*

Applied Type System

Hongwei Xi

Computer Science Department
Boston University

Abstract ming language extension stays more or less the same when many
other programming features need to be supported. For instance,
The framework Pure Type SysterB{S) offers asimpleand gen- Standard ML (SML), which extends ML with a module system,
eral approach to designing and formalizing type systems. How- and MetaML, which extends ML with some meta-programming
ever, in the presence of dependent types, there often exist someconstructs, are both greatly more involved than ML. Evidently
acute problems that make it difficult faZ§ to accommodate such an unpleasant situation is primarily caused by the limited
many common realistic programming features such as general re-expressiveness of a type system like that of ML. Therefore, we
cursion, recursive types, effects (e.g., exceptions, references, in-are naturally led to seeking more expressive type systems that
put/output), etc. In this paper, we propose a new framework Ap- can better accommodate the issue of programming language ex-
plied Type System4ZS) to allow for designing and formalizing tension.
type systems that can readily support common realistic program-
ming features. The key salient feature®f5 lies in a complete There is already a framework Pure Type Syst&Pd{) (Baren-
separation between statics, in which types are formed and rea-dregt, 1992) that offers a simple and general approach to de-
soned about, and dynamics, in which programs are constructedsigning and formalizing type systems. However, in the presence
and evaluated. With this separation, it is no longer possible for of dependent types, there often exist some acute problems that

a program to occur in a type as is otherwise allowedPiRs. make it difficult for P75 to accommodate many common real-
We present not only a formal development®f$ but also some istic programming features. In particular, we have learned that
examples in support of using7s as a framework to form type ~ some great efforts are required in order to maintain a style of pure
systems for practical programming. reasoning as is advocated 175 when programming features

such as general recursion (Constable and Smith, 1987), recur-
Kevwords sive types (Mendler, 1987), effects (Honsell et al., 1995), excep-
yw tions (Hayashi and Nakano, 1988) and input/output are present.
. . To address such limitations &7, we propose a new frame-
Applied Type System, ATS, guarded types, asserting types work Applied Type System4Zs5) to allow for designing and for-
malizing type systems that can readily support common realistic
1 Introduction programming features. The key salient featureqdfs lies in a
complete separation between statics, in which types are formed
There is often a serious contention between the type system of2nd reasoned about, and dynamics, in which programs are con-
a programming language and the need to extend the program-SFrUCted and evaluatgd. This separation, with its origin in a pre-
ming language. For instance, when the issue of language exten-Vious study on a restricted form of dependent types developed in
sion is concerned, we can readily observe a striking difference D€pendentML (DML) (Xiand Pfenning, 1999; Xi, 1998), makes
between Scheme, an untyped functional programming language,t feasible to support dependent types in the presence of effects
and ML (Milner et al., 1997), a typed functional programming such as references and e.x_ceptlons. Also, with the introduction of
language. Assume that we are interested in supporting object- W0 néw (and thus unfamiliar) forms of typeguarded typesind
oriented programming (OOP). In Scheme, we can achieve this 25Serting typgsve argue thafis is able to capture program in-
by implementing a package like Common Lisp Object System Vvariants in a more flexible and more effective manner e .
(CLOS) to directly support OOP constructs, which, to a large ex- . L .)
tent, act like syntactic sugar as programs that make use of them 1€ design and formalization of75 constitutes the primary

can be systematically translated into programs that do not. On contribution of the paper, which aims at setting a reference
the other hand, it does not seem likely to support OOP in ML in point for future worl_< that make_s use of S|m_|lar ideas preser!ted
a similar manner as the type system of ML is too restrictive to al- N (Zenger, 1997; Xi and Pfenning, 1999; Xi et al., 2003). With
low for a typed implementation of a package like CLOS. Instead, 75, We can readily form type systems to support many com-
we need to add directly into ML some OOP constructs, which MOn programming features in the presence of dependent types,
are then treated as primitives. This is rather unpleasant since®V€rcoming certain inherent deficiencies ®fs. We are cur-
the newly added constructs not only complicate the semantics €ntly in the process of designing and implementing a typed
of ML significantly but may also resuit in unexpected interaction functional programming language with its type system based on
with some existing features in ML. This situation of program- 275 that can support not only dependent types (like those de-
veloped DML) but also guarded recursive datatypes (Xi et al.,

*Partially supported by NSF grants no. CCR-0224244 and 2003). With such a design, we seek to support a variety of lan-
no. CCR-0229480 guage extensions by mostly implementing new language con-

F So [sig]
F S [sig]
FS$,sc: [o1,...,0n] = bsig

Figure 1. The formation rules for signatures

S(sg =[01,...,0n]=b Ztss:cgi fori=1,...,n
Ztssdsy,...,sn):b
l(a=o0
m (so-var)
2,a:015s:02

(so-sc)

so-lam
SksAa:01.8:01 — 02 ()

2Fs8:01—02 ZFss:07
Zhssi(s2) 02

(so-app)

Figure 2. The sorting rules for statics

structs in terms of existing ones, following an approach like the
one adopted by Scheme. In particular, we have already shown
that various programming features such as object-oriented pro-
gramming (Xi et al., 2003), meta-programming (Xi et al., 2003;
Chen and Xi, 2003) and type classes (Xi et al., 2002) can be han-
dled in such a manner.

We organize the rest of the paper as follows. In Section 2, we
present a detailed development of the framewdfls, formaliz-
ing a generic applied type system ATS constructedlfs and

then establishing both subject reduction and progress theorems

for ATS. We extend47S in Section 3 to accommodate some
common realistic programming features such as general recur-

sortstypeandbool.

sorts o = blog—o02

static terms s == ajsdsy,...,s|Aa:0.s|si(s)
staticvar.ctx. ¥ 1= 0|XZa:0

signatures S = Spl|S,sc:[01,...,0n]=b
staticsubst. ©s = |[||Oglar 9

We usea for static term variables anslfor static terms. There
may also be some declared static constaatswhich are ei-
ther static constant construct@sc or static constant functions
scf. We use[oy,...,0n] = b for sc-sorts, which are assigned to
static constants. Given a static constagtwe can form a term
sdsy, ..., Sn] of sortb if scis assigned a sc-sdy,...,0n] = b
for some sorto,...,0, ands can be assigned the sodgsfor
i=1,...,n. We may writescfor sd] if there is no risk of confu-
sion. Note that a sc-sort is not regarded as a (regular) sort.

We useOs for a static substitution that maps static variables to
static terms andlom(®sg) for the domain of@s. We write ||

for the empty mapping an®s[a — s, where we assuma ¢
dom(®s), for the mapping that extend8g with a link from a

tos. Also, we writee[@g] for the result of applyin@®s to some
syntaxe, which may represent a static term, a sequence of static
terms, or a dynamic variable context as is defined later.

A signature is for assigning sc-sorts to declared static constants
sG and the rules for forming signatures are in given Figure 1.
We assume that the initial signatusg contains the following
declarations,

1 [| = type
T [| = bool
1 [| = bool
—tp [typetypg = type
D [bool,typg = type
A [bool, typd = type
<tp type typg = bool

sion, pattern matching and effects, and present some interestingthat is, the static constants on the left are assigned the corre-
examples of applied type systems in Section 4. Lastly, we men- sponding sc-sorts on the right. Also, for each sprive assume
tion some related work as well as certain potential development that S, assigns the two static constructéfs and3g the sc-sort

for the future, and then conclude.

2 Applied Type System

We present a formalization of the framework Applied Type Sys-
tem (475) in this section. We use the narapplied type system
for a type system formed in th@Z$ framework. In the follow-

ing presentation, let ATS be a generic applied type system, which
consists of a static component (statics) and a dynamic compo-
nent (dynamics). Intuitively, the statics and dynamics are each
for handling types and programs, respectively. To simplify the

presentation, we assume that the statics is a pure simply typed

language and we use the nasmtto refer to a type in this lan-
guage. A term in the statics is calledstatic termwhile a term
in the dynamics is called dynamic termand a static term of a
special sortypeserves as a type in the dynamics.

2.1 Statics

We present a formal description of a static component. We write

[0 — typd = type We may use infix notation for some static
constants. For instance, we Wrgg—tp S for —p [s1,5] and

81 <tp 2 for <tp [s1,5]. In addition, we may writ¢/a: 0.s and
Ja:a.sforVg[Aa: 0.5 and3g[Aa: 0.9, respectively. The sorting
rules for the statics are given in Figure 2, which are mostly stan-
dard. For instanceya: typea —+p a is a static term that can be
assigned the sotypesinced g, ViypelAa : typea —tp) : typeis
derivable. A static construct@cis a type constructor if it is as-
signed a sc-soft On] = typefor some sortg1,...,0n. For
instance 1, —tp, D, A, Vo and3g are all type constructors, but
<tp is not. Intuitively, 1 represents the usual unit type and
forms function types, andp stands for a subtyping relation on
types. The static constructors and A form guarded typesnd
asserting typegespectively, which are to be explained later.

We usez for a static variable context that assigns sorts to static

variables;dom(Z) is the set of static variables declared3n

>(a)=o0if a: 0is declared inx. As usual, a static variable

may be declared at most once3n A static termsis called a
propositionunderX if - s: bool is derivable. We us® for
propositions (under some static variable contexts). We use the
nameguarded typefor a type of the formP O s and the name
asserting typdor a type of the formP A s, both of which are

b for a base sort and assume the existence of two special basenvolved in the following example.

satisfied:

———— (reg-true)
Pl T _ o . .
1. all the regularity rules in Figure 3 are valid; that is, for
P El each regularity rule, the conclusion of the rule holds if the
TH (reg-false) premises of the rule hold, and
PEs
5B l=s Py . 2. TPl s1—tps <tp S —tp S impliesT; P =5 § <ip sy
T,a:0;P =Py (reg-varihin) andZ;P =5 s <ip & and
StcP:bool PP) 3. =P P>s<ipP D¢ implies ;B,P P and
S FsPo (reg-prop-thin) g F,j =P P s
S:B.P g Py PP Egs<ips,and
Z-,aiff?ﬁ’ FsP Zhgsio (reg-subst) 4. Z;if s PAs <ip PPAS implies Z;P,P =5 P/ and
5;Pla— g s Plar g 2P, PEss<ips,and
%P s Poq PP s P (reg-cut) 5. 3; 2 s Va:o.s<ipVa:o.s impliesz,a:0;P =5 s<tps,
SPESP an
zzﬁFéS: WP reg-refl 6. in?j =5 Ja:0.5<p3a: 0.5 impliesZ,a: 0;P =5 s<p S,
; sS<tpS
ZPEssi<ps ZPEse2<ips (reg-tran) 7. 0;0():I|:5 sccsy, ..., S| <tp scC[s],...,sy] implies scc=
LPEss <tpSs sce.

Note that we assun®et-gP : bool is derivable for each 57 Py

Figure 3. Regularity Rules whenever we writ&; P = P.

Every single regularity rule as well as every single regularity con-
ExaMPLE 2.1. Let int be the sort for integetsand list be a dition is used later for establishing the subject reduction theo-
type constructor of the sc-sojtypeint] = type. Then the fol- rem 2.10 and and the progress theorem 2.12.

lowing static term is a type: .
g P EXAMPLE 2.3. Let int be a type constructor of the sc-sort

Va:typevn:int.n> 0D (list[a,n] —p list[a,n]) [int] = type such that for each integer mt[n] is the single-

. .) .) . ton type containing only n. Intuitively, the typés = 3n:
Intuitively, if list[s, n] is the type for lists of length n in which each it T'A int[n] and Nat = 3n : int.n > O Aint[n] are for integers
elementis of type s, then the above type is intended for a functiongng natural numbers, respectively. Note that given a regular con-
from lists to lists that preserves list length. Also, the following straint relation = (for some properly choses), it is not neces-
type is intended to be assigned to a function that returns the tail sary true thato; 0 - Nat <tp Int holds. On the other hand, the
of agiven listif the list is not empty or simply raises an exception regularity condition (6) can rule out a case liked - Int <tpNat
otherwise. (if > is given the standard interpretation).

va:typevn:int.n> 00 (list[a n] —tpn>0Alist[a,n—1]) We are in need of a regular constraint relation when forming the
dynamics of ATS. In general, the framewofZS is parame-
terized over regular constraint relations. We need not be con-
function returnsafter it is applied to a list of length n. This is ce(ned with the decidability ofa regular constraint re_lation at this
rather interesting feature and will be further explained later in POINt. For eachregular constraint relatiery, we may simply as-
Example 2.5. sume that an oracle is avallaE)Ie to determine whethBri= Py

holds whenever appropriake P andP, are given. Later, we will

As is in the design o735, the issue of type equality plays a pro- present some examples of applied type systems where there are
found dle in the design of275. However, further study reveals practical algorithms for determining the regular constraint rela-
that type equality in27Z5 can be defined in terms of a subtyping tions involved. It should be emphasized that because of impred-
relation<tp. Given two typess; ands;, we say thas; equals icativity, it is in general a rather delicate issue as to how a regular
sz if both the propositiors; <p s, and the propositios, <tp s; constraint relatio= can be properly defined for a given signa-

hold. In general, we need to determine whether a given propo- ture s, and we are to address this issue with a model-theoretical
sition holds (under certain assumptions), and we introduce the approach in Section 2.2.

following notion of constraint relation for this purpose.

The asserting type » 0Alist[a, n— 1] captures the invariant that
n > 0 holds and the returned value is a list of length-1 if the

- L . In the following presentation, we usea&ics for a static com-
DEFINITION 2.2. Lets,2,P,Py be a static signature, a static ponent and $aTICS(‘B;.5) for a static component in which the
variable context, a set of propositions undeand a proposition set of base sorts i8 and the signature is.
underz, respectively. We say a relaticti P = Py is a regu-
lar constraint relation if the following regularity conditions are

2.2 Models for Statics

IFormally speaking, we need to say that for each integer
there is a static constructarof the sc-sorf] = int andn]] is the We present a means to defining regular constraint relations
static term of the soiiht that corresponds to. through the use of models for statics.

Let STATICS be a static component an@8T be the set of sorts

in STATICS. A frame is a collectio Dg }gesort Of nonempty do-
mains (setsPg, one for each sod such thaDpeg = {tt, ff } and
Do, 1,0, IS SOme collection of functions that may;, into D, .
An interpretation({Dg¢ } gesor, |) Of a given signature consists
of a frame and a functioh that maps each static constaagtof
sc-sor{o1, . ..,0n] = b, whereb stands for a base sort, to a func-
tion I (sc) from Dg, x ... x Dg, into Dy, (or an element irDy, if
n=0). In addition, we require

1. I(T)=ttandl(L)=ff,and

2. I(scc) is a one-to-one function for each static constructor
scc, and

3. the intersection of the domains bfscc;) andl(sccy) is
empty ifscc; andscc, are two distinct type constructors.

Note that the approach we use here is adopted from Chap-

ter 5 (Andrews, 1986), where models for (simple) type the-
ory (Church, 1940) are studied.

Clearly, if Dg contain more than one elements, ti&gpe . type
cannot contairall functions fromDyype to Dyype Since otherwise
neitherl (Viype) Nor | (3ype) can be an injection frordype ., type
intO Dtype.

An assignmengis a finite mapping from static variables o=
UgesorDg, and we uselom(¢) for the domain ofp. As usual,
we use|[] for the empty mapping angia — a] for the mapping
that extendsp with a link from the variable to the elemena in
D, where we assuma ¢ dom(¢). We write@: X if ¢(a) € Dg
for eacha € dom(g) = dom(X), whereo = %(a), thatis,a: g is
declared irx.

Let S be the signature for the static constants inScs. An
interpretationM = ({Dg }gesor, 1) of S is @ model for SATICS

if there exists a (partial) binary function? such that for each
assignmentp: 5, VM(q,s) is defined for a static terms and

V¥ (s) € Dg holds wheneveZ -5 s: o is derivable for some
o, and the following conditions are also satisfied

1. VM (@.a) = ¢(a) for eacha € dom(¢), and

VH(
2. VM (sdsy,...,s]) = 1(sQ (V¥ (s1),...,VH(sy)), and
Y%

3. V(gsi(2) = VM(@51)(V¥(95p)) wheneverZ
s1(sp) : o is derivable for some, and

4. VM (@ \a: 01.9) is the function that maps each elemart
Dg, to VM((p[aH al,s) whenevek - Aa:01.5: 01 —tp 02
is derivable for somes.

Note that not all frames belong to interpretations, and not all in-
terpretations are models (Andrews, 1972). Given a maddel

for STATICS, we can define a constraint relati¢ﬁ§‘”[as fol-
lows: ;P):g‘l Po holds if and only if for each assignment %,
VM (g, Pg) = tt or VM (@, P) = ff for someP e P.

THEOREM 2.4. Let a M = ({Dg}oesor,|) be a model for
STATICS. If <;p is interpreted as the equality function on
Diype X Diype that is, for alla,a’ € Dyype, |(<tp)(a,a@) =1t if
and only ifa= &/, then |:2" is a regular constraint relation.

PROOEF It is a simple routine to verify thdpt:?{ satisfies all the
regularity conditions in Definition 2.2.]

dyn. terms d x| dc[dy,...,dn] |

lam x.d | app(dy,dy) |
W o7(d)|

A(d) [let A(X) =dpindy |
VEW) |V o(d)|

3(d) | let 3(x) = dy in dp
x| dcclvy,...,vn] | lam x.d |
SHW) AW [V (V) [3()
AX:s

[1@p[x+—d]

values Y

dyn.var. ctx. A
Op

dyn. subst.

Figure 4. The syntax for dynamics

F S [sig
s 0[dcty
IhsAfdety Zhgs:type
ShgAXx:s[dcty

Figure 5. The formation rules for dynamic variable contexts

2.3 Dynamics

The dynamics of ATS is a typed language and a static term of
the sorttypeis a type in the dynamics. There may be some de-
clared dynamic constants, and we are to assign a dc-type of the
following form to each dynamic constadt of arity n,

Vay:01...Vag:0k.PLD (...(Pm D ([S1,---,Sn] =tp 9))---)

wheresy,...,s,s are assumed to be types. In the case where
dcis a dynamic constructaidcc, the types needs to be of the
form scc[s| for some type constructarce, and we say thatcc

is associated witlcc. Note that we usé for a (possibly empty)
sequence of static terms. For instance, we can associate two dy-
namic constructorgil andconswith the type constructdist as
follows by assigning them the following dc-types,

nil : Vva:typelist[a, 0]
cons: Va:typevn:int.n> 0D ([a list[a,n]] =p list[a,n+1])

where we usdist[a,n] as the type for lists of length in which
each element is of typa

We use©p for a dynamic substitution that maps dynamic vari-
ables to dynamic terms ardbm(®p) for the domain ofEp.
We omit presenting the syntax for forming and applying dy-
namic substitutions, which is similar to that for static substitu-
tions. Given®} and @3 such thatdom(©}) N dom(03) = 0,

we used} U O3 for the union ofo} andO3.

For ¥ = a; : 01,...,8 : Ok, we may writeVZ.e for Va; :
01...Vay : ox.e, where we simply use for arbitrary syntax.
Similarly, For P = Py,...,Pn, we may useP > e for P, O
(...(Pn D e)...). For instance, a dc-type is always of the form
vsPB > ([s1;---,sn] =tp s). The definition of signatures needs
to be extended as follows to allow that dynamic constants be de-
clared,

signatures § .| $,de:VEP O ([s1,...,] =tp)

and the following additional rule is needed to form signatures. SBArsdis EPEss<ps

FS[sig ks P:bool for eachPin P SPAFsd:s
Shgs:typeforeach1<i<n ZXZkgs:type

(ty-sub)

Fs Z;BA S(do) =V20.F D [s1,..., 5] =tp S

FS,dc:VZP D ([st,...,sn] =tp S) [sig ThsOs:3% %Pl P[Og foreachP e Ry
5P AFsdi:§[@g fori=1,....,n ZPEs9Og <tps
The syntax for the dynamics is given in Figure 4, where we use > B AL ddd PRE (ty-dc)
x for dynamic term variables andl for dynamic terms. Given Pk ddlds, ...]
a dynamic constardc of arity n, we writedcds, .. .,dy] for the b 5B AX) =S
application ofdc to the argumentd, ..., d,. In the case where ————— (ty~van)

n= 0, we may writedc for dc]]. LR ARsX:s
ZLBAX: s Fsdis

SPAFslamxd s —p S

The marker*(-), >~ (-),A(-),¥T(-),v~(-),3(-) are introduced (ty-fun-intro)
to establish Lemma 2.9, which is needed for conducting inductive
reasoning on typing derivations. Without these markers, it would SBAFsdi s —ps ZLPAFsd s
be significantly more involved to establish proofs by induction on

typing derivations as Lemma 2.9 can no longer be established as

— (ty-fun-elim)
ZP Ak app(dy,do) 1 s

it is stated now. 5P.PAksd:s _
— o (ty-gua-intro)
A judgment of the forn - A [dct¥ indicates thafh is a well- ZPARs OT(d):POs
formed dynamic variable context underandS. The rules for PAFsd:POs LPEsP _
deriving such judgments are given in Figure 5. We ige A for S PArs o () s (ty-gua-elim)
a typing context. The following rule is for deriving a judgment TERS '
of the formt ; B;A, SPEsP I PAlgd:s ,
— : (ty-ass-intro)
3+ P:bool foreachPin P X+ A [dcty LPARsAd):PAS
.B- S:BAFgdy:PA SBPAX s Fgdy:)
Fs 2P A 51 2 BAX s G % (ty-ass-elim)
o L IPAFslet AX)=diindy: s
which indicates thaX; P; A is well-formed. -
Z,a:0,P,AFsv:s Ve
A typing judgment is of the fornt;P;A - d : s, where we as- % B:AFs YV (V) :Va:o.s (ty-v-intro)
sume thak; P; A is a well-formed typing context aril- s: type .
is derivable. The typing rules for deriving such judgments are LPAbgd:vaios Ihss:0 (ty-v-elim)
presented in Figure 6, where we assume that the constraint re- 5P AV (d) 1 sla— s
lation =5 is regular. We writeX -5 Og : o to mean that ~
35 Og(a) : 3(a) is derivable for each € dom(Og) = dom(Z). Ibss:0 LPARsd:sar 5 (ty--intro)
Note that we have omitted some obvious side conditions associ- PAFs3(d): Jaios
ated with some of the typing rules. For instance, the varialide . .
not allowed to have free occurrencesFinA, or s when the rule ZPAFsGhida:08 2a:0PAX ISR o o gim
(ty-V-intro) is applied. Also, we have imposed a form of value B AFslet3(x)=diindy: s
restriction on the typing rulefty-gua-intro) and (ty-V-intro),
preparing for introducing effects into ATS lateFor a technical Figure 6. The typing rules for the dynamics

reason, we are to replace the r(thevar) with the following rule,
FsSPA AX)=s ZPlss<ip

4
— (ty-var)
P AFgx:d

The function password¢an be implemented in a manner so
that some secret information must be verified before a call to
passwordeturns. On one hand, the proposition Secreeds to

be established before the function call acfiohcan be made,
Before proceeding to the presentation of the rules for evaluating Where () denotes the value of the unit tyde On the other
dynamic terms, we now sketch a scenario in which a guarded hand, the proposition Secret established after the function call
type and an asserting type play an interesting role in enforcing Password)] returns. Therefore, a proper means to calling action
security, facilitating further understanding of such types. is through the following program pattern:

which combines(ty-var) with (ty-sub). This replacement is
needed for establishing Lemma 2.8.

EXAMPLE 2.5. Assume that Secrés a proposition constant
and passworand actionare two declared functions, which are let A (x) = password()] in ...action()]...
assigned the following dc-types.

action : SecreD [1] =p1

password : [1] =p Secret\ 1 In particular, a call to actionoutside the scope of x is ill-typed

since the proposition Secreannot be established.

2Actually, it is already necessary to impose this form of value
restriction on the typing ruléy-gua-intro) in order to establish In order to assign a call-by-value dynamic semantics to dynamic
Theorem 2.12. terms, we make use of evaluation contexts, which are defined

below:
eval. ctx. E = [/|ddvy,...,vi—1,E,dit1,...,dn] |
app(E.d) | app(v,E) |
>EIVE)]
A(E) | let A(X)=Eind|
3(E) |let3(x) =Eind
DEFINITION 2.6. We define redexes and their reductions as fol-
lows.

e app(lam x.d,v) is a redex, and its reduction igxi— V.

e DO (DT(v)) is aredex, and its reduction is v.

e let A(X) = A(v)in d is a redex, and its reduction igxi— v].
e v~ (v*(v)) is aredex, and its reduction is v.

e let3(x) =3(v) in d is a redex, and its reduction i$xd— v].

e dcflvy,...,vn] is aredex if dcfvi, ..., vy is defined to equal
some value v, and its reduction is v.

Given two dynamic terms éind & such thatd = E[d] and & =
E[d'] for some redex d and its reductiof &ve write d — dy and
say that d reduces to gin one step. We use>* for the reflexive
and transitive closure of-.

rule applied in?’ is not(ty-sub).

2. If d=>%(d1) and s= P D sy, then there is a derivation
7 3;P,A kg d: s such thah(D') < h(D) and the last
rule applied in?’ is not(ty-sub).

3. Ifd= A(d1) and s= P A sy, then there is a derivatiod’ ::

%;B;A ¢ d: s such thah(2') < h(D) and the last rule
applied inD' is not(ty-sub).

4. Ifd=V"(d) and s=Va: a.5, then there is a derivation
7 3;P,A ks d: s such thah(D') < h(D) and the last
rule applied in?’ is not(ty-sub).

5. If d=3(d1) and s= Ja: 0.s1, then there is a derivation
D' %P AF d: s such thah(D') < h(D) and the last
rule applied in?’ is not(ty-sub).

ProOOFR We prove (1) by induction oh(D). Let 2’ be D if D
does not end with an application of the ritg-sub). Hence, in
the rest of the proof, we assume that the last applied rui® is
(ty-sub), that is, D is of the following form:

Dy PAFsd:S IPlEsd <ips
T B;Aksd:s

(ty-sub)

We assume that the type assgined to each dynamic constant funcBy induction hypothesis, we have a derivation :: Z; B;A Fed:

tion dcf is appropriate, that is;0;0 -5 v : s is derivable if
0;0;0 ¢ dcf[vy,...,vn] : sis derivable andicf[vy,...,vy] — v
holds.

Given a judgmeni, we writeD :: J to indicate thatD is a deriva-
tion of J, that is,D is a derivation whose conclusionJds

LEMMA 2.7 (SUBSTITUTION). We have the following.

1. AssumeD::Z a: 0;5;A|—5 d:sandDy::Zts5S:0. Then
¥;Pla— so];Ala— o) 5 d : sla— o] is derivable.

2. Assume® :: Z;P,P,AFgd:s and ;P = P. Then
%;P;Al; d: s is derivable.

3. AssumeD :: Z;P;Ax: s Fsdy:spand ;P A dp sy
ThenZ; P; Ak dp[x+— di] : s is derivable.

PrROOF We can readily prove (1), (2) and (3) by structural in-
duction on?D. When proving (1) and (2), we need to make use of
the regularity rulegreg-subst)and(reg-cut), respectively. [

Given a derivationD, we useh(D) for the height ofD, which
can be defined in a standard manner.

LEMMA 2.8. AssumeD : 5;B;Ax: s Fgd:s andZ; P =
8 <tp s1. Then there is a derivatiod’ :: ;P;A,x: 8| Fsd s
such thath(2') = h(D).

PrROOF The proof follows from structural induction of® im-
mediately. The regularity ruléreg-trans) is needed to handle
the case where the last applied rulefiris (ty-var’) . [

LEMMA 2.9 (INVERSION). AssumeD ::3;P;Ab¢d:s.

1. Ifd=Ilamx.d; and s=s; —p S, then there is a derivation
7 3;P;A ks d: s such thah(D') < h(D) and the last

s such thah(7) < h(D,) and the last applied rule i is not
(ty-sub). Hence, D] is of the following form:

Dy TP AX: S Fsdh S,
P AFglamxd; i S) —ip S,

(ty-lam)

wheres' =8| —p &, andd = lam x.dy. SinceZ;P =5 8| —ip

s, <tp S1 —tp S2, We haveZ; P =5 51 <ip s} andZ; P =5 S, <ip
s, by Definition 2.2. Hence, by Lemma 2.8, there is a derivation

Dy TP A X s s dp ¢ S, such thah (DY) = h(Dy). Let D/
be the following derivation,
Dy T BAX s FsdiS, LPEsS <tp
LBAX: s Fsd S
P ARs lamxd; i s —ip S

(ty-sub)

(ty-lam)

and we are done sindg?’) = 1+1+h(Dy) =1+h(Dj) <1+
h(Dy) = h(D). We can prove (2), (3), (4) and (5) similarly[]

THEOREM2.10 (SUBJECTREDUCTION). Assume bothD ::
5 P;Atsd:sand d— d'. ThenZ;P;Al5d:sis derivable.

PROOF Assumed = E[dp] andd’ = E[d], wheredy is a redex
andd is the reduction of the redex. The proof proceeds by struc-
tural induction orh(D). Assume that the last applied rule 4
is (ty-sub), that is,D is of the following form:
DT PAFsdis; ZPEss <ips
Dy PAFgd:s

(ty-sub)

By induction hypothesis oy, Z; B:A s d': 5 is derivable and
therefores; B; A s d': sis derivable. From now on, we assume
that the last applied rule i is not (ty-sub), and proceed by
structural induction orfE. We present the most interesting case
whereE = []. In this cased = dg is a redex andl’ = d,.

e d = app(lam x.d1,v2) andd’ = di[x — v,]. Hence, by
Lemma 2.9, we may assume that the derivatidis of the
following form,

Dy TP AX: s FgdriSy
LB ARslamxdi s —tpS Do PARsVais
%;B; A+ app(lam x.dy, Vo) : S

wheres=sy. By Lemma 2.7 (3), we know; P:A- di[x+—
Vo] : s is derivable.

e d=>"(D>™(v)) andd’ =v. Hence, by Lemma 2.9, we may
assume that the derivatiah is of the following form:
P,P,AFsv:s
;B AFsDT (V) :PDs ZBEgP
ZBAFD (DF(V):s

By Lemma 2.7 (2), we kno&; P v : sis derivable.
e d=V (V"(v))andd’ = v. Hence, by Lemma 2.9, we may
assume that the derivatiah is of the following form:
Ya:0,PAFsv:s
ZBAFgVH(v):Vaios Zbss:o
B AFY(VH(V)) i sifa— s

wheres=s;[a— sg]. By Lemma 2.7 (1), we knol; B; A+
V:s[a—) is derivable.

All other cases can be handled similarly.]

LEMMA 2.11 (CANONICAL FORMS). AssumeD :: 0;0;0
v:s. Then we have the following.

1. If s=scc[g], then v is of the form ddg] for some dynamic

constructor dcc associated with the type constructor scc.

2. If s=s; —tp S, then v is of the fornam x.d.
3. If s=P D 5, then vis of the formd™ (vp).

4. If s=Vva: 0.5, then vis of the fornv™ (vp).
5. If s=PAs, then v is of the form(vp).

6. If s=3Ja: 0.5, then v is of the form(vp).

PrRoOF With Definition 2.2 (7), the lemma follows from struc-
tural induction on® immediately. []

THEOREM2.12 (FROGRESS. AssumeD : 0;0;0 -5 d : s.
Then d is a value, or & d’ holds for some dynamic terni,d
or d = E[dcf(v,...,vn)] for some dynamic term dgfy,...,vn)
that is not a redex.

ProoOF The theorem follows from structural induction a.
We present the case where the last applied ruleDnis
(ty-3-elim). Hence,D is of the following form,
0;0,0+gd;:Ja:0.51 0,a:0;0,0,x:5F5dr: s
0;0,0Fglet3(x)=diindy: s

whered = let 3(x) = dy in d; ands = s,. We now have the fol-
lowing three subcases.

e d; — dj holds. Then we can readily verify thdt— d’' =
let 3(x) =dj in dy.

e di = E;[dcf(V)] for some dynamic terrdcf(V) that is not a
redex. Then leE = let 3(x) = E; in d; and we havel =
E[dcf(V)].

e dj is avalue. Thenl is of the form3(v;) by Lemma 2.11.
Therefored — dy[x+— v4] holds.

Hence, this case is finished. The other cases can be handled sim-
ilarly. [

2.4 Erasure

We present a function from dynamic terms to untyped
expressions that preserves semantics. Weedeethe erasures
of dynamic terms, which are formally defined as follows:

erasures e = x|dcey,...,en]|lamx.e]
app(e,ey) | letx= ey in &
erasurevaluesw = x|dccwy,..., W] | lam x.e

We can then define a functign| as follows that translates dy-
namic terms into erasures.

Xl = x
dcidy, ... ch]| = dclldyl.....[ch]
lamxd| = lamx.[d]
|app(dlad2) = app(|dl‘7 ‘d2|)
ot = [d
()| = |d
[IA(d)] = [d
llet A(X)=diindy| = letx=|di|in|dy]
VHa) = |[d
Vo (d)] = [d|
Bd) = [d

llet 3(x) = dy in dy|

Similar to assigning dynamic semantics to the dynamic terms,
we can readily assign dynamic semantics to the erasures, which
are just untyped-expressions. We write; < €, to mean that

e reduces toe, in one step, and use»>* for the reflexive and
transitive closure of-.

let x = |d1]in |dp]

THEOREM 2.13. AssumeD :: 0;0;0+d:s.
1. Ifd <" v, then|d| —* |v|.

2. If |[d| —™* w, then there is a value v such that-d* v and
V| = w.

PrROOF (1) is straightforward. With Lemma 2.11, (2) follows
from structural induction orD. [

With Theorem 2.13, we can evaluate a dynamic tdtoy simply
evaluating the erasure df

3 Extensions

We extend475 to accommodate some common realistic pro-
gramming features in this section.

3.1 General Recursion

We introduce a fixed-point operatfix to support general recur-
sion in A75. We now call variables lam-variables and intro-

ducefix-variablesf. We usexf for a variable that is either a
lam-variable or dix-variable.

dyn. terms d == ... |f]|fixfd
dyn.var.ctx. A = ...|Af:s
dyn.subst. ©Op = ...|Op[f—d]

The typing rule(ty-var) is modified as follows,
e BA A(xf)=s
ZBAFgxf:d

(ty-var)

and the following rule is added to handle the fixed-point operator.

BA f:sksd:s
T B;AFgfix f.d:s

A dynamic term of the forniix f.d is a redex and its reduction
isd[f — fix f.d]. Itis straightforward to establish both the sub-

(ty-fix)

>k s:type

ShEx|s=0,0,0x:s (pat-var)

S(dee) = V20.Fo O ([st, ..., Sn] =1p SCC[S)])
5Fpls=%;R4 forl<i<n
S =5,...,5, P=P,....B, N=07,....0

Z+declpy, ..., po] § scclg = Zo, Z'; Py, scefS] <ip sc), Pia

(pat-dc)

Skpls=3;PN 5 BPANF;d: s
SPBAFp=dis=s

(ty-cla)

SiPAbsdyis ZPAFpUdisi=s forl<i<n
Z;P;Ak (casedoOf pr = i |-+~ | pn=dh) i 2

(ty-cas)

Figure 7. The typing rules for pattern matching

whereconsis assigned the following dc-type,

ject reduction theorem (Theorem 2.10) and the progress theorem

(Theorem 2.12) for this extension.

3.2 Datatypes and Pattern Matching

We present an approach to extendiags with support for

Va:typevn:int.n> 0D ([a list[a,n]] =p list[a,n+1])

andz = (a:typen:int), P= (n>0,list[a,n+ 1] <¢p list[&,n])
andA = (x1 : a,x : list[a,n]).

We can readily prove the subject reduction theorem (Theo-

datatypes and pattern matching and then provide with some sim-yem 2 10) for this extension: Lemma 3.1 is needed to handle the

ple examples. The following is some additional syntax we need.

patterns p
dyn. terms d
eval. ctx. E

X|dcc[p17-~~7pn}
...|casedgof py=dp || pn=dn
...|caseEof py=di|--- | pn = dn

As usual, we require that any variableean occur at most once
in a pattern. Given a valueand a pattermp, we use a judgment
of the formv |} p = ©p to indicatev = p[@p]. The rules for
deriving such judgments are given as follows,

VX=XV (vp-var)

vilpi=0h forl<i<n
decva, ...,] | declpy, ..., pn] = OF U...UGR

(vp-dcc)

and we say that matches if v} p=- ©p is derivable for some
dynamic substitutior®p. Note that in the rulgvp-dcc), the
union®} U...UOR, which becomes the empty dynamic substi-
tution [] whenn = 0, is well-defined since any variable can occur
at most once in a pattern.

A dynamic term of the formtasev of p; = dy | - | pn = dh

is a redex ifv || pj = ©p holds for some K i <n, and its re-
duction isd;[@p]. Note that reducing such a redex may involve
nondeterminism i matches several patterps

The typing rules for pattern matching is given in Figure 7. The
meaning of a judgment of the for&@- p | s= 5';F'; A’ is for-
mally captured by the following lemma.

LEmMMA 3.1. AssumeD:: 0;0;0+5v:s, E1 0k pUsI—Z;ﬁ;A
and ‘£, :: vl p= Op. Then there exist®s: X such tha); 0 =
P[@g] for each P inP and0;0;0+ Op : A[Og].

ProOE The lemma follows from structural induction on
. O

As an example, the judgment below is derivable,

a :typen' :intk congxy, %] || list[d, '] = Z;P;A

case where the reduced index is of the following form:
casedgpof py=di|...| pn=0dn

Also, we can establish the progress theorem (Theorem 2.12) for
this extension after slightly modifying it to include the possibility
that a well-type progrard may be of the following form,

Elcasevgof p1=di|...| pn= dn]
wherevy does not match anp; for 1 <i < nif d is neither a
value nor can be further reduced.

3.2.1 Products

Let « be a binary static constructor of the sc-sitype typg =
type That is,* is a type constructor. Also, Letair be the only
dynamic constructor associated withand the following dc-type
is assigned tpair,

Vay :typeVay : typelay,ap] =tp ag xap

where we usea; * ay for x[a;,ap]. Then the pairing function
with the typevay : typeVvay : typeay —tp a2 —tp a8y *ap can be
defined as follows,

V(v (lam xq.lam xo.pair[x1, X2))

and the first projection with the typeéa; : typeVay : typeay *
ap —tp a1 can be defined as follows,

V* (v (lam x.casex of pair[x1,Xz] = 1))

and the second projection can be defined similarly.

3.2.2 Sums

Let + be a static constructor of the sc-s{istpe typd = type
andinl andinr be the two dynamic constructors associated with
+ which are assigned the following dc-types respectively:

Vay : typeVay : type[ay] =tp a1 +ap
Vay :typeVay : typelay] =tp ar+a

For examples, we can form a function of the tyjer s, —tp S
as follows,
lam x.(casex of inl[x1] = f1(x1) [inrxz] = f2(x2))

where the two given functionfy and f; are of the types; —p s
andsy, —p S, respectively,

3.3 Effects

Unlike P75, 475 can be extended in a straightforward manner
to accommodate effects such as references and exceptions.

For instance, to introduce references @5, we can simply
declare a type constructmf of the sc-sorftypd = typeand then
the following dynamic functions of the corresponding assigned
dc-types.

mkref Va:type[a] =p ref(a)
deref Va:type[ref(a)] =pa
assign Va:type[ref(a),a] =p 1

The intended meaning of these functions should be obvious. We
also need to add into Definition 2.2 the following regularity con-
dition to address the issue igff being an invariant type construc-
tor.

o 3P =5 ref(s) <ip ref(s) implies ;P =5 s <tp § and
Z;IS'ZsslgtpS.

It is a standard procedure to assign dynamic semantics to this

context and a typing context ik, are just a static context and a
dynamic context in 8aATICSg, respectively. A typing judgment

in Ay is of the formZ; A+t : T, for which the typing rules are
standard. For instance, the following rule addresses the issue of
type conversion,

ARt ZRETi=pT2:type
ARt T

(ty-B-conv)

where2 I~ 11 =p T : type means that; andt, are two well-
formed types undex that are3-equivalent.

We define as follows a translatigin || that maps terms ik, into
dynamic terms in some applied type system AT#0se statics

is STATICSp and constraint relation ik&?fo:

x| = x
[Ax:tt] = lamx|ft||
[ta(t2) = app(ita], lItl)
[Aac:kt] = vE(|t])
[t = vt

PROPOSITION 4.1. Assume®D :: ;A t: 1 in A,n. Then

20;A kg, ||t]| : Tis derivable inATSo.

PrROOF By structural induction orD. The only interesting point
is to notice thal - 11 =p 1o impliesZ; 0 |:?f) 11 <tp T2 asMp

extension and then establish both the subject reduction theoremhonors-conversion. L[]
and the progress theorem. Please see (Harper, 1994) for some

details on such a procedure.

It is straightforward as well to introduce exceptions iMas,
and we omit further details.

4 Examples of Applied Type Systems

Like Ay, the languagé, g, (Xi et al., 2003), which extends the
second-order polymorphig-calculusA, with guarded recursive
datatypes, can also be embedded into ATS

4.2 Dependent ML

We present some examples of applied type systems in this sec-Let STATICS; = STATICS({boOl, type int}; 1), wheres$; extends

tion.
4.1)\(.o and)\27(;,“

Let STATICSy = STATICS({boOl type}; So), that is, FATICSy is

a static component in which the only base sortsa@ andtype

and the only static constants are those declared in the initial sig-
natureSp. Let Mp be a model for $ATICSg as is defined in Sec-
tion 2.2. Itis clear thaB-conversion is valid ifM, that is,

V(. (Aa: 011 %) (s1) = V(@ splar s1])
for every@: X such that - (Aa: 01 : %)(s1) : 02 is derivable.
One of the typed\-calculi in A-cube (Barendregt, 1992) ig,,

which is also known as SysteRy,. We present the syntax af,
as follows:

kinds K = type| K1 —tp Kz

constructors T = o | A0 :K.T|T1(T2) | Ty —tp T2 | VO KT
kindingctx. X = 0|Z,0:K

typingctx. A = 0]Aa:K

terms t o= X|AX: T ty(t2) | Aa k.t | t(T)

Note that a kindk and a constructor in A, are just a sort and
a static term in $ATICSg, respectively. In addition, a kinding

the initial static signaturgg with declarations such as

add int,int] =+, int

sub int,int] =p int

mul int,int] =+, int

div int,int] =p int

geq int,int] =, bool

Teq fint,int] = bool

and bool,bool] =, bool
or bool, bool =p bool
not

bool =p bool

Let M7 be a model for $ATICS; such that the domaiDjy,; in M;

is the set of integers and the above static functions are all given
the standard interpretation. For instaragdis interpreted as the
addition function on integerseq is interpreted as the less-than-
or-equal-to relation on integersr is interpreted as the disjunc-
tion on booleans, etc.

Let ATS; be some applied type system such that its statics is and

its constraint relation it;?fl. Then the version of Dependent ML
as is presented in (Xi, 2002) can be easily embedded intq ATS
provided that the dynamics of AESupport general recursion,
pattern matching, references and exceptions.

5 Related Work and Conclusion

The framework47 is rooted in the work on Dependent ML (Xi
and Pfenning, 1999; Xi, 1998), where the type system of ML
is enriched with a restricted form of dependent datatypes, and
the recent work on guarded recursive datatypes (Xi et al., 2003).
Given the similarity between these two forms of tyhese are
naturally led to seeking a unified presentation for them.

For those who are familiar with qualified types (Jones, 1994),
which underlies the type class mechanism in Haskell (Peyton
Jones et al., 1999), we point out that a qualified typeruatrbe
regarded as a guarded type. The simple reason is that the proof of
a guard in an applied type system bears no computational mean-
ing, that is, it cannot affect the run-time behavior of a program,
while a dictionary, which is really the proof of some predicate on
types in the setting of qualified types, can and is mostly likely to
affect the run-time behaviour of a program.

Another line of closely related work is the formation of a type
system in support of certified binaries (Shao et al., 2002), in
which the idea of a complete separation between types and pro-
grams is also employed. Basically, the notions of type language
and computational language in the type system correspond to the
notions of statics and dynamics #{S, respectively, though the
type language is based on the calculus of constructions extended
with inductive definitions (CiC) (Pfenning and Paulin-Mohring,
1989; Paulin-Mohring, 1993). However, the notion of a con-
straint relation in27$ does not have a counterpartin (Shao et al.,
2002). Instead, the equality between two types is determined by
comparing the normal forms of these types. It is not difficult to
see that an applied type system can also be constructed to certify
binaries in the sense of (Shao et al., 2002) as long as we have an
approach to effectively representing and verifying proofs of the
constraint relation associated with the applied type system.

In summary, we have presented a framewatks for facilitating

the design and formalization of type systems to support practical
programming. With a complete separation between statics and
dynamics,47$ works particularly well on supporting dependent
types in the presence of effects. Also, the availability of guarded
types and asserting types#7$ makes it both more flexible and
more effective to capture program invariants. We also.2&¢é

as a unification as well as a generalization of the previous work
on a restricted form of dependent types (Xi and Pfenning, 1999;
Xi, 1998) and guarded recursive datatypes (Xi et al., 2003).

A static component ir2ZS is currently based on a simply typed
A-calculus. Therefore, it is natural to study how a static compo-
nent can be built upon a typedcalculus supporting polymor-
phism and/or dependent types. Also, we are particularly inter-
ested in designing and implementing a functional programming
language with a type system based@®ms, which can then of-

fer a means to language extension by mostly implementing new
language constructs in terms of some existing ones.

6 Acknowledgments

The author thanks Assaf Kfoury for his comments on a prelimi-
nary draft of the paper and also acknowledges some discussions
with Chiyan Chen on the subject of the paper.

3Actually, guarded recursive datatypes can be thought of as
"dependent types” in which the type indexes are also types.

10

References

Andrews, P. B. (1972). General Models, Descriptions and
Choice in Type TheoryJournal of Symbolic Logic
37:385-394.

Andrews, P. B. (1986)An Introduction to Mathematical
Logic: To Truth through ProofAcademic Press, Inc., Or-
lando, Florida.

Barendregt, H. P. (1992). Lambda calculi with types. In
Abramsky, S., Gabbay, D. M., and Maibaum, T., edi-
tors,Handbook of Logic in Computer Sciene®lume I,
pages 117-441. Clarendon Press, Oxford.

Chen, C. and Xi, H. (2003). Meta-Programming through
Typeful Code Representation. IRroceedings of the
Eighth ACM SIGPLAN International Conference on
Functional Programmingpages 169-180, Uppsala, Swe-
den.

Church, A. (1940). A formulation of the simple type theory of
types.Journal of Symbolic Logic:56—-68.

Constable, R. L. and Smith, S. F. (1987). Partial objects in
constructive type theory. IRroceedings of Symposium on
Logic in Computer Scien¢c@ages 183-193, Ithaca, New
York.

Harper, R. (1994). A simplified account of polymorphic refer-
enceslnformation Processing Letter§1:201-206.

Hayashi, S. and Nakano, H. (198%)X: A Computational
Logic. The MIT Press.

Honsell, F., Mason, I. A., Smith, S., and Talcott, C. (1995). A
variable typed logic of effect$nformation and Computa-
tion, 119(1):55-90.

Jones, M. P. (1994)Qualified Types: Theory and Practice
Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK.

Mendler, N. (1987). Recursive types and type constraints in
second-order lambda calculus.Pnoceedings of Sympo-
sium on Logic in Computer Scienqeges 30-36, Ithaca,
New York. The Computer Society of the IEEE.

Milner, R., Tofte, M., Harper, R. W., and MacQueen, D.
(1997). The Definition of Standard ML (RevisedylIT
Press, Cambridge, Massachusetts.

Paulin-Mohring, C. (1993). Inductive Definitions in the Sys-
tem Coqg: Rules and Properties. In Bezem, M. and
de Groote, J., editorRroceedings of the International
Conference on Typed Lambda Calculi and Applicatjons
volume 664 ofLecture Notes in Computer Scienpages
328-345, Utrecht, The Netherlands.

Peyton Jones, S. et al. (1999). Haskell 98 — A non-strict,
purely functional language. Available at
http://www.haskell.org/onlinereport/.

Pfenning, F. and Paulin-Mohring, C. (1989). Inductively de-
fined types in the Calculus of Constructions Hroceed-
ings of fifth International Conference on Mathematical
Foundations of Programming Semantie®lume 442 of
Lecture Notes in Computer Scienpages 209-228.

Shao, Z., Saha, B., Trifonov, V., and Papaspyrou, N. (2002).
A Type System for Certified Binaries. IRroceedings of
29th Annual ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL 'Q3)ages 217-232,
Portland, OR.

Xi, H. (1998). Dependent Types in Practical Programming
PhD thesis, Carnegie Mellon University. pp. viii+189.
Available as
http://www.cs.cmu.edu/ "hwxi/DML/thesis.ps.

Xi, H. (2002). Dependent Types for Program Termination Ver-
ification. Journal of Higher-Order and Symbolic Compu-

tation, 15(1):91-132.

Xi, H., Chen, C., and Chen, G. (2002). Guarded Recursive
Datatype Constructors. Available at
http://www.cs.bu.edu/ hwxi/GRecTypecon/.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recur-
sive datatype constructors. Rroceedings of the 30th
ACM SIGPLAN Symposium on Principles of Program-
ming Languagegpages 224-235, New Orleans.

Xi, H. and Pfenning, F. (1999). Dependent Types in Practi-
cal Programming. IfProceedings of 26th ACM SIGPLAN
Symposium on Principles of Programming Languages
pages 214-227, San Antonio, Texas.

Zenger, C. (1997). Indexed typeEheoretical Computer Sci-
ence 187:147-165.

11

