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Abstract

One of the most important steps towards e�ective software maintenance of a large complicated system is to understand how

program features are spread over the entire system and their interactions with the program components. However, we must ®rst be

able to represent an abstract feature in terms of some concrete program components. In this paper, we use an execution slice-based

technique to identify the basic blocks which are used to implement a program feature. Three metrics are then de®ned, based on this

identi®cation, to determine quantitatively, the disparity between a program component and a feature, the concentration of a feature

in a program component, and the dedication of a program component to a feature. The computations of these metrics are auto-

mated by incorporating them in a tool (vSuds), which makes the use of our metrics immediately applicable in real-life contexts. We

demonstrate the e�ectiveness of our technique by experimenting with a reliability and performance evaluator. Results of our study

suggest that these metrics can provide an indication of the closeness between a feature and a program component which is very

useful for software programmers and maintainers to better understand the system at hand. Ó 2000 Elsevier Science Inc. All rights

reserved.
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1. Introduction

An ideal software system 1 should follow certain
standards to have a high degree of cohesion and a low
degree of coupling among its various components
(Meilir, 1988; Pressman, 1997). It should also have a
clear mapping between each feature and its corre-
sponding code segments (IEEE, 1984; Military Stan-
dard, 1988). However, this is seldom the case in practice
and one may actually ®nd that in a large complicated
software system a program feature is spread across a
number of components. Code used to implement a
feature may be found in components which are seem-
ingly unrelated to each other. As a result, there is no
clear traceability for one to follow in order to under-
stand quantitatively how features and program compo-
nents interact. This is especially true for some legacy

systems as many fast patches may have been included to
keep up with pressure to respond to customer feedback
in a timely fashion.

One can certainly argue that an experienced pro-
grammer may have good knowledge of the software
system at hand. Nevertheless such knowledge is only
qualitative. Carefully de®ned metrics are necessary to
obtain a quantitative measure about the interactions
between program components and features. For exam-
ple, a programmer may realize that a feature is related to
a program component. But, how much is it related?
How much of the code in the component is used to
implement this feature ± 50%, 70%, or more than 90%?
And how much of the code related to this feature is in
this component? All these important questions cannot
be answered in a quantitative way unless we clearly
de®ne how to compute the program dedication and the
feature concentration.

Since a feature is an abstract description of a func-
tionality given in the speci®cation, and a program
component is a concrete element which constitutes a
software system, it is di�cult to make a connection
between these two without ®rst representing an abstract
feature in terms of some concrete program components.
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In this paper, we use an execution slice-based technique,
where an execution slice is the set of program code
(basic blocks 2 in our case) executed by an input that
exercises a feature, to locate code that is used to im-
plement the feature. A very important aspect of our
technique is that it is supported by a suite of tools and
can be immediately applied to large complicated real
applications. More details about feature representation
and tool support can be found in Sections 2.4 and 4.2,
respectively.

Once a feature is mapped into a set of basic blocks,
we can then examine quantitatively the interaction be-
tween a feature and a program component. To do so, we
compute three metrics:
· the disparity, which measures how close a feature is to

a program component,
· the concentration, which shows how much a feature is

concentrated in a program component, and
· the dedication, which indicates how much a program

component is dedicated to a feature.
These metrics provide a signi®cantly di�erent view of
where a program feature resides in a software system
than presented in Wilde and Casey (1996), Wilde and
Scully (1995) and Wong et al. (1995) which focus on the
code that is uniquely related to a given feature. In other
words, methodologies discussed in the latter only pin-
point some starting points for locating program features,
whereas metrics proposed in this paper provide a much
more complete picture of how a feature spreads over a
software system. Although it is important to follow an
as-needed program understanding strategy to locate, as
quickly as possible, certain code segments as the starting
points, it is also crucial to understand where the ma-
jority of the code related to a given feature resides. The
key issue we want to answer is how to measure, in a
quantitative way, the closeness between a feature and a
program component in a large complicated software
system. It is clear that information obtained by using
metrics discussed in this paper should complement,
rather than compete with, that collected using the heu-
ristics described in Wilde and Casey (1996), Wilde and
Scully (1995) and Wong et al. (1995). Together, they can
help software programmers and maintainers better un-
derstand the system at hand.

The remainder of the paper is organized as follows.
Section 2 presents general concepts, such as how to
represent a feature using a set of basic blocks. It also
de®nes the three metrics: disparity, concentration, and
dedication. Section 3 gives a numerical example to show
how these metrics are computed. Then, a case study is

reported in Section 4 to illustrate the advantages of us-
ing our metrics. The e�ectiveness of our metrics is also
discussed. Our conclusions appear in Section 5.

2. General concepts and de®nitions

In this section, we ®rst explain program features,
program components, invoking inputs, and excluding
inputs; then we discuss how to represent a feature in
terms of a set of basic blocks followed by how to com-
pute the disparity between a feature and a program
component, the concentration of a feature in a program
component, and the dedication of a program component
to a feature. For the purpose of discussion, let P be a
program, F a feature of P, and C a component of P.

2.1. Program features

Generally speaking, a feature is an abstract descrip-
tion of a functionality given in the speci®cation.
Therefore, one good way to describe the features of a
given program is based on its speci®cation. For example,
the speci®cation of the UNIX wordcount program (wc)
is to count the number of lines, words, and/or characters
given to it as input. Based on this, we can specify three
features (with respect to three functionalities): one which
returns the number of lines, another which returns the
number of words, and a third which returns the number
of characters.

2.2. Program components

A program component can have many di�erent
meanings, depending on the system being analyzed. In
our case study (see Section 4), we treat each ®le as a
program component. However, metrics discussed in this
paper can also work at a di�erent granularity level (e.g.,
a single function, a group of functions, or a group of
®les) as long as information is collected with respect to
that particular granularity.

2.3. Invoking inputs and excluding inputs

An input t is an invoking input with respect to a
feature F if, when executed on P, it shows the func-
tionality of F. Otherwise, t is an excluding input. Let us
use the UNIX wordcount program again to illustrate
the concept of invoking and excluding inputs. Suppose F
is the functionality for counting the number of lines. An
input (say t1) such as ``wc -l data'' that returns the
number of lines in the ®le data is an invoking input;
whereas another input (say t2) ``wc -w data'' that gives
the number of words (instead of the number of lines) in
the ®le data is an excluding input.

2 A basic block, also known as a block, is a sequence of consecutive

statements or expressions containing no transfers of control except at

the end, so that if one element of it is executed, all are. This of course

assumes that the underlying hardware does not fail during the

execution of a block.
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An invoking input is said to be totally focused on a
given feature if it exhibits only this feature and no other
features. Hereafter, such an invoking input is also re-
ferred to as a focused invoking input with respect to that
feature. If we limit ourselves to wc features which output
line, word, and character counts, t1 is a focused invoking
input with respect to F which counts the number of
lines. But this is not true for an input ``wc data'' (re-
ferred to as t3) even though it also returns the number of
lines in the ®le data. This is because in addition to the
number of lines, t3 also returns the number of words and
characters. That is, t3 also exhibits features which count
the number of words and characters, respectively.

2.4. Representation of a feature in terms of basic blocks

Before we can compute the disparity between F and
C, or the concentration of F in C, or the dedication of C
to F, we must ®rst represent F (an abstract feature) in
terms of C (some concrete program elements). One
choice is to use basic blocks. A description of a basic
block appears in the second footnote in Section 1.
Hereafter, we refer to a basic block simply as a block.

Researchers have proposed several execution slice-
based heuristics to identify code that is uniquely related
to a given feature (Wilde and Casey, 1996; Wilde and
Scully, 1995; Wong et al., 1995). Although code so
identi®ed provides an excellent starting point for pro-
gram understanding, it is not su�cient for computing
the disparity, the feature concentration, and the pro-
gram dedication. For these computations, we need to
identify more code that is relevant or important from the
point of view of a functionality. One simple and yet
e�ective approach is to use the union of the execution
slices (in terms of blocks) of many invoking inputs to
®nd a set of code (blocks in our case) that is used to
implement F. Theoretically, we may need to use all the
invoking inputs for a given P and F. In practice, this is
impossible and unnecessary. The alternative is to use a
good set of focused invoking inputs to identify most of
the code that is used to implement F.

The reason for using focused invoking inputs with
respect to the feature being examined is to avoid in-
cluding code that has nothing to do with this feature. If
this is not possible (i.e., every invoking input with re-
spect to this feature also exhibits some other features),
we need to subtract code that is uniquely used to im-
plement the other features from the code identi®ed by
the union of such invoking inputs. A simple example
explanation is as follows. Suppose a feature (say Fa)
cannot be exhibited without also having another feature
Fb exhibited. Suppose also that Fb can be exhibited by
itself. Under this situation, a good way to ®nd code used
to implement Fa is to ®rst ®nd code used to implement Fa

and Fb, then subtract the code uniquely related to Fb

from that.

2.5. Disparity, concentration, and dedication

Let T be a small set of carefully selected invoking
inputs with the focus on F. Recall that P is a program, F
a feature of P, and C a component of P. We de®ne the
following notation:
· Bti is the set of blocks in P executed by input ti 2 T .
· BF is the union of Bti such that ti 2 T , i.e., the set of

blocks in P executed by at least one input in T. In
other words, BF is a set of blocks in P which are used
to implement F.

· BC is the set of blocks in C.
· BC\F is the intersection of BC and BF , i.e., the set of

blocks in C which are used to implement F.
· BC[F is the union of BC and BF .
· BC�F is the set of blocks in either BC or BF , but not

both, i.e., BC�F equals �BC \ BF �[ �BC \ BF �, where
BC and BF are the complements of BC and BF in the
set of blocks in P, respectively, BC \ BF contains the
blocks in BF but not in BC, and BC \ BF contains
the blocks in BC but not in BF .
We now explain how to compute DISPCF , the dis-

parity between a feature F and a component C. Quan-
titatively, we want to capture by DISPCF the degree to
which feature F is close to component C. We observe
that the measurement DISPCF has to satisfy the following
properties:
· The numerical value of DISPCF must be normalized

(i.e., 06DISPCF 6 1) so that the disparities between
features and components can be compared in a mean-
ingful way.

· The value assigned should be somewhat inversely pro-
portional to the number of blocks in BC\F , i.e., the
more blocks in the intersection of BC and BF , the
smaller the disparity between C and F. This makes
sense because when C and F share more common
blocks, their disparity should de®nitely be smaller.

· The value assigned should be somewhat proportional
to the number of blocks in BC�F , i.e., the more blocks
in either BC or BF , but not both, the larger the dispar-
ity between C and F. This can also be easily under-
stood because when there are more blocks in BC but
not in BF , or vice versa, the disparity between these
two should also be larger.

· The value 1 should be assigned if and only if there is
no common block between BF and BC, i.e., the inter-
section between BF and BC is empty (BC\F � /).

· The value 0 should be assigned if and only if feature
F is totally implemented in component C and
every block in C is used to implemented F, i.e.,
BC\F � BC[F . In other words, DISPCF � 0 if and only
if BC � BF .

Based on these properties, DISPCF can be de®ned as:

DISPCF � BC�Fj j
BC[Fj j : �1�
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This leads to the computation

� BCj j � BFj j ÿ 2 � BC\Fj j
BCj j � BFj j ÿ BC\Fj j

� 1ÿ BC\Fj j
BCj j � BFj j ÿ BC\Fj j

� 1ÿ BC\Fj j
BC[Fj j ; �2�

where jBCj represents the number of elements in set BC,
and so on.

Next, we explain how to compute CONCFC, the con-
centration of a feature F in a component C, and DEDICF ,
the dedication of a component C to a feature F. These
two measurements should quantitatively re¯ect how
much of a feature is in a component, and how much a
component is in a feature, respectively. They should also
satisfy the following properties:
· The values of both CONCFC and DEDICF should be

normalized in the range from 0 to 1, inclusively.
· The value assigned should be somewhat proportional

to the number of blocks in BC\F , i.e., the more blocks
in the intersection of BC and BF , the higher the con-
centration of F in C, and the higher the dedication
of C to F. The reason is intuitive and simple: when
C and F have more blocks in common, they have a
bigger commitment to each other.

· The value assigned should be somewhat inversely pro-
portional to the number of blocks in BF for CONCFC,
and BC for DEDICF , respectively. This is because when
BF have more blocks, it is less likely for all the blocks
to reside in the same component. Similarly, when BC

have more blocks, it is more likely that some of these
blocks have nothing to do with F.

· CONCFC equals 1 if and only if all the blocks used to
implement F are in C, whereas CONCFC equals 0 if
and only if none of these blocks is in C.

· DEDICF equals 1 if and only if all the blocks in C are
important to F, whereas DEDICF equals 0 if and only
if none of these blocks has anything to with F.

Based on these observations, CONCFC and DEDICF can
be de®ned as

CONCFC � BC\Fj j
jBF j ; �3�

DEDICF � BC\Fj j
jBCj : �4�

Finally, we examine the relationship among DISPCF ,
CONCFC , and DEDICF for the ®ve cases in Fig. 1 which
cover all the possible relationships between the sets BF

and BC.
· Case I: BC\F � /. In this case, DISPCF � 1, CONCFC

� 0, and DEDICF � 0.
· Case II: BC and BF have some blocks in common, i.e.,

BC\F 6� /, but neither subsumes the other. Here,
DISPCF , CONCFC, and DEDICF are all between 0 and
1.

· Case III: BC equals BF which makes BC\F � BC[F . As
a result, DISPCF � 0, and CONCFC � DEDICF � 1.

· Case IV: BF is a subset of BC and BF 6� BC, i.e.,
BF � BC. We have DISPCF and DEDICF between 0
and 1, and CONCFC � 1.

Fig. 1. Possible relationship between BF and BC .
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· Case V: BC is a subset of BF and BC 6� BF , i.e.,
BC � BF . We have DISPCF and CONCFC between 0
and 1, and DEDICF � 1.
A point worth noting is that a 100% concentration

(CONCFC � 1) or a 100% dedication (DEDICF � 1) does
not guarantee a zero disparity between F and C. This
disparity is 0 if and only if both concentration and
dedication are 100%, i.e., BF � BC. This disparity is 1 if
and only if both concentration and dedication are 0, i.e.,
BC\F � /. As for feature concentration and component
dedication, if CONCFC 6� 0 (i.e., BC\F 6� /) then
DEDICF 6� 0, and vice versa. Similarly, if CONCFC � 0
(i.e., BC\F � /) then DEDICF � 0, and vice versa.

3. An example

In this section, we use a numerical example to explain
in detail how to compute the disparity, the concentra-
tion, and the dedication. To explain, without having the
complex notation detract, we assume that the program
being examined has only two components (C1 and C2),
two features �F1 and F2�, and two invoking inputs (t1 and
t2) focused on F1. This simpli®cation is not necessary
and is removed from our case study on a real application
in Section 4.

The ®rst step is to ®nd out how the program and each
component are executed, in terms of how many and
which blocks, by each invoking input. Suppose we have
the following observations with the corresponding dia-
grammatic representation in Fig. 2:
· C1 has ®ve blocks (b1i, 16 i6 5) of which three (b11,

b12, and b13) are executed by t1; two (b13, b15) by t2.
· C2 has six blocks (b2j, 16 j6 6) of which two (b21 and

b22) are executed by t1; three (b22, b25, and b26) by t2.
Since BF1

is the union of all the blocks in the program
executed by at least one of the invoking inputs with
respect to F1, we have

BF1
� Bt1 [ Bt2

� fb11; b12; b13; b21; b22g [ fb13; b15; b22; b25; b26g
� fb11; b12; b13; b15; b21; b22; b25; b26g:

In addition

BC1\F1
� fb11; b12; b13; b15g;

BC2\F1
� fb21; b22; b25; b26g;

BC1[F1
� fb11; b12; b13; b14; b15; b21; b22; b25; b26g;

BC2[F1
� fb11; b12; b13; b15; b21; b22; b23; b24; b25; b26g;

BC1�F1
� fb14; b21; b22; b25; b26g;

BC2�F1
� fb11; b12; b13; b15; b23; b24g:

The disparities between C1 and F1, and C2 and F1 are

DISPC1F1
� 1ÿ BC1\F1

�� ��
BC1[F1

�� �� � 1ÿ 4

9
� 0:556;

DISPC2F1
� 1ÿ BC2\F1

�� ��
BC2[F1

�� �� � 1ÿ 4

10
� 0:60:

The concentrations of F1inC1 and C2, respectively, are:

CONCF1C1
� BC1\F1

�� ��
BF1

�� �� � 4

8
� 0:50;

CONCF1C2
� BC2\F1

�� ��
BF1

�� �� � 4

8
� 0:50:

The dedications of C1 and C2, respectively, to F1 are:

DEDIC1F1
� BC1\F1

�� ��
BC1

�� �� � 4

5
� 0:80;

DEDIC2F1
� BC2\F1

�� ��
BC2

�� �� � 4

6
� 0:667:

These measurements are consistent with the properties
listed in Section 2.5. For example, feature F1 has eight
blocks: four in C1 and four in C2. Therefore, F1 should
have the same concentration (50% each) in C1 and C2,
respectively. On the other hand, since C2 has more
blocks than C1, the dedication of C2 to F1 (0.667) should
be less than that of C1 (0.80). For the same reason, the
disparity between C2 and F1 (0.60) is larger than that
between C1 and F1 (0.556).

4. A case study

We now present a case study to show how our metrics
help programmers and maintainers better understand
their applications. We ®rst provide an overview of the
subject program and the tool used, describe the data
collected, give our observations, and then discuss the
issues related to the e�ectiveness of our metrics.

Fig. 2. A diagrammatic representation of a program P with two

components C1 and C2. Each cell in the diagram is a block. The shaded

ones are related to the feature F1.
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4.1. Subject program

The program being studied is a symbolic hierarchical
automated reliability and performance evaluator
(SHARPE) (Sahner et al., 1996). It has 35K lines of C
code in 30 ®les and has a total of 373 functions and
11,752 blocks. The size of each ®le in terms of the
number of blocks is listed in Table 1. SHARPE was ®rst
developed in 1986 for three groups of users: practicing
engineers, researchers in performance and reliability
modeling, and students in engineering and science
courses. Since then, several major revisions have been
made to ®x bugs and adopt new requirements.

SHARPE provides a speci®cation language and
analysis algorithms for nine di�erent model types. Var-
ious transient and steady-state measures of interest are
possible using the built-in functions in SHARPE. In this
study, we view the speci®cation of a model and the built-
in functions that can be used for computing the mea-
sures of interest pertaining to that model as a feature.
For example, the speci®cation of Markov chains and the
grouping of the built-in functions which facilitate the
analysis process constitute a single feature referred to as
MC. The other ®ve features (i.e., ®ve models) being
examined are: fault trees (FT), generalized stochastic

petri-nets (GSPN), product-form queuing networks
(PFQN), reliability graphs (RELG), and Markov re-
ward models (MRM).

4.2. Tool support

Theoretically, one could argue that for a given feature
and a program component, the disparity, concentration,
and dedication can be computed manually without any
tool. However, even if this is true for some rare cases,
doing such computations by hand is not only time-
consuming but also likely to be mistake-prone. In
practice this is essentially impossible, especially for large
complicated software systems. Therefore, we need a tool
such as vSudsTM (Horgan et al., 1998; vSuds-manual,
1998), a Software Understanding System developed at
Telcordia Technologies Inc.

Given a program, vSuds instruments it at compile
time by inserting probes at appropriate locations. Then
an executable is built on the instrumented code. Each
time when the program is executed on an input, the
complete traceability of that input, such as how many
times each block is executed by that input, is appended
to a corresponding trace ®le. With this information the
execution slice of an input can be represented, for ex-
ample, in terms of blocks. Once we have such slices (i.e.,
Bti where ti is an invoking input focused on a feature F),
we can easily compute BF (the set of blocks used to
implement F). We can also compute, with respect to a
given component C, BC\F (the set of blocks in the in-
tersection of BF and BC), and BC[F (the set of blocks in
the union of BF and BC).

Note that while execution slices are represented only
in blocks in this study, they can also be represented in
decisions, c-uses, p-uses, and all-uses. More information
is available in Horgan et al. (1998), Horgan and London
(1991) and vSuds-manual (1998) about vSuds and how
blocks, decisions, c-uses, p-uses, and all-uses are de®ned
in vSuds.

4.3. Data collection & veri®cation

Since SHARPE is written in C, a natural way to de-
compose it is to treat each .c ®le as a separate program
component. In our experiment, a set of invoking inputs
focused on each of the six features (MC, FT, GSPN,
PFQN, RELG, and MRM), respectively, was carefully
selected from the regression test suite of SHARPE. One
advantage of using regression tests is that they are the
real inputs used during the integration and system test-
ing. Another advantage is that there exist clear de-
scriptions for many of these tests, which made it very
easy for us to select invoking inputs focused on a given
feature. The execution slice in terms of blocks of each of
these inputs was computed. The BF for each of the six
features and the BC for each of the 30 ®les of SHARPE

Table 1

Number of blocks in each ®le

File # of blocks

analyze.c 334

bind.c 911

bitlib.c 75

cexpo.c 406

cg.c 202

debug.c 94

expo.c 186

ftree.c 993

in_qn_pn.c 441

inchain.c 404

indist.c 243

inshare.c 608

inspade.c 305

maketree.c 176

mpfqn.c 429

mtta.c 134

multpath.c 128

newcg.c 230

newlinear.c 489

newphase.c 414

pfqn.c 325

phase.c 544

reachgraph.c 524

read1.c 421

results.c 604

share.c 702

sor.c 269

symbol.c 527

uniform.c 227

util.c 407
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were also computed. Using BF 's and BC's, we computed
the dedication DEDICF , concentration CONCFC, and
disparity DISPCF with respect to every possible pair of F
and C. Metrics so computed are listed in Tables 2±4.

The data collected in our experiments were presented
to experts who were very familiar with the features of
SHARPE and their corresponding location in the source
code. As indicated by these experts, our data are
promising as the identi®ed blocks are used to implement
the designated feature as they should be.

4.4. Observations

From our experimental data, we make the following
observations:

� Component dedication (refer to Table 2):
1. None of the dedication is 1.
2. Ten of the 30 ®les are dedicated to all six features.

Among them, cexpo.c (ranging from 38.67% to
76.11%) and read1.c (ranging from 39.91% to
66.03%) are heavily dedicated to every feature. Others
such as results.c (61.92% to GSPN but 15.73% to
PFQN) and analyze.c (7.49% to FT but 56.59% to
MRM) are more dedicated to one feature than the
other.

3. Three ®les are only dedicated to a single feature:
75.57% of reachgraph.c to GSPN, and 86.46% of
pfqn.c and 54.78% of mpfqn.c to PFQN.

4. Three ®les (debug.c, mtta.c, and multpath.c) have
nothing to do with the features being examined be-
cause they are used for other model types in
SHARPE which were not examined in this study.

5. The sum of dedications to all six features is listed in
the rightmost column. Files whose sum is larger than
1 must have code shared by more than one feature.
Files whose sum is smaller than 1 have code not used
by any of the six features, but this does not necessar-
ily mean they do not have any code common to mul-
tiple features. However, ®les having a larger sum
(such as cexpo.c whose sum equals 3.2191) are, in
general, more likely to have more code shared by
multiple features than ®les having a smaller sum
(such as in_qn_pn.c whose sum equals 0.5827). This
implies that a code modi®cation in cexpo.c is more
likely to a�ect more than one feature than that in
in_qn_pn.c.

� Feature concentration (refer to Table 3):
1. None of the concentration is 1.
2. For a given feature, the sum of its concentrations

over the 30 ®les of SHARPE should be 1.0.

Table 2

Component dedication to featuresa

File MC FT GSPN PFQN RELG MRM Sum

analyze.c 0.1976 0.0749 0.4431 0.2485 0.0599 0.5659 1.5899

bind.c 0.2711 0.2909 0.4248 0.3688 0.2141 0.3897 1.9594

bitlib.c 0.4533 0.2533 0.7066

cexpo.c 0.6133 0.4039 0.6084 0.4458 0.3867 0.7611 3.2191

cg.c 0.4109 0.7376 0.7277 1.8762

debug.c 0.00

expo.c 0.1613 0.6075 0.2366 0.3280 0.3817 0.1344 1.8495

ftree.c 0.7160 0.5005 1.2165

in_qn_pn.c 0.4104 0.1723 0.5827

inchain.c 0.4604 0.4480 0.4381 0.1906 0.4951 2.0322

indist.c 0.1523 0.1276 0.4774 0.4650 1.2223

inshare.c 0.2385 0.2928 0.2928 0.2648 0.3750 0.2418 1.7057

inspade.c 0.0590 0.2951 0.2525 0.6066

maketree.c 0.1648 0.4261 0.3580 0.9489

mpfqn.c 0.5478 0.5478

mtta.c 0.00

multpath.c 0.00

newcg.c 0.2913 0.8391 1.1304

newlinear.c 0.5276 0.7362 1.2638

newphase.c 0.8357 0.9179 1.7536

pfqn.c 0.8646 0.8646

phase.c 0.5717 0.8548 0.0460 0.5901 2.0626

reachgraph.c 0.7557 0.7557

read1.c 0.5677 0.3991 0.6603 0.5677 0.4656 0.5748 3.2352

results.c 0.3974 0.3361 0.6192 0.1573 0.1821 0.4305 2.1226

share.c 0.5484 0.2251 0.4430 0.3533 0.2350 0.5570 2.3618

sor.c 0.5799 0.5799 0.5390 0.6283 2.3271

symbol.c 0.3321 0.4478 0.4934 0.5123 0.1954 0.5085 2.4895

uniform.c 0.6079 0.8106 1.4185

util.c 0.1794 0.4128 0.2310 0.2482 0.2138 0.1622 1.4474
a Blank entry means the corresponding component dedication is zero.
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3. The concentration of each feature in each ®le is small
± less than 0.1141 with only three exceptions: 12.21%
of MRM in share.c, 28.75% of FT and 22.79% of
RELG in ftree.c. In fact, the majority of the concen-
trations are less than 0.08 with many less than 0.05
(i.e., less than 5% of the blocks used to implement a
feature are in the same ®le).

4. Feature MC is implemented in 18 ®les, FT in 14,
GSPN in 20, PFQN in 20, RELG in 16, and MRM
in 15. This suggests that the code segments for GSPN
and PFQN are more widely spread over the system
than FT and MRM.

� Disparity between feature and component (refer to
Table 4):
1. None of the disparity is 0 and the majority is larger

than 0.90 with only a few exceptions.
2. Feature MC has a disparity equal to 1 with 12 ®les.

This is consistent with the earlier observation that
these 12 ®les have nothing to do with MC (i.e., they
have 0% dedication to MC) and MC is spread over
the other 18 ®les (i.e., the corresponding concentra-
tion is non-zero). Similarly, features FT, GSPN,
PFQN, RELG, and MRM have a disparity equal
to 1 with 16, 10, 10, 14, and 15 ®les, respectively.

3. Three ®les (debug.c, mtta.c, and multpath.c) have a
disparity equal to 1with all the six features. This is con-
sistent with the observation based on the component
dedication which shows that no block in these ®les is
used to implement any of these six features. It is also
consistent with the observation based on the feature
concentration which shows none of the blocks that
are used to implement these features are in these ®les.

The overall observation is that SHARPE has a very
delocalized structure with features spread over many
®les. Our data show that for a given feature, in general,
it has less than 8% concentration in a ®le, whereas for a
given ®le, if it is used to implement a feature, it normally
has at least more than 20% of its blocks dedicated to this
feature. The fact that the concentration of the features in
the ®les of SHARPE is small could be attributed to the
incremental incorporation of the features into
SHARPE, rather than planning for them in the original
design.

4.5. Discussion

The e�ectiveness of our metrics in measuring the
closeness (in terms of disparity, concentration, and

Table 3

Feature concentration in componentsa

File MC FT GSPN PFQN RELG MRM

analyze.c 0.0195 0.0101 0.0298 0.0282 0.0092 0.0590

bind.c 0.0728 0.1072 0.0779 0.1141 0.0894 0.1109

bitlib.c 0.0115 0.0087

cexpo.c 0.0734 0.0663 0.0497 0.0615 0.0720 0.0965

cg.c 0.0245 0.0300 0.0459

debug.c

expo.c 0.0088 0.0457 0.0089 0.0207 0.0326 0.0078

ftree.c 0.2875 0.2279

in_qn_pn.c 0.0364 0.0258

inchain.c 0.0548 0.0364 0.0601 0.0353 0.0625

indist.c 0.0150 0.0105 0.0532 0.0353

inshare.c 0.0427 0.0720 0.0358 0.0547 0.1045 0.0459

inspade.c 0.0073 0.0306 0.0353

maketree.c 0.0117 0.0255 0.0289

mpfqn.c 0.0798

mtta.c

multpath.c

newcg.c 0.0197 0.0389

newlinear.c 0.0760 0.0725

newphase.c 0.1019 0.0765

pfqn.c 0.0955

phase.c 0.0916 0.0936 0.0085 0.1002

reachgraph.c 0.0797

read1.c 0.0704 0.0679 0.0560 0.0812 0.0899 0.0756

results.c 0.0707 0.0821 0.0753 0.0323 0.0503 0.0812

share.c 0.1134 0.0639 0.0626 0.0842 0.0757 0.1221

sor.c 0.0460 0.0315 0.0493 0.0528

symbol.c 0.0516 0.0954 0.0525 0.0917 0.0472 0.0837

uniform.c 0.0407 0.0371

util.c 0.0215 0.0679 0.0189 0.0343 0.0399 0.0206

Sum 1.00 1.00 1.00 1.00 1.00 1.00
a Blank entry means the corresponding feature concentration is zero.

94 W.E. Wong et al. / The Journal of Systems and Software 54 (2000) 87±98



dedication) between a feature and a program compo-
nent depends on two factors: the accuracy of BF for a
given F and the metrics themselves. We discuss these two
factors below.

4.5.1. Identi®cation of code for a given feature
In theory, to ®nd the complete set of code (blocks in

our case) that is used to implement a given feature, one
may have to run all possible inputs that exhibit this
feature. In practice, this is not necessary. For a given
feature F, one can identify most of its code by executing
the program using a set of invoking inputs focused on F.
Two questions arise while using this approach: ``How
many invoking inputs do we have to use?'' and ``How
much code will be missed (i.e., how complete is BF ?).''
Note that if all the invoking inputs are focused on F, we
do not have any code in BF that should not be included
(i.e., all the code in BF should be included). On the other
hand, if some non-focused invoking inputs are used, we
must exclude code which is not related to F from BF (see
Section 2.4).

Clearly, question 1 is related to question 2. Intu-
itively, the more invoking inputs we use, the more code
that is used to implement F is likely to be included in BF .
However, we have to be very careful without overem-

phasizing the importance of the number of the invoking
inputs. Once BF contains code from the union of the
execution slices of some invoking inputs, it becomes less
and less likely for additional inputs to contribute more
code to BF . This is because code executed by such ad-
ditional inputs has a high probability of also having
been executed by previous selected invoking inputs. In
fact, the more invoking inputs which have already been
executed, the higher the probability.

We believe that a practical way to select a good set of
focused invoking inputs with respect to a given feature is
to choose such inputs from the regression test suite of
the program being examined (see Section 4.3). In our
case study, we reviewed the descriptions of most of the
regression tests which have been used for testing
SHARPE. Based on these descriptions, all the tests with
a clear focus, respectively, on each of the six features
being examined were used to generate the corresponding
BF 's.

How good is the set BF so generated? Testing the
``goodness'' of BF in terms of whether it contains the
complete set of code that is used to implement the fea-
ture F requires an oracle. This oracle can be obtained by
using a mechanism di�erent from our execution slice-
based technique that can provide the expected results.

Table 4

Disparity between features and components

File MC FT GSPN PFQN RELG MRM

analyze.c 0.9816 0.9909 0.9704 0.9733 0.9919 0.9402

bind.c 0.9352 0.9071 0.9242 0.8944 0.9278 0.8957

bitlib.c 1 1 1 0.9885 0.9914 1

cexpo.c 0.9246 0.9357 0.9494 0.9394 0.9309 0.8967

cg.c 0.9758 1 0.9694 1 1 0.9527

debug.c 1 1 1 1 1 1

expo.c 0.9915 0.9536 0.9913 0.9797 0.9681 0.9925

ftree.c 1 0.6522 1 1 0.7720 1

in_qn_pn.c 1 1 0.9641 0.9765 1 1

inchain.c 0.9457 1 0.9639 0.9409 0.9683 0.9376

indist.c 1 0.9860 1 0.9901 0.9471 0.9649

inshare.c 0.9609 0.9347 0.9659 0.9502 0.9023 0.9582

inspade.c 1 0.9934 1 0.9707 0.9670 1

maketree.c 1 0.9888 1 0.9747 0.9718 1

mpfqn.c 1 1 1 0.9190 1 1

mtta.c 1 1 1 1 1 1

multpath.c 1 1 1 1 1 1

newcg.c 0.9808 1 0.9599 1 1 1

newlinear.c 0.9234 1 0.9240 1 1 1

newphase.c 0.8890 1 0.9177 1 1 1

pfqn.c 1 1 1 0.8962 1 1

phase.c 0.9062 1 0.8985 0.9927 1 0.8966

reachgraph.c 1 1 0.9157 1 1 1

read1.c 0.9284 0.9343 0.9425 0.9172 0.9113 0.9229

results.c 0.9318 0.9240 0.9224 0.9717 0.9571 0.9209

share.c 0.8842 0.9447 0.9384 0.9210 0.9354 0.8748

sor.c 0.9534 1 0.9683 0.9504 1 0.9461

symbol.c 0.9510 0.9066 0.9477 0.9079 0.9588 0.9161

uniform.c 0.9587 1 0.9619 1 1 1

util.c 0.9800 0.9340 0.9819 0.9679 0.9640 0.9810
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For example, the design documentation can be an ora-
cle. If that is the case, the system being analyzed must
have a high degree of cohesion and a low degree of
coupling such that each module addresses a speci®c
subfunction of the requirements and has a simple in-
terface when viewed from other parts of the program
structure. In other words, there is a clear mapping be-
tween each feature and its corresponding code segments.
Unfortunately, if a system is so well-designed, it cannot
be a representative sample of real world programs (such
as SHARPE) which have exactly the opposite structure:
low cohesion and high coupling.

Another possibility is to use experts who have a good
knowledge of the system being analyzed as the oracle.
This is similar to the typical assessment that has been
used in many reverse engineering studies where the
output from a subsystem classi®cation recovery tech-
nique is compared by a tester with the corresponding
expected classi®cation (Lakhotia and Gravley, 1995;
Schwanke, 1991). One way to use experts to verify the
BF 's is to ®rst request them to highlight code segments
which they think are related to each feature. Such in-
formation then serves as the basis for the veri®cation.
An obvious di�culty of this approach is whether any
such expert exists. For small programs, we may be able
to ®nd these experts. For large complicated systems, it is
impossible for humans to understand the functionality
of every code segment at a ®ne granularity level such as
block, even though they can do so at broader granu-
larities such as ®le or function. Another di�culty is that
this approach requires a tremendous amount of human
resources which may not be a�ordable in the real world.
The third di�culty is that di�erent segments might be
highlighted by di�erent experts, or even the same expert
at di�erent times, which raises another series of prob-
lems about how to summarize such divergent informa-
tion. Finally, due to the inevitability of human mistakes,
there is no guarantee whatsoever that code so high-
lighted represents the complete set of code that is used to
implement the feature being examined.

To overcome these problems, we took a more eco-
nomic and a more feasible way by presenting each BF to
our experts and asking them whether any obvious code
segments (blocks in our case) are missing. The result is
that there is no additional block that has to be added to
the BF 's which clearly suggests a very good quality of
our BF 's. We realize that although very practical, this is
not the perfect way to verify BF 's. More e�ort should be
devoted to developing a more objective veri®cation.
Nevertheless, we are also con®dent that each of the BF 's
in our case study contains the absolute majority of
blocks that are used to implement the corresponding F.

4.5.2. The goodness of our metrics
For a given software system, we can often get a

feeling that one feature is more related (or in other

words, closer) to one program component than another.
The question is how to convert this abstract feeling into
a quantitative measure. The ®rst step is to develop a
measurement based on an empirical relation to map
from data collected in an empirical, real world to a
formal, mathematical world (Basili and Rombach, 1988;
Fenton and P¯eeger, 1997). In our case, these mea-
surements are the three metrics: disparity, dedication,
and concentration. A measure based on these measure-
ments is the number assigned to a pair of a feature and a
program component by one of these mappings in order
to characterize their closeness. A very important point is
that these mappings (i.e., numbers so assigned) must
preserve the relationships observed in the real world.
For example, if we observe that a feature (say F1) is
closer to a program component (say C) than another
feature (say F2), then the disparity metric must provide a
mapping such that the disparity between F1 and C is
smaller than that between F2 and C.

Following the same approach suggested by Fenton
and P¯eeger (1997), we started to develop our metrics
based on our intuitions. We observed a list of properties
that these metrics have to satisfy (see Section 2.5). Based
on these properties, we de®ned the disparity metric for
the disparity between a feature and a program compo-
nent, the dedication metric for the dedication of a pro-
gram component to a feature, and the concentration
metric for the concentration of a feature in a program
component.

Although these metrics might be approximate, it does
not prevent them from being used for at least a pre-
liminary assessment of the closeness between a feature
and a program component. In fact, it is always the case
that initially an objective measurement is usually es-
tablished in approximate form by subjective measures
(Fenton and P¯eeger, 1997; Lakhotia and Gravley,
1995). With this in mind, we applied our metrics to a
real-world program, SHARPE. Results from our case
study are analyzed by experts who know SHARPE well.
The goal is to look for ways to improve the accuracy of
the measures computed based on the three metrics. We
are pleased with the results. All the measures based on
our metrics are consistent with experts' expectations.
For example, if the experts indicate that a feature has a
higher concentration in one component than in another,
the measures obtained from our concentration metric
also agree with this.

As discussed in Section 4.5.1, since none of our ex-
perts have a complete understanding of the functionality
of every basic block, the validation of our metrics was
done in a relative rather than an absolute manner. An
explanation of this is as follows. Suppose for a given
program component C and three features Fa, Fb, and Fc,
our experts claim that C is most dedicated to Fa and least
to Fc. Then, we should make sure the measures obtained
from our dedication metric preserve the same order.
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In other words, we should have DEDICFa > DEDICFb
>

DEDICFc . Furthermore, if the experts assert that C is very
much more dedicated to Fa but only little to Fb and Fc,
we will have to ensure that the di�erence between the
measures obtained by using the dedication metric on Fa

and Fb is greater than that between Fb and Fc. Stated
di�erently, DEDICFa ÿ DEDICFb

should be greater than
DEDICFb

ÿ DEDICFc . The only type of validation which
we did not perform was to check the absolute value of a
measure, such as whether the dedication of C to Fa

should be 0.33 or 0.32. This is because none of our ex-
perts can provide an exactly complete set of blocks used
for implementing each of the six features.

Overall, we have validated our metrics in such a way
that measures obtained from them provide a good in-
ference on how close a feature is to a program compo-
nent. Although our metrics may have to be continuously
evolved by using more data collected from other soft-
ware systems, they can serve as a very good start to
quantifying the closeness between a feature and a pro-
gram component.

5. Conclusions

Three metrics are proposed: a disparity metric for the
disparity between a feature and a program component, a
dedication metric for the dedication of a program
component to a feature, and a concentration metric for
the concentration of a feature in a program component.
One essential aspect of our metrics is that they provide a
quantitative measure about possible interactions be-
tween program components and features. For example,
given two features Fa and Fb, as well as a component C,
suppose that the dedication of C to Fa is much less than
that to Fb. Then, we can claim that modi®cations to C
can very possibly have a much bigger impact on Fb than
on Fa. Another aspect is that from the dedications of a
component (say C) to di�erent features, we can predi-
cate the overlap among these features in terms of how
much of the code in C is shared by more than one fea-
ture. This information in turn can be a good measure of
possible feature interactions in C. In addition, data
listed in Tables 2±4 (which give ``component dedication
to features,'' ``feature concentration in components,''
and ``disparity between features and components'', re-
spectively) provide a clear traceability for tracking each
program component back to features which by them-
selves are de®ned based on a program's requirements
speci®cation. For example, if the dedication of a com-
ponent (say C) to a feature (say F) is zero, it implies that C
is not used for implementing F. Thus, there is no trace-
ability between C and F, or more speci®cally, there is no
traceability between C and the requirements speci®cation
of F. The same conclusion can be obtained if the disparity
between C and F is 1 or the concentration of F in C is 0.

Altogether, results from our metrics help programmers
understand how a feature spreads over a software system.
Such results can also be used to estimate possible inter-
actions between program components and features, as
well as interactions between di�erent features.

A case study was done on a real-world program,
SHARPE. The feedback we received from experts who
know SHARPE well indicates that these kinds of
quantitative measurements have helped them in captur-
ing more precisely where each feature resides in the
system than using their intuitive feeling for the system,
which provides only a qualitative understanding of where
each feature is implemented in the system. This is es-
pecially true for applications which have essentially
evolved and incrementally incorporated more features
than originally conceived and planned for in the system
design. The reason is that features in such systems are
more likely to be scattered across many components
than in systems where maintenance activities are limited
to identifying and ®xing the bugs.

For a program (such as SHARPE) which has a low
cohesion and high coupling, the disparity between a
feature and a component is in general large, and the
concentration of a feature in a component as well as
the dedication of a component to a feature are small. On
the other hand, a well-designed software system should
have a high degree of cohesion and a low degree of
coupling such that each program component addresses a
speci®c point of the requirements and has a simple in-
terface when viewed from other parts of the program
structure. Under this condition, the disparity between a
feature and a component is in general small, and the
concentration of a feature in a component as well as the
dedication of a component to a feature are large.

To conclude, the encouraging results we have expe-
rienced lead us to believe that metrics discussed in this
paper are complementary to other program compre-
hension techniques to help software programmers
and maintainers better understand the system being
examined.
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