
Technical Report TUBS-CG-2003-01

Generative Mesh Modeling

Sven Havemann, Dieter W. Fellner
{s.havemann,d.fellner}@tu-bs.de

Institute of Computer Graphics
University of Technology

Mühlenpfordtstr. 23, D-38106 Braunschweig
http://graphics.tu-bs.de

c© Computer Graphics, TU Braunschweig, 2003

Online Submission ID: papers_0369

Generative Mesh Modeling

Category: System

Abstract

We propose a novel model representation method. Its main feature
is that 3D shapes are represented in terms of functions instead of ge-
ometric primitives. Given a set of – typically only a few – specific
parameters, evaluating such a function results in a model that is one
instance of a general shape. The shape description language is a
full programming language, but it has an extremely simple syntax.
It can be regarded as some form of a ’mesh creation/manipulation
language’. It is designed to facilitate the composition of more com-
plex modeling operations out of simpler ones. Thus, it allows to
create high-level operators which evaluate to arbitrarily complex,
parameterized shapes. The underlying shape representation is a
boundary representation mesh in combination with Catmull/Clark
subdivision surfaces.

1 Introduction

In many fields, computer graphics is becoming the leading tech-
nique to visualize complex data sets, to show buildings, cars and
many other products as digital prototypes, and of course for the en-
tertainment industry, most notably in TV commercials, movie spe-
cial effects, and 3D computer games. However, the feedback from
practitioners in the field, or from potential users of 3D technology,
repeatedly raises several critical issues with the current technology:

1.1 The Modeling Bottleneck

One bottleneck which impairs the widespread use of 3D technology
in many application domains is the high cost for creating 3D mod-
els. The software packages typically used require highly skilled
and quite experienced personnel to choose the distribution of proper
control vertices and to place them in the appropriate locations in vir-
tual three-space. As pointed out in the foreword of Snyder’s book
[Snyder 1992], the problem with this approach is that there’s not
much difference between a spoon and a chair from the control ver-
tices’ point of view. Another problem is the lack ofautomation:
Ironically, the application of 3D modeling in the highly automated
engineering domain still requires enormous amounts of manual in-
tervention to create appealing objects. Even the most sophisticated
modeling tool must still beused: To fill in dialogue boxes, and to
select objects from a 3D view of the scene. After a number of mod-
eling steps, the resulting object is basicallyunique. When slight
changes of the basic shapes are required, i.e., from early stages in
the modeling process, in many situations it is very hard to impossi-
ble to simply go back in history, because some later modeling oper-
ations may become invalid when their input mesh is changed. The

only alternative remaining then isforward modeling: To go on with
modeling until the object matches the new specifications. Thus, the
obvious problems with forward modeling arelimited changeability
andlimited re-usability of 3D models.

1.2 Model File Sizes

Besides the problem of creating digital 3D models, the file size is
another issue. Obviously the size of a model depends on the repre-
sentation method, such as pointclouds, triangles, NURBS patches,
implicit functions and many more. With triangles as the lowest
common denominator to represent surfaces, mesh compression,
model simplification, and sophisticated multi-resolution shape rep-
resentations have become the methods of choice to deal with com-
plexity. Progressive Meshes (PMs) are a great tool do deliver a
continuous level of detail for interactive applications.

The problem remaining is that the complexity of a compressed or
progressive mesh, although (sometimes drastically) smaller in ab-
solute size than the original, is still in the order of the input mesh.
The highest possible display resolution on the other hand is lim-
ited by the input resolution. Secondly, through the post-processing,
the direct relationship between the mesh and the modeling history
is no longer available. The third problem is that simplification
schemes are based on an error metric which is insensitive to the in-
tended structure of a model, so that even completely regular shapes
become distorted in irregular ways instead of “simply” removing
high-frequency detail.

While automatic multi-resolution techniques are great for
scanned datasets, it should be possible to do better with syntheti-
cally created objects. Instead of removing the nice rounding of an
object’s edge by mesh simplification to decrease the LOD to main-
tain interactivity, the runtime engine could simplyundo the round-
ing operation, or even better, only perform it on demand (i.e., only
when detail is important).

1.3 Digital Libraries of 3D Objects

The aforementioned problems become even more drastic if a great
number of objects needs to be maintained and updated in a con-
sistent way, e.g., with model repositories or component databases.
With complex industrial assemblies and cooperative design, geo-
metric verification and version management become indispensable.
Ideally, a model repository is amenable to typical database oper-
ations, such as indexing, searching and markup, i.e., attachment
of meta-data. In this case, the termdigital library is appropriate,
where a 3D object is understood as ageneralized document.

For obvious reasons, the efficiency of such a digital library de-
pends heavily on the model representation format. When nothing
is known about the object structure, eg. with raw triangle meshes,
searching leads directly to theshape matching problem, which is
notoriously hard to solve. Collections of many slightly different
objects are a nightmare for large-scale databases (large car manu-
facturers, for example, have to deal with approx. 5000 variations
of windshield wipers), especially when objects are created in a
forward-modeling way: Structural similarities of just slight vari-
ations cannot be exploited to facilitate database management.

1

Online Submission ID: papers_0369

1.4 Virtual worlds are too static

The distinction between sophisticated modeling software on one
hand and the viewer, orruntime engine, on the other hand has the
consequence that in most virtual worlds and 3D applications the
environment is mostly static. Things that move or deform have to
be explicitly designed to do so, which considerably diminishes the
perceived level of interactivity. This limitation is of course also
caused by the different passes of post-processing, just to mention
global illumination, that are necessary to create a convincing, high
fidelity virtual environment.

On the other hand, it should be possible to go beyond an under-
standing of virtual reality as being able to change transformation
matrices in a hierarchical scene graph, or to switch between dif-
ferent snapshots of a model for animating 3D objects. To do so
again requires modeling capabilities in the runtime engine, i.e., the
possibility to modify a mesh both geometrically and topologically.

2 Overview

In summary, we have identified the following problem areas:

• limited changeability and re-usability of 3D objects,
• heavily increasing model complexity and file sizes,
• the maintenance and usability of potentiallyhuge libraries of

3D objects, and
• to provide truly interactive 3D environments with an interface

to third-party software.

We think that one way to cope with some of these problems is
to emphasize the importance ofstructual information of 3D objects
over low-level primitives. This follows theinformation reduction
paradigm: Our aim is to store only the essential information that is
needed to represent a shape, and from which the full model can be
generatedon demand, eg. in the runtime engine.

We introduce theGenerative Modeling Language (GML) and
propose it as a smallest common denominator for procedural shape
descriptions. While in principle still being able to represent raw
triangle meshes, i.e., only the result of the modeling process, the
GML adds, and actually encourages, the possibility to createpa-
rameterized objects. It can represent advanced concepts like a mod-
eling history, separation of data and operations, asemantic level-
of-detail, event-driven animations, or data-flow networks. It is an
interpreted language, and is, with its runtime engine, also genuinely
targeted at interactive applications. The software is implemented as
a C++ library, with a runtime engine based on OpenGL. As it is sup-
posed to be used for instance as a 3D plugin to third-party software,
the API is designed to be easily usable and extensible. Examples
are given in the text.

We are aware of the fact that language-based modeling is not
a new subject. Especially in the parametric modeling community
there’s a diversity of approaches, as, e.g., nicely summarized by
[Hoffmann and Arinyo 2002]. Our approach differs from these in
that we, to a large extent, target at the interactive aspect of 3D mod-
eling.

The original motivation for our work, the creation of shapes
through generating functions, goes back to the book on Generative
Modeling from Snyder (thus the title of the article). The difference
here is that Snyder originally considered no meshes, but continuous
functions. The central role of sweeping in his approach is paral-
lelized by the ubiquitous (various forms of) extrude operations used
with the GML.

From a technical point of view, our approach is basically a com-
bination of several well-established techniques:

• Catmull/Clark subdivision surfaces,
• BRep meshes,

• Euler operations, and
• a stack-based programming language.

They are arranged in an architecture made of three software lay-
ers (see below) that are presented in detail in the following three
sections.

Application
Generative Modeling Language GML

Euler Operators + Euler Macros
Combined BRep Meshes

Subdivision Surfaces
Graphics Hardware

3 Combined BRep Meshes

The backbone of the proposed architecture, and the actual shape
representation, is the Combined BRep mesh, short CBRep. For in-
teractive display, it is tesselated, i.e., OpenGL display primitives
are generated for each face. This is in line with the concept of gen-
erating triangles only if necessary and as late as possible, i.e.,on
demand. The mesh can be manipulated at runtime through Euler
operators, consequently the tesselation, including the material han-
dling, allows for (selective) updates.

For modeling, BReps have advantages over using just triangles.
BRep faces provide a higher degree of abstraction as they can have
any number of vertices, and they do not have to be convex. More-
over, while the border of a face, thebaseface, is a simple CCW
polygon, Combined BRep faces can also have any number ofrings,
which are simple CW polygons contained within the border poly-
gon. Consequently, a face can be a complex-shaped object.

While BReps usually represent polygonal objects, Combined
BReps can also represent curved shapes: Any part of the mesh can
be used as the control mesh of a Catmull/Clark subdivision surface
[Catmull and Clark 1978]. Thus aCBRep provides a uniform rep-
resentation for a surface with both polygonal and free-form parts.
The overhead in the mesh is only small: Onesharpness bit per
(half-)edge. Any edge can be toggled between sharp and smooth –
with the exception of faces with rings, which may only have sharp
edges.

By generating the tesselation of the subdivision surface on de-
mand at runtime, we follow the information reduction paradigm: A
single quadrangle face of the CBRep may unfold to 16x16= 256
OpenGL quads, a reduction by more than two orders of magnitude.

3.1 Data Structures

Combined BReps are based on a conventional half-edge data struc-
ture, with the following topological incidences:

A half-edge holds pointers to its face, to the vertex it emanates
from, and to the counterclockwise next half-edge in its face. There
is one array containing all the half-edges and they are allocated in
pairs, so that a half-edge with an even array index finds its other
half, its mate, at the next array position, and vice versa. The size
of a half-edge is therefore three pointers. A pair of half-edges is
referred to as oneedge of the mesh. A vertex contains one pointer
to an outgoing half-edge. A face also contains a pointer to one in-
cident half-edge, and two additional face pointers, namelynextring
andbaseface. A face is either a baseface (counterclockwise order)
or a ring (clockwise order). For a face with no rings,nextring is
NULL andbaseface points to the face itself. Faces can have any
number of vertices and rings. A mesh consists of three dynamic ar-
rays for vertices, edges, and faces. Fortopological consistency, we
demand that the mesh must be a valid manifold mesh, i.e. a closed,
orientable surface. This guarantees that all pointers of the incidence

2

Online Submission ID: papers_0369

relation are valid. The limitation to manifold meshes considerably
simplifies some consistency issues mentioned below in Section 4.

The basic typesVertex, Edge, Face, andMesh are container data
structures implemented as C++ templates, similar in spirit to the
STL (standard template library). Strictly separating topology from
geometry, all geometrical information and handles to the tesselation
are attached via template instantiation: For a half-edge, this is the
booleanisSharp flag, a pointer to aCCPatch structure, and one
integer, thesourceId, which will be explained in Section 5. A vertex
gets its position asVec3f, and a pointer to aCCRing structure, plus
a type flag, explained below. A face is augmented with a normal
vector (Vec3f) and the distance value of the face plane (float), a
pointer to aCCRing, and atype flag. Additionally, a face contains a
pointer to its triangulation, which isNULL if the face is a ring, and
one integerccSteps for the view-dependent tesselation.

Besides the connectivity of a particular mesh, the vertex posi-
tions and the sharpness flags of the edges areinput data for the sub-
sequent tesselation. All the other data members of vertices, edges
and faces are thus computed by the tesselation pass.

This pass proceeds by first classifying vertices, then faces, and
then computes the tesselation for each face that needs an update,
according to its type.

Vertices are classified by the number of incident sharp edges. A
vertex with less than two incident sharp edges is asmooth vertex,
with exactly two sharp edges it becomes acrease vertex, and with
more than two it becomes acorner vertex. The face classification
is based on both, vertex types and sharpnes of edges. We have ba-
sically adopted these classification rules from [Hoppe et al. 1994].
He didn’t treat the special case of sharp faces as we did.

3.2 Polygonal Faces

If a mesh has only sharp edges, it is processed as a regular polyg-
onal mesh: In order to display it, a standard triangulation algo-
rithm which can process simple polygons with holes is used to com-
pute a triangulation of each baseface. The triangulation is just an
array of index triplets (GLuint), so that a given face can be ren-
dered with a single call toglDrawElements(GL_TRIANGLES, 3*n,
GL_UNSIGNED_INT, triplets), wheren is the number of triangles
of the face, andtriplets is the index array. Triangulation algorithms
are typically very fast, and they are O(n logn), so that it’s possible
to compute triangulations on the fly. The index arrays are held in a
memory pool (dynamic array with fast allocation/deallocation), so
that triangulations can be updated easily if the mesh is changed.

A polygonal face is a face which contains only sharp edges and
all vertices are corner vertices. It may have holes.

3.3 Smooth Faces

If edges are not sharp, they are calledsmooth. A mesh with only
smooth edges is regarded as the control mesh of a Catmull/Clark
subdivision surface. In this case, it is processed differently:

For every half-edge, aCCPatch structure is allocated, that con-
tains basically a grid of 9×9 vertices together with normals. For
each vertex and each face, aCCRing data structure is allocated,
which contains the position of a Catmull/Clark vertex point for all
four levels of subdivision, and the limit position, by applying the
appropriate vertex stencils. For faces, it also contains the face mid-
point, which becomes a vertex point in the Catmull/Clark scheme
after the first subdivision.

Every face with at least one smooth edge is treated as a smooth
face, i.e., subdivided. The Catmull/Clark scheme has no rules for
rings, so if a face with rings contains smooth edges, these edges are
forced to be sharp.

3.3.1 Creases

According to this definition, a smooth face can also have sharp
edges. Now suppose there is a path of sharp edges in an otherwise
smooth mesh. Such a path is called acrease in the surface, and all
vertices along the path are crease vertices. For Catmull/Clark sub-
division, the canonical way to deal with a crease is to regard it as
a uniform cubic B-Spline curve. The subdivision stencils on both
sides of the crease are decoupled: For computing the tesselation of
a patch next to a crease, the vertices on the other side of the crease
do not matter.

3.3.2 Tesselation on the fly

In order to display the object interactively, the first subdivision level
is computed: The face, edge, and vertex points are stored in the
CCRing andCCPatch structures of the appropriate entities. With
the Catmull/Clark scheme, the mesh consists merely of quadran-
gles after the first subdivision, regardless of the original topology.
At this point in the tesselation process, theCCPatch data structure
takes over, where each patch corresponds to one quadrangle of the
first subdivision. Each patch can be subdivided a maximum of 3
times, which makes for a maximum of 4 subdivision steps of the
original control mesh (including the first subdivision). This means
that in order to interactively display a smooth quadrangle of the
control mesh, it is represented by up to 16× 16 = 256 quads at
highest resolution.

View-dependent on-line tesselation and interactive display is
then performed using a scheme that is very similar to the one de-
scribed in [Havemann 2002]: In every frame, the visible base faces
are assigned a quality value, theccSteps, which ranges from−1
(not visible, back-facing) to 3 (four times subdivided). Visible
smooth faces are always subdivided at least once(ccSteps=0), i.e.,
at least one quad per patch is rendered. This is also the default when
a new patch is created. New points are computed only on demand
according to the requiredccSteps. This takes theccSteps value of
neighbour faces also into account, by refining towards the face with
higher resolution. With increasingccSteps, the 9×9 array of sur-
face points is successively filled with more valid points. The main
feature of the tesselation scheme is that once all vertices of a patch
are valid, no further computations are needed to switch between
different display resolutions.

For patches along a crease edge the neighbour resolution, the
ccSteps, is increased by one. This improves the visual quality of
creases, as can be clearly seen in Figure 9.

3.4 Sharp Faces

Given a face with only sharp edges it may be that not all of its
vertices are corner vertices. Such a face is classified assharp face,
and it is treated almost like a polygonal face. The difference is that
it has not only straight line segments on its border, but also (at least
two) edges which are part of a crease: Crease vertices are control
points of a B-Spline curve. This curve must be evaluated prior to
triangulation: A creased edge is replaced by 16 line segments with
endpoints on the B-Spline curve, so that the segments match the
neighbouring patch at its highest resolution.

A problem occurs if lower resolutions are needed. To deal with
this case, not only one, but three triangulations are computed for
every sharp face: With all creased edges being replaced by 16, by
8, and by 4 segments, respectively. This looks like a large overhead,
but it essentially requires only twice the space of the highest resolu-
tion: The triangulation of a polygon withn vertices hasn−2 trian-
gles, so the triangulation of a sharp face withn crease vertices has
16n−2 triangles, which is more than the 8n−2+4n−2= 12n−4
triangles for the other two triangulations.

3

Online Submission ID: papers_0369

4 Euler Macros

.
The purpose of Euler operators is to give a well-defined access

to the mesh, to modify both its connectivity and geometry. With
our implementation, which basically follows the proposal from
[Mäntylä 1988], there are five Euler operators which affect the con-
nectivity of the mesh, together with their five inverse operators.
Each operator basically creates (or deletes) an edge together with
a vertex, face, or ring.

Although well-established, the Euler operations are informally
introduced in this section, for reasons of self-containedness. C++
syntax is used, wheree0, e1, eNew denote halfedges,p, p0, p1 are
points of typeVec3f, ands is a boolean value, the sharpness of a
new edge.

4.1 Euler Operators

The first operator readsmakeVertexEdgeFaceShell and creates a
new connected component consisting of two vertices connected via
a pair of half-edges:eNew = makeVEFS(p0,p1,s) with halfedge
eNew directed from pointp0 to p1. Its inverse would bekil-
lVEFS(eNew). Note that both half-edges are incident to the same
face. At this point, this face is not what is usually understood as
a face (i.e., there is no face normal). It can be expanded using the
following two operators.

The second operator creates an edge and a vertex atp: eNew =
makeEV(e0,e1,s,p). Edgese0 ande1 must emanate from the same
vertex, and they denote the two faces between which the new edge
is created. Ife0 equalse1, a dangling edge is created. Its inverse is
killEV(eNew).

The next operator splits an existing face by making an edge be-
tween two of its vertices, thereby creating a new face:eNew = ma-
keEF(e0,e1,s). Consequently,e0 ande1 must belong to the same
face, or to the same ring. Its inverse iskillEF(eNew).

These three operators (plus their inverse) are sufficient to build
up any mesh of genus 0, i.e., a single connected component that is
topologically equivalent to the sphere. The remaining two operators
are related to rings and the modification of genus.

To understand how a ring is created, note that nothing prevents
both halfedges(e0,e1) of a pair from being incident to the same
face. By issuingkillEmakeR(e0) in the situation shown in Fig. 1, the
inner quadrangle is decoupled from the border and is turned into a
ring while the border becomes its base face. Note that the ring is
clockwise oriented, which is consistent with the rule that the face
interior is to the left of a halfedge. The inversemakeEkillR(e0,e1)
is used to connect the ring containinge0 with the other ring or base
face containinge1.

Figure 1: Creating a ring.

The genus modification also uses rings, which makes it ex-
tremely simple. Suppose two connected components are given, for
example two axis-aligned cubes, one of them bigger than the other.

They can be placed next to each other so that geometrically, one
face of the smaller cube lies in the interior of a face of the bigger
cube. If e0 ande1 are edges which belong to the smaller and the
bigger face,killFmakeRH(e0,e1) will simply turn the smaller face
into a ring of the bigger face. Thereby the two connected compo-
nents are glued together into one. In the same fashion, a torus, thus
a topological hole, is created when the two faces belong to the same
connected component.

Any orientable manifold mesh can be created by these five pairs
of operations.

4.2 Euler Operators and Progressive Meshes

There is an interesting relation between Euler operators and pro-
gressive triangle meshes. The split sequence of a progressive mesh
can be regarded as a procedural description for building up a shape:
The original, highly refined mesh can be reconstructed from the ex-
tremely simplifiedbase mesh by issuingvertex split operations, i.e.,
by undoing the edge collapses from the simplification. This marks
in fact a paradigm shift: From a static shape representation, such
as an indexed face set, to understanding a shape as the result of an
sequence of (invertible) operations.

The original paper used only edge collapses for coarsening,
which cannot change the genus of an object or glue objects together,
and more general operator sets have been proposed since by differ-
ent authors [Garland and Heckbert 1997; Borodin et al. 2002].

But for manifold meshes, all such operators can be expressed
also in terms of Euler operators: An edge collapse for instance is
basically akillEV and twokillEF, as it removes three edges, two ver-
tices and a face. Consequently, a split sequence could equivalently
be expressed as a sequence of Euler operators, exploiting their in-
vertibility for coarsening and refinement.

But while the PM split sequence is obtained through automatic
simplification, we propose instead to gather it at the time when the
object is beingbuilt, and to let the user control the process. Even
more important: All the modeling tools that are offered by a 3D
modeler must eventually modify a mesh – and can be implemented
in terms of Euler operations. This is exactly what we advocate.

4.3 Euler Macros

In our architecture, we use a logging mechanism that creates a
record for each Euler operation that is executed, and stores the data
needed to undo the operation, and to redo it again. The records
are of equal size and match the union of the signatures of the Euler
operators: A record can hold four edge indices, twoVec3f, and a
boolean (for sharpness).

In database terms, each Euler operation is an atomic operation,
and an arbitrary sequence of them can be grouped together to form
a transaction, which we callEuler Macro. Such a macro is either
active, for example right after its creation, orinactive: To undo a
macro, its record sequence is traversed back to front, and the inverse
operators are executed. Euler Macros are therefore the basic unit
for undo/redo, unlike PMs, where individual edge-collapse/vertex-
splits are theundo/redo unit.

But the granularity of the macros with respect to the length of
the operator sequence is not prescribed: It is up to the user – where
the worduser is used synonymously for any kind ofexternal appli-
cation, and simply means: not determined by the calculus.

Of course, a PM could be emulated by a sequence of Euler
Macros, each containing one Euler operation only. But Euler
Macros were introduced with a different idea in mind:Semantic
LOD. This was based on the observation that experienced model-
ers often work in a coarse-to-fine fashion: They start with some
basic shapes or primitives and successively add detail, a modeling
style that nicely lines up with the macro concept. The drawback

4

Online Submission ID: papers_0369

when a new macro is started every now and then in the model-
ing process, i.e., with a low macro granularity, is that undo/redo
gives popping artifacts. But the great advantage on the pro side is
that the user can steer the refinement process, and actually author a
multi-resolution mesh. It is possible to group modeling operations
together which belong to the same level of structural refinement.
Thus, user-defined macros can be based on the modelsemantics in-
stead of on the output of a simplification cost measure controling
the coarsening of the model. And in terms of progressive meshes,
the edges of a CBRep arefeature edges – and changing them al-
ways produces artifacts, unless the object covers just a few pixels,
which is the usual way to deal with popping.

4.4 The Macro Graph

There is a canonical dependency relation between macros: The Eu-
ler operations are formulated in terms of halfedges, and ops later in
the sequence have input values produced by ops earlier in the se-
quence: A macromA is aparent of mB iff an operator frommB has
an input value that is produced bymA. In this casemB is called a
child of mA. An undo ofmA will first undo mB. To redomB, first
mA must be re-done. In order to completely delete an active macro,
all children are recursively deleted first, then the macro itself is un-
done. Finally, the macro returns its records to the central storage
pool, for later reuse.

The parent-child relationship in the macro graph can be regarded
– and used – as the continuation of a scene graph below object level:
the object graph or model graph. Macros also keep track of their
location in space: At present, we maintain a simple axis-aligned
box (AABox)for each macro. It contains the 3D points occurring
in the operator sequence and the union of the parent boxes. The
purpose of the AABox hierarchy is to use them for culling and for
spatial queries (see Fig. 2).

Figure 2: All Euler Boxes active (left); active boxes as result of
spatial query (right).

It should be mentioned that the implementation of invertible
macros is technically somewhat involved. This is due to the fact
that unlike PMs where a redo uses only vertex split and undo uses
only edge collapse (seen from the basemesh), all ten Euler opera-
tions can (and sometimes must) be used for modeling, i.e., in the
redo direction. A subtle detail is for instance that the inverse of a
sequencecontaining[. . . ,opi(makeEV),opi+1(killEV), . . .] will read
[. . . , invi+1(makeEV), invi(killEV), . . .] as the ops are inverted and

the sequence is reversed. Care must be taken then thatinvi kills the
right edge.

Another implication of the undo/redo capabilities is that a half-
edgee cannot be referred to externally simply by its index in the
edge array: After an undo/redo it might be stored at a different
location, so the memory location is a typicallytransient value. In-
stead, an index triplet(r,m,n) is used, wherer is the index of the
record wheree (or its mate) are created.m is the macro ID con-
taining recordr, andn is a running number that is increased every
time a new macro is created, essentially a time stamp. This is nec-
essary because deleted records and macros can be re-used. Only
if all three values are consistent and the macro is active, the index
triplet can be converted to an halfedge pointer. To obtain the triplet
from a given halfedge, a link from the mesh to the macro graph is
necessary: It is given by thesourceId of a half-edge, which contains
the index of the record which created it.

4.5 Complexity issues

There is no difference in order of complexity between a PM split
sequence and a sequence of Euler operations.

For a polygonal mesh, the number of Euler operations is in fact
quite close to the number of triangles: A two-sidedn-gon is created
by n Euler operations: onemakeVEFS followed byn−2 makeEV
and onemakeEF – and the triangulation of twon-gons contains
2n−4 triangles. Informally, the reason is that amakeEV creates
two new triangles, whilemakeEF basically just converts an edge of
the triangulation into a BRep edge. Similarly the triangulation of a
face withn vertices hasn−2 triangles if it is a base face, but it has
n−2+ 2r triangles if then vertices are contained with the border
andr rings, which can easily be seen by induction. So creating a
ring adds two triangles. These are all consequences of the Euler-
Poincaré formulaV − E + F = 2(S − H) + R, with S number of
connected components (shells), H topological holes (torus), andR
rings.

With Combined BReps, the ratio is better for smooth parts of the
surface, but still only by a constant factor. Aradical improvement
in terms of model complexity can only be obtained if it is possible
to actuallygenerate an operator sequenceon demand from another
even more compact description.

5 The Generative Modeling Language

The Generative Modeling Language (GML) is based on the core of
Adobe’s Postscript language. It doesn’t have Postscript’s extensive
set of operations for typesetting, though. The GML is targeted in-
stead at 3D modeling, and exposes the functionality from sections
3 and 4 to a stack-based interpreter. It has many operations from
vector algebra and to handle polygons, and others that convert back
and forth between polygons and meshes.

While it is standard that 3D modeling packages have a built-in
scripting engine, the Postscript language has a number of unique
features. It seems that many operations that are frequently used
with 3D modeling can be conveniently described with a stack-based
language, and a number of concepts from modeling nicely map to
GML constructs.

5.1 Postscript

The core of Postscript is concisely specified in the Postscript Lan-
guage Reference [Adobe Systems Inc. 1999]. We informally de-
scribe how Postscript works and, for a more concrete understand-
ing, also how we’ve implemented it.

Postscript is a stack-based language without the need for a syn-
tax parser. The runtime system consists of only a lexical scanner

5

Online Submission ID: papers_0369

and an interpreter. The job of the scanner is to convert a character
string into an array oftokens. An executable array is then processed
by the interpreter, which simply executes token by token. Thus, a
Postscript system with the language core but without typesetting
can be implemented with a few dozens of lines of C++ code.

The basic data structure is thetoken. Tokens are atomic values
such as integers, floats, 2D and 3D points, andmarkers: [,], {, and
}. In our implementation, a token has a fixed size of 16 bytes: Four
bytes for administrative data, most importantly atype flag, together
with a union of three floats or three integers. Floats and ints both
have four bytes on the x86 architecture. This union can be used
for various purposes. Strings and names for example are tokenized
by storing just an index to a global string and name array, which is
where the actual values reside. The rule for tokenizing a character
string enclosed by whitespaces is that if it is not recognized as a
number, vector, point, string, etc., it is taken as a name.

Only two compound data structures are availabe, arrays and dic-
tionaries. They are implemented basically asvector<Token> and
map<int,Token>, where the map key is the index of a name. They
can be referred to by a token equally by storing only the index to
global arrays (of the actual arrays and maps). A token can also be
anoperator, and refer to a global array where the available opera-
tions are stored. Operators are implemented as classes derived from
an abstract classOperator, and so must define a function

bool Operator::execute(Interpreter& interpreter);
A token can be eitherliteral or executable, which is important for

the interpreter to process an array and a name. Executing a GML
program from C++ is as simple as

interpreter.execute(token);
When the interpreter encounters an executable array, it is exe-

cuted by stepping through it and executing each token. Executing
a literal token simply means to push it on the stack, which is what
happens with numbers, vectors etc, and also with literal tokens that
refer to an array or dictionary, and with literal names. But when
an executable name is encountered, it is looked up in a dictionary,
and the value, a literal or executable token, is executed: If an ex-
ecutable array is found, it is pushed on theexecution stack and is
executed. When this is finished, it is popped and the execution con-
tinues with the array from before. If an operator is encountered
or found through name lookup, itsexecute method is called. The
current dictionary is the topmost element of thedictionary stack.
Name lookup is done by going through this stack top to bottom,
and the first dictionary where the key is defined delivers the value.
The dictionary stack is independent from the execution stack and
can be changed at any time, a very flexible method for scoping as
well as for function overloading.

If the interpreter encounters an opening marker, it is put on the
stack. When it finds a closing marker, it searches the matching
opening marker on the stack, creates an array from the tokens in
between, and puts the array on the stack (i.e., a token referring to
it). A curved bracket puts the interpreter indeferred mode: Now
all tokens being executed are considered literal and are put on the
stack, until the matching closed curved bracket is found. This is
how anexecutable array is created.

5.2 Operator Libraries

The functionality of the GML comes from an extensive set of oper-
ators, organized in several libraries. They are implemented as a thin
layer on top of underlying C++ libraries, accessed from theexecute
method.

An operator is characterized by itssignature, i.e., by its name,
the input parameters taken from the stack, and the output parame-
ters pushed onto the stack. An operator doesn’t have to have a fixed
signature, but most operators actually do. So the signature is basi-
cally an ad-hoc notation which helps the programmer to keep track

of what happens on the stack. Abbreviations such asF for float, I
for int, {f} for functions etc. are used. Theadd operator for instance
can equally add ints, floats, and 2D and 3D vectors, and is an exam-
ple for function overloading. An operator can equally check types
and values of stack items to decide whether an operation is legal or
not. To give some examples, the signatures of some Euler operators
are:

makeVEFS: p0:P3 p1:P3 → e:E
makeEV: e0:E e1:E p:P3 → e:E
makeEVone: e0:E p:P3 → e:E
makeEF: e0:E e1:E → e:E

This means that amakeEV pops two halfedges and a point and
pushes an halfedgde.makeEVone is useful for creating dangling
edges and, for Postscript literates, can be written as{ 1 2 exch dup 3
2 roll makeEV }. The following five operator libraries are available:

TheCore library contains the basic Postscript operations: stack
manipulation, dictionaries and arrays, andflow control, i.e., if, for,
repeat etc. Theforall operator, for instance, iterates through an ar-
ray, puts each element on the stack, and executes a given function.
In a similar way themap operator iterates through the array but ap-
plies a function which leaves a value on the stack, from which the
operator assembles a new array at the end of the iteration.

The Geometry library contains the usual operations from vec-
tor algebra as well as for computing distances and projections, for
points, lines, segments, and planes. The operatorproject_ptplane:
p:P3 nrml:P3 dist:F → q:P3, for instance, projects pointp onto
plane(nrml,dist).

The CBRep library provides Euler operators and functionality
for handling macros, as well as for navigating in the mesh and in
the macro graph. It also adds a new literal token, theedge type
representing a halfedge, whose string representation is “Er,m,k” ,
wherer,m,k are integers (see Sec. 4.4).

TheModeling library contains higher-level modeling operatios,
most notably several forms ofextrude, polygon/face conversions,
and for gluing faces together in various ways. Additionally, opera-
tors for ray/mesh, ray/face, face/plane intersections and for follow-
ing a ray over the mesh are available.

The Interaction library contains operators for handling input
events and for displaying other data types, such as 3D text and pro-
gressive triangles meshes. They work by registering objects in the
OpenGL display loop that are derived from a special base classOp-
eratorIO. One example is the operatorpickmesh: {f} → ioid:I which,
when the user picks the mesh, pushes the pick point, an edge, and a
flag for the pick type (vertex, edge, face), and executesf. This way,
arbitrarily complex responses to user input can be realized.

5.3 Simple GML example

The following example of an executable array of 14 tokens shows
how a two-sided quadrangle is created, and demonstrateschaining
of low-level mesh operators.

(1,-1,0) (-1,-1,0) makeVEFS dup
(1,1,0) makeEVone
(-1,1,0) makeEVone
exch edgeflip exch makeEF

Chaining means that in a sequence of operators the result of one
operation serves as input to the next operation. In the example first
edge is duplicated so that the finalmakeEF connects the first and
last edges to create the two-sided face. Postscript offers basically
two alternatives to store a value for later use: on the stack, which
can be tedious, or in a dictionary, which can be slow. We have intro-
ducednamed registers as a third alternative: Between abeginreg . . .
endreg pair, !myvariable pops and stores and:myvariable retrieves

6

Online Submission ID: papers_0369

and pushes a register value. A more general version of the example
would read then:

{ beginreg
[exch aload exch makeVEFS !e0]
:e0 exch { makeEVone } forall
:e0 edgeflip exch makeEF
endreg

} /poly2doubleface exch def

This demonstates an important concept: The separation of data
and operations. The input ofpoly2doubleface is now an array of
points, which is how a polygon is represented in the GML. To write
a general function is more involved than the less general example
above, but: once it’s done, the knowledge can be re-used.

Theextrude function accepts as input a face and an offset vector,
creates edges in normal direction from each vertex and connects
them consecutively withmakeEF, creating quadrangle sides. A
simple version using basically the same technique as above would
read like this:

{ beginreg !offset !edge
:edge facedegree 1 sub !n
:edge :edge vertexpos :offset add makeEVone dup
:n {

dup faceCCW faceCCW dup vertexpos :offset add
makeEVone makeEF vertexCW

} repeat
exch vertexCW exch makeEF endreg

} /extrude exch def

The two elements on top of the stack are immediately stored in
registers to minimizestack acrobatics. Chaining is quite efficient
when functions have compatible signatures:

[(-1,-1,0) (1,-1,0) (1,1,0) (-1,1,0)] poly2doubleface (0,0,2) extrude
(-3,3,0) (0,0,1) 20 circle poly2doubleface (0,0,2) extrude

In this fashion, more specific operations can be created by con-
catenating generic operations with specific parameters: The next
example shows howpoly2doubleface andextrude are concatenated,
applied on a polygon and a copy of it which is scaled, translated,
and rotated by 21.5 degrees around(0,0,1). The:extrudepoly leaves
edges of the top and bottom faces on the stack to glue them together
with killFmakeRH.

beginreg
{ !offsetvec !poly

:poly poly2doubleface dup edgeflip exch
:offsetvec extrude

} !extrudepoly

[(-1,-1,0) (1,-1,0) (1,1,0) (-1,1,0)] !poly

:poly (0,0,1.12) :extrudepoly !eface pop
:poly { 0.7 mul (0,0,1.12) add (0,0,1) 21.5 rot_vec } map
(0,0,1.12) :extrudepoly pop !ering

:ering :eface killFmakeRH
endreg

The GML encourages the conversion of specific shapes to gen-
eral functions as replacing concrete values by parameters is so sim-
ple: The polygon, offset vector, and angle are good candidates to
be free parameters. To do that, the first line would simply be re-
placed bybeginreg !angle !offsetvec !poly, and all occurrences of
the constants are replaced by the named registers.

Even more important: Functions can be parameters – just like
anything else, because they are just arrays. So the example could
also be parameterized in terms of theextrudepoly function or the
transformation to create the second polygon (the body of themap
operator). Fig. 3 shows a number of such variations of the above
example.

Figure 3: Variations of extrude operations.

5.4 The Gothic Window

The basic stylistic pattern in Gothic architecture is the circular arc,
or circle segment. A pointed arch, for example, is constructed with
two vertical line segments continued by circle segments to the point
where the circles intersect. A circle segment can be represented by
three points, the start and end points and the center of the circle,
and a normal. The normal is important ifangle(p0− m, p1 − m)
is supposed to be greater than 180 degrees. Just as a circle corre-
sponds to an n-gon, the function converting circle segment expects
a resolution. In GML notation it is created simply by:

[p0 m p1] norml resolution circleseg-poly
Thepoly2doubleface operator of the Geometry library produces

smooth vertices by default, and creates corner vertices only where
the polygon contains the same point twice (in analogy to BSpline
control polygons), i.e., segments of zero length. This is useful for
the pointed arch example, as the different parts of the polygon’s
outline can be combined simply by concatenating arrays.

The Geometry library’sextrude operator can also shrink or ex-
pand, and it can do multiple extrusions on several faces, so it ex-
pects an array of edges and an array of(dx,dy) extrusion values
(actually 3D points), which is essentially a profile.

The creation of Gothic style windows or ornaments is then a
matter of creating the right circle segments. An analysis of some
examples reveals that the most important operations are offsetting,
scaling and rotation, and, curiously, to compute the intersection of
an ellipse and a circle (to determine the radius of the top window).

The second extension we’ve made to the Postscript language
arepath expressions using the dot prefix: In an expressionStyles
.Gothic .window, the effect of.Gothic is to pop a dictionary from
the stack, and to push the value of keyGothic – which of course
can also be a dictionary. As it is legal to leave out the spaces, path
expressions like in C++ are possible.

Some results are shown in Figures 4 and 9. Note the variety
of different styles that can be obtained by changing the profile, or
some parameters. This effectively shows the separation of structure
from data. Another point is the effect obtained from coarsening
the resolution of the circular segments, a simple way to obtain a
semantic LOD (see Fig. 5).

7

Online Submission ID: papers_0369

Figure 4: Gothic Window: basic ’style’ in left image is augmented
with a rosette and then applied recursively once and twice to the
window geometry in the center image and right image, respectively.

5.5 The Arcade

The Arcade example demonstrates the versatility of a general tool,
and the usefulness of flow control for 3D modeling, and it underpins
our claim that 3D modeling has to be supported with as powerful
tools as used in programming.

Primary input parameters are a ground polygon and an arcade
style. It uses theoffset-polygon operator to generate a new polygon
in a specified distance.

6 Possible Applications

The GML calculus as presented in this paper is supposed to provide
a basic infrastructure for agenerative representation of 3D objects,
based on operations instead of geometric primitives. Now we want
to discuss some implications and present possible directions for ap-
plications of the GML and the runtime engine.

The concept of a stack-based language is quite general and as
well adaptable to concepts other than BRep modeling. This is un-
derpinned by two hypothetical examples, indexed face sets and hi-
erarchical scene graphs (cf. Fig. 8 and Fig. 7).

The .obj file format is conceptually quite simple, as the example
in the left column of Fig. 7 indicates. In the GML, a function to
create an indexed face set would expect on the stack an array of 3D
points and an array of index arrays for faces, and simply loop over
them, vertices first, as shown in the right box. A solution with a
more obvious correspondence is shown to its left, whereaddVertex
andaddFace are redefined asv, f.

VRML in turn is based on the concept of a Directed Acyclic
Graph (DAG) of nodes with fields containing values. It naturally
corresponds to a hierarchy of dictionaries, so that the definition of a
cylinder would read:dict begin /nodetype /Cylinder def /height 18.0
def /radius 0.5 def currentdict end. This leaves the dictionary on the
stack to be used by its parent node. A more sophisticated way to
represent a VRML scene is to realize node types as functions. A
Cylinder operator would put a dictionary containing the field defin-
ing functions (likeheight andradius) on the dictionary stack.

Most state of the art modelers, most notably Maya and 3DStu-
dio Max, use the concept of aconstruction history or modifier stack
to enable later modifications of earlier construction steps. A modi-
fier stack is basically a sequence of operations and could equally be
represented by a GML function, given that the modeling tools are
mapped to operators, and that handles to the data structures used are

Figure 5: Illustration of semantic LOD. This is the gothic window
in the left part of Fig. 4 in an extremely coarsified version. As
we have the knowledge about the construction history, we can still
distribute edge sharpnesses correctly to obtain an appealing shape.

v -1.0 -1.0 -1.0
v -1.0 1.0 -1.0
v 1.0 -1.0 -1.0
v 1.0 1.0 -1.0
v 0.0 0.0 1.0

f 1 2 4 3
f 1 3 5
f 3 4 5
f 4 2 5
f 2 1 5

(-1.0-1.0 -1.0) v
(-1.0 1.0 -1.0) v
(1.0-1.0 -1.0) v
(1.0 1.0 -1.0) v
(0.0 0.0 1.0) v

[1 2 4 3] f
[1 3 5] f
[3 4 5] f
[4 2 5] f
[2 1 5] f

{ beginreg !faces !points
:points { addVertex } forall
:faces { addFace } forall
endreg

} /create-IFS exch def

[(-1,-1,-1) (-1,1,-1)
(1,-1,-1) (1,1,-1) (0,0,1)]

[[1 2 4 3] [1 3 5]
[3 4 5] [4 2 5] [2 1 5]]

create-IFS

Figure 7: Versatility of the Postscript syntax: a cube as indexed face
set in .obj file format syntax, and how it translates to GML whenv
andf are functions. The similarity is obvious, but note the reversal
of the order of keywords and arguments.

available as tokens. Parameters of functions in the stack are usually
set by filling out a dialogue box, which corresponds to defining a
dictionary. The GML could help in automizing this when for in-
stance functions are used to compute certain entries of a dialogue
box. Representing a construction history as a function has the ad-
ditional advantage that it becomes afirst level citizen, this way new
modeling tools can easily be created out of existing ones. Using
variables as dialogue entries would extend the concept of a modeler
to work as ageometric spreadsheet calculator.

More flexible than just a sequence of operations is a data-flow
network, sometimes referred to as aprocedural network (Houdini):
Each operation corresponds to a node, and the user sets up a (hi-
erarchical) network by routing output values of one operation to
input parameters of others. This is just the way the GML works, so
it could be used for representing them. In addition, functions (aka
sub-networks) themselves can equally be parameters in the GML.

Software systems for virtual prototyping in the architectural do-
main sometimes use a system of parameterized components such as
windows, stairways and doors. They are sometimes referred to as

8

Online Submission ID: papers_0369

Figure 6: Seperating basic geometry from ’presentation’: the styles ’building’ and ’arcade’ are applied to a basic u-shape (left and middle)
and then the basic shape is changed independently from the applied style (right).

Transform {
translation 0 8 0
children [

Shape {
appearance Appearance {

material Material {
diffuseColor 0 0.5 1

}
}
geometry Cylinder {

height 18.0
radius 0.5

}
}

]
}

Transform
(0,8,0) translation
[Shape

Appearance
Material

(0,0.5,1) diffuseColor
endnode

material
endnode

appearance
Cylinder

18.0 height 0.5 radius
endnode

geometry
endnode

] children
endnode

Figure 8: Versatility of the Postscript syntax: the left column shows
a portion of a hierarchical scene graph in VRML syntax. It could
be translated to GML by using functions for nodes and fields.

intelligent 3D objects. Besides representing them, the GML could
be used as a standard for the exchange of intelligent components.

The structure of complex models can be exploited to facilitate
the maintenance of a digital library.

The extensibility of the GML helps to protectintellectual prop-
erty rights: The whole runtime system (currently) has a size of
about 2.5 MB, so it is feasible to create a custom viewer that can
only be used to display a specific parameterized model (in con-
trast to sending a fine tesselation from which reverse engineering
is easy), or to sell a library of specific commercial custom tools in
compiled form as a dynamically linked library.

7 Conclusions

We have presented a novel technique for representing geometric ob-
jects which has the potential of clearly seperating basic geometric
features from ornamental aspects in a similar way modern publish-
ing systems clearly seperate content from presentation. As illus-
trated in Figures 4 and 9 thecontent would the fact that we are
dealing with a window of a certain extent and at a certain posi-
tion but the ornamental detail is a matter ofpresentation, something
we must be able to change from ’gothic’ to ’baroque’ as easily as
switching the LATEX-style from ’article’ to ’report’.

Also, the presented approach suggests a new measure for geo-
metric complexity by replacing the (in many cases meaningless)
polygon count by the constructive model complexity. It is also
worth noting that the model file sizes for Figures 4 and 9 are only
in the order of a few kilobytes.

References

ADOBE SYSTEMS INC. 1999. PostScript Language Reference
Manual, 3 ed. Addison-Wesley.

BORODIN, P., NOVOTNI, M., AND KLEIN, R. 2002. Progressive
gap closing for mesh repairing.Advances in Modelling, Anima-
tion and Rendering (July), 201–21.

CATMULL , E., AND CLARK , J. 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes.Computer-Aided
Design 10 (September), 350—355.

GARLAND , M., AND HECKBERT, P. S. 1997. Surface simplifica-
tion using quadric error metrics. InProceedings of SIGGRAPH
97, ACM SIGGRAPH / Addison Wesley, Los Angeles, Califor-
nia, Computer Graphics Proceedings, Annual Conference Series,
209–216. ISBN 0-89791-896-7.

HAVEMANN , S. 2002. Interactive rendering of catmull/clark sur-
faces with crease edges.The Visual Computer 18, 286–298.

HOFFMANN, C. M., AND ARINYO, J. 2002. Parametric modeling.
In Handbook of CAGD. Elsevier.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise smooth surface reconstruction.Proceedings of
SIGGRAPH 94 (July), 295–302. ISBN 0-89791-667-0. Held in
Orlando, Florida.

MÄNTYLÄ , M. 1988. An Introduction to Solid Modeling. Com-
puter Science Press, Rockville.

SNYDER, J. M. 1992.Generative Modeling for Computer Graph-
ics and CAD. Academic Press, San Diego, CA.

9

Online Submission ID: papers_0369

Figure 9: Gothic Window: detailed view on resulting shape and tesselation.

10

