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The authors outline a cognitive and computational account of causal learning in children. They propose
that children use specialized cognitive systems that allow them to recover an accurate “causal map” of
the world: an abstract, coherent, learned representation of the causal relations among events. This kind
of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal
models, or Bayes nets. Children’s causal learning and inference may involve computations similar to
those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2-
to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net
formalism.

The input that reaches children from the world is concrete,
particular, and limited. Yet, adults have abstract, coherent, and
largely veridical representations of the world. The great epistemo-
logical question of cognitive development is how human beings
get from one place to the other: How do children learn so much
about the world so quickly and effortlessly? In the past 30 years,
cognitive developmentalists have demonstrated that there are sys-
tematic changes in children’s knowledge of the world. However,
psychologists know much less about the representations that un-
derlie that knowledge and the learning mechanisms that underlie
changes in that knowledge.

In this article, we outline one type of representation and several
related types of learning mechanisms that may play a particularly
important role in cognitive development. The representations are
of the causal structure of the world, and the learning mechanisms
involve a particularly powerful type of causal inference. Causal
knowledge is important for several reasons. Knowing about causal
structure permits us to make wide-ranging predictions about future
events. Even more important, knowing about causal structure
allows us to intervene in the world to bring about new events—
often events that are far removed from the interventions
themselves.
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Traditionally, psychologists thought there was little causal
knowledge in childhood—in particular, Piaget (1929, 1930) ar-
gued that preschoolers were precausal. In the past 2 decades,
however, there has been an explosion of research on causal knowl-
edge in young children. By the age of 5, children understand some
of the basic causal principles of everyday physics (Bullock,
Gelman, & Baillargeon, 1982; Leslie & Keeble, 1987; Oakes &
Cohen, 1990; Spelke, Breinlinger, Macomber, & Jacobson, 1992),
biology (Gelman & Wellman, 1991; Inagaki & Hatano, 1993;
Kalish, 1996), and psychology (Flavell, Green, & Flavell, 1995;
Gopnik & Wellman, 1994; Perner, 1991). Children as young as 2
years old can make causal predictions, provide causal explana-
tions, and understand counterfactual causal claims (Harris, Ger-
man, & Mills, 1996; Hickling & Wellman, 2001; Sobel & Gopnik,
2003; Wellman, Hickling, & Schult, 1997). Moreover, children’s
causal knowledge changes over time (see, e.g., Bartsch & Well-
man, 1995; Gopnik & Meltzoff, 1997) and changes in light of new
evidence (Slaughter & Gopnik, 1996; Slaughter, Jaakkola, &
Carey, 1999). This suggests that children are actually learning
about the causal structure of the world.

Much of this work has taken place in the context of the theory
theory: the idea that children have intuitive theories of the world,
analogous to scientific theories, and that these theories change in
ways that are similar to scientific theory change (Carey, 1985;
Gopnik, 1988; Gopnik & Meltzoff, 1997; Keil, 1989; Perner,
1991; Wellman, 1990). Causal knowledge plays a central role in
theories both in science (Cartwright, 1989; Salmon, 1984) and in
everyday life (Gopnik & Wellman, 1994; Gopnik & Glymour,
2002).

We argue that causal knowledge and causal learning in children
involve a type of representation we call a causal map. Causal
learning depends on learning mechanisms that allow children to
recover an accurate causal map of the world. Causal maps can be
inferred from observations of the patterns of correlation among
events1 or from observations of the effects of interventions—that
is, actions that directly manipulate objects—or from both types of
observations. We propose that young children use unconscious
inductive procedures that allow them to infer causal representa-
tions of the world from patterns of events, including interventions.
These procedures produce accurate representations of causal struc-
ture, at least for the most part.

We argue that these kinds of representations and learning mech-
anisms can be perspicuously understood in terms of the normative
mathematical formalism of directed graphical causal models, more
commonly known as Bayes nets (Pearl, 2000; Spirtes, Glymour, &
Scheines, 1993, 2001). This formalism provides a natural way of
representing causal structure, and it provides powerful tools for
accurate prediction and effective intervention. It also provides
techniques for reliably learning causal structures from patterns of
evidence, including interventions. We describe the formalism,
explain how it permits prediction and intervention, and describe
several computational procedures by which even complicated
causal maps can be learned from correlations, interventions, and
prior knowledge. We suggest that children’s causal learning may
involve more heuristic and limited versions of similar computa-
tions. We describe experiments supporting the hypothesis that
children’s causal learning is in accord with Bayes net representa-
tions and learning mechanisms. These experiments also suggest

that children’s learning does not just involve a causal version of
the Rescorla–Wagner rule.

The Causal Inverse Problem

The study of vision has led to some of the most successful
theories in cognitive science. The visual system, whether human or
robotic, has to solve what has been called “the inverse problem”
(Palmer, 1999). From the retinal (or foreoptic) image, the visual
system has to reconstruct information about objects moving in
space. Vision scientists explore how that reconstruction can be
done computationally and how it is done in humans. Although
accounts are very different in detail, they share some general
features. (a) Visual systems have an objective problem to solve:
They need to discover how three-dimensional moving objects are
located in space. (b) The data available are limited in particular
ways. For example, the information at the retina is two-
dimensional, but the world is three-dimensional. (c) Solutions
must make implicit assumptions about the spatial structure of the
world and about the ways that objects in the world produce
particular patterns on the retina. The system can use those assump-
tions to recover spatial structure from the data. In normal condi-
tions, those assumptions lead to veridical representations of the
external world. However, these assumptions are also contin-
gent—if they are violated, then the system will generate incorrect
representations of the world (as in perceptual illusions).

We propose an analogous problem about discovering the causal
structure of the environment. (a) There are causal facts, as objec-
tive as facts about objects, locations, and movements, used and
evidenced in accurate prediction and effective intervention. (b)
The data available are limited in particular ways. Children may
observe correlations between events that they cannot or do not
manipulate; they may observe events they can only manipulate
indirectly, through other events; the correlations they observe, with
or without their own interventions, may involve an enormous
number of features, only some of which are causally related. (c)
Children have a causal learning system, like the visual system, that
recovers causal facts by making implicit assumptions about the
causal structure of the environment and the relations between the
environment and evidence. Those assumptions are contingent—
where they are false, causal inference may fail to get things right.

Causal Maps

What kinds of representations might be used to solve the causal
inverse problem? The visual system seems to use many very
different types of representations to solve the spatial problem. But
one particularly important way organisms solve the spatial inverse
problem is by constructing cognitive maps of the spatial environ-

1 We use correlation to signify any form of probabilistic dependence,
not specifically Pearson product–moment correlation. We use ordinary
capital letters (e.g., X, Y) to represent variables of any type and lowercase
letters to represent their values (e.g., x is a value of X). We use boldface
letters (e.g., S) to represent sets of variables; X � Y denotes that for all
values x of X and y of Y, X � x is independent in probability of Y � y. W
� {X, Y}|Z denotes that for all values w of W, x of X, y of Y, and z of Z,
W � w is independent in probability of both X � x and Y � y conditional
on Z � z.
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ment (Gallistel, 1990; O’Keefe & Nadel, 1978; Tolman, 1932).
These cognitive maps provide animals with representations of the
spatial relations among objects.

There are several distinctive features of cognitive maps. First,
such maps provide nonegocentric representations. Animals might
navigate through space, and sometimes do, egocentrically, by
keeping track of the changing spatial relations between their body
and objects as they move through the spatial environment. Cog-
nitive maps are not egocentric in this way. They allow animals to
represent geometric relationships among objects in space indepen-
dently of their own relation to those objects. A cognitive map
allows an animal that has explored a maze by one route to navigate
through the maze even if it is placed in a different position initially.
This aspect of cognitive maps differentiates them from the kinds of
cognitive structures proposed by the behaviorists—structures that
depend on associations between external stimuli and the animal’s
own responses.

Second, cognitive maps are coherent. Rather than just having
particular representations of particular spatial relations, cognitive
maps allow an animal to represent many different possible spatial
relations in a generative way. An animal that knows the spatial
layout of a maze can use that information to make new inferences
about objects in the maze.

Third, cognitive maps are learned. Animals with the ability to
construct cognitive maps can represent an extremely wide range of
new spatial environments, not just one particular environment.
This also means that spatial cognitive maps may be defeasible—
the current representation the animal has of the environment may
not be correct. As an animal explores its environment and gains
more information about it, the animal alters and updates its cog-
nitive map of that environment.

Our hypothesis is that children construct similar representations
that capture the causal character of their environment. This capac-
ity plays a crucial role in the solution to the causal inverse
problem. We hypothesize that even very young children construct
nonegocentric, abstract, coherent, learned representations of causal
relations among events, and these representations allow them to
make causal predictions and anticipate the effects of interventions.

Note that we are not proposing that children actually use spatial
maps for the purpose of representing or acquiring causal knowl-
edge or that children somehow extend spatial representations
through processes of metaphor or analogy. Rather, we propose that
there is a separate cognitive system with other procedures devoted
to uncovering causal structure and that this system has some of the
same abstract structure as the system of spatial map making.

Causal maps would be an interesting halfway point between
what are traditionally thought of as domain-specific and domain-
general representations. Our proposal is that these representations
are specialized for causal knowledge, as spatial maps are special-
ized for spatial knowledge. This differentiates these representa-
tions from completely domain-general representations, such as
those proposed in associationist or connectionist theories (e.g.,
Elman, Bates, Johnson, & Karmiloff-Smith, 1996). We predict that
causal maps would not be used to represent spatial, or phonolog-
ical, or musical relations, for example. However, these maps
represent all kinds of causal structure. This includes the kinds of
causes that are involved in everyday theories of physics, biology,
and psychology as well as other kinds of causal knowledge. This
differentiates these representations from the representations of

more nativist modularity theories (e.g., Atran, 1990; Leslie &
Roth, 1993; Spelke et al., 1992). Such theories propose that there
are only a few separate domain-specific causal schemes.

Although causal maps represent causal knowledge, in particular
(and in general), they are not the only devices to represent causal
knowledge. Just as cognitive maps may be differentiated from
other kinds of spatial cognition, causal maps may be differentiated
from other kinds of causal cognition. Given the adaptive impor-
tance of causal knowledge, one might expect that a wide range of
organisms would have a wide range of devices for recovering
causal structure. Animals, including human beings, may have
some hard-wired representations that automatically specify that
particular types of events lead to other events. For example,
animals may always conclude that when one object collides with
another, the second object will move on a particular trajectory. Or,
they may specifically avoid food that leads to nausea (Palmerino,
Rusiniak, & Garcia, 1980). These sorts of specific hard-wired
representations could capture particular, important parts of the
causal structure of the environment. This is the proposal that
Michotte (1962) and Heider (1958) made regarding the perception
of physical and psychological causality.

Animals might also be hard wired to detect a wider range of
causal relations that involve especially important events. Such
capacities underpin classical and operant conditioning, in which
animals learn associations between ecologically important events,
such as food or pain, and other events. Conditioning is adaptive
because it allows animals to capture particularly important causal
relations in the environment.

Animals could also use a kind of egocentric causal navigation.
They might calculate the immediate causal consequences of their
own actions on the world and use that information to guide further
action. Operant conditioning is precisely a form of such egocentric
causal navigation, with special reference to ecologically important
events. More generally, trial-and-error learning involves similar
abilities for egocentric causal navigation.

Causal maps, however, would go beyond the devices of hard-
wired representations, classical and operant conditioning, and trial-
and-error learning. They would confer the same sort of advantages
as spatial maps (Campbell, 1995). Most significantly, with a non-
egocentric causal representation of the environment, an animal
could predict the causal consequences of an action without actually
having to perform it. The animal could simply observe causal
interactions in the world and then produce a new action that would
bring about a particular causal consequence, in the same way that
an animal with a spatial map can produce a new route to reach a
particular location. The capacity to produce these novel interven-
tions would be a hallmark of causal maps.

Moreover, such an animal could combine information about the
effects of its own actions, of the sort used in operant conditioning
or trial-and-error learning, with purely observational information,
of the sort used in classical conditioning, in a systematic way.
Causal maps would also allow animals to extend their causal
knowledge and learning to a wide variety of new kinds of causal
relations, not just causal relations that involve rewards or punish-
ments (as in classical or operant conditioning), not just object
movements and collisions (as in the Michottean effects), and not
just events that immediately result from their own actions (as in
operant conditioning or trial-and-error learning). Finally, animals
could combine new information and prior causal information to
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create new causal maps, whether that prior information was hard
wired or previously learned.

Humans, at least, do seem to have such causal representations
(the case is not so clear for nonhuman animals, even including
higher primates; see Povinelli, 2001; Tomasello & Call, 1997).
Causal knowledge in human adults and children, particularly the
sort of causal knowledge that is represented in everyday theories,
seems to have much of the character of causal maps. Everyday
theories represent causal relations among a wide range of objects
and events in the world, independently of the relation of the
observer to those objects and events (although the observer may, of
course, be included in that knowledge). They postulate coherent
relations among such objects and events that support a wide range
of predictions and interventions, including novel interventions.
These representations include a very wide range of causal facts
about a very wide range of events, not just ecologically significant
events. These representations go beyond the representations that
would be proposed by Michottean mechanisms, classical or oper-
ant conditioning, or trial-and-error learning. Finally, the causal
knowledge encoded in theories, like causal maps, appears to be
learned through our experience of and interaction with the world
around us.

Learning Causal Maps

If the causal maps idea is correct, we can rephrase the general
causal inverse problem more specifically. How is it possible to
recover causal maps from the data of experience? How can we
learn a new causal map? We suggest that this is one of the central
cognitive problems for young children learning about the world.

The epistemological difficulties involved in recovering causal
information are just as grave as those involved in recovering
spatial information. Hume (1739/1978) posed the most famous of
these problems, that we only directly perceive correlations be-
tween events, not their causal relationship. How can we make
reliably correct inferences about whether one event caused the
other? Causation is not just correlation, or contiguity in space, or
priority in time, or all three, but often enough, that is our evidence.

It gets worse. Causal structures rarely just involve one event
causing another. Instead, events involve many different causes
interacting in complex ways. A system for recovering causal
structure has to untangle the relations among those causes and
discount some possible causes in favor of others.

Moreover, many causal relations may be probabilistic rather
than deterministic. When a child points to a toy, this makes Mom
more likely to look at the toy, but it does not mean that Mom will
always look at the toy. Even if the underlying causal relationship
between two kinds of events is deterministic, the occurrence of
other causal factors, which may not be observed, will typically
make the evidence for the relationship probabilistic. The system
must be able to deal with probabilistic information.

Finally, in many cases, we make inferences about causes that are
themselves unobserved or even unobservable. Something in a
piece of wood makes it ignite, something in a plant makes it grow,
something in a person’s mind leads to action. However, we only
observe the events of the wood igniting, the plant growing, or the
person acting. How do we know what caused those events?

We propose that children are equipped with a causal learning
system that makes certain assumptions about causal structure and

about how patterns of events indicate causal structure, just as the
visual system makes assumptions about spatial structure and about
how retinal patterns indicate spatial structure. These assumptions
help solve the causal inverse problem. Broadly speaking, there are
two different kinds of assumptions that might be used to help solve
the general problem of discovering causal relations.

First, we might propose what we call substantive assumptions.
Children might automatically conclude that particular types of
events cause other particular types of events. For example, they
might assume that ingesting food causes nausea or that a ball
colliding with another causes the second ball to move. The
Michottean perceptual causal principles have this character, al-
though, of course, they only allow a very limited set of causal
conclusions. There might also be broader and more general as-
sumptions of this kind, which could underpin a wider range of
causal inferences: temporal sequence, for example—effects can-
not precede causes. Similarly, we might propose that children
automatically interpret the relation between intentional actions and
the events that immediately follow those actions as causal.

Some of these substantive assumptions could be innate. But, in
addition, as children learn about the world, their specific substan-
tive knowledge about causal relations could act as a constraint on
their later causal inferences. For example, if children learn that, in
general, desires cause actions, they may assume that a new action
was caused by a desire. Undoubtedly, substantive assumptions
play an important role in solving the causal inverse problem.
Innate substantive assumptions, however, would only allow chil-
dren to solve a relatively limited set of causal problems with
specific content. Children’s capacities for causal learning appear to
be much broader and more flexible than these substantive assump-
tions alone would allow. In the case of substantive prior causal
knowledge that is not innate, there must be some other set of
assumptions that allow that prior knowledge to be acquired in the
first place.

We might also propose what we call formal causal assumptions.
These assumptions say that certain patterns of correlation among
events, including events that involve interventions, reliably indi-
cate causal relations, regardless of the content of those events.
They posit constraining relations between causal dependencies and
patterns of correlations and interventions.

It is important to realize that this sort of account would not
reduce causal relations between events to patterns of correlation
between those events or define causal structure in terms of corre-
lation. On our view, correlations may indicate causal structure, but
they do not constitute causal structure—just as retinal patterns
indicate but do not constitute spatial structure.

Our idea is that causal learning systems make certain funda-
mental assumptions about how patterns of correlation and inter-
vention are related to causal relations, in much the same way that
the visual system makes geometrical assumptions about how two-
dimensional sensory information is related to three-dimensional
space. Those assumptions may turn out to be wrong in individual
cases, just as they may turn out to be wrong in the visual case. In
a visual illusion, such as the illusions of depth that are produced by
three-dimensional movies and Viewmaster toys, the assumptions
of the visual system lead to the wrong conclusion about three-
dimensional spatial structure. Similarly, on our view there might,
in principle, be causal illusions, cases in which the pattern of
events led to the wrong conclusion about causal structure. Overall,
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and in the long run, however, these causal assumptions lead to
accurate representations of the causal structure of the world.
Again, as in the spatial case, this would explain why they were
selected for by evolution.

Just as causal maps are an interesting halfway point between
domain-specific and domain-general representations, these causal
learning mechanisms are an interesting halfway point between
classically nativist and empiricist approaches to learning. Tradi-
tionally, there has been a tension between restricted and domain-
specific learning mechanisms such as triggering or parameter-
setting and very general learning mechanisms such as association
or conditioning. In the first kind of mechanism, very specific kinds
of input trigger very highly structured representations. In the
second kind of mechanism, any kind of input can be considered,
and the representations simply match the patterns in the input. Our
proposal is that causal learning mechanisms transform domain-
general information about patterns of events, along with other
information, into constrained and highly structured representations
of causal relations.

Causal Maps and Causal Learning in Adults and
Children

The literature on everyday theories suggests that causal maps
are in place in both adults and young children. However, there is
much less evidence about the learning procedures that are used to
recover those maps. For adults, there is evidence that both sub-
stantive assumptions and formal assumptions can be used to re-
cover causal structure. Some investigators have shown that adults
use substantive prior knowledge about everyday physics and psy-
chology to make new causal judgments (e.g., Ahn, Gelman, Am-
sterlaw, & Kalish, 2000). Other investigators have shown that
adults can also use formal assumptions to learn new causal rela-
tions—adults can use patterns of correlation among novel kinds of
events to infer new causal structure. Several different specific
proposals have been made to characterize such learning (e.g.,
Cheng, 1997; Cheng & Novick, 1992; Novick & Cheng, in press;
Shanks, 1985; Shanks & Dickinson, 1987; Spellman, 1996). In
particular, Cheng and her colleagues have developed the most
extensive and far-reaching such account: the power PC theory
(Cheng, 1997; Novick & Cheng, in press). However, adults, par-
ticularly university undergraduates, have extensive causal experi-
ence and often have explicit education in causal inference. Adults
might be capable of such learning, although children are not.

There is also research showing that children and even infants
use substantive assumptions and prior knowledge to make causal
judgments. Most research on causal learning in children has con-
cerned children’s application of substantive principles of everyday
physics. Specifically, Bullock et al. (1982) and Shultz (1982)
showed that children could apply principles of everyday physics
(e.g., principles involving spatial contact and temporal priority) to
make new causal inferences. Work on infants also suggests that
some of these principles are in place at an early age (Leslie &
Keeble, 1987; Oakes & Cohen, 1990). In these experiments, chil-
dren and infants seem to assume, for example, that spatial contact
is required when one object causes another object to move or that
causes must precede effects.

A different tradition of work suggests, at least implicitly, that
children make substantive assumptions about the causal relations

between their own intentional actions and the events that imme-
diately follow those actions. For example, the literature on infant
contingency learning (Rovee-Collier, 1987; Watson & Ramey,
1987) suggests that even infants can learn about the causal effects
of their own actions by observing the relations between those
actions and events that follow them. This learning, however, is
restricted to egocentric contexts. It is analogous to trial-and-error
learning in animals. The literature on imitative learning (e.g.,
Meltzoff, 1988a, 1988b) suggests that, at least by 9 months, infants
can go beyond such purely egocentric inferences and make similar
causal inferences by observing the immediate effects of the actions
of others. Even in this case, however, infants seem to be restricted
to considering the immediate relations between actions and the
events that follow them.

However, there has been no work exploring whether young
children, like adults, can use formal assumptions to recover causal
maps from patterns of correlation between events. We do not even
know whether children are capable of the kinds of formal causal
learning that have been demonstrated in adults, let alone whether
they are capable of other kinds of formal causal learning. If
children can use such assumptions, that would provide them with
a particularly powerful and general learning tool. Such procedures
would allow children to go beyond the limited substantive knowl-
edge that might be given innately and learn about genuinely new
kinds of causal relationships and structure. Children would not
only be able to infer that an object must make contact with another
to cause it to move or that their own actions cause the events that
follow them. Instead, they could also learn such novel causal facts
as that remote controls activate television sets, that watering plants
makes them grow, or that crowds make shy people nervous. Such
procedures might then play a major role in the impressive changes
in causal knowledge we see in the development of everyday
theories. Moreover, demonstrating that this type of learning is in
place in very young children would show that it does not require
extended expertise or education.

The Role of Normative Mathematical Accounts in
Psychological Research

Do children implicitly use formal assumptions, and if so, what
formal assumptions do they use? To answer this question, it would
help to know which formal assumptions could, in principle, solve
the causal inverse problem. Again, we may draw an analogy to
vision science. Psychological solutions to the spatial inverse
problem have been informed by normative mathematical and com-
putational work. Figuring out how systems could, in principle,
recover three-dimensional structure from two-dimensional infor-
mation turns out to be very helpful in determining how the visual
system actually does recover that information.

For example, Mayhew and Longuet-Higgins (1982) formulated
a new mathematical and geometrical solution to one visual inverse
problem. They showed that, in principle, depth information could
be recovered from the combination of horizontal and vertical
disparities between two stereo images, with no other information.
(Earlier theories had argued that information about eye position
was also necessary.) A three-dimensional object would generate
only certain patterns of horizontal and vertical disparities and not
others. As a direct result, psychophysicists tested, for the first time,
whether the human visual system uses this same information in the
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same way and found that, in fact, it does (Rogers & Bradshaw,
1993). In addition, computer scientists have used this mathemati-
cal account to help design computer vision systems. The mathe-
matical theories give psychologists ways of coherently asking the
question of how, and how well, humans solve these problems.
Mathematical accounts of causal representations and learning
could inform a psychological theory in a similar way. The Bayes
net formalism provides such an account.

Causal Bayes Nets

The causal Bayes net formalism has developed in the computer
science, philosophy, and statistical literatures over the last 2 de-
cades (Glymour & Cooper, 1999; Kiiveri & Speed, 1982; Pearl,
1988, 2000; Spirtes et al., 1993, 2001). It provides a general,
unified representation of causal hypotheses that otherwise take a
variety of forms as statistical models (path analysis, structural
equation models, regression models, factor models, etc.). In con-
junction with automated inference procedures, the formalism has
been applied to design computer programs that can accurately
make causal inferences in a range of scientific contexts, including
epidemiology, geology, and biology (Glymour & Cooper, 1999;
Ramsey, Roush, Gazis, & Glymour, 2002; Shipley, 2000). The
representations of causal graphical models, commonly called
Bayes nets, can model complex causal structures and generate
accurate predictions and effective interventions. Moreover, Bayes
net representations and associated learning algorithms can accu-
rately infer causal structure from patterns of correlation, involving
either passive observation, intervention, or both and exploiting
prior knowledge. A wide range of normatively accurate causal
inferences can be made, and in many circumstances, they can be
made in a computationally tractable way. The Bayes net represen-
tations and algorithms make inferences about probabilistic causal
relations. They also allow one to disentangle complex interactions
among causes and sometimes to uncover hidden unobserved
causes (see Glymour, 2001; Glymour & Cooper, 1999; Jordan,
1998; Pearl, 1988, 2000; Spirtes et al., 1993, 2001).

Inferring Causal Structure From Conditional
Dependence: An Informal Example

Bayes nets are actually a formalization, elaboration, and gener-
alization of a much simpler and more familiar kind of causal
inference. Causal relations in the world lead to certain character-
istic patterns of events. If X causes Y, the occurrence of X makes
it more likely that Y will occur. We might think that this could
provide us with a way of solving the causal inverse problem. When
we see that X is usually followed by Y, we can conclude that X
caused Y.

But there is a problem. The problem is that other events might
also be causally related to Y. For example, some other event, Z,
might be a common cause of both X and Y. X does not cause Y, but
whenever Z occurs, it is more likely that both X and Y will occur
together. Suppose you notice that when you drink wine in the
evenings, you are likely to have trouble sleeping. It could be that
the wine is causing your insomnia. However, it could also be that
you usually drink wine in the evenings when you go to a party. The
excitement of the party might be keeping you awake, indepen-
dently of the wine. The party might both cause you to drink wine

and independently cause you to be insomniac, and this might be
responsible for the association between the two kinds of events. X
(wine) would be associated with Y (insomnia), yet it would be
wrong to conclude that there was a causal relation between them.
You could represent these two possibilities with two simple
graphs:

1. Z (Parties) 3 X (Wine) 3 Y (Insomnia). (Parties cause
wine drinking, which causes insomnia.)

2. X (Wine) 4 Z (Parties) 3 Y (Insomnia). (Parties cause
wine drinking and also cause insomnia.)

Intuitively, these two causal structures should lead to different
patterns of correlation among the three types of events. If Graph 1
is right, you can predict that you will be more likely to have
insomnia when you drink wine, regardless of how much you party.
If Graph 2 is right, you can predict that you will be more likely to
have insomnia when you party, regardless of how much you drink.
Similarly, different interventions will be adaptive in these two
cases. If Graph 1 is right, then you should avoid drinking to help
cure your insomnia (even solitary drinking), and if Graph 2 is
right, you should avoid parties (even sober parties).

According to either of these graphs, drinking wine is correlated
with insomnia, and the fact that you are drinking wine increases
the probability that you will have insomnia, but for two different
reasons. In Graph 1 the two events are related because wine
drinking causes insomnia, but in Graph 2 they are related because
the fact that you are drinking wine increases the probability that
you are at a party, and parties cause insomnia. If Graph 1 is true the
correlation between wine drinking and insomnia tracks the prob-
ability that an intervention to stop drinking will reduce insomnia.
But if Graph 2 is true, the correlation between wine drinking and
insomnia does not track this probability—not drinking will not
help. In much the same way, smoking is correlated both with
having yellow fingers and with getting cancer, so having yellow
fingers is correlated with cancer, but cleaning your hands will not
keep you from getting cancer, and quitting smoking will. Knowing
the right causal structure may not be essential for predicting one
thing from another, but it is essential for predicting the effects of
interventions that deliberately manipulate events.

If you knew which of these graphs was right, you could manage
to get some sleep without unnecessarily sacrificing alcohol or
society. How could you decide? Intuitively, it seems that you could
work backward from knowing how the graphs lead to patterns of
events to inferring the graphs from those patterns of events. One
thing you could do is to perform a series of experimental inter-
ventions, holding wine or parties constant, and varying the other
variable. Because you already know that social drinking is asso-
ciated with insomnia, you could systematically try solitary drink-
ing or sober partying and observe the effects of each of these
interventions on your insomnia.

You could also, however, simply collect observations of the
relative frequencies of X, Y, and Z. If you observe that you are
more likely to have insomnia when you drink wine, whether or not
you are at a party, you could conclude that the wine is the problem.
If you observe that you are more likely to have insomnia only
when you go to a party, regardless of how much or how little wine
you drink, you could conclude that the parties are the problem. In
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both cases, wine, insomnia, and partying will all be correlated with
one another. But if Graph 1 is correct, then insomnia will continue
to be dependent on wine even if you take partying into account—
insomnia is still dependent on wine conditional on partying. How-
ever, insomnia will no longer be dependent on partying if you take
wine into account—insomnia and partying are independent con-
ditional on wine. In contrast, if Graph 2 is correct, then insomnia
and partying will still be dependent if you take wine into ac-
count—insomnia and partying are dependent conditional on wine.
However, insomnia will no longer be dependent on wine when you
take partying into account—insomnia and wine are independent
conditional on partying. In this simple case, then, you have figured
out which of two causal structures is correct by observing the
patterns of conditional dependence and independence among
events.

This sort of reasoning is ubiquitous in science. In experimental
design, scientists control for events that might be confounding
causes. In observational studies, they use techniques such as partial
correlation to control for confounding causes. In effect, what you
did in your reasoning about your insomnia was to design an
experiment controlling for partying or to partial out the effects of
partying from the wine–insomnia correlation.

We can translate these informal intuitions about conditional
dependence into the more precise language of probability theory
(see Reichenbach, 1956). More formally, we could say that if
Graph 1 is right and there is a causal chain that goes from parties
to wine to insomnia, then Y � Z|X—the probability of insomnia
occurring is independent (in probability) of the probability of party
going occurring conditional on the occurrence of wine drinking. If
Graph 2 is right and parties are a common cause of wine and
insomnia, then X � Y|Z—the probability of wine drinking occur-
ring is independent (in probability) of the probability of insomnia
occurring conditional on the occurrence of party going.

There is also a third basic type of graph; insomnia might be a
common effect of both wine drinking and parties (X3 Y4 Z). In
this case, X is not independent of Z conditional on Y. The intuitions
here are less obvious, but they reflect the fact that, in this case,
knowing about the effect and about one possible cause gives us
information about the other possible cause. We can illustrate this
best with a different example. Suppose X is a burglar, Y is the
burglar alarm sounding, and Z is the neighboring cat tripping the
alarm wire, so that Y is a common effect of X and Z. If we hear the
alarm sound and see the cat tripping the wire, we are less likely to
conclude that there was a burglar than if we simply hear the alarm
sound by itself (see Pearl, 2000; Spirtes et al., 1993, for
discussion).

The notions of dependence and independence involved in these
formal statements, unlike the intuitive notions, are precisely de-
fined in terms of the probabilities of various values of the vari-
ables. Suppose each of the variables in our example has only two
values: People drink, party, or have insomnia, or they do not. If
drinking and insomnia are independent in probability, then the
probability of drinking and insomnia occurring together equals the
probability of drinking occurring multiplied by the probability of
insomnia occurring. Similarly, the probability that drinking does
not occur and that insomnia also does not occur equal the proba-
bility of not drinking multiplied by the probability of not having
insomnia. More generally, the same is true for any combination of
values of X and Y.

However, if X and Y are dependent in probability, then there will
be some set of values of X and Y such the probability of their
occurring together will not equal the probability of X occurring
multiplied by the probability of Y occurring. For example, if
drinking wine causes insomnia, then the probability of drinking
and insomnia occurring together will be greater than the probabil-
ity of drinking occurring multiplied by the probability of insomnia
occurring.

Formally, X and Y are independent in probability if and only if
for every value of X and Y

Pr�X, Y� � Pr�X� � Pr�Y�.

Similarly, we can define the conditional independence of two
variables given another value in these probabilistic terms. X (drink-
ing) is independent of Y (insomnia) conditional on Z (parties) if
and only if for every value of X, Y, and Z2

Pr�X, Y|Z� � Pr�X|Z� � Pr�Y|Z�.

The informal reasoning we described above is limited to rather
simple cases. But, of course, events may involve causal interac-
tions among dozens of variables rather than just three. The rela-
tions among variables may also be much more complicated. X
might be linearly related to Y, or there might be other, more
complicated functions relating X and Y; X might inhibit Y rather
than facilitating it, or X and Z together might cause Y though
neither event would have that effect by itself. And, finally, there
might be other, unobserved, hidden variables that are responsible
for patterns of correlation. Is there a way to take the probability
theoretic statement of the reasoning we use intuitively and gener-
alize it to these more complicated cases? The causal Bayes net
formalism provides such a method.

Bayes Nets

The causal Bayes net formalism has three aspects: Directed
acyclic graphs represent causal relations, the graphs are associated
with probability distributions, and the Markov assumption con-
strains those probability distributions. We state these three aspects
more formally first and then give a more informal and discursive
explanation.

1. Causal hypotheses are represented by directed acyclic graphs,
in which the causal variables or features are the nodes or vertices.
A directed edge between two variables, X 3 Y, stands for the
proposition that there is some intervention that fixes an assignment
of values to all other variables represented in the graph (resulting
in Y having a particular probability distribution pr[Y]) such that an
intervention that (a) changes the value of X from x to some x� for
distinct values x, x� of X but (b) does not influence Y other than

2 Independence and conditional independence can also be defined in
other ways. For variables X, Y, Z taking only two possible values (denoted,
e.g., by Y and �Y and bearing in mind that Y is ambiguously a variable and
a value of that variable), that X is independent of Y conditional on Z can
also be defined by a “difference” formula, Pr(X|Y, Z) � Pr(X|�Y, Z), for
all values of X, Y, and Z. The two definitions are equivalent when all
represented conditional probabilities exist, but not necessarily otherwise.
For technical reasons, the definition in the body of the text is customary in
the Bayes net formalism.
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through X and (c) does not change the fixed values of other
variables will result in a probability distribution pr�(Y) � pr(Y)
(see Spirtes et al., 1993, for a full mathematical justification of this
characterization).

2. There is a joint probability distribution on all assignments of
values to all variables in the graph. Typically, a particular proba-
bility distribution can be specified by values of parameters that
may be linked to the structure of the graph, with sets of different
parameter values specifying different probability distributions. For
example, in a linear system with a normal (Gaussian) distribution,
in which each variable is a linear function of its direct causes and
of unobserved factors (often described as noise or error), the
parameters can be given by the linear coefficients and the covari-
ance matrix of the unobserved factors. Often (in regression mod-
els, e.g.) the covariance matrix is assumed to be diagonal—that is,
the unobserved factors are assumed to be independent in proba-
bility. The directed acyclic graph, the numerical values for the
linear coefficients, the variance of the unobserved factors, and the
specification that the unobserved factors are jointly independent in
probability determine a unique joint probability distribution on all
values of the variables. If the variables are discrete—for example,
if they take only two possible values, for instance, present or
absent—the parameters are simply the probability distributions for
each variable conditional on each possible assignment of values to
its direct causes in the graph.

3. The joint probability distribution on all assignments of values
to all variables in the graph is constrained in the following way:
For any variable, R, in the directed graph, the graph represents the
proposition that for any set, S, of variables in the graph (not
containing any descendants of R), R is jointly independent of the
variables in S conditional on any set of values of the variables that
are parents of R (the direct causes of R, those variables that have
edges directed into R). In the Bayes net literature, this condition is
called the Markov assumption. If the marginal probability distri-
butions of each variable in a directed acyclic graph conditional on
each vector of values of its parent variables are a function of the
values of its parents alone, the Markov assumption necessarily
follows.

Causal Bayes nets, then, represent causal structure in terms of
directed graphs, like the simple graphs we used in the wine–
insomnia example or the more complex graph shown below in
Figure 1. The nodes of the graph represent variables whose values

are features of the system to which the net applies. Color, for
example, might be a variable with many different possible values;
weight might be a variable with a continuum of values; having
eyes might be a variable with just two discrete values, absent or
present.

In a causal Bayes net, the arrows represent the direct causal
relations between two variables. These causal relations are objec-
tive relations among types of objects and events in the world, the
sorts of relations scientists discover. There are, of course, knotty
philosophical questions about the metaphysics of these causal
relations. But, at the least, we can assume that these causal facts
lead to facts about the effects of interventions on the world—
indeed, this is why science is possible.

From this perspective, the precise definition of an arrow be-
tween X and Y given in Point 3 of the formal characterization
above can be roughly translated as follows: If we did the right
experiment, controlling all the other variables in the graph, chang-
ing the value of X would directly cause a change in the value of Y.
Similarly, in Figure 1, for example, if we fixed the value of X, Y,
W, and Z and then changed the value of S, the value of R would
change.

The complex definition in the three parts of Clause 1 above is
essential for generality, exactly because the correlations among a
set of variables do not uniquely determine their causal relations.
For example, X 3 Y 3 Z and X 4 Y 4 Z are distinct causal
hypotheses, but they imply the same constraint on probabilities: X,
Y, and Z are correlated, and X is independent of Z conditional on
Y. However, these hypotheses imply different predictions about the
result of (ideal) interventions. For example, only the first hypoth-
esis implies that interventions that alter X while fixing Z at a
constant value throughout will alter the probability of Y. Details
are given in Chapters 3 and 4 of Spirtes et al. (1993, 2001).

These directed graphs must also be acyclic. An arrow going out
from one node cannot also lead back into that node (e.g., X3 Y3
Z 3 X). No feedback loops are allowed in the graphs (although
there are generalizations to cyclic graphs; see Richardson, 1996,
and Spirtes et al., 2001).

These graphs may encode deterministic relations among the
variables (so, e.g., S might always lead to X). More often, the
causal relations among the variables are conceived of as probabi-
listic (either because they are intrinsically probabilistic or because
there is assumed to be unmeasured noise due to variations in other
unrepresented causes). So, for example, S might have a .78 prob-
ability of leading to X. The relations may also vary in other
ways—for example, they might be inhibitory, or additive, or
linear, or nonlinear. The parameterization of a graph provides
additional information about the statistics of the causal relations
(e.g., whether they are deterministic, or probabilistic, or linear or
nonlinear). This information goes beyond the information that S
directly causes X, which is encoded by the arrow itself.

The Markov assumption says that, if the graph is causal, there
are certain conditional independence relations among the vari-
ables, no matter how the graph is parameterized, and it defines
those relations. (The Markov assumption does not characterize
conditional independence relations that hold only for particular
parameter values.) We can use kinship terms to characterize var-
ious relations among the arrows and help explain the Markov
assumption more intuitively. Thus, if, as in Figure 1, S and X are
directly connected by an arrow that is directed into X, S is a parentFigure 1. A causal graph.
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of X and X is a child of S. Similarly, we can talk about ancestors
and descendants to characterize indirect relations among the vari-
ables. In Figure 1, Z is an ancestor of X and X is a descendant of
Z. The Markov assumption says that the variables in a causal
network are independent of all other variables in the network,
except their descendants, conditional on their parents. For exam-
ple, in Figure 1, the Markov assumption says that X is independent
of {R, Z} conditional on any values of variables in the set {S, Y}.

In general, the Bayes net formalism allows us to take informa-
tion about the correlations of some variables in a causal network
and/or about the results of experimental interventions on some
variables and then correctly infer the correlations among other
variables and/or the results of experimental intervention on those
variables. The arrows encode propositions about the effects of
interventions on a variable, and from those arrows we can make
new inferences about other correlations and interventions, as we
show below in the section on prediction and planning. Conversely,
we can infer the arrows—that is, infer propositions about inter-
ventions on some variables—from information about the correla-
tions among other variables and about the effects of interventions
on other variables, as we show below in the section on learning.
And, as we also show, in some cases we can do this even when the
variables are not observed. No matter what the metaphysics of
causation may be, these sorts of inferences are central to causal
learning.

Using Causal Bayes Nets for Prediction and Planning

A directed acyclic graph, with a probability distribution con-
strained by the Markov assumption, represents a set of causal
hypotheses about a system. Given such a graph, we can make two
kinds of normatively accurate inferences. First, we can use the
graph to predict the value of a variable in the system from ob-
served values of other variables in the system. However, we can
also make another type of inference, often quite different from the
first. We can predict the value of a variable when actions intervene
from outside the system to directly alter the values of other
variables. The causal Bayes net formalism provides algorithms for
both kinds of inference.

Prediction. The first prediction problem is this: Given a Bayes
net (i.e., a directed acyclic graph and associated probability dis-
tribution that obeys the Markov assumption), given any variable X
in the graph, and given any vector V of values for any set S of
other variables in the graph, compute the probability of X condi-
tional on the values V for the variables in S. Bayes nets were
originally applied to solve this problem in expert systems in
artificial intelligence. They were first used to help calculate the
conditional probabilities among sets of variables. A variety of
efficient exact and heuristic algorithms have been developed to
solve this problem (see, e.g., Jordan, 1998). The problem also has
qualitative versions: for example, to predict whether the uncondi-
tional probability distribution of X is or is not equal to the condi-
tional distribution of X given values for S—that is, whether S
provides information about X—or to predict for any particular
value x of X whether its probability increases or decreases when
conditioned on a set of values for S. Algorithms are available for
those problems as well (Pearl, 2000).

Planning. It is also possible to use a causal Bayes net to
predict the effects of an intervention. We can define an interven-

tion as an action that directly alters or fixes the value of one or
more variables in the graph while changing others only through the
influence of the directly manipulated variables. That is exactly the
kind of prediction we need to make in planning actions to achieve
specific goals. There are qualitative versions of these problems as
well. General algorithms for these problems are described in
Spirtes et al. (1993, 2001) and more accessibly in Pearl (2000). It
is possible to compute from the graph alone whether an interven-
tion on one or more variables will change the probability distri-
bution for another variable and to compute the resulting probabil-
ity distribution. We can sometimes make such predictions even
when the available information is incomplete.

Intuitively, these computations can be justified by treating the
intervention as a variable with special causal features. For exam-
ple, consider the canonical case of an intentional human action as
an intervention. Take the experimental intervention in our previous
example. We intentionally drink wine and then observe the effects
on our insomnia. As an intervention, this action has certain dis-
tinctive causal features, features that other variables do not have.
For example, we believe that our decision to drink directly and
exclusively caused us to drink and therefore nothing else did—our
intervention fixed the value of the wine-drinking variable, and
partying and other variables had no causal effect on that variable.
We also believe that our decision to drink only affected other
variables, such as insomnia, because it affected drinking itself; it
did not, for example, independently increase our insomnia or
partying. Moreover, we believe that the decision itself was not
caused by other variables in the graph, like wine drinking or
partying.

These special causal features of interventions give them a spe-
cial status in inferring causal structure—that is why experiments
are a particularly good way to find out about causal relations. In
fact, if an action did not have these features, we could not draw the
right causal conclusions. Suppose that, unbeknownst to us, our
anxious spouse has replaced the wine in half the bottles in our
cellar with a deceptive nonalcoholic grape drink. In this case our
intervention to drink does not, by itself, fix whether we actually
drink wine, and it does not directly and exclusively cause us to
drink or not drink wine; our actual wine drinking is also caused by
which bottle we pick out. Our experiment would fail. Or, suppose
that doing any sort of experiment makes us so nervous that it keeps
us awake—we just cannot take the scientific pressure. We exper-
iment by drinking wine, and sure enough, we stay awake, but we
would be wrong to conclude that wine caused our sleeplessness. In
this case, the problem is that the intervention affected other vari-
ables independently of the variable that was intervened on. Or,
suppose the outcome of our experimental intervention subtly in-
fluenced our next decision, so that, for example, we were more
likely to continue our experiment when the results seemed to
encourage us to drink and to curtail it when they did not. That is,
downstream variables causally influenced our further interven-
tions. In all three of these cases, we could not draw the right causal
conclusions even though we acted.

So, actions that do not have the right causal features should not
count as interventions, at least not for purposes of making predic-
tions or uncovering causal relations. Conversely, a variable that
did have similar causal features could count as an intervention
even if it did not directly involve human action. Although inten-
tional actions are the canonical case of an intervention, from a
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formal point of view any variable that has the right causal features
can be considered an intervention. These features include the fact
that the variable is a direct cause, and the only direct cause, of
another variable in the graph, that it fixes the value of that variable,
that it is not independently connected to other variables in the
graph, and that it is not itself caused by other variables in the graph
(see Hausman & Woodward, 1999; Spirtes et al., 1993, Chapter 4).
Variables of this special kind might include our own actions, the
actions of others, or other events.

The Bayes net formalism provides a way of translating these
sorts of intuitions into a formal set of procedures. We expand the
graph by adding the new intervention variable and a single new
arrow representing the influence of the intervention. The variable
that is manipulated is forced to have a fixed value. If we then apply
the Markov assumption to the expanded graph, we can predict the
effects of the intervention (see Pearl, 2000; Spirtes et al., 1993,
2001).

In most cases, the formal representation of an intervention can
be simplified by not explicitly representing the intervention vari-
able. Instead, we specify the value of the manipulated variable that
the intervention produces and remove all the other arrows directed
in to the manipulated variable (Pearl, 2000, vividly refers to this as
“graph surgery”). This simplified representation works because,
under the intervention, the manipulated variable has a fixed value;
it does not vary as other variables in the system vary. The influence
of other variables on the manipulated variable is removed by the
intervention, and that is represented by the elimination of the
arrows directed into the manipulated variable.

Generating Predictions From a Causal Graph: An
Example

To illustrate, we can use the directed acyclic graph in Figure 1
to make two kinds of inferences, one set predicting conditional
independence relations among the variables, and the other set
predicting the effects of interventions. First, consider the implica-
tions of the graph for conditional independence relations. We can
expand our earlier probabilistic definition of conditional indepen-
dence to apply to a set of values of variables. In this way, we can
calculate the dependence or independence of two variables in the
graph conditional on a set of values of other variables in the graph.

If the causal graph in Figure 1 obeys the Markov assumption, it
will encode a variety of conditional independence claims. It im-
plies, for example, that Z and R are independent conditional on
the set {S} and that Z and Y are independent conditional on the
empty set of variables. It does not imply that Z and Y are inde-
pendent conditional on {S}. W is independent of all of the other
variables conditional on {X}. X is independent of Z and indepen-
dent of R conditional on {S}. Thus, the joint probability distribu-
tion represented by the graph in Figure 1 can be written algebra-
ically as the product of the marginal distributions of each variable
conditioned on its parents, or Pr(Z, S, R, Y, W) � Pr(W|X) �
P(X|Y, S) � Pr(S|Z, Y) � Pr(R|S) � Pr(Z) � Pr(Y).

The graph in Figure 1 also represents hypotheses about proba-
bilistic independence if the system were to be subjected to ideal
interventions from outside the system. An ideal intervention that
fixes a value X � x can be represented in the following way. We
introduce a new variable I, with two values, one if the intervention
takes place, and the other if it does not. We add an arrow going

from I to X. Then we extend the joint probability distribution on
the variables in the graph to include I, in the following way.
Conditional on I � no intervention, the remaining variables have
whatever probability distribution obtains with no intervention.
Condition on I � intervention, fix X to x and specify that the
probability that X � x is 1. All other variables, except causes of X,
have their original distribution, but conditioned on X � x. Such an
intervention fixes a value for one or more of the variables repre-
sented in the system. Because the intervention is understood to fix
the value of a variable, say X, from outside the system, the
variables that are represented in the graph as causing X (S and Y in
the graph in Figure 1) do not cause X after the intervention.

This fact can also be represented more simply by graph surgery.
In this case, we do not represent the intervention variable but
instead remove the arrows in the original graph that are directed
into X and fix X � x. Thus, the causal graph that would result from
an intervention that fixes X at the value x is shown in Figure 2.

The probabilities for values of the variables that result from an
outside intervention are computed from the conditional probabil-
ities (on X � x) associated with the original graph, but the
probability of the manipulated variable is changed so that the fixed
value has a probability of 1. So, the probability distribution for S,
R, W, Y, Z that results when X is fixed at x is

Pr�Z, S, R, Y, W� � Pr�W|X � x� � Pr�S|Z, Y� � Pr�R|S�

� Pr�Z� � Pr�Y�.

The manipulation theorem of Spirtes et al. (1993, 2001) says
that the conditional independence relations that result from an
outside intervention can be determined by applying the Markov
assumption to the altered graph as in Figure 2. For example, in the
new graph representing the system after the intervention, S, R, Y,
and Z are independent of W.

Although the formalism may seem complex, the algorithms for
computing conditional independence, or for computing the prob-
ability of one variable conditional on another, or for computing the
probabilities that result from an intervention are efficient. Provided
a causal graph is sparse—most pairs of variables are not directly
connected by an arrow—computation is very fast. Bayes nets,
then, provide a formal and computationally tractable way to gen-
erate accurate causal predictions and to design effective causal
interventions.

Figure 2. The causal graph in Figure 1 with an intervention on X.
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Learning Causal Bayes Nets

So far, we have shown that causal Bayes nets, that is, directed
acyclic graphs with probability distributions that are constrained
by the Markov assumption, provide a formalism for representing
and using causal relations. Like causal maps, they represent non-
egocentric, coherent systems of causal relations—systems that
generate accurate predictions and effective interventions. Causal
Bayes nets then provide a formal characterization of causal maps.
Very recently, some psychologists have suggested that adult causal
knowledge might be represented as causal Bayes nets (Glymour &
Cheng, 1999; Gopnik, 2000; Gopnik & Glymour, 2002; Lagnado
& Sloman, 2002; Sloman & Lagnado, 2002; Rehder & Hastie,
2001; Tenenbaum & Griffiths, 2003; Waldmann & Hagmayer,
2001; Waldmann & Martignon, 1998).

However, the causal Bayes net formalism also suggests ways of
representing and understanding how people learn causal knowl-
edge as well as how we use that knowledge. Causal learning is
particularly important from the viewpoint of cognitive develop-
ment. Given a causal graph, we can generate accurate predictions,
including predictions about the conditional probabilities of events
and about the effects of interventions. This suggests that we could
also work backward to generate the graphs from conditional prob-
abilities and interventions. And even in cases where we might not
be able to generate the entire graph, we could at least discover
aspects of the graphs—for example, we could discover some of the
arrows but not others. This would provide us with a method for
learning causal Bayes nets from data. To do this, we would have
to supplement the Markov assumption with other assumptions.

We describe four general techniques that might be used to learn
causal Bayes nets. These include two from computer science
(Bayesian and constraint-based learning algorithms) and two from
the psychological literature (a causal version of the Rescorla–
Wagner rule and the learning rule in Cheng’s (1997) causal power
theory). The psychological techniques have been applied to causal
inference in adults, but they have not been tested in children.

There is a certain trade-off inherent in these two types of
techniques. The computer science techniques have generally been
applied in data-mining problems, problems that involve informa-
tion about a wide range of variables, all considered simulta-
neously. They can infer a very wide range of causal structures from
a very wide range of data, but they have psychologically unreal-
istic memory and processing requirements. The psychological
techniques come from the empirical literature on causal learning in
adults. They have more realistic memory and processing require-
ments, but they apply to a much more limited range of causal
structures and data.

One important difference between the computational learning
methods and current psychological learning methods, in particular,
involves the question of determining whether a variable is a cause
or an effect. The psychological methods require that the potential
causes are discriminated from the potential effects beforehand.
Usually this is accomplished with time order information—causes
precede effects. But the ordering can also be established by other
methods, such as the use of prior knowledge or the knowledge that
one variable is being manipulated and the other is not. Then, the
psychological learning methods calculate the strength of the causal
relations between each potential cause and each potential effect.

The computational learning methods can use this sort of infor-
mation if it is available, but they can also draw causal conclusions
without knowing beforehand which variables are potential causes
and which are potential effects. In many cases, they can determine
the direction of the causal relation between two simultaneous
events. As long as other variables are also measured, these meth-
ods can sometimes determine whether X causes Y or Y causes X
from the dependencies alone, without relying on time order or
prior knowledge. We show later that this fact provides a way of
discriminating among these learning methods.

The faithfulness assumption. All four of these techniques, and
arguably, any technique that could infer Bayes nets from data,
must make at least one further assumption, in addition to the
Markov assumption itself. This assumption has been formally
stated in the context of constraint-based methods, but it is also
implicit in other learning methods. It can be stated as follows:

In the joint distribution on the variables in the graph, all con-
ditional independencies are consequences of the Markov assump-
tion applied to the graph.

The principle has been given various names; following Spirtes
et al. (1993), we call it the faithfulness assumption. The Markov
assumption says that there will be certain conditional independen-
cies if the graph has a particular structure, but it does not say that
there will be those conditional independencies if and only if the
graph has a particular structure. The faithfulness assumption sup-
plies the other half of the biconditional.

The faithfulness assumption is essentially a simplicity require-
ment. It might be possible that just by random coincidence, with-
out any causal reason, two causal relations could exactly cancel out
each other’s influence. For example, going to a party might cause
drinking, which causes drowsiness, but the excitement of the party
might cause wakefulness, with the result that partying and drows-
iness are independent, even though there are causal relations
between them—the causal relations cancel one another out. This is
a particular example of a phenomenon known as Simpson’s par-
adox in the statistical literature. The faithfulness assumption as-
sumes that such sinister coincidences will not occur.

A causal learner in a Simpson’s paradox situation is like some-
one looking into a Viewmaster. Three-dimensional objects pro-
duce particular patterns of two-dimensional images at each eye.
The Viewmaster works by presenting each eye with the image that
would have been produced by a three-dimensional object, with the
result that the viewer sees an object in depth. The visual system
makes a kind of faithfulness assumption; it assumes that the
observed visual relations were produced by a three-dimensional
structure even though, in fact, they were not.

It has been shown that for absolutely continuous probability
measures on the values of linear coefficients of linear models,
faithfulness holds with a probability of 1, and similarly for abso-
lutely continuous probability measures on the conditional proba-
bilities (of each variable on each vector of values of its parents) in
models with discrete variables (Meek, 1995; Spirtes et al., 1993).
It is easy to construct violations of the faithfulness assumption
mathematically. However, in nondeterministic or noisy systems,
we would be extremely unlikely to encounter a set of events that
violated the assumption, just as we would be extremely unlikely to
encounter a phenomenon like the Viewmaster in the natural world.

The search problem. The Markov assumption and the faith-
fulness assumption are like the geometric and optical assumptions
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that allow the visual system to solve the spatial inverse problem.
By making these two quite general assumptions about the causal
structure of the world and the relation between causation and
conditional independence, we can provably solve the causal in-
verse problem for a great variety of types of causal structure and
types of data.

This solution relies on the fact that, according to the Markov and
faithfulness assumptions, only some causal graphs and not others
are compatible with a particular set of conditional probabilities of
particular variables. These assumptions constrain the possibilities;
they say whether a particular graph is or is not consistent with the
data. This leaves, however, two further problems. There is the
algorithmic problem of finding a way to efficiently search through
all the possible graphs and discard those that are inconsistent with
the data. There is also the statistical problem of estimating the
probabilities from the data.

Again, we can draw the analogy to vision. Given certain as-
sumptions about geometry and optics, mathematical theories can
say, at least in part, which representations of objects are consistent
with a particular set of perceptual data. Marr (1982) called this the
computational level of representation. For example, the geometri-
cal assumptions in mathematical vision science say that a three-
dimensional object that is projected onto 2 two-dimensional retinas
will lead only to certain disparities between those images and not
others. In practice, however, computer vision systems (or, for that
matter, biological vision systems) must also find procedures that
allow them to compute the object representations from the retinal
data in a reasonably efficient way. Marr (1982) called this the
algorithmic level of representation. Vision scientists use the geo-
metrical theory that relates depth to disparity to help design search
procedures in computer vision programs and to help discover the
search procedures that are actually used by the human visual
system.

In the causal case, one way of making the search tractable is to
limit the possibilities by using other kinds of information or
assumptions about the graphs. For example, temporal order infor-
mation can rule out certain possibilities; Y3 X should not appear
in the graph if X always comes before Y. Similarly, other kinds of
prior knowledge can influence the search. We may already know,
for example, that X causes Y or that X does not cause Y, and that
means that we must include or exclude an arrow from X to Y in the
graphs. Or someone else may explicitly tell us that X causes Y or
give us other facts about the graphs. Similarly, we may know from
other sources that the graphs have specific types of structures or
specific parameterizations and so restrict our search appropriately.

However, in the computer science literature, efficient search
procedures have been developed that make minimal additional
assumptions, although they can incorporate other types of knowl-
edge if they are available. The procedures can be applied to purely
observational data, to data that include interventions, to combina-
tions of the two sorts of data, to continuous variables, to discrete
variables, and to certain combinations of discrete and continuous
variables, with and without a range of prior knowledge. These
learning procedures include Bayesian methods (Heckerman,
Meek, & Cooper, 1999) constraint-based methods (Scheines,
Spirtes, Glymour, & Meek, 1994), and various combinations of the
two.

Computational approaches: Bayesian methods. In general,
Bayesian causal learning methods have the same structure as

Bayesian methods in statistics. The possible causal hypotheses,
represented by Bayes nets, are assigned a prior probability. This
probability is then updated, given the actual data, by the applica-
tion of Bayes theorem. Typically, we accept or conjecture the
hypothesis with the highest posterior probability, but we will also
know the probability of other hypotheses. In principle we can, if
we choose, sum the probability of any particular causal connection
over all of the hypotheses.

In detail and ideally, a prior probability measure is imposed on
every directed acyclic graph of interest. A family of possible joint
probability distributions for the variables is assumed, as a function
of a finite set of parameters associated with each graph. For
example, if a distribution family is assumed to be Gaussian, each
variable is assumed to be a linear function of the values of its
parents plus a normally distributed error term. The parameters are
then the linear coefficients and the variance of each variable. If the
variables are all discrete, the joint distribution is typically assumed
to be multinomial, and the parameters are the probabilities of each
variable conditional on each vector of values of its parents. The
directed acyclic graph together with a complete set of parameter
values determine a unique joint probability distribution on all of
the variables. This probability distribution in turn determines a
sampling distribution, assuming the Bayes net describes an inde-
pendent probability distribution for each unit in the sample.

Putting the pieces together, when integrated, the prior probabil-
ity distribution over the graphs, multiplied by the probability
distribution over the parameters conditional on each graph, mul-
tiplied by the sample probability conditional on each graph and
each possible set of parameter values for that graph, results in a
prior probability distribution for the sample. Under various tech-
nical assumptions, the sampling distribution conditional on any
given graph can be quickly computed (Heckerman, 1995).

Ideally, Bayes theorem is then applied to compute the posterior
probability distribution over the graphs, conditional on the data. In
practice, because the number of directed acyclic graphs grows
superexponentially with the number of variables, heuristic greedy
algorithms are used instead. One starts with an arbitrary graph,
computes its posterior probability, computes the posterior proba-
bilities of a specified set of alterations of the initial graph (adding,
deleting, or reversing arrows), chooses the alteration with the
highest posterior probability, and repeats the process until no more
improvements are found.

Constraint-based methods. Constraint-based methods work
quite differently. In these methods, the dependence or indepen-
dence between each set of variables is calculated from the data, as
the algorithms require them. These dependence relations are de-

Figure 3. Discovering a graph by constraint-based methods: The true
structure.
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termined by standard statistical tests of significance applied to
the actual data. Graphs are constructed that are consistent with
those dependence and independence relations, step by step. The
TETRAD algorithms (Scheines et al., 1994) are typical of
constraint-based discovery procedures. They are most clearly de-
scribed by an example. Suppose the unknown structure to be
discovered is as in Figure 3.

Note that according to the Markov and faithfulness assumptions,
this graph implies that the following independence relations, and
only these, hold: X � Y; W � {X, Y}|Z. We are given data on X,
Y, Z, and W for a sample of units drawn from an unknown
probability distribution and make the Markov assumption and
faithfulness assumption about the graph in Figure 3. We are also
given the information that the probability distribution belongs to a
family of probability distributions—say normal or multinomial—
but no other information. In particular, there is no information
about time order. We cannot recover the entire graph, but we can
discover the following: either X causes Z or there is an unmeasured
common cause of X and Z. This is similar for Y and Z. Z causes W.
Further, we can discover that there is no unmeasured common
cause of Z and W. Here is how we are able to learn this.

1. Form the complete, undirected graph on all of the vari-
ables, as in Figure 4.

2. Test each pair of variables for independence. Eliminate
the edges between any pair of variables found to be
independent. The result is Figure 5.

3. For each pair U, V, of variables connected by an edge,
and for each variable T connected by an edge to one or
both of U, V, test whether U � V|T. If an independence
is found, remove the edge between U and V. The result is
Figure 6.

4. For each pair U, V of variables connected by an edge and
each pair T, S of variables, each of which is connected by

an edge to either U or V, test the hypothesis that U �

V|{T, S}. If an independence is found, remove the edge
between U, V. In the graph of Figure 5, Z is adjacent to
W and Z has two adjacent variables, but Z and W are not
independent conditional on {X, Y,} and no change is
made. This part of the procedure stops.

5. For each triple of variables T, V, R such that T � V � R
and there is no edge between T and R, orient as To 3
V 4 oR if and only if V was not conditioned on when
removing the T � R edge. (This results in Figure 7.)

6. For each triple of variables, T, V, R such that T has an
edge with an arrowhead directed into V and V � R, and
T has no edge connecting it to R, orient V � R as V3 R.
The final result is Figure 8.

The o marks indicate that the procedure cannot determine whether
the association is produced by a causal arrow from one variable to
the other, as from X to Z, or by a common unobserved cause of X
and Z, or both.

The general algorithms for constraint learning of causal Bayes
nets are given in Spirtes et al. (1993, 2001), along with proofs of
their asymptotic correctness under the Markov and faithfulness
assumptions. Given these assumptions and given sufficient data,
these algorithms will almost certainly come to the correct conclu-
sion about which possible causal structures are consistent with the
data.

Constraint-based search methods can use prior knowledge about
the existence or absence of particular causal connections. For
example, if a constraint-based program such as TETRAD II
(Scheines et al., 1994) is told that Z occurs later than X and Y
occurs earlier than X, then in testing whether there is a direct
connection Y 3 X, the program will not test their independence
conditional on Z. The program can also use prior but uncertain
knowledge about causal connections. For example, if the program

Figure 4. Discovering a graph by constraint-based methods: Step 1.

Figure 5. Discovering a graph by constraint-based methods: Step 2.

Figure 6. Discovering a graph by constraint-based methods: Step 3.

Figure 7. Discovering a graph by constraint-based methods: Step 4.
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is told that there is some chance that Y may directly cause X, it can
adjust the significance level in statistical decisions as to whether Y
and X are independent or independent conditional on other vari-
ables. These uncertain prior degrees of belief are handled more
elegantly in Bayesian search methods.

Psychological approaches: The causal Rescorla–Wagner
method. Work in the psychological literature also suggests meth-
ods for learning causal structure from data. Associative learning,
for example, has been proposed as a method of learning causal
relations (Shanks & Dickinson, 1987). It is important to distin-
guish between this causal interpretation of associative learning and
associative learning per se. Classical associative learning theories
assume that organisms simply make associations without learning
about anything independent of the associations themselves. Such
theories have classically been applied to learning in animals, and
they have also been extensively applied to learning in children
(see, e.g., Elman et al., 1996; Thelen & Smith, 1996). Instead,
some investigators have recently proposed that human adults use
associative learning rules to infer underlying causal relations. One
could think of these accounts as techniques used to infer a causal
graph from data.

The basic principle underlying such an account is that the
strength of the association between two variables, calculated by
associative learning rules, indicates the probabilistic strength of the
causal connection between them. Presumably, we could construct
a causal graph by combining information about pairs of variables.
This information could then be combined with other types of
causal information. Finally, it could be translated into a set of
instructions for intervening on one event to bring about another.
However, these links among association, causal structure, prior
knowledge, and intervention have not been made explicit in this
literature.

The most influential associative learning procedure is due to
Rescorla and Wagner (1972). The Rescorla–Wagner (RW) proce-
dure estimates that the associative strength of potential cause Ci

with the effect, E, after trial t is V i
t 	 1 � Vi

t 	 
Vi
t, where 
Vi

t is
given by


V i
t � �

0, if the cause, Ci, does not appear in case t.

�i�1� � � �
Cause Cj appears in case t

V j
t � ,

if both Ci and E appear in case t.

�i�2� 0 � �
Cause Cj appears in case t

V j
t � ,

if Ci appears and E does not in case t.

Unlike constraint-based algorithms, the RW algorithm gives a
trajectory of associations or estimates of causal strength as the data

are acquired step by step. The RW process is often compared with
other learning theories through its long run behavior, or equilibria
(Cheng, 1997; Danks, 2003). A vector of associative strengths V �
� V0, . . ., Vn � (one dimension for each cause) is an equilibrium
of the RW model for a probability distribution if and only if
@i[E(
Vi) � 0]. That is, a strength vector is an equilibrium if and
only if, for every cause, the expected value of the change in the
associative strength of that cause with the outcome is zero. Cheng
(1997) characterized a great many cases in which the equilibria of
the RW procedure learning the effect of X and Y on Z are

Pr�Z|X, �Y� � Pr�Z|�X, �Y�

and

Pr�Z|�X, Y� � Pr�Z|�X, �Y�.

Danks (2003) gave a fully general characterization of the
equilibria.

When the potential causes occur before the effect and there are
no unmeasured common causes of the potential causes and the
effect, the associative strengths might be interpreted as estimates
of the strengths of causal connections in a Bayes net. In fact,
thinking about the RW rule in the context of Bayes nets gives an
interesting evolutionary and normative explanation for the very
existence of the rule. RW works because, in many cases, it recov-
ers the correct causal structure of the world.

Even in such special cases, however, the interpretation is prob-
lematic for a variety of reasons. Cheng (1997), for example,
showed that adult subjects are sensitive to ceiling effects not
captured by equilibria of the RW procedure. Further, the learning
model can only account for interactive causes by treating the
combination of interacting causes as a separate cause.

Psychological approaches: Cheng’s (1997) power PC method.
Cheng (1997) has recently proposed a theory of causal represen-
tation and learning for adult humans, the power PC theory. We
consider the representation and the learning theory separately.
Although it was empirically motivated and developed indepen-
dently, the power PC theory representation is equivalent to a Bayes
net representation with a special parametric form for the probabil-
ities. Networks so parameterized are known as noisy-or gates and
noisy-and gates in the computer science literature, and they can be
chained together into any directed acyclic graph and can include
unobserved common causes (Glymour, 2001). The Markov con-
dition necessarily holds if noisy-or and/or noisy-and gates are
chained together into a directed acyclic graph. Novick and Cheng
(in press) have given a much more intricate set of parameteriza-
tions of causal models with interaction, without precedent in the
computer science or statistical literatures, and these structures, too,
can be chained together in networks. Cheng’s theory, then, pro-
poses that adult human causal representation involves a particular
type of causal Bayes net with a particular parameterization.

Cheng (1997) also provided a method for learning such graphs,
and the causal power of the arrows, from data. She provided a
direct estimate of causal strength, again assuming that the potential
causes are discriminated from the effects, that there are no unob-
served common causes of the observed potential causes and the
effect, and that the potential causes do not interact to produce the
effect. This estimate differs from the estimate provided by the RW
rule. Cheng’s estimator for a generative cause A—one whose
presence increases the probability of the effect, E—is

Figure 8. Discovering a graph by constraint-based methods: Step 5.
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frF(E|A) � frF�E|�A)

[1 � frF�E|�A)]
.

The frequency frF is for a focal set of cases in which subjects
judge A to be independent in probability of any other causes of E.
This focal set is defined psychologically—it is the set of cases in
which the subject believes that the potential cause being assessed
is independent of other potential causes of the effect. It is not
necessarily derived from any particular objective features of the
data, though, of course, one assumes that the data affect the
subject’s beliefs. Cheng (1997) observed, in particular, that when
the values of A are the result of interventions, subjects tend to
regard A as independent of other causes of E. A different estimator
is given when the cause is preventive and lowers the probability of
the effect.

Made into a learning rule, this estimator is asymptotically cor-
rect for the parameterization of Bayes nets of the kind Cheng
(1997) specified—in particular, in cases in which there are no
unobserved common causes of potential causes (A above) and
effects (E above). (This is assuming that, in the focal set, the
potential causes really are independent in probability from other
potential causes of the effect.) Her estimator of the efficacy of A in
these cases equals, asymptotically, the probability that the effect
occurs conditional on A occurring and no other cause of the effect
occurring. Novick and Cheng (in press) gave related estimation
rules for interactive causes of a variety of types. Generalizations of
Cheng’s rule have been shown to be able to correctly estimate her
generative causal power parameters in certain cases in which the
potential cause A and the effect E are both influenced by an
unobserved common cause (Glymour, 2001).

The statistical problem: Fictional sample sizes and learning
rates. We mentioned above that, in addition to the search prob-
lem, learning a causal Bayes net also presents a statistical problem.
Before we can infer causal structure from conditional probabilities,
we need to be able to infer those conditional probabilities from
data about frequencies. In the experiments we subsequently de-
scribe, the number of trials is typically very small, so that, from a
statistical point of view, the data provide little information about
underlying probabilities. Nonetheless, as we show, children are
very willing to make causal inferences from such small samples.

At least three of these four learning algorithms must make some
further qualitative assumption to account for these judgments. For
Bayesian learning algorithms, the further assumption is an infor-
mative prior probability distribution over the graphs and parame-
ters—that is, a distribution that does not give uniform prior prob-
abilities to all hypotheses. In other words, children might use their
prior knowledge that some graphs are more likely than others
to help infer probability judgments from the limited new data
(Tenenbaum & Griffiths, 2003). An informative prior probability
is equivalent to assuming the prior probabilities used were ob-
tained by applying Bayes’ rule to an uninformative prior proba-
bility and a fictional sample. Constraint-based procedures must
assume that each of the observed cases is multiplied by the same
number to form a fictive sample size—for example, each case is
treated in statistical inference as if it were 100 cases. In other
words, children might assume that the small samples they see are
representative of the actual distribution, so, for example, if they see
that A is associated with B on 1 trial, they assume that they would

see the same thing on 100 trials. Similarly, the RW model must set
one of its parameters—the learning rate—to a very high value.

Cheng’s (1997) learning method does not use a statistical pro-
cedure or a learning rate but estimates causal powers directly from
the observed frequencies. This has the advantage that no extra
assumption is needed to address small sample cases. However, it
does not provide a dynamical account of how causal inference
might improve as children gain a larger data set. Danks (Danks,
Tennenbaum, & Griffiths, 2003) has recently shown that there is a
dynamical learning procedure, analogous to the RW updating rule,
that converges to Cheng’s generative causal powers. This proce-
dure supplies a learning rate analogous to the RW parameter.

Learning Bayes nets with unobserved variables. So far, we
have been considering learning models that recover Bayes nets in
which all the variables are observed. Bayes net representations can
also involve unobserved variables, and there are procedures for
learning about such unobserved variables from the data. These
procedures are particularly interesting from a psychological point
of view. The theory theory, for example, proposes that children can
infer unobserved variables, such as internal mental states, from
patterns of data. How might such learning be possible?

The Markov assumption is not assumed to hold for observed
variables alone, and in fact, it will not hold for just the observed
variables when there are unobserved common causes, that is, when
there are unobserved variables that directly influence two or more
observed variables. Consider, for example, the structure shown in
Figure 9, where U is an unobserved variable. The Markov assump-
tion, applied to the graph in Figure 9, implies X � {Z, R} and R �

{X, Y} and no other independence or conditional independence
relations among {X, Y, Z, R} alone.

There is no directed acyclic graph on the observed variables
alone that implies these, and only these, independence relations. It
is not hard to see why. Y and Z are dependent, so either Y3 Z or
Z3 Y. This must be true because neither X nor R can be common
causes of Y and Z, as X is independent of Z and R is independent
of Y. Suppose Y3 Z. Then, because X and Y are dependent, either
X 3 Y or Y 3 X, or else one or both of R, Z are common causes
of Y and X. R cannot be a cause of Y because R and Y are
independent, and Z cannot be a cause of Y because, by the suppo-
sition, Y causes Z, and the graph would be cyclic. So, either X 3
Y or Y 3 X. However, in either case, by supposition, Y 3 Z, and
therefore, by the faithfulness and Markov assumptions, X and Z are
not independent. However, this contradicts the first of the inde-
pendence relations above: X and Z are independent. The alternative
supposition, Z 3 Y, leads to the same conclusion by a parallel
argument. In causal contexts, the Markov and faithfulness assump-
tions apply only to causally sufficient sets of variables—that is, to
sets of variables that include every common cause of their mem-
bers. This feature of causal Bayes net representations turns out to
be useful in learning.

Figure 9. A graph with an unobserved variable.
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Unobserved common causes produce extra dependencies among
variables. Conversely, violations of the faithfulness assumption
(which can occur in deterministic systems without noise) produce
extra independencies (or conditional independencies) among vari-
ables. We can algorithmically decide whether the independencies
and conditional independencies violate faithfulness, and if faith-
fulness is not violated, we can determine whether the dependencies
violate the Markov assumption. If they do, we can conclude that
there must be an unobserved common cause. In short, if there are
dependencies in the data that could not be generated by a Bayes net
involving the observed variables, we conclude that there must be
some unobserved common cause or causes that is responsible for
the additional dependencies.

Consider once more the example in Figure 9 with the indepen-
dence relations: X � {Z, R} and R � {X, Y}. If we apply the
procedure previously illustrated for constraint-based learning, we
first form the complete undirected graph, then remove edges
between X and R, Y and R, Z and X, because each of these pairs is
independent. The result is the undirected graph: X – Y – Z – R.

There are two triples whose terminal variables are not connected
by an edge: X – Y – Z and Y – Z – R. In removing the X – Z edge
we did not condition on Y, and in removing the Y – R edge we did
not condition on Z, so these triples are oriented: Xo3 Y4 oZ and
Yo 3 Z 4 oR. Hence, the final result of the procedure is Xo 3
Y7 Z4 oR. The double-headed arrow indicates that Y and Z must
be connected by a common cause that is neither X nor R.

Constraint-based procedures, then, can sometimes identify the
presence of unobserved common causes. At present, Bayesian
methods are much more limited in this respect. If you start out with
specific alternative graphs that involve unobserved variables,
Bayesian methods can use the data to compare the posterior
probabilities of those graphs with the posterior probabilities of
other graphs. However, there are as yet no Bayesian methods that
do a general search for the presence of unobserved variables.

Causal Bayes Nets as a Psychological Model of
Children’s Learning

The concept of causality is an intricate web relating ideas about
association, independence, conditional independence, and inter-
vention. The causal Bayes net representation may not capture the
whole of this web of ideas, but it captures a great deal of it. Our
psychological hypothesis is that people, and children in particular,
represent causal relationships in ways that can be described as
causal Bayes nets. Moreover, they apply learning procedures to
construct new causal representations from observations of corre-
lations and interventions. This hypothesis provides a framework
for more specific explanations of specific causal learning abilities.
It can help explain how children can derive correct predictions of
the effects of interventions from passive observation, how they can
integrate correlational data and data from interventions, and how
they can combine prior knowledge and new observations to dis-
cover new causal relations. It suggests processes through which
children can correctly postulate unobserved variables. No other
representational proposal that we know of allows for this range of
inferences and predictions.

Of course, we are not proposing that children have conscious
knowledge of these representations or learning procedures or that
they have little graphs in their heads. Our proposal is that causal

knowledge and learning can be represented in this way at the
computational level (Marr, 1982). We can say that children use
Bayes nets or infer Bayes nets from data in much the same way we
can say that the visual system uses representations of three-
dimensional structure or infers these representations from stereo-
scopic disparities. This leaves open the further question of how
these computations are actually implemented in the brain (what
Marr, 1982, called the implementation level). In the case of vision,
at least low-level vision, we have some ideas about how neural
connections actually implement these computations. We hope that,
at some future point, a similar project will be fruitful in the causal
domain. However, as in vision, such a project depends on speci-
fying the representations and computations first.

Our hypothesis can be differentiated from other hypotheses
about causal learning in children. It is possible that young children
do not learn genuinely new causal relations but initially rely on a
few innate domain-specific causal schemas that are later enriched
(see, e.g., Atran, 1990; Leslie & Roth, 1993; Spelke et al., 1992).
A related, though somewhat richer, view is that children only (or
primarily) use substantive assumptions, such as spatial contact and
temporal order, to infer new causal relations and do not learn about
new causal relations from information about correlation (Ahn et
al., 2000). Alternatively, it is possible that, even if young children
do learn, learning is restricted to the mechanisms of classical or
operant conditioning. Again, a related but somewhat richer hy-
pothesis is that young children simply associate events but do not
infer genuine causal relations between them (see, e.g., Elman et al.,
1996; Thelen & Smith, 1994). Alternatively, children might only
use trial and error or imitative learning to determine the direct
causal consequences of their own actions or those of others.

None of these hypotheses accounts for, or allows, most of the
features of causal inference described earlier. In fact, even if
children used all these methods of learning together, the inferences
they made would still be restricted in important ways. We present
new empirical evidence that demonstrates that very young children
can, in fact, make causal inferences that require more powerful
learning mechanisms, such as all four of the formal learning
mechanisms we described in the previous section.

This general hypothesis is nonetheless consistent with a variety
of other specific hypotheses about how causal relations are
learned, including the four different formal learning models we
described above and many variations and extensions of those
models. We further hypothesize, more specifically, that the causal
learning mechanisms that are involved in children’s cognitive
development lie somewhere between those proposed by the com-
putational and psychological types of learning methods. That is,
they are more powerful and general than the psychological learn-
ing mechanisms that have currently been proposed, but they are, at
least in some respects, more constrained than the normative com-
putational learning mechanisms.

We make this hypothesis because children do, in fact, seem to
be able to learn more complex causal structures from a wider
variety of data than the current psychological models address. For
example, the literature on everyday psychology suggests that chil-
dren learn complex causal maps relating beliefs, desires, emotions,
and perceptions (e.g., Gopnik & Wellman, 1994). This literature
also suggests that children might make causal inferences without
discriminating potential causes and potential effects beforehand. In
many psychological cases, mental states can be both causes and
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effects, and it is not obvious whether one person’s actions caused
another’s or vice versa. Moreover, mental states are not usually
directly observed.

However, it is also eminently possible that children are not
capable of the same types of causal learning as experienced and
educated adults. Before the experiments we describe here, there
was no evidence that children were even able to use the same
formal causal learning mechanisms demonstrated in human adults,
let alone more general mechanisms. If children do not have such
mechanisms available, we have to find some other explanation for
the development of the causal knowledge encoded in everyday
theories. Perhaps, contrary to our hypotheses, this knowledge is
innate rather than learned.

Testing Strategies

Before we describe our experiments, however, we clarify how
they are related to the Bayes net formalism. The formalism is not
itself a psychological hypothesis. Instead, it is a normative math-
ematical account of how accurate causal inference is possible,
whether this inference is performed by children, computers, un-
dergraduates, or sophisticated adult scientists. Again, we return to
the vision analogy. The relation between depth and stereo disparity
is not a psychological fact but a geometrical and optical fact, one
that allows accurate inferences to be made by any kind of visual
system, human, animal, or artificial.

The vision science formalism also involves several interwoven
representations and assumptions. The mathematical account of
stereo includes a geometrical representation of the objects we see
and a set of geometrical and optical assumptions about how those
objects produce patterns of visual disparity. It also includes the
equivalent of the faithfulness assumption—that is, the assumption
that the disparities we see were actually produced by the geometry
of the object and its geometrical and optical relations to two-
dimensional images. These three aspects of the formalism allow us
to create a variety of algorithms that let us work backward from
disparity to depth in a reasonably efficient way.

The Bayes net representation has three very similar essential
pieces—the graphical representation of causal relations, the
Markov assumption connecting each graph with constraints on
probability distributions, and the faithfulness assumption, which
assumes that the probabilities are, in fact, produced by the repre-
sentations and the Markov assumption. Those essential and inter-
related pieces can be used to create specific learning algorithms.
The role of the Markov condition in causal reasoning can scarcely
be tested in isolation from other assumptions, any more than the
geometric assumptions of optics can be tested apart from a three-
dimensional geometric representation of objects.

In vision, we assume that the representations and assumptions
are unconscious—our subjects would hardly be informative if we
asked them explicitly whether three-dimensional objects are con-
sistent with horizontal and vertical disparities. We also do not test
different parts of the geometry separately. Instead, in psychophys-
ics, we test the entire model of depth from disparity by getting
people to look at different patterns of disparities and determining
whether they see depth. Such evidence tells us whether the visual
system uses the geometrical and optical information, and it can
help us decide which particular search algorithms might be used.

We make the same assumptions about causal learning. We
obviously cannot ask 3-year-olds explicitly whether they think that
particular causal structures are consistent with particular condi-
tional probabilities. Moreover, we are almost certain that adults
would make mistakes if they were asked to make explicit judg-
ments of this kind, even if they unconsciously used the correct
assumptions in their implicit causal judgments. Instead, the exper-
iments with children that we describe here are a kind of cognitive
psychophysics. We present children with various patterns of evi-
dence about conditional probabilities and see what causal conclu-
sions they draw. We can then see how much, or how little, these
unconscious inferential procedures are in accord with the norma-
tive mathematical account, again just as in the case of vision, and
we can discriminate among particular learning procedures.

In our first study, we show that children as young as 30 months
can implicitly use conditional dependence information to learn a
causal map. In the second study, we offer further evidence for this
ability from a paradigm—backward blocking—that directly con-
tradicts the causal RW model. Then we show that children can
make normatively accurate inferences to solve a problem that is
outside the scope of Cheng’s (1997) published theory and causal
RW models but can be handled by constraint-based and Bayesian
methods. This problem involves determining the causal relation of
two simultaneous events—did X cause Y, or did Y cause X? Then
we extend this paradigm to provide further evidence that directly
contradicts the causal RW model. Finally, we describe preliminary
evidence that children can also solve another problem that is
outside the scope of published Cheng methods and RW methods
but can be handled by other Bayes net learning methods. This
problem involves inferring the existence of an unobserved com-
mon cause.

Causal Learning in Young Children: Experimental
Evidence

How could we test these ideas empirically? In particular, what
could we do to discover how, or even whether, children use
information about conditional dependence to construct accurate
causal maps? We need methods that allow us to expose children to
patterns of evidence in a controlled way and to see whether they
draw genuinely novel and genuinely causal conclusions on the
basis of that evidence. We need a kind of developmental cognitive
psychophysics. We describe experiments that use two such meth-
ods: the blicket detector and the puppet machine.

Inferring Causal Maps From Conditional Dependence:
The Blicket Detector

Gopnik and colleagues (Gopnik & Esterly, 1999; Gopnik &
Nazzi, 2003; Gopnik & Sobel, 2000; Nazzi & Gopnik, 2000)
devised the “blicket detector” to explore children’s causal learning.
The blicket detector is a square wooden and plastic box that lights
up and plays music when certain objects, but not others, are placed
on it. (In fact, the machine is secretly controlled by a human
confederate, but neither adults nor children guess this.) This ap-
paratus appears to present children with a new, nonobvious, causal
relation. Some objects (which we call blickets) have the causal
power to make the machine go, and some do not. We can then
expose children to different patterns of evidence about the blocks
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and the detector and discover what causal inferences they draw. A
first set of studies (Gopnik & Nazzi, 2003; Gopnik & Sobel, 2000;
Nazzi & Gopnik, 2000) demonstrated that young children could, in
fact, learn about this new causal relation and use that knowledge to
categorize the objects.

In the next set of experiments, we explored whether children
could use evidence about conditional dependence and indepen-
dence to infer these new causal relations. Gopnik, Sobel, Schulz,
and Glymour (2001) presented 3- and 4-year-old children with the
blicket detector after a familiarization period in which the exper-
imenter told children that the machine was “a blicket machine” and
that “blickets make the machine go.” Children were then presented
with two types of tasks. In the “one-cause” tasks, the experimenter
first put Object A on the detector, which activated it. Then he put
Object B on the detector, which did not activate it. Then he placed
both objects on the machine simultaneously twice in a row. The
machine activated both times. Finally, he asked the children
whether each object, individually, was a blicket or not (see Figure
10).

Children might have solved the one-cause task by simply pick-
ing the object that made the machine go off more frequently. To
control for this possibility, we included a “two-cause” task: The
experimenter placed Object A on the machine by itself three times.
Each time, Object A activated the machine. Then the experimenter
placed Object B on the machine by itself three times. It did not
activate the machine the first time, but did activate it the next two
times. Again, children were asked whether each object individu-
ally was a blicket. In this experiment, as in the one-cause task,

Object A set the machine off all three times and Object B set it off
two out of three times. If children responded differently in the two
tasks, they could not simply be responding to frequencies. More-
over, this task also controlled for the possibility that children were
using other simple perceptual strategies, such as picking the object
that activated the machine first.

In the one-cause task, children said that Object A was a blicket
significantly more often than they said that B was a blicket (96%
vs. 41%). In contrast, in the two-cause task they were equally
likely to say that A and B were blickets (97% and 81.5%).
Moreover, they said that Object B was a blicket significantly more
often in the two-cause task than in the one-cause task.

Notice, however, that some children in the one-cause task did
say that both objects were blickets. This may have been the result
of a general tendency to say “yes,” which is common in very
young children. In a second experiment, 30-month-olds were given
a slightly modified procedure. Children were asked to make a
forced choice between the two alternatives: “Which one is the
blicket, A or B?” The results were similar; children chose Object
A significantly more often than Object B in the one-cause task
(78% vs. 22%), they chose each object equally often in the two-
cause task (47% vs. 53%), and they chose Object B significantly
more often in the two-cause task than in the one-cause task.

The experimental condition—that is, the one-cause task—can
be analyzed in several ways. Let A and B be binary variables
representing the location of Objects A and B (present or absent on
the detector), and let D be a binary variable for the state of the
detector (on or off). We have that the frequency (fr(A, D) �

Figure 10. Procedure used in Gopnik, Sobel, Schulz, and Glymour (2001, Experiment 1).
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fr(A)fr(D) and fr(B, D) � fr(B)fr(D). That is, A and B are each
dependent in probability on the state of the detector. Further, fr(A,
B) � fr(A)fr(B)—that is, A and B are not independent. Also, fr(B,
D|A) � fr(B|A)fr(D|A). The state of the blicket detector is inde-
pendent of the presence and of the absence of Object B conditional
on the presence of Object A. Finally, fr(A, D|B) � fr(A|B)fr(D|B).
Conditioning on the value of B does not make A and D
independent.

Applied to this case, the constraint-based learning algorithm for
Bayes nets constructs the following model (shown in Figure 11),
(provided it is assumed that the interventions eliminate the possi-
bility of common causes of Object A and the detector, and of
Object B and the detector, and the sample size is given a large
fictitious multiplier). This graph represents all the possible causal
graphs that are consistent with the Markov and faithfulness as-
sumptions and the patterns of conditional dependence we just
described.

The graph says that A causes D and B does not. (It also says that
there is some undetermined, and perhaps unobserved, causal link
between A and B, represented by the circles and the ends of the
edge connecting those variables. In fact, there is such a link,
namely the experimenter, who usually puts both of the blocks on
the machine at the same time.) The experiment can also be ex-
plained on a number of other hypotheses. The power PC estimate
of generative causal power is 1 for A and 0 for B. With a very high
learning rate (analogous to the sample size multiplier in the con-
straint search), RW yields a high association of A with D and a low
association of B with D.

Designing a new intervention. In these experiments, we as-
sumed that children understood our original instructions about the
causal power of the blocks and were indeed using the word blicket
to identify the blocks that made the machine go. They were
constructing a causal map of the blocks and the detector by using
one of the methods we described above, including perhaps the
causal version of RW. However, it was also possible that children
were not making a causal inference at all, even a causal inference
using RW, but were simply associating the word blicket with the
effect and further associating the block with the effect. They need
not have understood that the blicket actually made the machine go.
How could we ensure that children really were reasoning causally
and creating a causal map, rather than simply associating the word
blicket and the effect?

Two things could distinguish a genuinely causal map from a
simple association. First, causal reasoning implies a set of predic-
tions about interventions. If A is causally related to B, then taking
action to influence A should influence B. If children really think

that the blickets make the machine go, they should be able to use
the blickets themselves to bring about effects on the machine.
Second, children’s causal reasoning involves both substantive
prior knowledge, principles about what sorts of things cause what
other things to happen, as well as formal principles about how
patterns of conditional dependence and independence indicate
causality. If children are using a causal map, they should combine
both types of information to reach causal conclusions.

In the case of physical causality, and particularly in the case of
machines, a likely general substantive principle is that if an event
makes a machine go, the cessation of the event will make the
machine stop—this applies to many common cases of switches, for
example. This is not a necessary principle, of course, but it is a
plausible pragmatic assumption about this type of causal relation.
If children really think that the blickets have the causal power to
make the machine go, they should also infer that removing the
blicket is likely to make the machine stop, even if they have never
seen this event. Moreover, they should intervene appropriately to
bring about this effect. On the other hand, if they are merely
associating the word, the object, and the effect, children should not
draw this inference, nor should they be able to craft an appropriate
intervention.

In a subsequent experiment (Gopnik et al., 2001, Experiment 3),
we tested these ideas with 3- and 4-year-olds. We modified the
task so that children did not see that removing the block made the
machine stop (see Figure 12). The experimenter placed one block,
B, on the machine, and nothing happened. The B block was
removed, and then the experimenter placed the other block, A, on
the machine, and the machine activated. After a few seconds (with
the machine activating), she replaced the original B block on the
machine next to the A block, and the machine continued to activate
for an extended time. She then simply asked the children, “Can
you make it stop?” If children were drawing causal conclusions
from patterns of conditional dependence and independence and
combining those conclusions with their substantive causal knowl-
edge, they should remove the A block rather than the B block. We
also used a similar two-cause control task. This involved exactly
the same sequence of events, except that the B block did activate
the machine when it was placed on the machine. In this case,
children who use causal reasoning should remove both blocks.

The one-cause task always preceded the two-cause task, as this
meant that children had never seen the right response at the time
they made their intervention and so could not simply be imitating
the experimenter. They had never seen that removing a block made
the machine stop in the one-cause task or that removing both
blocks made it stop in the two-cause task.

The children behaved as we predicted. In the one-cause task,
they removed only Object A 75% of the time, significantly more
often than any of the other responses (they removed Object B
alone 12.5% of the time and removed both blocks simultaneously
12.5% of the time). Similarly, in the two-cause task, they removed
both blocks simultaneously 50% of the time, significantly more
often than they removed Object A alone (12.5% of the time) or
Object B alone (27.5% of the time). Children were also signifi-
cantly more likely to remove Object A in the one-cause task than
in the two-cause task and were significantly more likely to remove
both blocks simultaneously in the two-cause task than in the
one-cause task.Figure 11. The causal structure of the blicket detector.
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The results of these experiments rule out many possible hypoth-
eses about children’s causal learning. Because children did not
activate the detector themselves, they could not have solved these
tasks through operant conditioning or through trial-and-error learn-
ing. The blickets and nonblickets were perceptually indistinguish-
able, and both blocks were in contact with the detector, so children
could not have solved the tasks through their substantive prior
knowledge about everyday physics.

The “make it stop” condition in this experiment also showed
that children’s inferences went beyond classical conditioning, sim-
ple association, or simple imitative learning. Children not only
associated the word and the effect, they combined their prior
causal knowledge and the new causal knowledge they inferred
from the dependencies to create a brand-new intervention that they
had never witnessed before. As we mentioned above, this kind of
novel intervention is the hallmark of a causal map. It is interesting
that there is, to our knowledge, no equivalent of this result in the
vast animal conditioning literature, although such an experiment
would be easy to design. Would Pavlov’s dogs, for example,
intervene to silence a bell that led to shock, if they had simply
experienced an association between the bell and the shock but had
never intervened in this way before?

In all these respects, children seemed to have learned a new
causal map. Moreover, this experiment showed that children were
not using simple frequencies to determine the causal structure of
this map but were using more complex patterns of conditional
dependence. However, this experiment was consistent with all four
learning models we described above, including the causal inter-
pretation of the RW model.

Inference from indirect evidence: Backward blocking. In the
next study we wanted to see whether children’s reasoning would
extend to even more complex types of conditional dependence and,
in particular, if children would reason in ways that went beyond
causal RW. There are a number of experimental results that argue
against the RW model for adult human causal learning. One such
phenomenon is “backward blocking” (Shanks, 1985; Shanks &
Dickinson, 1987; Wasserman & Berglan, 1998). In backward
blocking, learners decide whether an object causes an effect by
using information from trials in which that object never appears.

Sobel and colleagues (Sobel, Tenenbaum, & Gopnik, in press)
have demonstrated backward blocking empirically in young chil-
dren. In one experiment (Sobel et al., in press, Experiment 2), 3-
and 4-year-olds were introduced to the blicket detector in the same
manner as in the Gopnik et al. (2001) experiments. They were told
that some blocks were blickets and that blickets make the machine
go. In a pretest, children saw that some blocks, but not others,
made the machine go, and the active objects were labeled as
blickets. Then children were shown two new blocks (A and B).

In one condition, the control, inference condition, A and B were
placed on the detector together twice, and the detector responded
both times. Then children observed that Object A did not activate
the detector by itself. In the other condition, the backward blocking
condition, children saw that two new blocks, A and B, activated
the detector together twice. Then they observed that Block A did
activate the detector by itself. In both conditions, children were
then asked whether each block was a blicket and were asked to
make the machine go (see Figure 13).

Figure 12. Procedure used in Gopnik et al. (2001, Experiment 3).

22 GOPNIK ET AL.



In the control, inference condition, children said that Object A
was a blicket only 6% of the time and always said that Object B
was a blicket (100% of the time), significantly more often. Per-
formance on the backward blocking condition was quite different:
Children categorized Object A as a blicket 99% of the time.
However, the critical question was how children would categorize
Object B. Overall, children categorized Object B as a blicket only
31% of the time. In fact, even the youngest children categorized
Object B as a blicket significantly less often in the backward
blocking condition (50% of the time) than they did in the one-
cause condition (100% of the time). In summary, children as
young as 3 years old made different judgments about the causal
power of Object B, depending on what happened with Object A.
They used the information from trials that just involved A to make
their judgment about B.

Children responded in a similar way to the “make it go” inter-
vention question. This question was analogous to the “make it
stop” question in Gopnik et al. (2001). Children had never seen the
experimenter place the B block on the detector by itself in either
condition. Nevertheless, in the inference condition they placed this
block on the detector by itself 84% of the time. In the backward
blocking condition they did so 19% of the time, significantly less
often, and significantly less often than they placed the A block on
the detector by itself (64% of the time).

What would the various learning models predict about this
problem? In the pretest, children are shown that some blocks are
blickets (about half the blocks, in fact). Children then have the
following data in the following sequence.

Inference

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E absent

Backward blocking

1. A absent, B absent, E absent

2. A present, B present, E present

3. A present, B present, E present

4. A present, B absent, E present

According to the RW model, both A and B are positively
associated with E (the effect). The last trial, Trial 4, should
strengthen or weaken the association with A but should have no
effect on the association with B, because B is absent. If that
association is sufficiently strong, subjects should conclude that
both A and B cause E. In particular, B should be equally strongly
associated with E in the inference condition and the backward
blocking condition.

In contrast, both Cheng’s (1997) learning rule, with a suitable
choice of focal sets, and constraint-based and Bayesian learning
methods yield a qualitative difference between A and B in the
backward blocking condition. In the RW model, the effect or lack
of effect of the A block by itself has no influence on the judgment
about B, but it has a crucial effect in these other models.

According to Cheng’s (1997) methods, if the focal set for A in
the backward blocking condition consists of Cases 1 and 4 (so B

Figure 13. Procedure used in Sobel et al. (in press, Experiment 2).
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has the same value in both cases—recall that a constant is inde-
pendent, and conditionally independent, of everything), the esti-
mate of the causal power of A is 1. If the focal set for B is Cases
2, 3, and 4 (so A has the same value, present, in all cases), the
estimate of the causal power of B is undetermined.

By constraint-based reasoning, if the definition of conditional
independence is Pr(X, Y|Z) � Pr(X|Z) � Pr(Y|Z) and the observed
frequencies are representative of the probabilities (equivalently,
the cases are multiplied by some large constant), A is not inde-
pendent of E and is also not independent of E conditional on the
absence of B. So, if there are no unobserved common causes, A is
a cause of E. In contrast, B is associated with E but conditional on
A, and also conditional on not A, B is independent of E. So, B is not
a cause of E.

However, recall that constraint-based methods can also take
uncertain prior knowledge into account, if inelegantly. In the
current experiment, children know beforehand that about half the
time blocks are blickets, and they seem to take this knowledge into
account in their judgment about B.3 That is, the Markov and
faithfulness assumptions and the dependencies alone say that A is
a cause but that B is not. Prior knowledge adds the fact that B may
be a cause and is so about half the time.

Tenenbaum and Griffiths (2003) have recently described a
Bayesian Bayes net learning model for backward blocking with the
data above. This model more elegantly exploits the prior knowl-
edge about blickets that was gained in the pretest. Their model
rests on several assumptions: The presence of each block either is
sufficient to cause E or is causally unrelated to E, the causal status
of A and B are independent, and E does not occur unless A or B
occurs. Bayesian updating then licenses the following inferences.
After Cases 2 and 3, the posterior probability that A is a cause of
E increases above its prior probability, and this is similarly true for
B. But after Case 4, these quantities diverge. The probability that
A is a cause of E becomes 1, because otherwise Case 4 could never
be observed. The probability that B is a cause of E returns to its
baseline prior probability, because the knowledge that A is surely
a cause of E makes Cases 2 and 3, in retrospect, uninformative
about the causal status of B.

All three of these models predict qualitative backward blocking.
They predict a difference in the causal judgment about B in the two
conditions, and RW does not. Constraint-based models with prior
knowledge and Cheng (1997) methods predict that children will
not judge that B is a blicket in the backward blocking case. The
Bayesian model predicts, similarly but in more detail, that children
will revert to their prior probability that B is a blicket, which is the
guess they would make from the pretest evidence alone.

Children’s categorization then was in qualitative accord with the
Bayesian, constraint-based, and Cheng (1997) models but not with
the RW model. It should, however, be noted that the RW learning
rule can be modified to account for backward blocking by the
addition of terms that decrease the association of a cue with an
outcome when the outcome occurs in the absence of the cue
(Wasserman & Berglan, 1998). It should also be noted that there is
at least some evidence (Miller & Matute, 1996) that rats show
something like backward blocking in the limited context of clas-
sical conditioning, which suggests that their inferences also go
beyond RW. However, there is no evidence that animals can use
backward blocking to create a new causal map and design a new

intervention on the basis of that map, as the children in these
experiments did.

Inferring the Direction of Causal Relations From
Interventions and Correlations: The Puppet Machine

The experiments we have described so far have shown that even
very young children, as young as 30 months, are capable of some
types of causal inference and learning that had previously been
demonstrated only in human adults. We have also made the point
that these types of inference and learning are consistent with the
Bayes net representations and learning mechanisms. However, one
of the principal advantages of applying a normative formalism
such as Bayes nets is that it suggests new types of causal learning:
types of causal learning that have not previously been explored in
children or adults. The next three experiments use a new experi-
mental paradigm to explore types of learning that are novel in three
respects. First, they involve learning about the direction of the
causal arrow between two simultaneous events: Did X cause Y, or
did Y cause X? Second, they involve learning about this causal
relation from a combination of observations of correlations and
observations of interventions. Third, in the last experiment, they
involve inferring an unobserved common cause of X and Y.

As we mentioned earlier, RW and other associationist causal
learning procedures (including the modified rule that accounts for
backward blocking) and the learning procedures in Cheng’s (1997)
published theory require information that distinguishes potential
causes and effects. The potential causes and effects have to be
discriminated before these models can operate. Then the models
calculate individually either the association strength between each
cause and each effect or the causal power of each cause to produce
each effect. The models do not themselves generate the discrimi-
nation of causes and effects from observations of the dependen-
cies. In contrast, Bayes net learning methods consider the fit
between the entire data set and all the possible graphs that include
the relevant variables, including graphs with arrows in one direc-
tion or the reverse direction.

One way Bayes net learning methods can solve the problem of
simultaneous events is to use information about the effects of
interventions. As we have repeatedly emphasized, one of the
central advantages of the Bayes net formalism is that it gives a
unified account of both correlations and interventions—it naturally
explains how both predictions and interventions follow from
causal structure, and it provides an account of how both observa-
tions of correlations and observations of interventions can be used
in concert to infer causal structure. Work in the adult causal
learning literature suggests that adults can learn about causal
relations between events by looking at the patterns of correlation
among those events. Though there are some suggestions in this
adult literature about the treatment of interventions (Cheng, 1997,

3 The prior knowledge explanation seems most plausible in this case.
However, there is also another possible explanation for the uncertainty
about B. As we noted in Footnote 2, it is possible that children used a
difference formula for calculating the conditional probabilities (this is the
method used in Cheng’s, 1997, theory). According to this formula, the
causal influence of B would not be calculable.
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p. 375), there have not been systematic theoretical treatments or
empirical investigations of this type of learning.4

On the other hand, work in the developmental literature, as well
as work on operant conditioning and trial-and-error learning in
animals, does suggest a limited kind of learning from intervention.
As we mentioned earlier, this literature suggests that children (and
animals) make the substantive assumption that their intentional
actions cause the events that immediately follow those actions. The
developmental literature on imitative learning also suggests that
human children, at least, can make such inferences by observing
the effects of the actions of others, though this is not so clear for
animals. (Meltzoff & Prinz, 2002; Tomasello & Call, 1997).

The Bayes net formalism suggests ways children could combine
information about interventions, their own or those of others, and
information about events that are not the result of interventions to
draw more complex causal conclusions. This includes conclusions
about the causal relations between simultaneous events. Can chil-
dren go beyond just assuming that their interventions directly
cause the events that follow them? Can they also use information
about the effects of interventions to discover the causal relation-
ships among other events, as scientists do in experiments?

The blicket detector paradigm lies within the scope of the RW
and Cheng (1997) models. The blickets are clearly the potential
causes, and the light is the potential effect. Could a paradigm be
designed that goes beyond the scope of these models? Schulz and
colleagues (Schulz, 2001; Schulz & Gopnik, 2001) have designed
such a paradigm: the puppet machine. We have used versions of
this and similar techniques with both adults and kindergarteners
(Kushnir, Gopnik, Schulz, & Danks, in press; Sobel & Kushnir, in
press), but here we report only the results with 4-year-olds.

In these experiments, children saw two or three stylized “pup-
pets,” actually differently colored rubber balls attached to wooden
sticks and placed behind a stage. The puppets were given different
names on the basis of the color of the balls (e.g., “This is Reddy,
and this is Bluey”). The puppets could be inserted into a single
mechanism behind the stage, out of sight of the child, and the
experimenter could move that mechanism up and down (invisibly)
to move both puppets simultaneously, so that children simply saw
correlations without interventions. The experimenter could also
visibly intervene on each puppet separately by visibly pulling on
the stick from above (see Figure 14).

Experiment 1. Sixteen 4-year-olds were tested. Children began
with a pretest–training trial. Children saw the puppets move to-
gether and stop together simultaneously. They were told, “These
two puppets move together and stop together. But one of these
puppets is special. The special puppet always makes the other
puppet move. Can you tell me which one is the special puppet?”
Then the experimenter again (invisibly) made the puppets move
together and stop together simultaneously. This time, while the
puppets moved together, the experimenter explicitly identified the
causal puppet, naming the puppets according to the color of their
rubber balls. She said, “I’m moving X and X is making Y move.
Which is the special puppet?” This gave the impression that one of
the puppets had the power to make the other puppet move and that
the experimenter was (invisibly) moving that special puppet,
which then moved the other puppet (in fact, the experimenter was
moving the common mechanism, but children did not know that).
Children were only included in the experimental trials if they said

that X was the special puppet. This training task established that
special puppets caused other puppets to move.

Then children received the experimental tasks, with new, dif-
ferently colored puppets. In particular, we presented children with
two types of tasks. In the common effects task the children first saw
the puppets move together and stop together simultaneously four
times. Then they saw the experimenter visibly intervene to make Y
move by pulling on the stick from above, while X did not move.
Then both puppets moved together again, and the experimenter
asked, “Which is the special puppet?” The color and position of the
special puppet were counterbalanced across trials.

4 Very recently, Steyvers, Tenenbaum, Wagenmakers, and Blum (2003)
have obtained results from an adult study, also explicitly inspired by Bayes
net learning models, which in some respects parallels the studies we
describe below with children. Their studies and ours were completed at the
same time but independently. Adults were presented with dependencies
among simultaneous events and had to infer causal direction. Either they
simply observed the dependencies or they were allowed to experimentally
intervene on the system. Adults were able to infer the direction of the
relations to some extent just from observations, but their performance
improved markedly when they were allowed to intervene.

Figure 14. The puppet machine.
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The correct causal representation in this case is that the move-
ment of Y is a common effect of the experimenters’ intervention
(which we will call I) and the movement of X: I 3 Y 4 X. If
children infer this representation correctly they should conclude
that X was special; it caused Y to move.

The second, common cause task involved three new differently
colored puppets, X, Y, and Z. Children saw the puppets move
together and stop together simultaneously several times. Then they
saw the experimenter visibly intervene to make Y move by itself,
while X and Z did not move, and saw the experimenter visibly
intervene to make Z move by itself, while X and Y did not move.
Again, they were asked to identify the special puppet. The correct
causal representation in this case is that the movements of Y and
Z are a common effect of the experimenter’s interventions and X,
and that X is a common cause of Y and Z. So, X is special; it
caused Y and Z to move: I1 3 Z 4 X 3 Y 4 I2.

In a control condition, 16 children of the same age saw a set of
events that was similar perceptually, especially in terms of the
salience of each puppet, but in which no causal conclusion was
possible. The pretest, the test question, and the events of the
puppets moving together and stopping together were the same, but
the experimenter intervened by placing a rock in front of the Y, or
Y and Z puppets instead of moving them.

Children received each of the tasks two times, with different
puppets. Preschool children (as well as kindergarteners and under-
graduates) made these inferences correctly. They chose X as the
special puppet 78% of the time in the common effects tasks and
84% of the time in the common cause tasks, significantly more
often than they chose the other puppet or puppets. In the control
condition, children chose the X puppet 31% of the time and 34%
of the time respectively, significantly less often than in the exper-
imental condition, and no better than chance. Eleven out of the 16
children were correct on both common effects tasks, and 12 of the
16 were correct on both common cause tasks, significantly greater
than chance in both cases.

Note especially that the children’s causal judgments were about
events—the motions of the puppets—for which they had no time
order. Note also that they were not making inferences about the
direct causal consequences of the experimenter’s action. Instead,
they used the action to make an inference about the causal relation
between the two puppets.

Qualitatively, this result follows directly from the Markov and
faithfulness assumptions. Applying the theory of intervention (de-
scribed previously in this article) to the correct graphs generates
the right predictions; applying it to the possible incorrect graphs
does not (Pearl, 2000; Spirtes et al., 1993, 2001). There are three
possible causal graphs of the observed variables given the instruc-
tions.

1. X Y.

2. X 3 Y.

3. Y 3 X.

The dependence between X and Y in the nonintervention trials
eliminates Possibility 1, which implies that the two variables are
independent. If Possibility 3 were the case then the intervention on
Y would not cut the arrow between Y and X, as this arrow is not

directed into the manipulated variable, and X and Y would still be
dependent. In Possibility 2, however, the intervention does cut the
arrow, so X and Y become independent in that case, always with
the assumption that the data are representative of the probabilities.
So, Possibility 2 is the only graph of the observed variables that is
consistent with the instructions, the data, and the Markov and
faithfulness assumptions. A similar reasoning process applies to
the common cause case. The correct structures would be inferred
by constraint-based and Bayesian learning methods. Because they
require a prior specification of potential cause and effect, the
causal RW rule and Cheng’s (1997) power PC learning procedures
do not make predictions in these cases.

Experiment 2. The next experiment was designed to eliminate
an alternative explanation for Experiment 1 and to provide a direct
contrast with the predictions of the causal RW account. In Exper-
iment 1 children were told that the special puppet always made the
other puppet move. Moreover, they had to make a forced choice
between the two puppets. They were asked, “Which one is spe-
cial?” which implied that one and only one puppet was special. In
the common effects task it is possible that the children simply
observed that Y moved and X did not on one trial and therefore
rejected Y as a potential cause (because it did not always make the
other puppet go). Because children were given a forced choice
between the two alternatives, they said that X was the cause
instead. They could have identified X as the special puppet merely
because Y was no longer an option, not because they had inferred
that causal structure from the pattern of dependencies.

However, if the experimenter did not specify that the causes
were deterministic or ask for a forced choice, the fact that Y failed
to cause X on one trial would not be grounds for eliminating Y as
a candidate cause or saying that X was the cause instead. Y might
usually but not always cause X, and neither or both of the puppets
might be special. In Experiment 2, we modified the common
effects procedure in this way. We told children that some puppets
were special and that special puppets almost always make other
puppets move. Instead of asking, “Which puppet is special?” we
independently asked, “Is Y special? Does Y make X move?” and,
“Is X special? Does X make Y move?” The Bayes net learning
algorithms would still conclude that X causes Y and Y does not
cause X (assuming, again, that the frequencies in the data are
representative) because the pattern of dependencies is the same.
They would generate the common effects causal structure, I 3
Y4 X, as the correct causal graph given this pattern of evidence.
Children should say “yes” to the question about X and “no” to the
question about Y.

Eliminating the forced choice and allowing indeterministic cau-
sation also allowed us to directly contrast the predictions of Bayes
net learning procedures and the causal RW learning procedure. As
we discussed above, the causal RW procedure, including the
procedure as modified to account for backward blocking, makes no
prediction about how children might answer the question, “Which
one is the cause?” because there are no procedures that distinguish
causes from effects in this case. However, if children are asked,
“Does X cause Y?” and, “Does Y cause X?” the question itself
specifies the potential cause and potential effect. The causal RW
model should predict that the answer to these questions will be
based on the association strength between the potential cause and
the potential effect. If there are a sufficient number of positive
trials, then the answer should be “yes” to both questions.
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This difference in predictions reflects the fact that causal RW
considers the association strength between each potential cause
and effect separately and does not distinguish between interven-
tions and other events. In contrast, the Bayes net learning proce-
dures assess the entire causal structure given the entire data pattern
and treat interventions differently from other events.

However, contrasting these predictions depends on knowing
whether, in fact, there is sufficient associative strength between Y
and X to lead to a causal response using the RW rule. Note that X
and Y are positively associated on all the trials in which X occurs.
Y and X are positively associated on 5 out of the 6 trials in which
Y occurs. Perhaps this difference is sufficient to lead children to
say “yes” to X and “no” to Y. It could be that the single negative
trial with Y weakens the association sufficiently to rule out a
causal response.

In Experiment 2, we compared our modified version of the
common effects puppet show with a new puppet show involving
two new puppets, U and V. In the common effects puppet show, X
and Y are perfectly associated except for a single trial on which Y
moves but X does not. In the new association puppet show, two
new puppets, U and V, are similarly perfectly associated except for
a single trial on which U moves but V does not. However, in the
new puppet show, the experimenter visibly intervenes on U in all
the trials. On five trials, she pulls U up and down, and the other
puppet, V, moves as well. On a single trial, however, the experi-
menter pulls U up and down, and V does not move. The question
is whether this single negative trial will lead the children to rule
out U as the cause of V.

Schematically, the two conditions can be represented as follows:
Common effects

1. Y and X

2. Y and X

3. Y and X

4. Y (by intervention) and �X

5. Y and X

6. Y and X

Association

1. U (by intervention) and V

2. U (by intervention) and V

3. U (by intervention) and V

4. U (by intervention) and �V

5. U (by intervention) and V

6. U (by intervention) and V

Note that the difference between the common effects condition
and the association condition is entirely a difference in the balance
of intervention and nonintervention trials. On the Bayes net ac-
count it is critical that one of the trials is an intervention and the

others are not. On the associationist account the distinction be-
tween intervention trials and nonintervention trials is irrelevant—
what matters for learning is the associations, however they are
produced.

Thirty-two 4-year-old children (mean age � 4 years, 6 months)
were randomly assigned to a common effects group of 16 children
and an association group of 16 children. All the children in both
groups began with a pretest–training test similar to that of Exper-
iment 1 with two puppets, Z and Q. However, rather than telling
the children, “One of these puppets is special. The special puppet
always makes the other puppet move,” the experimenter told the
children, “Some of these puppets are special. Special puppets
almost always make other puppets move.” Moreover, instead of
asking, “Which puppet is special?” the experimenter then asked,
“Is Z special? Does Z make Q move?” To avoid setting a precedent
for yes–no answers and thus implying a forced choice, the exper-
imenter did not ask the children about Puppet Q in the pretest.

The procedure for the common effects group was just like the
procedure in Experiment 1. Two new, differently colored puppets
were placed in the first and third hole of the stage. The children
saw the puppets move up and down together three times.

The experimenter then reached above the stage and grasped the
dowel of Puppet Y and moved Y up and down within the child’s
sight. X did not move. Then the children again saw the puppets
move up and down simultaneously twice in a row, with no visible
intervention from the experimenter. The experimenter then asked
the child, “Is X special? Does X make Y move?” and, “Is Y
special? Does Y make X move?” The order of the questions and
the location and color of the special puppet were counterbalanced
between trials. If the children were able to understand the causal
structure (I 3 Y 4 X) of the event, they should say that X is
special and that Y is not special. The procedure was then repeated
with two new puppets.

In the association condition, two new, differently colored pup-
pets were placed in the first and third hole of the stage. This time,
the experimenter manipulated one puppet visibly by moving the
dowel from above and simultaneously (but surreptitiously) pulled
the string behind the stage so that both puppets moved. From the
child’s point of view, the experimenter moved a puppet, which
simultaneously made the second puppet move. The children saw
the experimenter move Puppet U and saw Puppet V move too,
three times in a row. On the next trial, however, the experimenter
visibly moved U but did not surreptitiously pull the string, so V did
not move. Then children saw the experimenter move Puppet U and
saw Puppet V move simultaneously two more times. Finally, the
experimenter asked, “Is U special? Does U make V move?” and,
“Is V special? Does V make U move?” The order of the questions
and the location and the color of the special puppet were counter-
balanced between trials. The procedure was then repeated with two
new puppets.

We first looked at children’s overall performance. According to
the Bayes net formalism, the correct answer to the two questions
in the common effects task is that X is special and that Y is not
special. In the association task, children should answer that U is
special and that V is not special. Because they received two tasks
in each condition, if children were performing at chance, they
should show this pattern (that is, perform at ceiling) 6.25% of the
time in each condition. In the common effects condition, 9 of the
16 children correctly identified X as the special puppet and Y as
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not special across both trials, significantly more often than would
be expected by chance ( p � .001 by binomial test). Likewise, in
the association condition, 11 of the 16 children correctly identified
U as the special puppet and V as not special across both trials,
significantly more than would be expected by chance ( p � .001 by
binomial test). The 9 out of 16 children performing at ceiling in the
common effects condition in Experiment 2 is not significantly
different from the 11 out of 16 children performing at ceiling in the
common effects condition in Experiment 1, �2(1, N � 16) �
0.533, ns, despite the fact that they had to answer two questions
instead of one.

Thus, children’s performance in the common effects task in
Experiment 1 cannot be attributed to the forced-choice determin-
istic paradigm. Children were equally successful when they were
asked to judge each puppet independently in the probabilistic
context of Experiment 2. It might seem possible that the children
in the common effects condition in Experiment 2 simply ignored
the information in the training that special puppets probabilisti-
cally (almost always) make other puppets go and still ruled out the
Y puppet because of the single negative trial. However, the results
of the association condition rule out this possibility. Children
chose U as a special puppet significantly above chance despite the
fact that U also failed to make the other puppet move on one trial.
The results of the association condition also suggest that children
do not require causes to behave deterministically; they said U
caused V to move, even though it produced the expected effect
only five sixths of the time.

We can also consider the implications of these results for the
causal RW account. The crucial comparison concerns the chil-
dren’s responses to the Y and U puppets. According to the Bayes
net learning procedures, children should say that Puppet Y is not
special and that Puppet U is special; according to the RW proce-
dures, children should say that both Puppet Y and Puppet U are
special (or, less probably, that they are both not special). If
children were performing at chance, children should show the
expected pattern across the two trials 25% of the time.

On the two trials of the common effects condition, 10 children
consistently said that Y was not special, significantly more than the
1 child in the association condition who consistently said that U
was not special, �2(1, N � 16) � 11.22, p � .001. Similarly, 11
children in the association condition consistently said that U was
special, significantly more than the 5 children in the common
effects condition who consistently said that Y was special, �2(1,
N � 16) � 4.50, p � .05. As predicted by the Bayes net learning
procedures but not by the RW procedures, the pattern of responses
to the Y puppet in the common effects condition differs signifi-
cantly from the pattern of responses to the U puppet in the
association condition, �2(1, N � 16) � 8.43, p � .01.

These results suggest that the causal RW learning mechanism
cannot fully account for children’s inferences about causal struc-
ture. The association between Y and X and between U and V was
identical in the common effects and the association conditions. Yet
when Y occurred without X in the common effects case, children
correctly inferred that Y did not cause X. When U occurred
without V in the association case, children correctly inferred that
U did cause V.

Experiment 3: Unobserved causes. As we mentioned earlier,
the causal RW learning rules and the learning rule in Cheng (1997)
can only be applied correctly when there are no unobserved

common causes of the cause and the effect (although a general-
ization of Cheng’s rule can be applied in some such cases; see
Glymour, 2001). In particular, associationist causal learning mod-
els, such as causal RW, do not permit learners to distinguish
between cases in which associations occur because events of one
type cause events of the other type and cases in which associations
occur because events of each type are influenced by events of a
third kind, which is unobserved. The puppet machine paradigm
provides us with a way to test whether children will attribute
causal influence to a common unobserved variable.

Notice that the graphical structure in the three-puppet common
cause task we described above is the same as the structure in
Figure 9 in our discussion of unobserved variables. A simple
modification of this task, involving just two puppets, allows us to
test whether children will infer unobserved common causes. We
have completed a first preliminary study using this task.

In this task, sixteen 4.5-year-old children (mean age � 4 years,
10 months) received the same pretest and training trials as those in
Experiment 1, with deterministic causal relations (i.e., “The spe-
cial puppet always makes the other puppet go”). However, rather
than just asking which puppet was special or asking whether each
individual puppet was special, the experimenter asked the children
to explain the events: She asked, “Why are the puppets moving
together?” Then children received a common effects task. This
task proceeded in exactly the same way as the task in Experiment
1, except that children were asked to explain why the puppets were
moving together rather than being asked which puppet was special
or whether each puppet individually was special. (If children
refused to answer the explanation question spontaneously, we
presented them with a choice: “Is it X, is it Y, or is it something
else?”)

The children were then presented with an unobserved variable
task with two new puppets. The children first saw both puppets
move together on four trials, as in the previous tasks. Then the
experimenter visibly intervened to move Y, and X remained un-
moved, as in the common effect experiment. But this time the
experimenter then also visibly intervened to move X, and Y
remained unmoved. Finally, children again saw both puppets move
together. Again, children were simply asked, “Why are the puppets
moving together?” (with the additional choice of three options for
the children who refused to answer).

Given the instructions, the Markov and faithfulness assump-
tions, and the data, this pattern of events is incompatible with any
of the three acyclic graphs involving just X and Y: X Y, X33 Y, or
Y 33 X (see discussion, above). This means that the only way to
explain the data is to postulate a graph with an unobserved com-
mon cause of X and Y, X44 U33 Y. Children should conclude that
some other unobserved common cause (most obviously, the ex-
perimenter behind the screen) is responsible for the trials in which
the objects move together.

In the common effects trials, all 16 children chose one puppet as
the explanation for the movement (e.g., “X is pushing Y,” “X is
making Y move”). Thirteen of the 16 children chose the correct
puppet, similar to their performance in the earlier experiments.
Thus, a majority of 4-year-olds solved the common effects task
across all three experiments, whether they were asked to choose
between the puppets, to identify whether each puppet was special,
or to explain the puppets’ movement.
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However, a majority of children in the unobserved condition
posited an unobserved common cause. Nine of the 16 children said
that some unobserved variable (e.g., “your hands,” “you behind
there,” “something else”) was responsible for the puppets moving
together, significantly greater than the zero children who said this
in the common effects condition. Only 5 of the 16 children said
that one puppet had caused the movement, significantly fewer than
the 16 children who said this in the common effects condition.
(The remaining 2 children refused to answer even after they were
presented with the three options.) These children postulated that
observed variables were causes, unless no graph was consistent
with the dependencies between those variables. In that case, they
postulated an unobserved common cause.

Further Experiments

These experiments are only a first step, and our results need to
be further replicated with additional controls. Two control condi-
tions would be particularly compelling. One would be to do the
tasks in Experiments 2 and 3 but to have the experimenter point to
each object as it moves rather than intervening to make the objects
move. This task would be almost identical to the original tasks
perceptually, in terms of salience, and in terms of any measure of
associative strength, but we predict that children would not judge
causal influence in the same way, because of the lack of interven-
tions. A second interesting experiment would be to show children
a pattern of independence rather than dependence in the noninter-
vention trials—that is, to show them puppets moving at random
with respect to one another, followed by either one or two failed
interventions. We predict that in this case children would conclude
that the puppets are moving because of two independent unob-
served causes rather than because one is moving the other or
because both are moved by an unobserved common cause. We
have performed these experiments with adults, and our predictions
were confirmed (Kushnir et al., in press). Work with children is
ongoing.

These experiments also do not definitively tell us which causal
learning methods children use. They do suggest that these methods
extend beyond the causal RW rule or Cheng’s (1997) learning rule
as published and that they yield results that are normatively correct
according to the Bayes net formalism. As we said earlier, however,
we do not believe that children’s actual learning methods are as
general as the Bayesian or constraint-based algorithms, and we
need to discover empirically where the limits lie. Perhaps current
versions of associationist models or Cheng models could be mod-
ified, supplemented, and extended to produce comparable results.5

However, such a project would prove the value of the Bayes net
formalism and justify the existence of this article. The formalism
suggests causal learning problems, such as the simultaneous events
problem or the unobserved common cause problem, that have not
been explored before, and it provides normatively accurate solu-
tions to these problems. Children’s behavior can be assessed in the
light of these solutions, and more specialized learning proposals
can be judged and modified in terms of this more general
framework.

Moreover, dozens of other such experimental questions suggest
themselves. The Bayes net formalism allows predictions about the
inference of more complex causal structures, such as inhibitory
causes or interactive causes, and it allows us to make inferences

about causal chains, where X causes Y, which causes Z. We could
explore whether children will make accurate inferences in these
cases. Bayes nets are designed to deal with probabilistic as well as
deterministic data, and Bayes net applications almost always in-
volve probabilistic data. Two of our experiments suggest that
children make causal inferences even in nondeterministic cases. In
the two-cause condition of Gopnik et al. (2001), children thought
the object that set the machine off two out of three times was a
blicket, and in the association condition of the puppet experiment,
they said that the puppet that activates the other puppet five of six
times was special. We could explore how children will reason
about probabilistic causal relations as well as deterministic rela-
tions. The formalism provides ways of combining information
about conditional probabilities with substantive prior knowledge,
such as knowledge of time order. The “make it stop” experiment
showed that children can combine formal assumptions about cau-
sality with substantive prior causal knowledge. We can see how
children combine specific kinds of prior knowledge with this kind
of reasoning.

Further Computational Work

Just as the Bayes net formalism suggests new experiments with
children, applying Bayes nets to children’s cognition suggests new
computational questions. The formalism has mostly been applied
in practice to “data-mining” problems. These problems are unlike
the problems that children face in many respects. As it currently
stands, the learning models that use the formalism do not specify
how we decide that particular events are instances of a variable,
nor how we decide which variables to consider. Nor do they
propose exact learning processes that have psychologically plau-
sible memory and processing limitations.

It seems extremely unlikely, for example, that children store
vast quantities of data in memory and then apply learning proce-
dures to the data. Instead, they must surely form hypotheses and
use them on the basis of small samples of data, forget the data or

5 For example, Patricia Cheng (personal communication, December
2002) has suggested the following account of the common effect puppet
experiments: The instructions imply that either A 3 B or B 3 A. Ruling
out the former on the basis of the intervention therefore yields the latter by
deduction. This conclusion is consistent with the retroactive application of
the causal power equation at this point (i.e., after the intervention trial and
the ruling out of the A 3 B causal direction) to the evaluation of B 3 A
in the nonintervention trials. The intervention trial is excluded in this focal
set because with respect to B, the candidate in question, I, is an alternative
cause and needs to be kept constant, constantly absent in this case because
that is the only way to satisfy the independent-occurrence assumption. If a
subject accepts the assumption implied in the instructions that no unob-
served cause is assumed to exist (so that either A or B is special), then in
the evaluation of B 3 A, alternative causes occur independently of B
(trivially, because of the assumption that there are no other causes), and the
causal power equation gives qBA � (1 � 0)/(1 � 0) � 1 (where qBA is
the probability that B causes A given that B occurs, as in Cheng, 1997).
But, if subjects refuse to accept that assumption and instead allow for the
possibility of an unobserved cause, then they would be uncertain whether
B3 A: Alternative causes may or may not occur independently of B in the
nonintervention trials. Both answers, Cheng argues, can be explained by
her theory, depending on how a subject interprets the experimenters’
instructions.
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most of them, and revise their hypotheses as required by new data.
In the course of this revision they quite possibly alter not only the
causal relations they hypothesize but also the variables and prop-
erties they consider to be useful. Equally, causal regularities that
are learned for one context may somehow constrain the causal
regularities to be learned in other contexts, especially when the
domains overlap in objects or properties, allowing for a kind of
learning by analogy.

Moreover, it seems possible, and even likely, that children begin
the process of causal learning with some innately given assump-
tions about which variables are relevant to causal inference, and
perhaps with some assumptions about structure, such as assump-
tions that some variables are causally connected to others. Children
might be born assuming at least some sketchy causal graphs. These
would correspond to the innate “starting-state” theories proposed
by some “theory theorists” (see Gopnik & Meltzoff, 1997; Gopnik
& Wellman, 1994). However, these initial assumptions could be
modified or overturned in the light of new data about conditional
dependencies and interventions. Children, then, may be bootstrap-
pers as much as data miners.

There is computational research under way on all of these
issues, but it is as yet far from providing a firm understanding of
the possibilities. Glymour (2001) suggested a number of heuristics
for transforming a given set of variables in a network to new ones;
Spirtes (2001) has shown that certain constraint-based algorithms
have the property that they give incomplete but correct information
if they are stopped (e.g., because of limits on computational
resources or time) at any point in the procedure. Bayesian learning
algorithms can store the best Bayes net found to explain a data set,
and forgetting that data set, use that best hypothesis as a starting
point for a greedy search if the hypothesis is to be revised in the
light of new data.

Conclusion

We end by returning to the analogy with vision science. At its
beginnings in the 17th century, science emerged from two separate
enterprises: natural history, which catalogued and described the
world, and natural philosophy, which sought to explain the world
in mathematical terms. For 100 years, vision science was primarily
concerned with psychological natural history, discovering consis-
tent patterns in visual experience and relating those patterns to the
structure of objects in the world. These psychological findings
were an absolutely necessary precursor to the current computa-
tional and neurological work. Without psychophysics and percep-
tual psychology, there would be no vision science. More recently,
however, psychologists have gained a new and deeper understand-
ing of vision by relating these psychological findings to a natural
philosophy that tells them, in computational terms, how it is
possible for the perceptual system to recover accurate information
about the world.

The last 30 years have been a golden age for the natural history
of children’s learning. We know more than ever before about the
consistent patterns in children’s conceptions of the world and the
consistent changes in those conceptions. But there has been much
less natural philosophy; we have known much less about how it is
possible for children to learn as much as they do about the world
around them. Our hope is that just as perceptual psychology led to

vision science, cognitive developmental psychology will be the
first step toward a new learning science.
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