to
some well-defined function:

it 5 f(I, t).

In the conventional case (e.g., supervised learning), f selects input patterns
at random from I without replacement:
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(a) (b)

FIG. 1. (a) Hypothetical sequence of inputs (‘‘i’’) and outputs (‘‘o’’) generated by offline
(random) sampling and (b) the model’s corresponding trajectory through a two-dimensional
input state-space. S i’s index discrete states in the input state-space.

it 5 random(t)

Figure 1a presents a hypothetical sequence of input-output pairs, following
this selection regime, while Fig. 1b illustrates the corresponding trajectory
through a 2D input space I.

Because many model architectures and learning algorithms are sensitive
to initial learning conditions, one side effect of random sampling is that two
independent samples of I may result in different learning outcomes. This is
due in part to the fact that the first few input patterns encountered may create
a response bias that facilitates or interferes with later learning (e.g., the model
may become trapped in a local minimum). One strategy for dealing with this
problem is to train many instances of a model, thereby suppressing the effects
of specific input sequences by averaging the results over a large number of
input samples.

We refer to the general approach of sampling from I at random as offline
sampling. Most agent-based models, however, do not employ this approach.
Instead, an online sampling (or active sampling, see Parisi (1997)) procedure
is used, which samples from the input space over time as a function of the
model’s output

i(t) 5 i(t 2 1) 1 g(o(t 2 1)),

where i(t) is the model’s input at time t, i(t 2 1) and o(t 2 1) are the model’s
input and output, respectively, during the previous time step, and g is a func-
tion which computes the incremental change in the input state given the
model’s response. In other words, each response generated by the model has
an iterative effect on its position in the input space I. Rather than discrete
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(a) (b)

FIG. 2. (a) Hypothetical sequence of inputs and outputs generated by online sampling and
(b) the model’s corresponding trajectory through a two-dimensional input state-space (arrows
indicate the output chosen for each input).

input–output pairs, online sampling generates time-ordered, action-depen-
dent sequences over a continuous episode.1,2 Figures 2a and 2b illustrate a
hypothetical sequence of input–output states generated according to this
scheme, and the corresponding trajectory through I.

The key difference between offline and online sampling concerns how
time is experienced by the model. During offline sampling, each input pattern
constitutes a discrete, independent moment in time3 (see Fig. 1b). In addition,
although the model may receive feedback after each output (e.g., a training
signal), it does not experience any short-term or long-term consequences of
the response. In many respects, the model’s experience during offline sam-
pling is analogous to a human subject in a typical psychology experiment:
(1) a random sequence of discrete training exemplars is presented, (2) re-
sponses are independent (i.e., one response does not affect another), and (3)
interference effects between successive exemplars are treated as noise and
consequently minimized by repeated training runs.

1 Note that the use of online sampling does not alleviate the problem of sensitivity to initial
conditions. As with offline sampling, one strategy is to train a model by starting each episode
at a random position in the input space. For the remainder of the episode, however, all subse-
quent input patterns are determined by the actions of the agent.

2 By continuous we mean that online sampling generates a sequence of input patterns from
the beginning to the end of an episode, ordered with respect to time. Nevertheless, like offline
sampling, online sampling normally samples the input space at discrete moments in time, at
regular intervals.

3 In some cases (e.g., Elman, 1993; Munakata, McClelland, Johnson, & Siegler, 1997) com-
plex input patterns have temporal structure (e.g., a stream of speech sounds) and are conse-
quently segmented and presented to the model one component at a time. In this context, offline
sampling selects each of the complex patterns at random.
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If we think of offline sampling as a procedure analogous to a laboratory
experiment, then online sampling is akin to an ethological study: we first
design a virtual organism and a quasi-natural learning environment (or per-
haps, a robotic organism in a real environment) and then leave the organism
free to explore and learn through interaction with its environment (we refer
elsewhere to this as an ecological approach (Parisi, 1996; Parisi, Cecconi, &
Nolfi, 1990)). Because each behavior is followed by not only a potential
training signal (where appropriate), but also the sensory consequences, our
organism experiences both the immediate and the long-term effects of its
behavior.

SAMPLING AND DEVELOPMENT

In designing a computational model of development, the model-builder
must decide whether to employ an online or offline sampling procedure.
Fortunately, this decision can often be made independently of the specific
learning algorithm, modeling framework, and theoretical orientation (e.g.,
constructivism versus nativism) that are being studied. Perhaps the most im-
portant consideration in choosing between online and offline sampling is
whether temporal structure is a relevant aspect of the developmental phenom-
enon under investigation. In addition, the specific kinds of questions that the
developmental model-builder hopes to answer will also impact on this
choice. In order to highlight the particular strengths of each approach, we
next briefly identify some of the general developmental issues that offline
and online sampling are each ideally suited to address.

Offline Sampling and Development

Most of the models presented in Table 1 employ an offline sampling proce-
dure. Many of these simulations focus on a related set of questions. First, how
can we use computational models of continuous processes to help explain
discontinuity in behavior over time? Second, how can computational models
identify structure and change in internal representations? Third, what envi-
ronmental constraints on development are revealed through modeling?

1. Transition mechanisms. Several developmental models have used off-
line sampling to study transition mechanisms in development. For example,
McClelland (1989; McClelland & Jenkins, 1991), Raijmakers, van Koten,
and Molenaar (1996), and Shultz, Mareschal, and Schmidt (1994) each pres-
ent a connectionist model which replicates the four stages of reasoning ob-
served in children on Piaget’s balance scale task (Siegler, 1976). Each model
captures the process of qualitative, stagewise change with a different connec-
tionist approach (e.g., modular information processing, generative net-
works). Shultz has also used generative networks (i.e., the cascade correla-
tion learning algorithm) to study other stagewise developmental patterns,
including children’s reasoning on seriation and conservation tasks
(Mareschal & Shultz, 1993; Shultz, 1998). Similarly, in the domain of lan-
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guage acquisition, Rumelhart and McClelland (1986) and Plunkett and
Marchman (1991) show how U-shaped learning trajectories emerge in net-
works that learn to generate past-tense forms of English verbs (e.g., talk ⇒
talked, go ⇒ went).

2. Internal representations. Second, offline sampling has also been used
to study the development of adaptive internal representations. Several de-
scriptive and analytical methods are available (Elman, 1993; Sejnowski &
Rosenberg, 1986). For example, Shultz (1998) presents a principal compo-
nent analysis (PCA) of a generative network as it learns to conserve number.
A related, graphical method is implemented in simulations of perceptual cat-
egorization (Mareschal & French, 2000; Quinn & Johnson, 1997); these
models are used to produce 3D maps of the internal representation space
during training. Similarly, Mareschal, Plunkett, and Harris (1999) and Muna-
kata, McClelland, Johnson, and Siegler (1997) use recurrent networks to
model the infant’s ability to predict the reappearance of an occluded object.
An intriguing aspect of these models is how they employ a computational
framework to study the putative representations underlying infants’ sensori-
motor actions (e.g., gaze control, reaching). This work not only coincides
with a growing interest in studying representational processes in young in-
fants (Goubet & Clifton, 1998; Leslie, Xu, Tremoulet, & Scholl, 1998; Wil-
cox & Baillargeon, 1998), but also offers a new and promising set of research
tools that complement behavioral studies of infants’ expectations (Need-
ham & Baillargeon, 1997; Schlesinger & Langer, 1999; Wynn, 1992).

3. Environmental regularities. A third, related area of modeling work that
employs offline sampling has helped developmental researchers to not only
identify and study many of the environmental regularities that are available
to infants and young children, but also analyze how these regularities act
as constraints on development. Models of language acquisition, in particu-
lar, provide a number of examples (Karmiloff-Smith, 1992; Plunkett &
Marchman, 1991; Rumelhart & McClelland, 1986). Plunkett and Sinha
(1992), for instance, show how a variety of language acquisition phenomena
depend on the statistical properties of the training set (e.g., type-token fre-
quency and rule overgeneralization). Similar methodological approaches
(e.g., environmental biases, selective pretraining, differential learning rates)
have also been implemented in models of object and numerical cognition
(Shultz, 1998; Shultz, Schmidt, Buckingham, & Mareschal, 1995; Munakata
et al., 1997) as well as perceptual categorization (Mareschal & French, 2000;
Quinn & Johnson, 1997).

Online Sampling and Development

As the key feature of the agent-based approach, online sampling allows
researchers to simulate and investigate developmental phenomena that span
continuous stretches of time. We describe here three broad developmental
questions that depend in one way or another on the concept of time, and
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which are appropriate areas of study from the agent-based approach. First,
how can we simulate processes of organism–environment interaction that
unfold over more than a single time step? Second, how might self-selection
of sensory states act as an emergent constraint on developmental processes?
Third, how can agents learn to exploit perception–action linkages?

1. Organism-environment interaction. Because agents exist in time, they
can participate in exchanges or ‘‘dialogs’’ with their environment, in which
multiple actions are attempted, evaluated, and selected by the agent. This
makes the agent-based approach particularly relevant for studying the emer-
gence and organization of sequential problem-solving strategies, such as
tool-use development in young infants (Bates, Carlson-Luden, & Bretherton,
1980; Koslowski & Bruner, 1972; Schlesinger & Langer, 1999; Willats,
1984). What is critical about online sampling as a modeling approach for
these kinds of phenomena is that it supports directed trial-and-error learning,
in which a strategy is progressively refined (Koslowski & Bruner, 1972;
Willats, 1990). In addition, online sampling allows the agent to both explore
the consequences of various primitive actions (e.g., pull tool, lift tool), while
also experimenting with alternative ways of assembling these components
into goal-directed sequences. In contrast, offline sampling typically captures
learning processes at the time scale of single, primitive actions (however,
see Bertsekas & Tsitsiklis, 1996, for a discussion of dynamic-programming
approaches to this problem).

Interestingly, a difficulty in computational learning theory arises when
an agent is allowed to generate sequences of actions over time that are not
evaluated until the sequence is complete (e.g., a target is reached, a game
is won or lost, a perceptual input is decomposed and categorized). The credit-
assignment problem (Minsky, 1995) results from the fact that while many
primitive actions are chosen during the sequence, not all contribute equally
to the success of the action sequence as a whole. How much credit does each
action receive? Fortunately, there are a number of learning algorithms that
address this problem (e.g., temporal-difference learning (Sutton & Barto,
1998)).

More generally, agent-based models are an appropriate tool for simulating
developmental phenomena that depend critically on experiencing how one’s
actions transform perceptual input over time. For instance, Hiraki, Sashima,
and Phillips (1998) employed an agent-based model in order to investigate
the effect of locomotion on the developmental shift in young infants from
egocentric to allocentric spatial perception. Similarly, agent-based models
might be used to investigate the development of perceptual constancies, as
well as the relation between optical flow and postural control.

In addition to interaction with the physical world, agents can also interact
with their social environment. For example, Fig. 3 illustrates a multiagent
model, in which two agents experience a shared input space. One application
of this type of model is the study of language evolution and development
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FIG. 3. A two-agent model. Each agent codetermines the sequence of inputs that are
perceived in a shared sensory input space.

in groups of agents that acquire a shared communication system (e.g., agents
that both produce and perceive speech-like signals (Cangelosi & Parisi, 1998;
Steels, 1998)). These agent-based models extend the range of offline-
sampling models of language acquisition (e.g., Elman, 1993; Plunkett &
Marchman, 1991; Rumelhart & McClelland, 1986), by not only simulating
the acquisition of semantic and syntactic properties of language, but also by
incorporating some of the social and pragmatic factors that motivate early
language development. Other aspects of social interaction open to investiga-
tion with agent-based models include the evolution and development of at-
tachment, social-referencing, perspective taking, theory of mind, and cooper-
ative social strategies.

2. Sensory self-selection. Because agents self-select their own input states,
they effectively choose their own trajectories through the learning space (see
Fig. 2b). One important consequence is that rather than sampling the entire
space of inputs uniformly, agents often limit their early learning to small
portions of the sensory space (Nolfi & Parisi, 1993; Schlesinger, Parisi, &
Langer, 2000). For example, Schlesinger, Parisi, and Langer (2000) observed
an early, persistent pattern of stereotyped reaching movements in an agent-
based model of hand–eye control, which was recently identified in human
infants as well (Berthier, Clifton, McCall, & Robin, 1999).

From a developmental perspective, sensory self-selection reveals a num-
ber of important phenomena. First, it illustrates how the agent can effectively
decompose a large problem into a sequence of smaller, tractable steps by
concentrating early learning in a particular region of the input space. In con-
trast, by exhaustively sweeping through the input space, offline sampling
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often prevents such ‘‘divide-and-conquer’’ solutions from emerging. Sec-
ond, it creates a source of constraint on developmental trajectories that, un-
like the kinds of preprogrammed or preexisting constraints studied with the
offline sampling approach (e.g., maturational factors, environmental regular-
ities), is both emergent and unique to each organism’s history of experience.

What kinds of developmental phenomena might be related to sensory self-
selection in agent-based models, and amenable to simulation? One analogous
phenomenon is the development of overt shifts of attention in infants (for
a recent review, see Posner, Rothbart, Thomas-Thrapp, & Gerardi, 1998).
More generally, sensory self-selection is appropriate for studying how in-
fants and young children learn to process to complex, multidimensional stim-
uli, such as the development of speech segmentation, cross-modal percep-
tion, and perceptual categorizing.

3. Perception-action linkages. As Fig. 2a illustrates, online sampling re-
places the idea of feedforward information processing (i.e., from sensation
to action) with the image of a chain or loop; sensation and action both influ-
ence and are influenced by interaction with the environment. As the broad
theoretical relevance of such perception–action linkages has been argued
elsewhere (e.g., embodied knowledge, circular reactions, reentrant map-
pings; Bechtel, 1997; Edelman, 1987; Parisi, 1995; Piaget, 1952; Smith &
Scheier, 1998; Varela, Thompson, & Rosch, 1991), we focus our attention
here on implications for development.

First, a robust finding among a variety of agent-based models is that adap-
tive agents rapidly learn to discover and exploit contingencies between their
actions and subsequent perceptions. In many cases, these models rely on
relatively simple associative learning strategies. For example, Treves, Mig-
lino, and Parisi (1992) describe a series of simulations with an artificial neu-
ral network that learns under selective pressure to solve a navigation task
by composing a sequence of adaptive sensorimotor behaviors (e.g., orienting,
wall-following, etc.). Similarly, Scheier, and Pfeifer (1995) study ‘‘body-
based,’’ sensorimotor classifying strategies in a mobile robot. Finally, Nolfi
and Parisi (1999) present several examples of the ‘‘perceptual aliasing’’
problem (where two or more identical sensory input patterns require different
responses (Whitehead & Ballard, 1991)) and show how associative learning
mechanisms can be used to link together sequences of perception–action
mappings that either solve or avoid the problem.

Second, the fact that these sensorimotor strategies emerge early and often
in learning suggests that they may also play a fundamental role in infant
sensorimotor development. Consequently, one of the places that agent-based
models can make a major impact is in the current debate on early infant
knowledge (Baillargeon, 1999; Haith, 1998; Smith, 1999; Spelke, 1998). Of
particular interest in this debate are the questions of how and when infants
learn to maintain and operate on mental representations of the physical
world. The prominent availability and use of sensorimotor or body-based
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FIG. 4. Two tracking events. In the screen event (a), the target passes behind a screen
and reappears on the other side; in the wall event (b), the target encounters a wall and stops
moving.

representations in agent-based models support the idea that sensorimotor rep-
resentations may developmentally precede and provide a structural founda-
tion for later symbolic representations4 (Ballard, Hayhoe, Pook, & Rao,
1997; Brooks, 1991; Gibson, 1988; Johnson, 1987; Keijzer, 1998; Lakoff,
1987; MacDorman, 1999; Rutkowska, 1996; Piaget, 1952). In the next sec-
tion, we discuss in greater detail a recent model of infant causal perception
that illustrates this conceptual approach (Schlesinger & Barto, 1999).

MODELING INFANT CAUSAL PERCEPTION

Thus far, much of our discussion has focused on the kinds of develop-
mental questions that agent-based models are appropriate for investigating.
In particular, we have argued that some types of developmental phenomena,
especially those that unfold over multiple input–output exchanges with the
environment, are difficult to capture within an offline-sampling framework.
We now turn our attention to a specific area of development, with three goals
in mind. First, we demonstrate how an agent-based model of infant causal
perception is constructed. Second, we contrast both the structure and perfor-
mance of the model with two similar models that employ an offline sampling
approach. Finally, we highlight some of the specific ways in which such a
dialog between these alternative models can help advance our understanding
of development.

Tracking Occluded Objects

Figure 4a presents a schematic display of an object that passes behind a
screen and reappears on the other side. By age 6 months, infants will not

4 Our use of the terms sensorimotor and symbolic representations is intended to be analogous
with procedural and declarative knowledge. Sensorimotor representations encode context-
specific properties of the environment in an implicit manner, and may not be available to other
cognitive processes (e.g., language), while symbolic representations are normally separable
from their context and accessible to conscious inspection.
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FIG. 5. Schematic display illustrating how the Schlesinger and Barto tracking model re-
sponds to the screen event. The grid (not shown to scale) represents the model’s visual field,
which learns to follow the target from left to right.

only track these kinds of movements, but also anticipate the object’s reap-
pearance once it is occluded (Aslin, 1987; Bremner, 1985; Bower, 1979;
Bower, Broughton, & Moore, 1971; Goldberg, 1976; Meicler & Gratch,
1980; Rutkowska, 1993). What cognitive mechanisms are necessary to ex-
plain the development of this ability?

According to one approach, we might assume that infants construct a men-
tal representation of the occluded object and mentally compute the future
location of the object based on its observed trajectory. Two recent computa-
tional models employing this approach (Mareschal et al., 1999; Munakata
et al., 1997) provide insight into how such representations might emerge,
and how they might be recruited to guide prospective behavior (i.e., anticipat-
ing the object’s reappearance).

Alternatively, it is possible that neither mental representations nor compu-
tations of future states are necessary to account for this kind of prospective
behavior in infants. Instead, anticipation may be an adaptive by-product of
learning to track the object. Schlesinger and Barto (1999) investigated this
second account by constructing an agent-based model of tracking and gaze
control in infants.

The simulated infant in the Schlesinger and Barto model is presented with
computer-animated movement events like those presented in Fig. 4a. While
the display is composed of 100 3 20 pixels, the infant’s visual field covers
a 20 3 20-pixel region and can be moved laterally. Figure 5 represents the
previous tracking display, with the infant’s visual field (the square grid) su-
perimposed over the display (note how the reappearance of the target is antic-
ipated by the model). On each time step, the 400 pixels in the visual field
serve as the infant’s sensory input. These pixel values propagate through a
feedforward artificial neural network, resulting in a motor signal that drives
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the visual field to the left or to the right (thus contributing to changes in
visual input).

The Schlesinger and Barto model simulates an infant that learns to track
a moving object during both visible and occluded movement events. In the
occluded or screen event (Fig. 4a), the target object moves from the left to
the right side of the display, passing behind a rectangular occluder in the
center of the display. The simulated infant is also presented with a fully
visible wall event (Fig. 4b), in which the target remains in place after encoun-
tering a ‘‘wall’’ near the center of the display.

The principal assumption of the Schlesinger and Barto model is that sight
of the target is reinforcing to infants. Because the simulated infant’s visual
field spans 20% of the display, the infant must learn to generate a sequence
of (lateral) eye movements that keep the target in the visual field. Conse-
quently, a reinforcement learning algorithm was used to strengthen the reoc-
currence of eye movements that were followed by sight of the target (see
Schlesinger and Barto (1999) for a detailed description of the neural network
architecture and learning algorithm). In addition to the screen event, the
model was also presented with the wall event during training, in order to
ensure that it learned to track the target rather than generate a stereotyped
sequence of eye movements.

Note that different patterns of eye movements over the same tracking event
will produce different input sequences. Thus, the Schlesinger and Barto
model employs an online sampling procedure. This is in contrast to the Mu-
nakata and Mareschal models, which present analogous occluded event se-
quences, but train with an offline sampling procedure (i.e., event sequences
that are both fixed and independent of the model’s output).

In one set of simulations, we trained the model on 200 trials each of the
screen and wall events. The model replicated several important develop-
mental phenomena. First, the model learns to track a fully visible object
before it tracks an occluded one (Bremner, 1985; Bower, 1979; Bower et
al., 1971). Second, as the model learns to track the occluded target, it also
anticipates its reappearance. Third, as the width of the screen increases (i.e.,
occlusion time), the model requires more training time to learn to track the
target.

The model also replicates an unusual phenomenon in the development of
infant occluded tracking: the visual A-not-B behavior. That is, successful
tracking of occluded objects is preceded by a stage in which infants respond
to the disappearance of the target by fixating the left edge of the screen,
where it was last seen (Bower, 1979; Bower et al., 1971). Figure 6 helps
illustrate an analogous tracking strategy in the model. Each horizontal dotted
line represents the average position of the (left and right edges of the) visual
field during the 13 time steps of occlusion in the screen event (Fig. 6a), or
during the corresponding time span in the wall event (Fig. 6b). The horizontal
axis of the figure represents the width of the tracking display, while the verti-
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FIG. 6. Average position of the Schlesinger and Barto model’s visual field during occlu-
sion of the target in (a) the screen event and the corresponding timespan in the (b) wall event,
as a function of training time. The left and right portions of the horizontal lines represent the
corresponding edges of the model’s visual field.

cal axis represents the extent of training time in trials. The light gray regions
represent the positions of the screen and wall within their respective events.

Figure 6a tells us where the simulated infant is ‘‘looking’’ during the oc-
cluded portion of the screen event. As in human infants, the model initially
responds to the disappearance of the target by fixating the left edge of the
screen (trials 1–60, screen event). By 80 trials, however, the model begins
to successfully track the occluded target, consistently anticipating its reap-
pearance on the right side of the screen. In contrast, the model learns to
fixate the fully visible target in the wall event by virtually the start of training.

Thus, the Schlesinger and Barto model matches the performance of the
Mareschal and Munakata models, employing a behavior-based rather than
a representation-based strategy for tracking occluded objects. However, an
important limitation of all of these models is that while they can anticipate
the outcome of an occluded movement event, it is not clear how they would
respond to an occluded causal event. For example, what if the target encoun-
tered an obstacle while behind the screen? Recent experimental findings that
young infants anticipate the outcomes of occluded causal events (e.g., oc-
cluded collisions, Baillargeon, 1986; Baillargeon & DeVos, 1991; Luck-
singer, Cohen, & Madole, 1992) strongly suggest a capacity for explicit rep-
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FIG. 7. The wall-screen event. The target passes behind the screen, encounters the par-
tially hidden wall, and stops moving.

resentational (and perhaps also physical reasoning) mechanisms in early
infancy. However, we next show how the Schlesinger and Barto model can
begin to provide a more parsimonious account of these findings.

Occluded Causal Perception

It is possible to take our model one step further by constructing an oc-
cluded causal event that includes the perceptual features of both the screen
and wall events. Figure 7 illustrates the novel wall-screen event. Notice that
while the target reappears in the screen event, it does not in the wall-screen
event, because of the obstructing wall.

How do human infants respond to the wall-screen event? In a recent study
of occluded tracking in infants (Berthier et al., in press), 9-month-olds exhib-
ited disrupted tracking of the target during the wall-screen event. We can
explain this reaction in one of two ways. According to the representational
account discussed above, because infants mentally reconstruct the target’s
path along with the new obstacle, they ‘‘know’’ the target will be blocked
and therefore stop tracking it. Alternatively, we might argue that the disrup-
tion in tracking is a simple generalization from the earlier experience of
watching the screen and wall events: infants learn to associate sight of the
exposed wall with the obstruction of the target.

We conducted a series of simulations with the Schlesinger and Barto
model to investigate these two accounts. In Study 1, the model was first
trained on the screen and wall events (see Fig. 4). After training, the model
was then presented with both the novel wall-screen event, as well as the



136 SCHLESINGER AND PARISI

FIG. 8. Tracking latency in a series of simulation studies. In all studies, the model antici-
pates the reappearance of the target during the screen event. In Studies 1 and 3, the model’s
tracking of the target is delayed by (a) a partially hidden wall or (c) a fully hidden wall. See
text and Fig. 9 for details.

familiar screen event.5 In order to compare the model’s tracking behavior
during the screen and wall-screen events, we recorded when the model first
fixated the right edge of the screen. For the screen event, the model’s tracking
latency was then defined as the difference between this time point and the
time of the target’s reappearance. Thus, a negative tracking latency indicates
anticipation (i.e., fixation of the target’s point of reappearance before it ar-
rived there), while a positive latency indicates delayed tracking. The same
temporal indices were also used to compute tracking latency during the wall-
screen event, assuming reappearance of the block had it not been obstructed.

Figure 8a presents the mean tracking latencies for both the screen and
wall-screen events in Study 1, averaged over 50 runs (replications of the
model). During the screen event, the model anticipates the reappearance of
the target by nearly 10 time steps. In contrast, when a partially hidden wall
obstructs the target’s path, tracking of the target is delayed by nearly 20 time
steps. Thus, like 9-month-old infants, the model generalizes appropriately
to the novel wall-screen event, exhibiting anticipatory tracking only when
the target is unobstructed.6 However, in the case of the model it is clear that
this response pattern is based on associative perceptual cues (e.g., the ex-

5 After training on screen and wall events, learning was ‘‘turned off’’ (i.e., connection
weights were fixed). This procedural step, typical of most neural network models, eliminated
the possibility that exposure to either test event (i.e., the novel wall-screen event and the
familiar screen event) would contaminate the model’s reaction to the other event.

6 Control conditions in both the Berthier et al. experiments and the Schlesinger and Barto
simulations ruled out the possibility that a simple distraction effect (caused by the exposed
portion of the wall) could account for the delay in tracking.
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FIG. 9. The wall-screen events simulated in Studies 2 and 3. In (a) the wall is fully hidden
by the screen, and in (b) the wall is fully hidden, and the target ‘‘rebounds’’ off the wall.

posed portion of the wall) and not a ‘‘mental’’ reconstruction of the occluded
target and its trajectory.

An important question is whether these findings are limited to partially
hidden causal events. In order to evaluate this question, we modified the
Schlesinger and Barto model in Study 2 by making the wall shorter than
the screen (see Fig. 9a), so that it was fully hidden when occluded.7 Figure
8b shows that in this condition, the model appears to ‘‘forget’’ about the
occluded wall, by anticipating the target’s reappearance during both screen
and wall-screen events. While this appears to be a failure of the model, notice
that there is no penalty for always waiting for the target to reappear on the
right of the screen, even if it reappears only during the screen event.

However, what if the target did reappear during both screen and wall-
screen events, but reappeared on different sides of the screen depending on
whether or not the wall was present? In Study 3, we modified the physics
of our simple world by allowing the target to ‘‘rebound’’ off the short wall
(see Fig. 9b). This change meant that the target reappears on the right of the
screen during screen events, and on the left of the screen during wall-screen
events. Thus, it allowed us to investigate if the presence or absence of the
completely occluded wall would affect the model’s anticipatory tracking of
the target. (Recall that as in Study 2, both the screen and wall-screen test
events were preceded by a short exposure to what was behind the screen.)
Figure 8c presents the mean tracking latencies for this third rebound condi-
tion. As in Study 1, the model only anticipates the reappearance of the target
on the right side of the screen when its path is unobstructed.

7 Other necessary changes to the model included: (1) adapting the original feedforward
network to include recurrent connections from the hidden to the input layers and (2) preceding
each trial with a ‘‘preview’’ of what was behind the screen (i.e., either nothing, or the short
wall).
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Summarizing the Results

While learning to follow a moving object, the Schlesinger and Barto
tracking model also learns to anticipate the outcomes of both partially and
fully occluded causal events. Rather than explicitly representing the event
features (e.g., the trajectory of the target, the location of the wall), the model
implicitly encodes these features in its tracking behavior (e.g., ‘‘stop tracking
if wall is seen’’). Interestingly, these sensorimotor representations are able
to capture and exploit both perceptually current and past features of the oc-
cluded events. Taken together, these simulation findings are consistent with
a growing body of evidence that implicate perceptual processes as a critical
factor in infants’ reactions to occluded causal events (Bogartz & Shinskey,
1998; Rivera, Wakeley, & Langer, 1999; Schilling, 1997).

Unfortunately, we cannot present a ‘‘head-to-head’’ comparison between
models employing online and offline sampling, in part because the Mareschal
and Munakata models have only been used thus far to study occluded object
tracking (but not yet occluded causal perception). Nevertheless, one of the
key insights offered by the Schlesinger and Barto model is how prospective
or future-oriented behavior can emerge from simple associative learning
mechanisms. While a comparable level of explanation may not necessarily
apply to human infants, the results can be used as an existence proof to
demonstrate that in addition to the representation-based approach advocated
by the Mareschal and Munakata models, a behavior-based solution is also
available to infants. However, one intriguing theoretical account that may
integrate these two levels of explanation developmentally is based on the
idea that both strategies (e.g., fully representational and behavior-based
tracking) are available to infants, but that infants are biased toward em-
ploying sensorimotor representations earlier and more often than abstract
mental representations due to task and processing constraints (see Ballard
et al., 1997, for a related account of representational processes in adults).

However, it is clear that some aspects of infant occluded-object tracking
cannot be captured by sensorimotor representation alone. For example, in-
fants respond with surprise, search behavior, and other reactions when an
occluded object reappears with new features (e.g., color, shape, etc.; Wil-
cox & Baillargeon, 1998; Meicler & Gratch, 1980; Meltzoff & Moore, 1998).
Although the Schlesinger and Barto model is capable of maintaining a sen-
sory trace of past inputs (e.g., Studies 2 and 3), it is not designed to compare
that trace with current sensory inputs (see Simon (1998) for a model that is
explicitly constructed to make such a comparison). In addition, because the
Mareschal and Munakata models learn by comparing predicted future inputs
with observed inputs, they also have a built-in mechanism for simulating
causal expectations and surprise in infants (Baillargeon, 1993; Spelke, 1985).
Thus, sensorimotor representations may be limited to capturing specific
kinds of environmental features, especially those that serve as perceptual
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cues to adaptive behavior (e.g., geometric properties such as object positions
and trajectories, but not colors or shapes; see Meltzoff & Moore (1998) for
a developmental account of occluded-object tracking with respect to these
features).

CONCLUSIONS

Online sampling introduces time as a critical dimension of organism–
environment interaction. Unlike models that employ offline sampling, where
interaction is limited to single input–output exchanges, agent-based models
simulate organisms that exist in their environment over time, experiencing
both the immediate and long-term consequences of their behavior. Our goal
in advocating the agent-based approach has been to show that it offers a
number of opportunities and potential insights to developmental researchers.

We began by describing offline and online sampling procedures and illus-
trating the key implementation differences between these two modeling ap-
proaches. As a rough analogy, we noted a correspondence between offline
sampling and psychology learning experiments, and between online sam-
pling and ethological studies. Thus, online and offline sampling provide com-
plementary modeling approaches. While offline sampling simulates learning
and development under highly controlled experimental conditions (e.g., stim-
ulus order), online sampling captures many of the characteristics of naturalis-
tic conditions.

We then described some of the relative strengths of online and offline
sampling for modeling developmental phenomena. Offline-sampling models
have been used by developmental researchers to study transition mechanisms
in development, as well as the detection and representation of structural regu-
larities in the environment. Because temporal structure plays a critical role in
online sampling, agent-based models of development are ideal for simulating
temporally extended sequences of organism–environment interaction. We
mentioned some of the possible (social, cognitive, linguistic, etc.) develop-
mental phenomena that an agent-based approach might be used to study.

Two key insights for developmental researchers are revealed by recent
work in agent-based models. First, an interesting consequence of being able
to control their sensory inputs over time is that agents often concentrate their
early developmental experiences in small portions of the input space. We
suggested one possible use of this sensory self-selection effect in studying
how infants segment or decompose complex perceptual inputs. Second,
agents rapidly learn to detect contingencies or regularities between their ac-
tions and perceptions and exploit these perception–action linkages to sim-
plify complex problems. We argued that this phenomenon might help to
inform the current debate among cognitive developmentalists on the origins
of representation in infancy.

The latter point was then explored in detail by presenting findings from
a recent agent-based model of infant causal perception. We described the
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Schlesinger and Barto tracking model, and compared its performance to two
similar models that employ an offline sampling method for studying the de-
velopment of occluded-object tracking. The point of contrasting these two
modeling approaches was not to demonstrate that certain developmental
characteristics can be captured only with online sampling, but rather to illus-
trate how each approach provides a unique perspective on a given phenome-
non. In the case of occluded-object tracking and causal perception, one of
the principle lessons of the agent-based model was that representational ex-
planations for prospective behavior in infants need not be invoked when
more parsimonious accounts are available.

Thus, the agent-based approach complements the wide variety of computa-
tional models that are already available to developmental researchers. How-
ever, because it has only recently begun to emerge as a coherent framework
for developmental model-builders, the agent-based approach will continue
to evolve as new ideas and features are introduced. We conclude with three
of the major challenges that agent-based models will face.

First, are agent-based models limited to simulating sensorimotor develop-
ment (e.g., motor control)? Because agents are typically situated or embodied
(i.e., sensory inputs and motor outputs), it is perhaps natural that most agent-
based modeling work thus far has focused on learning and development in
sensorimotor systems. While this characteristic may complement some theo-
retical approaches (e.g., that early knowledge is grounded in physical expe-
rience, Ballard et al., 1997; Johnson, 1987; Keijzer, 1998; Lakoff, 1987;
Rutkowska, 1994; Varela et al., 1991), it may also create a difficulty for
developmental researchers if the psychological phenomenon being studied
is not body-based or conveniently described in a physical form (e.g., devel-
opment of temperament, gender roles, moral reasoning, etc.). However, the
initial success of agent-based models of language acquisition (e.g., Cangel-
osi & Parisi, 1998; Steels, 1998) suggests that some types of developmental
phenomena are not completely reducible to sensorimotor activity, and yet
are still plausibly modeled with an agent-based approach.

A second and related question is whether agent-based models can capture
‘‘high-level’’ or abstract cognition (e.g., counterfactual or hypothetical rea-
soning, planning, metaphors). To a large extent, the answer to this question
depends less on the fact that agents are almost by definition embodied, and
more on what the model-builder places inside the agent’s body (or more
specifically, in the simulated brain of the organism). While the agent’s inter-
face with the physical and social world is necessarily sensorimotor (as it is
for all biological organisms), there are no a priori structural limitations on
the kinds of cognitive machinery that can be designed inside an autonomous
agent. However, agents need not be physical. Indeed, game-theory models
of social behavior (e.g., Maynard Smith, 1976) often simulate organisms
who themselves are not only abstract entities (i.e., they have no body, do
not occupy any space, etc.), but who also engage in abstract activities (e.g.,
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buying or selling commodities) via abstract encounters. Nevertheless, one
of the ways we anticipate that agent-based models may evolve to address
this question is for them to ‘‘hybridize’’ with fully internalized models of
abstract cognitive processes (especially with explicitly symbolic models,
e.g., ACT-R; see Clark & Karmiloff-Smith (1993) for a discussion of hybrid
connectionist-symbolic models).

Finally, agent-based models are no better than their offline-sampling coun-
terparts at escaping the ‘‘brittleness’’ problem. That is, while capable of
discovering elegant solutions to a given problem, most models fail miserably
when the task structure or context is changed. Thus, regardless of the sam-
pling regime, task- and context-specific solutions predominate. Nevertheless
this is a critical limitation of agent-based models, which online sampling is
unable to address. It is clear that computational models will need to evolve
away from simulating performance on small tasks (e.g., the balance scale)
toward investigating development across tasks, contexts, and knowledge
domains (Karmiloff-Smith, 1992). We believe that by placing an emphasis
on situated organisms, the agent-based approach will help developmental
model-builders to realize this change.
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