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Abstract

The framework Pure Type System (P TS ) offers a simple and gen-
eral approach to designing and formalizing type systems. How-
ever, in the presence of dependent types, there often exist some
acute problems that make it difficult forP TS to accommodate
many common realistic programming features such as general re-
cursion, recursive types, effects (e.g., exceptions, references, in-
put/output), etc. In this paper, we propose a new framework Ap-
plied Type System (ATS ) to allow for designing and formalizing
type systems that can readily support common realistic program-
ming features. The key salient feature ofATS lies in a complete
separation between statics, in which types are formed and rea-
soned about, and dynamics, in which programs are constructed
and evaluated. With this separation, it is no longer possible for
a program to occur in a type as is otherwise allowed inP TS .
We present not only a formal development ofATS but also some
examples in support of usingATS as a framework to form type
systems for practical programming.
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1 Introduction

There is often a serious contention between the type system of
a programming language and the need to extend the program-
ming language. For instance, when the issue of language exten-
sion is concerned, we can readily observe a striking difference
between Scheme, an untyped functional programming language,
and ML (Milner et al., 1997), a typed functional programming
language. Assume that we are interested in supporting object-
oriented programming (OOP). In Scheme, we can achieve this
by implementing a package like Common Lisp Object System
(CLOS) to directly support OOP constructs, which, to a large ex-
tent, act like syntactic sugar as programs that make use of them
can be systematically translated into programs that do not. On
the other hand, it does not seem likely to support OOP in ML in
a similar manner as the type system of ML is too restrictive to al-
low for a typed implementation of a package like CLOS. Instead,
we need to add directly into ML some OOP constructs, which
are then treated as primitives. This is rather unpleasant since
the newly added constructs not only complicate the semantics
of ML significantly but may also result in unexpected interaction
with some existing features in ML. This situation of program-
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ming language extension stays more or less the same when many
other programming features need to be supported. For instance,
Standard ML (SML), which extends ML with a module system,
and MetaML, which extends ML with some meta-programming
constructs, are both greatly more involved than ML. Evidently
such an unpleasant situation is primarily caused by the limited
expressiveness of a type system like that of ML. Therefore, we
are naturally led to seeking more expressive type systems that
can better accommodate the issue of programming language ex-
tension.

There is already a framework Pure Type System (P TS ) (Baren-
dregt, 1992) that offers a simple and general approach to de-
signing and formalizing type systems. However, in the presence
of dependent types, there often exist some acute problems that
make it difficult for P TS to accommodate many common real-
istic programming features. In particular, we have learned that
some great efforts are required in order to maintain a style of pure
reasoning as is advocated inP TS when programming features
such as general recursion (Constable and Smith, 1987), recur-
sive types (Mendler, 1987), effects (Honsell et al., 1995), excep-
tions (Hayashi and Nakano, 1988) and input/output are present.
To address such limitations ofP TS , we propose a new frame-
work Applied Type System (ATS ) to allow for designing and for-
malizing type systems that can readily support common realistic
programming features. The key salient feature ofATS lies in a
complete separation between statics, in which types are formed
and reasoned about, and dynamics, in which programs are con-
structed and evaluated. This separation, with its origin in a pre-
vious study on a restricted form of dependent types developed in
Dependent ML (DML) (Xi and Pfenning, 1999; Xi, 1998), makes
it feasible to support dependent types in the presence of effects
such as references and exceptions. Also, with the introduction of
two new (and thus unfamiliar) forms of types:guarded typesand
asserting types, we argue thatATS is able to capture program in-
variants in a more flexible and more effective manner thanP TS .

The design and formalization ofATS constitutes the primary
contribution of the paper, which aims at setting a reference
point for future work that makes use of similar ideas presented
in (Zenger, 1997; Xi and Pfenning, 1999; Xi et al., 2003). With
ATS , we can readily form type systems to support many com-
mon programming features in the presence of dependent types,
overcoming certain inherent deficiencies ofP TS . We are cur-
rently in the process of designing and implementing a typed
functional programming language with its type system based on
ATS that can support not only dependent types (like those de-
veloped DML) but also guarded recursive datatypes (Xi et al.,
2003). With such a design, we seek to support a variety of lan-
guage extensions by mostly implementing new language con-
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` S /0 [sig]

` S [sig]
` S ,sc: [σ1, . . . ,σn]⇒ b [sig]

Figure 1. The formation rules for signatures

S(sc) = [σ1, . . . ,σn]⇒ b Σ `S si : σi for i = 1, . . . ,n

Σ `S sc[s1, . . . ,sn] : b
(so-sc)

Σ(a) = σ
Σ `S a : σ

(so-var)

Σ,a : σ1 `S s : σ2

Σ `S λa : σ1.s : σ1→ σ2
(so-lam)

Σ `S s1 : σ1→ σ2 Σ `S s2 : σ1

Σ `S s1(s2) : σ2
(so-app)

Figure 2. The sorting rules for statics

structs in terms of existing ones, following an approach like the
one adopted by Scheme. In particular, we have already shown
that various programming features such as object-oriented pro-
gramming (Xi et al., 2003), meta-programming (Xi et al., 2003;
Chen and Xi, 2003) and type classes (Xi et al., 2002) can be han-
dled in such a manner.

We organize the rest of the paper as follows. In Section 2, we
present a detailed development of the frameworkATS , formaliz-
ing a generic applied type system ATS constructed inATS and
then establishing both subject reduction and progress theorems
for ATS. We extendATS in Section 3 to accommodate some
common realistic programming features such as general recur-
sion, pattern matching and effects, and present some interesting
examples of applied type systems in Section 4. Lastly, we men-
tion some related work as well as certain potential development
for the future, and then conclude.

2 Applied Type System

We present a formalization of the framework Applied Type Sys-
tem (ATS ) in this section. We use the nameapplied type system
for a type system formed in theATS framework. In the follow-
ing presentation, let ATS be a generic applied type system, which
consists of a static component (statics) and a dynamic compo-
nent (dynamics). Intuitively, the statics and dynamics are each
for handling types and programs, respectively. To simplify the
presentation, we assume that the statics is a pure simply typed
language and we use the namesort to refer to a type in this lan-
guage. A term in the statics is called astatic termwhile a term
in the dynamics is called adynamic term, and a static term of a
special sorttypeserves as a type in the dynamics.

2.1 Statics

We present a formal description of a static component. We write
b for a base sort and assume the existence of two special base

sortstypeandbool.

sorts σ ::= b | σ1→ σ2
static terms s ::= a | sc[s1, . . . ,sn] | λa : σ.s | s1(s2)
static var. ctx. Σ ::= /0 | Σ,a : σ
signatures S ::= S /0 | S ,sc: [σ1, . . . ,σn]⇒ b
static subst. ΘS ::= [] |ΘS[a 7→ s]

We usea for static term variables ands for static terms. There
may also be some declared static constantssc, which are ei-
ther static constant constructorsscc or static constant functions
scf. We use[σ1, . . . ,σn]⇒ b for sc-sorts, which are assigned to
static constants. Given a static constantsc, we can form a term
sc[s1, . . . ,sn] of sortb if sc is assigned a sc-sort[σ1, . . . ,σn]⇒ b
for some sortsσ1, . . . ,σn andsi can be assigned the sortsσi for
i = 1, . . . ,n. We may writesc for sc[] if there is no risk of confu-
sion. Note that a sc-sort is not regarded as a (regular) sort.

We useΘS for a static substitution that maps static variables to
static terms anddom(ΘS) for the domain ofΘS. We write []
for the empty mapping andΘS[a 7→ s], where we assumea 6∈
dom(ΘS), for the mapping that extendsΘS with a link from a
to s. Also, we write•[ΘS] for the result of applyingΘS to some
syntax•, which may represent a static term, a sequence of static
terms, or a dynamic variable context as is defined later.

A signature is for assigning sc-sorts to declared static constants
sc, and the rules for forming signatures are in given Figure 1.
We assume that the initial signatureS /0 contains the following
declarations,

1 : []⇒ type
> : []⇒ bool
⊥ : []⇒ bool
→t p : [type, type]⇒ type
⊃ : [bool, type]⇒ type
∧ : [bool, type]⇒ type
≤t p : [type, type]⇒ bool

that is, the static constants on the left are assigned the corre-
sponding sc-sorts on the right. Also, for each sortσ, we assume
that S /0 assigns the two static constructors∀σ and∃σ the sc-sort
[σ→ type]⇒ type. We may use infix notation for some static
constants. For instance, we writes1→t p s2 for →t p [s1,s2] and
s1 ≤t p s2 for ≤t p [s1,s2]. In addition, we may write∀a : σ.s and
∃a : σ.s for ∀σ[λa : σ.s] and∃σ[λa : σ.s], respectively. The sorting
rules for the statics are given in Figure 2, which are mostly stan-
dard. For instance,∀a : type.a→t p a is a static term that can be
assigned the sorttypesince/0 `S /0 ∀type[λa : type.a→t p a] : typeis
derivable. A static constructorsc is a type constructor if it is as-
signed a sc-sort[σ1, . . . ,σn]⇒ typefor some sortsσ1, . . . ,σn. For
instance,1,→t p, ⊃, ∧, ∀σ and∃σ are all type constructors, but
≤t p is not. Intuitively,1 represents the usual unit type and→t p
forms function types, and≤t p stands for a subtyping relation on
types. The static constructors⊃ and∧ form guarded typesand
asserting types, respectively, which are to be explained later.

We useΣ for a static variable context that assigns sorts to static
variables;dom(Σ) is the set of static variables declared inΣ;
Σ(a) = σ if a : σ is declared inΣ. As usual, a static variablea
may be declared at most once inΣ. A static terms is called a
propositionunderΣ if Σ ` s : bool is derivable. We useP for
propositions (under some static variable contexts). We use the
nameguarded typefor a type of the formP⊃ s and the name
asserting typefor a type of the formP∧ s, both of which are
involved in the following example.
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Σ;~P |=S >
(reg-true)

Σ;~P |=⊥
Σ;~P |=S P

(reg-false)

Σ;~P |=S P0

Σ,a : σ;~P |=S P0
(reg-var-thin)

Σ `S P : bool Σ;~P |=S P0

Σ;~P,P |=S P0
(reg-prop-thin)

Σ,a : σ;~P |=S P Σ `S s : σ

Σ;~P[a 7→ s] |=S P[a 7→ s]
(reg-subst)

Σ;~P |=S P0 Σ;~P,P0 |=S P

Σ;~P |=S P
(reg-cut)

Σ `S s : type

Σ;~P |=S s≤t p s
(reg-refl)

Σ;~P |=S s1 ≤t p s2 Σ;~P |=S s2 ≤t p s3

Σ;~P |=S s1 ≤t p s3
(reg-tran)

Figure 3. Regularity Rules

EXAMPLE 2.1. Let int be the sort for integers1 and list be a
type constructor of the sc-sort[type, int]⇒ type. Then the fol-
lowing static term is a type:

∀a : type.∀n : int. n≥ 0⊃ (list[a,n]→t p list[a,n])

Intuitively, if list[s,n] is the type for lists of length n in which each
element is of type s, then the above type is intended for a function
from lists to lists that preserves list length. Also, the following
type is intended to be assigned to a function that returns the tail
of a given list if the list is not empty or simply raises an exception
otherwise.

∀a : type.∀n : int. n≥ 0⊃ (list[a,n]→t p n> 0∧ list[a,n−1])

The asserting type n> 0∧ list[a,n−1] captures the invariant that
n> 0 holds and the returned value is a list of length n−1 if the
function returnsafter it is applied to a list of length n. This is
rather interesting feature and will be further explained later in
Example 2.5.

As is in the design ofP TS , the issue of type equality plays a pro-
found r̂ole in the design ofATS . However, further study reveals
that type equality inATS can be defined in terms of a subtyping
relation≤t p. Given two typess1 ands2, we say thats1 equals
s2 if both the propositions1 ≤t p s2 and the propositions2 ≤t p s1
hold. In general, we need to determine whether a given propo-
sition holds (under certain assumptions), and we introduce the
following notion of constraint relation for this purpose.

DEFINITION 2.2. Let S ,Σ,~P,P0 be a static signature, a static
variable context, a set of propositions underΣ and a proposition
underΣ, respectively. We say a relationΣ;~P |=S P0 is a regu-
lar constraint relation if the following regularity conditions are

1Formally speaking, we need to say that for each integern,
there is a static constructorn of the sc-sort[]⇒ int andn[] is the
static term of the sortint that corresponds ton.

satisfied:

1. all the regularity rules in Figure 3 are valid; that is, for
each regularity rule, the conclusion of the rule holds if the
premises of the rule hold, and

2. Σ;~P |=S s1→t p s2≤t p s′1→t p s′2 impliesΣ;~P |=S s′1≤t p s1

andΣ;~P |=S s2 ≤t p s′2, and

3. Σ;~P |=S P ⊃ s ≤t p P′ ⊃ s′ implies Σ;~P,P′ |=S P and
Σ;~P,P′ |=S s≤t p s′, and

4. Σ;~P |=S P ∧ s ≤t p P′ ∧ s′ implies Σ;~P,P |=S P′ and
Σ;~P,P |=S s≤t p s′, and

5. Σ;~P |=S ∀a : σ.s≤t p ∀a : σ.s′ impliesΣ,a : σ;~P |=S s≤t p s′,
and

6. Σ;~P |=S ∃a : σ.s≤t p ∃a : σ.s′ impliesΣ,a : σ;~P |=S s≤t p s′,
and

7. /0; /0 |=S scc[s1, . . . ,sn] ≤t p scc′[s′1, . . . ,s
′
n′ ] implies scc=

scc′.

Note that we assumeΣ `S P : bool is derivable for each P∈ ~P,P0
whenever we writeΣ;~P |=S P0.

Every single regularity rule as well as every single regularity con-
dition is used later for establishing the subject reduction theo-
rem 2.10 and and the progress theorem 2.12.

EXAMPLE 2.3. Let int be a type constructor of the sc-sort
[int] ⇒ type such that for each integer n,int [n] is the single-
ton type containing only n. Intuitively, the typesInt = ∃n :
int.>∧ int [n] and Nat = ∃n : int.n≥ 0∧ int [n] are for integers
and natural numbers, respectively. Note that given a regular con-
straint relation|=S (for some properly chosenS ), it is not neces-
sary true that/0; /0 ` Nat ≤t p Int holds. On the other hand, the
regularity condition (6) can rule out a case like/0; /0` Int ≤t p Nat
(if ≥ is given the standard interpretation).

We are in need of a regular constraint relation when forming the
dynamics of ATS. In general, the frameworkATS is parame-
terized over regular constraint relations. We need not be con-
cerned with the decidability of a regular constraint relation at this
point. For each regular constraint relation|=S , we may simply as-
sume that an oracle is available to determine whetherΣ;~P |=S P0

holds whenever appropriateΣ,~P andP0 are given. Later, we will
present some examples of applied type systems where there are
practical algorithms for determining the regular constraint rela-
tions involved. It should be emphasized that because of impred-
icativity, it is in general a rather delicate issue as to how a regular
constraint relation|=S can be properly defined for a given signa-
tureS , and we are to address this issue with a model-theoretical
approach in Section 2.2.

In the following presentation, we use STATICS for a static com-
ponent and STATICS(B;S) for a static component in which the
set of base sorts isB and the signature isS .

2.2 Models for Statics

We present a means to defining regular constraint relations
through the use of models for statics.
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Let STATICS be a static component and SORT be the set of sortsσ
in STATICS. A frame is a collection{Dσ}σ∈Sort of nonempty do-
mains (sets)Dσ, one for each sortσ such thatDbool = {tt , ff} and
Dσ1→t pσ2 is some collection of functions that mapDσ1 into Dσ2.
An interpretation〈{Dσ}σ∈sort, I〉 of a given signatureS consists
of a frame and a functionI that maps each static constantsc of
sc-sort[σ1, . . . ,σn]⇒ b, whereb stands for a base sort, to a func-
tion I(sc) from Dσ1 × . . .×Dσn into Db (or an element inDb if
n = 0). In addition, we require

1. I(>) = tt andI(⊥) = ff , and

2. I(scc) is a one-to-one function for each static constructor
scc, and

3. the intersection of the domains ofI(scc1) and I(scc2) is
empty ifscc1 andscc2 are two distinct type constructors.

Note that the approach we use here is adopted from Chap-
ter 5 (Andrews, 1986), where models for (simple) type the-
ory (Church, 1940) are studied.

Clearly, if Dσ contain more than one elements, thenDtype→t ptype
cannot containall functions fromDtype to Dtype since otherwise
neitherI(∀type) nor I(∃type) can be an injection fromDtype→t ptype
into Dtype.

An assignmentφ is a finite mapping from static variables toD =
∪σ∈sortDσ, and we usedom(φ) for the domain ofφ. As usual,
we use[] for the empty mapping andφ[a 7→ a] for the mapping
that extendsφ with a link from the variablea to the elementa in
D, where we assumea 6∈ dom(φ). We writeφ : Σ if φ(a) ∈ Dσ
for eacha∈ dom(φ) = dom(Σ), whereσ = Σ(a), that is,a : σ is
declared inΣ.

Let S be the signature for the static constants in STATICS. An
interpretationM = 〈{Dσ}σ∈sort, I〉 of S is a model for STATICS

if there exists a (partial) binary functionVM such that for each
assignmentφ : Σ, VM (φ,s) is defined for a static terms and
VM (s) ∈ Dσ holds wheneverΣ `S s : σ is derivable for some
σ, and the following conditions are also satisfied

1. VM (φ,a) = φ(a) for eacha∈ dom(φ), and

2. VM (sc[s1, . . . ,sn]) = I(sc)(VM (s1), . . . ,VM (sn)), and

3. VM (φ,s1(s2)) = VM (φ,s1)(VM (φ,s2)) wheneverΣ `S
s1(s2) : σ is derivable for someσ, and

4. VM (φ,λa : σ1.s) is the function that maps each elementa∈
Dσ1 to VM (φ[a 7→ a],s) wheneverΣ ` λa : σ1.s: σ1→t p σ2
is derivable for someσ2.

Note that not all frames belong to interpretations, and not all in-
terpretations are models (Andrews, 1972). Given a modelM
for STATICS, we can define a constraint relation|=M

S as fol-

lows: Σ;~P |=M
S P0 holds if and only if for each assignmentφ : Σ,

VM (φ,P0) = tt or VM (φ,P) = ff for someP∈ ~P.

THEOREM 2.4. Let a M = 〈{Dσ}σ∈sort, I〉 be a model for
STATICS. If ≤t p is interpreted as the equality function on
Dtype×Dtype, that is, for all a,a′ ∈ Dtype, I(≤t p)(a,a′) = tt if
and only ifa = a′, then|=M

S is a regular constraint relation.

PROOF. It is a simple routine to verify that|=M
S satisfies all the

regularity conditions in Definition 2.2.

dyn. terms d ::= x | dc[d1, . . . ,dn] |
lam x.d | app(d1,d2) |
⊃+(v) | ⊃−(d) |
∧(d) | let ∧(x) = d1 in d2 |
∀+(v) | ∀−(d) |
∃(d) | let ∃(x) = d1 in d2

values v ::= x | dcc[v1, . . . ,vn] | lam x.d |
⊃+(v) | ∧(v) | ∀+(v) | ∃(v)

dyn. var. ctx. ∆ ::= /0 | ∆,x : s

dyn. subst. ΘD ::= [] |ΘD[x 7→ d]

Figure 4. The syntax for dynamics

` S [sig]
Σ `S /0 [dctx]

Σ `S ∆ [dctx] Σ `S s : type

Σ `S ∆,x : s [dctx]

Figure 5. The formation rules for dynamic variable contexts

2.3 Dynamics

The dynamics of ATS is a typed language and a static term of
the sorttype is a type in the dynamics. There may be some de-
clared dynamic constants, and we are to assign a dc-type of the
following form to each dynamic constantdcof arity n,

∀a1 : σ1 . . .∀ak : σk.P1 ⊃ (. . .(Pm⊃ ([s1, . . . ,sn]⇒t p s)) . . .)

wheres1, . . . ,sn,s are assumed to be types. In the case where
dc is a dynamic constructordcc, the types needs to be of the
form scc[~s] for some type constructorscc, and we say thatdcc
is associated withscc. Note that we use~s for a (possibly empty)
sequence of static terms. For instance, we can associate two dy-
namic constructorsnil andconswith the type constructorlist as
follows by assigning them the following dc-types,

nil : ∀a : type.list[a,0]
cons : ∀a : type.∀n : int.n≥ 0⊃ ([a, list[a,n]]⇒t p list[a,n+1])

where we uselist[a,n] as the type for lists of lengthn in which
each element is of typea.

We useΘD for a dynamic substitution that maps dynamic vari-
ables to dynamic terms anddom(ΘD) for the domain ofΘD.
We omit presenting the syntax for forming and applying dy-
namic substitutions, which is similar to that for static substitu-
tions. GivenΘ1

D andΘ2
D such thatdom(Θ1

D)∩ dom(Θ2
D) = /0,

we useΘ1
D∪Θ2

D for the union ofΘ1
D andΘ2

D.

For Σ = a1 : σ1, . . . ,ak : σk, we may write ∀Σ.• for ∀a1 :
σ1 . . .∀ak : σk.•, where we simply use• for arbitrary syntax.
Similarly, For ~P = P1, . . . ,Pm, we may use~P ⊃ • for P1 ⊃
(. . .(Pm⊃ •) . . .). For instance, a dc-type is always of the form
∀Σ.~P⊃ ([s1, . . . ,sn]⇒t p s). The definition of signatures needs
to be extended as follows to allow that dynamic constants be de-
clared,

signatures S ::= . . . | S ,dc : ∀Σ.~P⊃ ([s1, . . . ,sn]⇒t p s)
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and the following additional rule is needed to form signatures.

` S [sig] Σ `S P : bool for eachP in ~P
Σ `S si : type for each 1≤ i ≤ n Σ `S s : type

` S ,dc : ∀Σ.~P⊃ ([s1, . . . ,sn]⇒t p s) [sig]

The syntax for the dynamics is given in Figure 4, where we use
x for dynamic term variables andd for dynamic terms. Given
a dynamic constantdc of arity n, we writedc[d1, . . . ,dn] for the
application ofdc to the argumentsd1, . . . ,dn. In the case where
n = 0, we may writedc for dc[].

The markers⊃+(·),⊃−(·),∧(·),∀+(·),∀−(·),∃(·) are introduced
to establish Lemma 2.9, which is needed for conducting inductive
reasoning on typing derivations. Without these markers, it would
be significantly more involved to establish proofs by induction on
typing derivations as Lemma 2.9 can no longer be established as
it is stated now.

A judgment of the formΣ `S ∆ [dctx] indicates that∆ is a well-
formed dynamic variable context underΣ andS . The rules for
deriving such judgments are given in Figure 5. We useΣ;~P;∆ for
a typing context. The following rule is for deriving a judgment
of the form`S Σ;~P;∆,

Σ `S P : bool for eachP in ~P Σ ` ∆ [dctx]

`S Σ;~P;∆

which indicates thatΣ;~P;∆ is well-formed.

A typing judgment is of the formΣ;~P;∆ `S d : s, where we as-
sume thatΣ;~P;∆ is a well-formed typing context andΣ`S s: type
is derivable. The typing rules for deriving such judgments are
presented in Figure 6, where we assume that the constraint re-
lation |=S is regular. We writeΣ `S ΘS : Σ0 to mean that
Σ `S ΘS(a) : Σ(a) is derivable for eacha∈ dom(ΘS) = dom(Σ).
Note that we have omitted some obvious side conditions associ-
ated with some of the typing rules. For instance, the variablea is
not allowed to have free occurrences in~P, ∆, or s when the rule
(ty-∀-intro) is applied. Also, we have imposed a form of value
restriction on the typing rules(ty-gua-intro) and (ty-∀-intro) ,
preparing for introducing effects into ATS later.2 For a technical
reason, we are to replace the rule(ty-var) with the following rule,

`S Σ;~P;∆ ∆(x) = s Σ;~P |=S s≤t p s′

Σ;~P;∆ `S x : s′
(ty-var’)

which combines(ty-var) with (ty-sub). This replacement is
needed for establishing Lemma 2.8.

Before proceeding to the presentation of the rules for evaluating
dynamic terms, we now sketch a scenario in which a guarded
type and an asserting type play an interesting role in enforcing
security, facilitating further understanding of such types.

EXAMPLE 2.5. Assume that Secretis a proposition constant
and passwordand actionare two declared functions, which are
assigned the following dc-types.

action : Secret⊃ [1]⇒t p 1
password : [1]⇒t p Secret∧1

2Actually, it is already necessary to impose this form of value
restriction on the typing rule(ty-gua-intro) in order to establish
Theorem 2.12.

Σ;~P;∆ `S d : s Σ;~P |=S s≤t p s′

Σ;~P;∆ `S d : s′
(ty-sub)

`S Σ;~P;∆ S(dc) = ∀Σ0.~P0 ⊃ [s1, . . . ,sn]⇒t p s
Σ `S ΘS : Σ0 Σ;~P |=S P[ΘS] for eachP∈ ~P0

Σ;~P;∆ `S di : si [ΘS] for i = 1, . . . ,n Σ;~P |=S s[ΘS]≤t p s′

Σ;~P;∆ `S dc[d1, . . . ,dn] : s′
(ty-dc)

`S Σ;~P;∆ ∆(x) = s

Σ;~P;∆ `S x : s
(ty-var)

Σ;~P;∆,x : s1 `S d : s2

Σ;~P;∆ `S lam x.d : s1→t p s2

(ty-fun-intro)

Σ;~P;∆ `S d1 : s1→t p s2 Σ;~P;∆ `S d2 : s1

Σ;~P;∆ `S app(d1,d2) : s2

(ty-fun-elim)

Σ;~P,P;∆ `S d : s

Σ;~P;∆ `S ⊃+(d) : P⊃ s
(ty-gua-intro)

Σ;~P;∆ `S d : P⊃ s Σ;~P |=S P

Σ;~P;∆ `S ⊃−(d) : s
(ty-gua-elim)

Σ;~P |=S P Σ;~P;∆ `S d : s

Σ;~P;∆ `S ∧(d) : P∧s
(ty-ass-intro)

Σ;~P;∆ `S d1 : P∧s1 Σ;~P,P;∆,x : s1 `S d2 : s2

Σ;~P;∆ `S let ∧(x) = d1 in d2 : s2

(ty-ass-elim)

Σ,a : σ;~P;∆ `S v : s

Σ;~P;∆ `S ∀+(v) : ∀a : σ.s
(ty-∀-intro)

Σ;~P;∆ `S d : ∀a : σ.s Σ `S s0 : σ

Σ;~P;∆ `S ∀−(d) : s[a 7→ s0]
(ty-∀-elim)

Σ `S s0 : σ Σ;~P;∆ `S d : s[a 7→ s0]

Σ;~P;∆ `S ∃(d) : ∃a : σ.s
(ty-∃-intro)

Σ;~P;∆ `S d1 : ∃a : σ.s1 Σ,a : σ;~P;∆,x : s1 `S d2 : s2

Σ;~P;∆ `S let ∃(x) = d1 in d2 : s2

(ty-∃-elim)

Figure 6. The typing rules for the dynamics

The function passwordcan be implemented in a manner so
that some secret information must be verified before a call to
passwordreturns. On one hand, the proposition Secretneeds to
be established before the function call action[〈〉] can be made,
where 〈〉 denotes the value of the unit type1. On the other
hand, the proposition Secretis established after the function call
password[〈〉] returns. Therefore, a proper means to calling action
is through the following program pattern:

let ∧ (x) = password[〈〉] in . . .action[〈〉] . . .

In particular, a call to actionoutside the scope of x is ill-typed
since the proposition Secretcannot be established.

In order to assign a call-by-value dynamic semantics to dynamic
terms, we make use of evaluation contexts, which are defined
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below:

eval. ctx. E ::= [] | dc[v1, . . . ,vi−1,E,di+1, . . . ,dn] |
app(E,d) | app(v,E) |
⊃−(E) | ∀−(E) |
∧(E) | let ∧(x) = E in d |
∃(E) | let ∃(x) = E in d

DEFINITION 2.6. We define redexes and their reductions as fol-
lows.

• app(lam x.d,v) is a redex, and its reduction is d[x 7→ v].

• ⊃−(⊃+(v)) is a redex, and its reduction is v.

• let ∧(x) =∧(v) in d is a redex, and its reduction is d[x 7→ v].

• ∀−(∀+(v)) is a redex, and its reduction is v.

• let ∃(x) = ∃(v) in d is a redex, and its reduction is d[x 7→ v].

• dcf[v1, . . . ,vn] is a redex if dcf[v1, . . . ,vn] is defined to equal
some value v, and its reduction is v.

Given two dynamic terms d1 and d2 such that d1 = E[d] and d2 =
E[d′] for some redex d and its reduction d′, we write d1 ↪→ d2 and
say that d1 reduces to d2 in one step. We use↪→∗ for the reflexive
and transitive closure of↪→.

We assume that the type assgined to each dynamic constant func-
tion dcf is appropriate, that is,/0; /0; /0 `S v : s is derivable if
/0; /0; /0 `S dcf[v1, . . . ,vn] : s is derivable anddcf[v1, . . . ,vn] ↪→ v
holds.

Given a judgmentJ, we writeD :: J to indicate thatD is a deriva-
tion of J, that is,D is a derivation whose conclusion isJ.

LEMMA 2.7 (SUBSTITUTION). We have the following.

1. AssumeD :: Σ,a : σ;~P;∆`S d : s andD0 :: Σ`S s0 : σ. Then
Σ;~P[a 7→ s0];∆[a 7→ s0] `S d : s[a 7→ s0] is derivable.

2. AssumeD :: Σ;~P,P;∆ `S d : s and Σ;~P |=S P. Then
Σ;~P;∆ `S d : s is derivable.

3. AssumeD :: Σ;~P;∆,x : s1 `S d2 : s2 andΣ;~P;∆ `S d1 : s1.
ThenΣ;~P;∆ `S d2[x 7→ d1] : s2 is derivable.

PROOF. We can readily prove (1), (2) and (3) by structural in-
duction onD. When proving (1) and (2), we need to make use of
the regularity rules(reg-subst)and(reg-cut), respectively.

Given a derivationD, we useh(D) for the height ofD, which
can be defined in a standard manner.

LEMMA 2.8. AssumeD :: Σ;~P;∆,x : s1 `S d : s2 and Σ;~P |=S
s′1 ≤t p s1. Then there is a derivationD ′ :: Σ;~P;∆,x : s′1 `S d : s2
such thath(D ′) = h(D).

PROOF. The proof follows from structural induction onD im-
mediately. The regularity rule(reg-trans) is needed to handle
the case where the last applied rule inD is (ty-var’) .

LEMMA 2.9 (INVERSION). AssumeD :: Σ;~P;∆ `S d : s.

1. If d = lam x.d1 and s= s1→t p s2, then there is a derivation
D ′ :: Σ;~P;∆ `S d : s such thath(D ′) ≤ h(D) and the last

rule applied inD ′ is not(ty-sub).

2. If d =⊃+(d1) and s= P⊃ s1, then there is a derivation
D ′ :: Σ;~P;∆ `S d : s such thath(D ′) ≤ h(D) and the last
rule applied inD ′ is not(ty-sub).

3. If d = ∧(d1) and s= P∧s1, then there is a derivationD ′ ::
Σ;~P;∆ `S d : s such thath(D ′) ≤ h(D) and the last rule
applied inD ′ is not(ty-sub).

4. If d = ∀+(d1) and s= ∀a : σ.s1, then there is a derivation
D ′ :: Σ;~P;∆ `S d : s such thath(D ′) ≤ h(D) and the last
rule applied inD ′ is not(ty-sub).

5. If d = ∃(d1) and s= ∃a : σ.s1, then there is a derivation
D ′ :: Σ;~P;∆ `S d : s such thath(D ′) ≤ h(D) and the last
rule applied inD ′ is not(ty-sub).

PROOF. We prove (1) by induction onh(D). Let D ′ beD if D
does not end with an application of the rule(ty-sub). Hence, in
the rest of the proof, we assume that the last applied rule inD is
(ty-sub), that is,D is of the following form:

D1 :: Σ;~P;∆ `S d : s′ Σ;~P |=S s′ ≤t p s

Σ;~P;∆ `S d : s
(ty-sub)

By induction hypothesis, we have a derivationD ′1 :: Σ;~P;∆ `S d :
s′ such thath(D ′1)≤ h(D1) and the last applied rule inD ′1 is not
(ty-sub). Hence,D ′1 is of the following form:

D ′2 :: Σ;~P;∆,x : s′1 `S d1 : s′2

Σ;~P;∆ `S lam x.d1 : s′1→t p s′2
(ty-lam)

wheres′ = s′1→t p s′2 andd = lam x.d1. SinceΣ;~P |=S s′1→t p

s′2 ≤t p s1→t p s2, we haveΣ;~P |=S s1 ≤t p s′1 andΣ;~P |=S s′2 ≤t p
s2 by Definition 2.2. Hence, by Lemma 2.8, there is a derivation
D ′′2 :: Σ;~P;∆,x : s1 `S d1 : s′2 such thath(D ′′2 ) = h(D ′2). Let D ′
be the following derivation,

D ′′2 :: Σ;~P;∆,x : s1 `S d1 : s′2 Σ;~P |=S s′2 ≤t p s2

Σ;~P;∆,x : s1 `S d1 : s2
(ty-sub)

Σ;~P;∆ `S lam x.d1 : s1→t p s2
(ty-lam)

and we are done sinceh(D ′) = 1+1+h(D ′′2 ) = 1+h(D ′2)≤ 1+
h(D1) = h(D). We can prove (2), (3), (4) and (5) similarly.

THEOREM 2.10 (SUBJECTREDUCTION). Assume bothD ::
Σ;~P;∆ `S d : s and d↪→ d′. ThenΣ;~P;∆ `S d : s is derivable.

PROOF. Assumed = E[d0] andd′ = E[d′0], whered0 is a redex
andd′0 is the reduction of the redex. The proof proceeds by struc-
tural induction onh(D). Assume that the last applied rule inD
is (ty-sub), that is,D is of the following form:

D1 :: Σ;~P;∆ `S d : s1 Σ;~P |=S s1 ≤t p s

D1 :: Σ;~P;∆ `S d : s
(ty-sub)

By induction hypothesis onD1, Σ;~P;∆ `S d′ : s1 is derivable and
thereforeΣ;~P;∆ `S d′ : s is derivable. From now on, we assume
that the last applied rule inD is not (ty-sub), and proceed by
structural induction onE. We present the most interesting case
whereE = []. In this case,d = d0 is a redex andd′ = d′0.
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• d = app(lam x.d1,v2) and d′ = d1[x 7→ v2]. Hence, by
Lemma 2.9, we may assume that the derivationD is of the
following form,

D1 :: Σ;~P;∆,x : s1 `S d1 : s2

Σ;~P;∆ `S lam x.d1 : s1→t p s2 D2 :: Σ;~P;∆ `S v2 : s1

Σ;~P;∆ `S app(lam x.d1,v2) : s2

wheres= s2. By Lemma 2.7 (3), we knowΣ;~P;∆ ` d1[x 7→
v2] : s2 is derivable.

• d =⊃−(⊃+(v)) andd′ = v. Hence, by Lemma 2.9, we may
assume that the derivationD is of the following form:

Σ;~P,P;∆ `S v : s

Σ;~P;∆ `S⊃+(v) : P⊃ s Σ;~P |=S P

Σ;~P;∆ `⊃−(⊃+(v)) : s

By Lemma 2.7 (2), we knowΣ;~P`S v : s is derivable.

• d = ∀−(∀+(v)) andd′ = v. Hence, by Lemma 2.9, we may
assume that the derivationD is of the following form:

Σ,a : σ;~P;∆ `S v : s1

Σ;~P;∆ `S ∀+(v) : ∀a : σ.s1 Σ `S s0 : σ

Σ;~P;∆ ` ∀−(∀+(v)) : s1[a 7→ s0]

wheres= s1[a 7→ s0]. By Lemma 2.7 (1), we knowΣ;~P;∆`
v : s1[a 7→ s0] is derivable.

All other cases can be handled similarly.

LEMMA 2.11 (CANONICAL FORMS). AssumeD :: /0; /0; /0 `S
v : s. Then we have the following.

1. If s= scc[~s], then v is of the form dcc[~v] for some dynamic
constructor dcc associated with the type constructor scc.

2. If s= s1→t p s2, then v is of the formlam x.d.

3. If s= P⊃ s0, then v is of the form⊃+(v0).

4. If s= ∀a : σ.s0, then v is of the form∀+(v0).

5. If s= P∧s0, then v is of the form∧(v0).

6. If s= ∃a : σ.s0, then v is of the form∃(v0).

PROOF. With Definition 2.2 (7), the lemma follows from struc-
tural induction onD immediately.

THEOREM 2.12 (PROGRESS). AssumeD :: /0; /0; /0 `S d : s.
Then d is a value, or d↪→ d′ holds for some dynamic term d′,
or d = E[dcf(v1, . . . ,vn)] for some dynamic term dcf(v1, . . . ,vn)
that is not a redex.

PROOF. The theorem follows from structural induction onD.
We present the case where the last applied rule inD is
(ty-∃-elim). Hence,D is of the following form,

/0; /0; /0 `S d1 : ∃a : σ.s1 /0,a : σ; /0; /0,x : s1 `S d2 : s2

/0; /0; /0 `S let ∃(x) = d1 in d2 : s2

whered = let ∃(x) = d1 in d2 ands= s2. We now have the fol-
lowing three subcases.

• d1 ↪→ d′1 holds. Then we can readily verify thatd ↪→ d′ =
let ∃(x) = d′1 in d2.

• d1 = E1[dcf(~v)] for some dynamic termdcf(~v) that is not a
redex. Then letE = let ∃(x) = E1 in d2 and we haved =
E[dcf(~v)].

• d1 is a value. Thend1 is of the form∃(v1) by Lemma 2.11.
Therefore,d ↪→ d2[x 7→ v1] holds.

Hence, this case is finished. The other cases can be handled sim-
ilarly.

2.4 Erasure

We present a function from dynamic terms to untypedλ-
expressions that preserves semantics. We usee for the erasures
of dynamic terms, which are formally defined as follows:

erasures e ::= x | dc[e1, . . . ,en] | lam x.e |
app(e1,e2) | let x = e1 in e2

erasure values w ::= x | dcc[w1, . . . ,wn] | lam x.e

We can then define a function| · | as follows that translates dy-
namic terms into erasures.

|x| = x
|dc[d1, . . . ,dn]| = dc[|d1|, . . . , |dn|]

|lam x.d| = lam x.|d|
|app(d1,d2)| = app(|d1|, |d2|)
| ⊃+(d)| = |d|
| ⊃−(d)| = |d|
|∧ (d)| = |d|

|let ∧(x) = d1 in d2| = let x = |d1| in |d2|
|∀+(d)| = |d|
|∀−(d)| = |d|
|∃(d)| = |d|

|let ∃(x) = d1 in d2| = let x = |d1| in |d2|

Similar to assigning dynamic semantics to the dynamic terms,
we can readily assign dynamic semantics to the erasures, which
are just untypedλ-expressions. We writee1 ↪→ e2 to mean that
e1 reduces toe2 in one step, and use↪→∗ for the reflexive and
transitive closure of↪→.

THEOREM 2.13. AssumeD :: /0; /0; /0 `S d : s.

1. If d ↪→∗ v, then|d| ↪→∗ |v|.

2. If |d| ↪→∗ w, then there is a value v such that d↪→∗ v and
|v|= w.

PROOF. (1) is straightforward. With Lemma 2.11, (2) follows
from structural induction onD.

With Theorem 2.13, we can evaluate a dynamic termd by simply
evaluating the erasure ofd.

3 Extensions

We extendATS to accommodate some common realistic pro-
gramming features in this section.

3.1 General Recursion

We introduce a fixed-point operatorfix to support general recur-
sion in ATS . We now call variablesx lam-variables and intro-
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ducefix-variables f . We usexf for a variable that is either a
lam-variable or afix-variable.

dyn. terms d ::= . . . | f | fix f .d
dyn. var. ctx. ∆ ::= . . . | ∆, f : s
dyn. subst. ΘD ::= . . . |ΘD[ f 7→ d]

The typing rule(ty-var) is modified as follows,

`S Σ;~P;∆ ∆(xf) = s

Σ;~P;∆ `S xf : s′
(ty-var)

and the following rule is added to handle the fixed-point operator.

Σ;~P;∆, f : s`S d : s

Σ;~P;∆ `S fix f .d : s
(ty-fix)

A dynamic term of the formfix f .d is a redex and its reduction
is d[ f 7→ fix f .d]. It is straightforward to establish both the sub-
ject reduction theorem (Theorem 2.10) and the progress theorem
(Theorem 2.12) for this extension.

3.2 Datatypes and Pattern Matching

We present an approach to extendingATS with support for
datatypes and pattern matching and then provide with some sim-
ple examples. The following is some additional syntax we need.

patterns p ::= x | dcc[p1, . . . , pn]
dyn. terms d ::= . . . | cased0 of p1⇒ d1 | · · · | pn⇒ dn
eval. ctx. E ::= . . . | caseE of p1⇒ d1 | · · · | pn⇒ dn

As usual, we require that any variablex can occur at most once
in a pattern. Given a valuev and a patternp, we use a judgment
of the form v ⇓ p⇒ ΘD to indicatev = p[ΘD]. The rules for
deriving such judgments are given as follows,

v⇓ x⇒ [x 7→ v]
(vp-var)

vi ⇓ pi ⇒Θi
D for 1≤ i ≤ n

dcc[v1, . . . ,vn] ⇓ dcc[p1, . . . , pn]⇒Θ1
D∪ . . .∪Θn

D

(vp-dcc)

and we say thatv matchesp if v⇓ p⇒ ΘD is derivable for some
dynamic substitutionΘD. Note that in the rule(vp-dcc), the
unionΘ1

D ∪ . . .∪Θn
D, which becomes the empty dynamic substi-

tution [] whenn = 0, is well-defined since any variable can occur
at most once in a pattern.

A dynamic term of the formcasev of p1⇒ d1 | · · · | pn⇒ dn
is a redex ifv ⇓ pi ⇒ ΘD holds for some 1≤ i ≤ n, and its re-
duction isdi [ΘD]. Note that reducing such a redex may involve
nondeterminism ifv matches several patternspi .

The typing rules for pattern matching is given in Figure 7. The
meaning of a judgment of the formΣ ` p ⇓ s⇒ Σ′;~P′;∆′ is for-
mally captured by the following lemma.

LEMMA 3.1. AssumeD :: /0; /0; /0`S v : s,E1 :: /0` p⇓ s`Σ;~P;∆
andE2 :: v⇓ p⇒ΘD. Then there existsΘS : Σ such that/0; /0 |=S
P[ΘS] for each P in~P and /0; /0; /0 `S ΘD : ∆[ΘS].

PROOF. The lemma follows from structural induction on
E1.

As an example, the judgment below is derivable,

a′ : type,n′ : int ` cons[x1,x2] ⇓ list[a′,n′]⇒ Σ;~P;∆

Σ `S s : type

Σ ` x⇓ s⇒ /0; /0; /0,x : s
(pat-var)

S(dcc) = ∀Σ0.~P0 ⊃ ([s1, . . . ,sn]⇒t p scc[~s0])
Σ,Σ0 ` pi ⇓ si ⇒ Σi ;~Pi ;∆i for 1≤ i ≤ n

Σ′ = Σ1, . . . ,Σn ~P′ = ~P1, . . . ,~Pn ∆′ = ∆1, . . . ,∆n

Σ ` dcc[p1, . . . , pn] ⇓ scc[~s]⇒ Σ0,Σ′;~P0,scc[~s0]≤t p scc[~s],~P′;∆′
(pat-dc)

Σ ` p⇓ s1⇒ Σ′;~P′;∆′ Σ,Σ′;~P,~P′;∆,∆′ `S d : s2

Σ;~P;∆ ` p⇒ d ⇓ s1⇒ s2

(ty-cla)

Σ;~P;∆ `S d0 : s1 Σ;~P;∆ ` pi ⇓ di : s1⇒ s2 for 1≤ i ≤ n

Σ;~P;∆ `S (cased0 of p1⇒ d1 | · · · | pn⇒ dn) : s2

(ty-cas)

Figure 7. The typing rules for pattern matching

whereconsis assigned the following dc-type,

∀a : type.∀n : int.n≥ 0⊃ ([a, list[a,n]]⇒t p list[a,n+1])

andΣ = (a : type,n : int), ~P = (n≥ 0, list[a,n+1]≤t p list[a′,n′])
and∆ = (x1 : a,x2 : list[a,n]).

We can readily prove the subject reduction theorem (Theo-
rem 2.10) for this extension: Lemma 3.1 is needed to handle the
case where the reduced index is of the following form:

cased0 of p1⇒ d1 | . . . | pn⇒ dn

Also, we can establish the progress theorem (Theorem 2.12) for
this extension after slightly modifying it to include the possibility
that a well-type programd may be of the following form,

E[casev0 of p1⇒ d1 | . . . | pn⇒ dn]

wherev0 does not match anypi for 1≤ i ≤ n if d is neither a
value nor can be further reduced.

3.2.1 Products

Let ∗ be a binary static constructor of the sc-sort[type, type]⇒
type. That is,∗ is a type constructor. Also, Letpair be the only
dynamic constructor associated with∗, and the following dc-type
is assigned topair,

∀a1 : type.∀a2 : type.[a1,a2]⇒t p a1 ∗a2

where we usea1 ∗ a2 for ∗[a1,a2]. Then the pairing function
with the type∀a1 : type.∀a2 : type.a1→t p a2→t p a1 ∗a2 can be
defined as follows,

∀+(∀+(lam x1.lam x2.pair[x1,x2]))

and the first projection with the type∀a1 : type.∀a2 : type.a1 ∗
a2→t p a1 can be defined as follows,

∀+(∀+(lam x.casex of pair[x1,x2]⇒ x1))

and the second projection can be defined similarly.

3.2.2 Sums

Let + be a static constructor of the sc-sort[type, type]⇒ type,
andinl andinr be the two dynamic constructors associated with
+ which are assigned the following dc-types respectively:

∀a1 : type.∀a2 : type.[a1]⇒t p a1 +a2
∀a1 : type.∀a2 : type.[a2]⇒t p a1 +a2
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For examples, we can form a function of the types1 + s2→t p s
as follows,

lam x.(casex of inl[x1]⇒ f1(x1) | inr[x2]⇒ f2(x2))

where the two given functionsf1 and f2 are of the typess1→t p s
ands2→t p s, respectively,

3.3 Effects

Unlike P TS , ATS can be extended in a straightforward manner
to accommodate effects such as references and exceptions.

For instance, to introduce references intoATS , we can simply
declare a type constructorref of the sc-sort[type]⇒ typeand then
the following dynamic functions of the corresponding assigned
dc-types.

mkref : ∀a : type.[a]⇒t p ref(a)
deref : ∀a : type.[ref(a)]⇒t p a

assign : ∀a : type.[ref(a),a]⇒t p 1

The intended meaning of these functions should be obvious. We
also need to add into Definition 2.2 the following regularity con-
dition to address the issue ofref being an invariant type construc-
tor.

• Σ;~P |=S ref(s) ≤t p ref(s′) implies Σ;~P |=S s≤t p s′ and
Σ;~P |=S s′ ≤t p s.

It is a standard procedure to assign dynamic semantics to this
extension and then establish both the subject reduction theorem
and the progress theorem. Please see (Harper, 1994) for some
details on such a procedure.

It is straightforward as well to introduce exceptions intoATS ,
and we omit further details.

4 Examples of Applied Type Systems

We present some examples of applied type systems in this sec-
tion.

4.1 λω and λ2,Gµ

Let STATICS0 = STATICS({bool, type};S0), that is, STATICS0 is
a static component in which the only base sorts areboolandtype,
and the only static constants are those declared in the initial sig-
natureS /0. Let M0 be a model for STATICS0 as is defined in Sec-
tion 2.2. It is clear thatβ-conversion is valid inM0, that is,

VM0(φ,(λa : σ1 : s2)(s1)) = VM0(φ,s2[a 7→ s1])

for everyφ : Σ such thatΣ ` (λa : σ1 : s2)(s1) : σ2 is derivable.

One of the typedλ-calculi in λ-cube (Barendregt, 1992) isλω,
which is also known as SystemFω. We present the syntax ofλω
as follows:

kinds κ ::= type| κ1→t p κ2
constructors τ ::= α | λα : κ.τ | τ1(τ2) | τ1→t p τ2 | ∀α : κ.τ
kinding ctx. Σ ::= /0 | Σ,α : κ
typing ctx. ∆ ::= /0 | ∆,α : κ
terms t ::= x | λx : τ.t | t1(t2) | λα : κ.t | t(τ)

Note that a kindκ and a constructorτ in λω are just a sort and
a static term in STATICS0, respectively. In addition, a kinding

context and a typing context inλω are just a static context and a
dynamic context in STATICS0, respectively. A typing judgment
in λω is of the formΣ;∆ ` t : τ, for which the typing rules are
standard. For instance, the following rule addresses the issue of
type conversion,

Σ;∆ ` t : τ1 Σ ` τ1 =β τ2 : type

Σ;∆ ` t : τ2
(ty-β-conv)

whereΣ ` τ1 =β τ2 : type means thatτ1 and τ2 are two well-
formed types underΣ that areβ-equivalent.

We define as follows a translation‖ ·‖ that maps terms inλω into
dynamic terms in some applied type system ATS0 whose statics

is STATICS0 and constraint relation is|=M0
S /0

:

‖x‖ = x
‖λx : τ.t‖ = lam x.‖t‖
‖t1(t2)‖ = app(‖t1‖,‖t2‖)
‖λα : κ.t‖ = ∀+(‖t‖)
‖t(τ)‖ = ∀−(‖t‖)

PROPOSITION 4.1. AssumeD :: Σ;∆ ` t : τ in λω. Then
Σ; /0;∆ `S /0 ‖t‖ : τ is derivable inATS0.

PROOF. By structural induction onD. The only interesting point

is to notice thatΣ ` τ1 =β τ2 impliesΣ; /0 |=M0
S /0

τ1 ≤t p τ2 asM0

honorsβ-conversion.

Like λω, the languageλ2,Gµ (Xi et al., 2003), which extends the
second-order polymorphicλ-calculusλ2 with guarded recursive
datatypes, can also be embedded into ATS0.

4.2 Dependent ML

Let STATICS1 = STATICS({bool, type, int};S1), whereS1 extends
the initial static signatureS /0 with declarations such as

add : [int, int]⇒t p int
sub : [int, int]⇒t p int
mul : [int, int]⇒t p int
div : [int, int]⇒t p int
geq : [int, int]⇒t p bool
leq : [int, int]⇒t p bool

and : [bool,bool]⇒t p bool
or : [bool,bool]⇒t p bool

not : [bool]⇒t p bool
. . . : . . .

Let M1 be a model for STATICS1 such that the domainDint in M1
is the set of integers and the above static functions are all given
the standard interpretation. For instance,addis interpreted as the
addition function on integers,leq is interpreted as the less-than-
or-equal-to relation on integers,or is interpreted as the disjunc-
tion on booleans, etc.

Let ATS1 be some applied type system such that its statics is and

its constraint relation is|=M1
S1

. Then the version of Dependent ML
as is presented in (Xi, 2002) can be easily embedded into ATS1,
provided that the dynamics of ATS1 support general recursion,
pattern matching, references and exceptions.
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5 Related Work and Conclusion

The frameworkATS is rooted in the work on Dependent ML (Xi
and Pfenning, 1999; Xi, 1998), where the type system of ML
is enriched with a restricted form of dependent datatypes, and
the recent work on guarded recursive datatypes (Xi et al., 2003).
Given the similarity between these two forms of types3, we are
naturally led to seeking a unified presentation for them.

For those who are familiar with qualified types (Jones, 1994),
which underlies the type class mechanism in Haskell (Peyton
Jones et al., 1999), we point out that a qualified type cannot be
regarded as a guarded type. The simple reason is that the proof of
a guard in an applied type system bears no computational mean-
ing, that is, it cannot affect the run-time behavior of a program,
while a dictionary, which is really the proof of some predicate on
types in the setting of qualified types, can and is mostly likely to
affect the run-time behaviour of a program.

Another line of closely related work is the formation of a type
system in support of certified binaries (Shao et al., 2002), in
which the idea of a complete separation between types and pro-
grams is also employed. Basically, the notions of type language
and computational language in the type system correspond to the
notions of statics and dynamics inATS , respectively, though the
type language is based on the calculus of constructions extended
with inductive definitions (CiC) (Pfenning and Paulin-Mohring,
1989; Paulin-Mohring, 1993). However, the notion of a con-
straint relation inATS does not have a counterpart in (Shao et al.,
2002). Instead, the equality between two types is determined by
comparing the normal forms of these types. It is not difficult to
see that an applied type system can also be constructed to certify
binaries in the sense of (Shao et al., 2002) as long as we have an
approach to effectively representing and verifying proofs of the
constraint relation associated with the applied type system.

In summary, we have presented a frameworkATS for facilitating
the design and formalization of type systems to support practical
programming. With a complete separation between statics and
dynamics,ATS works particularly well on supporting dependent
types in the presence of effects. Also, the availability of guarded
types and asserting types inATS makes it both more flexible and
more effective to capture program invariants. We also seeATS
as a unification as well as a generalization of the previous work
on a restricted form of dependent types (Xi and Pfenning, 1999;
Xi, 1998) and guarded recursive datatypes (Xi et al., 2003).

A static component inATS is currently based on a simply typed
λ-calculus. Therefore, it is natural to study how a static compo-
nent can be built upon a typedλ-calculus supporting polymor-
phism and/or dependent types. Also, we are particularly inter-
ested in designing and implementing a functional programming
language with a type system based onATS , which can then of-
fer a means to language extension by mostly implementing new
language constructs in terms of some existing ones.
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3Actually, guarded recursive datatypes can be thought of as
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