
A Neuroidal Architecture for Cognitive Computation

LESLIE G. VALIANT

Harvard University, Cambridge, Massachusetts

Abstract. An architecture is described for designing systems that acquire and manipulate large
amounts of unsystematized, or so-called commonsense, knowledge. Its aim is to exploit to the full
those aspects of computational learning that are known to offer powerful solutions in the acquisition
and maintenance of robust knowledge bases. The architecture makes explicit the requirements on the
basic computational tasks that are to be performed and is designed to make these computationally
tractable even for very large databases. The main claims are that (i) the basic learning and deduction
tasks are provably tractable and (ii) tractable learning offers viable approaches to a range of issues
that have been previously identified as problematic for artificial intelligence systems that are
programmed. Among the issues that learning offers to resolve are robustness to inconsistencies,
robustness to incomplete information and resolving among alternatives. Attribute-efficient learning
algorithms, which allow learning from few examples in large dimensional systems, are fundamental to
the approach. Underpinning the overall architecture is a new principled approach to manipulating
relations in learning systems. This approach, of independently quantified arguments, allows proposi-
tional learning algorithms to be applied systematically to learning relational concepts in polynomial
time and in a modular fashion.

Categories and Subject Descriptions: F1.1 [Computation by Abstract Devices]: Models of computa-
tion—neural networks; I2.0 [Artificial Intelligence]: General—cognitive simulation; I2.4 [Artificial
Intelligence]: Knowledge Representation Formalisms and Methods; I2.6 [Artificial Intelligence]:
Learning

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Cognitive computation, computational learning, learning rela-
tions, nonmonotonic reasoning, PAC learning, robust reasoning

1. Introduction

We take the view that intelligence is a large-scale computational phenomenon. It
is associated with large amounts of knowledge, abilities to manipulate this
knowledge to derive conclusions about situations not previously experienced, the
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capability to acquire more knowledge, and the ability to learn and apply
strategies of some complexity.

The large-scale nature of the phenomenon suggests two prerequisites for
constructing artificial systems with these characteristics. First, some theoretical
basis has to be found within which the various apparent impediments to this
endeavor that have been identified can be addressed systematically. Second,
some large-scale experiments need to be conducted to validate the suggested
basis–it is possible that the fundamental phenomena do not scale down and that
small-scale experiments do not shed light on them.

Much effort has been devoted to identifying such a theoretical basis. One
major thrust has been to develop definitions of capabilities that are functionally
adequate. Functionalities that, even if realized, would not go far towards
achieving a significant level of performance are of little interest. Another thrust
has been the search for capabilities that are demonstrably computationally
feasible. Functionalities that are computationally intractable are again of little
direct interest. A third viewpoint is that of biological plausibility. Perhaps an
understanding of how cortex is constrained to perform these tasks would suggest
specific mechanisms that the other viewpoints are not able to provide.

The hypothesis of this paper is that for intelligent systems to be realized the
sought after theoretical basis has not only to be discovered, but needs to be
embodied in an architecture that offers guidelines for constructing them. Com-
posed as these systems will be of possibly numerous components, each perform-
ing a different function, and each connected to the others in a possibly complex
overall design, there will need to be some unity of nature among the components,
their interfaces, and the mechanisms they use.

Our purpose here is to describe a candidate for such an architecture. This
candidate emerged from a study that attempted to look at the issues of functional
adequacy, computational feasibility and biological constraints together [Valiant
1994]. We call the architecture neuroidal since it respects the most basic
constraints imposed by that model of neural computation. One feature of that
study was that it was a “whole systems” study. It addressed a range of issues
simultaneously insisting on biological and computational feasibility, plausible and
simple interactions with the outside world, and adequate explanations about the
internal control of the system. It suggested that, while definitions of intelligence
and thinking may continue to prove elusive, there may be a basic computational
substrate that systems that realize these phenomena need to share, which may be
identified more easily. We believe that the functions and mechanisms associated
with this substrate characterize an area that transcends both natural and artificial
computation and is appropriately described as cognitive computation.

In abstracting an architecture from that neural study, as we do here, we
dispense with some of the most onerous constraints considered there to be
imposed by biology. In the mammalian brain, these constraints include the
sparsity of the interconnections among the components, the inaccessibility of the
separate components to an external teacher or trainer, and certain bounds on the
weights of individual synapses. In artificial systems, these constraints are not
fundamental, and in order to maximize the computational power of the architec-
ture we free ourselves of them here.

Our purpose in describing the architecture is to suggest it as a basis for large
scale experiments. A first critical issue clearly, is whether the architecture is
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theoretically adequate: Can some of the obstacles that have been identified by
researchers be solved, in principle, within the model? Are there further funda-
mental obstacles?

We observe that the McCulloch–Pitts model may turn out to be a valid
architecture for intelligence if it turns out that threshold elements represent well
the basic steps of cortical computation. Its shortcoming, clearly, is that it does
not appear to offer useful guidelines for constructing systems or for understand-
ing their capabilities.

Our architecture, in contrast, is designed to provide a design methodology. In
particular, its main feature is that it comes with a set of associated algorithms
and mechanisms. The two basic constituents of the architecture are classical
enough, being circuit units consisting of linear threshold elements, and short-term
memory devices called image units. The novelty is that for aggregates of such
devices we can detail how the accompanying mechanisms can perform a list of
tasks that address significant problems. The bulk of this paper is devoted to
enumerating these problems and describing how they can be addressed. Our
purpose here is to point out that this broad variety of mechanisms can be
supported on this single unified architecture, and that together, they go some
way toward addressing an impressive array of problems.

In particular, we shall provide mechanisms to address the following eight
questions. We consider that any large scale system exhibiting intelligent behavior
as we envision that here will have to take a position on each of them.

(1) Conflict Resolution. What mechanism is provided to ensure that choices
between plausible but inconsistent alternative actions or classifications are
resolved in a principled manner?

(2) Learning from Few Examples. What mechanism is provided to ensure that
inductive learning can be performed even when few examples are available
and the description of each one is highly complex?

(3) Multiple Objects and Relations. When concepts need to be expressed in terms
of relations among several objects rather than as a propositional combination
of predicates about one object, what mechanism is provided to ensure that
the learning of the concept and the recognition of instances of the concept,
are computationally feasible?

(4) Learning Strategies. How is the learning of sequential processes, such as
strategies, handled?

(5) Robustness. How is the system made resilient to errors or to inconsistent use
of categories in the descriptions of the examples or the rules that are
supplied to the system, and hence able to cope with a noisy world?

(6) Context. What mechanisms are provided to help cope with the fact that
individual rules usually apply only in restricted contexts?

(7) Reasoning. What mechanisms are provided for reasoning, and to what extent
are they sound and computationally tractable?

(8) Reasoning with Partial Information. How are the issues of incomplete infor-
mation and nonmontonic reasoning addressed?

The extent to which the architecture constitutes progress toward constructing
intelligent systems remains to be determined. The performance of a system
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would clearly depend on both the high-level design as well as the quality of the
training data. The magnitude of the problems that each of these two components
presents will become apparent from any large-scale experimentation.

The largest benefit that this architecture promises is a capability for realizing
large robust knowledge bases by learning by a process that one might call massive
knowledge infusion. We expect that in order that this potential be fully realized
there will be needed a significant new kind of effort directed towards the
preparation of teaching materials. It would be convenient if currently available
resources such as dictionaries and annotated corpora of text were usable.
However, since the system will not operate identically to humans, the teaching
materials needed cannot be expected to be identical to those that are effective
for humans. The system and teaching materials need to be chosen so as to fit
each other, and we believe that the development of these in tandem is a major
challenge for future research. Although, clearly, there is much data currently
available in natural language form, aside from the issue of natural language
understanding, there is the independent question of whether these materials
make explicit all the commonsense and other information that one would wish a
system to know.

To summarize, the main feature of the architecture is that it brings learning to
the heart of the general problem of intelligence. Recent advances in machine
learning help to distinguish those aspects of learning that have very effective
computational solutions, from those for which none is known. For example, the
problem of finding new compound features that are particularly effective in a
specific learning task is not one to which general effective solutions are known.
In contrast, we know that for some classes of functions the presence of irrelevant
features can be tolerated in very large numbers without degrading learning
performance. Our proposal, therefore, is that insights of this kind be incorpo-
rated into the design of systems that perform cognitive computations. We claim
that this approach does offer a new view of some of the now traditional problems
of artificial intelligence, and alleviates at least some of them.

On a historical note, it is interesting to recall Turing’s [1950] paper on
“Computing Machinery and Intelligence” in which he describes his “Test”. While
he considers the possibility that a programmed system might be built to solve it,
he appears to come out in favor of a learning machine. In the subsequent history
of research on general intelligent systems, the overwhelming emphasis has been
on programmed systems. We believe that this was largely because there existed a
mathematical basis for following this avenue, namely mathematical logic. How-
ever, in the intervening years there has been much progress on the theoretical
foundations of machine learning, as well as success in the experimental study of
learning algorithms. It is, therefore, particularly appropriate now to reexamine
whether a synthesis can be found that resolves Turing’s dilemma.

2. The Architecture

A system having the proposed architecture is composed of a number of circuit
units and a number of image units. The image units can be thought of as the
short-term or working memory of the system: In the course of an interaction with
the world or of a complex reasoning act, this is where the intermediate results
are stored. The circuit units are the long-term repositories of large amounts of
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knowledge: their contents can be updated both by inductive learning as well as
through explicit programming, but each individual update changes only a small
part of the total long-term knowledge base.

The circuit units are defined so as to ensure that they have the most desirable
learning capabilities, in particular error-resilience and attribute-efficiency. For
this reason, we shall define them here to consist of one layer of linear threshold
gates. The circuit units have one layer of inputs that are the inputs to these gates,
and one layer of outputs that are the outputs of the gates themselves. The
weights of the threshold elements can be either learned or programmed. In
principle, any set of functions that is superior as far as expressiveness or
learnability could be used instead of threshold functions to enhance the architec-
ture.

The intention is that each output gate in a circuit unit recognize some
predicate. We say that it “fires” if such recognition has occurred in the sense that
the output has taken value one or “true.” The inputs may be Boolean or real
valued. The latter is needed if, for example, some of the inputs are from input
devices or image units that produce numerical values.

The image units are the main repositories for the transient information that is
computed in a recognition, reasoning or planning task (cf. Miller [1956]). In this
paper, we shall, for illustrative purposes, employ a particular instance of them
designed to make them directly comparable to predicate calculus mechanisms. In
this instance, the contents of the image at any time consists of a set of token
objects, and a set of relational expressions that describe the properties of and
relationships among the objects represented. The information in the image unit
may be provided to the inputs of circuit units. The contents of the image units
may be modified by the outputs of circuit units or by input devices that take input
from the outside world. Thus, image units can be used both to store information
received from the outside world through sensory devices, as well as to store
“imaginary constructs” that are useful for the system’s internal computational
processes. It is possible to have a number of such constructs in the image
simultaneously in a novel combination. The system can then bring to bear the
power of the large knowledge base stored in its circuits on a representation of a
complex situation not previously represented in it. In general, an image unit may
be used to analyze an input, to perform deduction on it, or to perform planning
by enumerating a sequence of imaginary depictions of possible sequences of
future situations. Our use of predicate calculus notation is mainly for illustrative
purposes. For processing visual information, for example, other representations
may be preferable and image units might be formalized in other ways to
incorporate that fact.

The circuit and image units will be composed together in a block diagram so
that the outputs of some of the units are identified with the inputs of others.
Typically, image units will interface directly with circuit units, rather than other
image units. Some inputs of some units are identified with the outputs of input
devices, and some outputs with the inputs of output devices. The block diagram
may ultimately contain feedback or cycles. It will typically include a stack of
circuit units that represent concepts that are more and more complex and further
removed from the perceptual data inputs.

In any implementation of the architecture, mechanisms need to be specified
for realizing a range of tasks, such as those enumerated in Section 4. In addition,
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some further mechanisms are needed to allow the acquisition of programmed
knowledge. For example, new output gates may be added to a circuit unit and the
parameters or weights of these gates assigned appropriate values so that they fire
under the intended conditions. These added gates can then also serve as targets
for inductive learning or as inputs to other units. One method of adding to the
circuit is to add gates to represent various fixed functions of existing nodes so as
to enrich the feature space. Thus, one may add nodes that compute the
conjunction of all pairs from a certain set of existing nodes. Another method of
programming a circuit is to change a weight between an existing pair of nodes.
Thus, one can create a subcircuit to realize “grass f green” by making the
weight from the node representing “grass” to that representing “green” larger
than the threshold of the latter.

2.1. OVERVIEW. We shall outline here the properties that are required for a
device to be an image unit. In the section to follow, we shall describe one
particular realization of image units that is based on predicate calculus notation
and highlights how our approach can be used to generalize the capabilities of
certain logic-based AI systems.

An image unit will at any instant contain some data that we call a scene S . The
scene itself consists of a number of object tokens a1, . . . , aN as well as
information about the properties of the objects and about the relationships
amongst them. This information may be represented, in principle, in any number
of ways, among which predicate calculus notation is one.

The computational processes that we describe are entirely in terms of interac-
tions among the circuit units and the image units. The circuit units are the
repositories of rules that may have been acquired by either learning or program-
ming. These rules are applied in the image units to the scene in question. We
limit the number N of objects in the image units to some moderate number, say
10, so as to limit ab initio the computational cost of the so-called binding
problem, which is concerned with matching variables in the stored relational
rules to objects in the scene.

Although we use standard logical notation to describe the contents of the
image or to label circuit nodes, our interpretation of this notation is slightly
different from the usual. In particular the objects a1, . . . , aN in our architecture
are best viewed as tokens or internal artifacts of the system. They are not
intended to refer to the external world in the same direct way as in more familiar
uses of the predicate calculus. Further, the primary semantics that we ascribe to
nodes in the system are the PAC semantics described in Section 3 and in Valiant
[2000] rather than the standard semantics of predicate calculus.

Each node of a circuit unit is at any one instant in some state. Most simply, it
is in one of two states that indicates whether or not the predicate associated with
the node is true of the current scene in the associated image unit. However, it
can, in principle, also contain further information, such as a real number that
expresses a confidence level for the validity of the predicate (cf. neuroids in
Valiant [1994]).

Each node can be thought of as representing a relation, for example,

R~ x1, x2, x3! ,
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where the variables range over the objects a1, . . . , aN in the scene. We shall, for
simplicity, emphasize in this paper the restricted case that all the quantified
variables are quantified existentially. Thus, the threshold gate at this node will
fire, in general, if R( x1, x2, x3) holds for the current scene for some binding of
x1, x2, x3 to a1, . . . , aN. As discussed in Valiant [2000], this case can be
generalized without any substantial changes to allow arbitrary use of universal in
addition to existential quantifications.

While no general assumptions are made about how R is represented, it is
assumed that when an expression of the form R( x1, x2, x3) is recognized to hold
for the current scene, a corresponding binding, or mapping u from { x1, x2, x3} 3
{a1, . . . , aN} is made explicit in the system. To be precise, therefore, when a
node for R fires, it fires for a particular binding u. For brevity, where this leads to
no ambiguity, we shall use R variously to refer to the predicate computed, the
value of the predicate or to the node itself that evaluates R.

An aggregate of circuit units is a directed graph in which each connection
between a pair of nodes that is connected is associated with a weight. Each node
has an update function that updates its state as a function of its previous state,
the states of nodes from which there are directed edges to it as well as the
weights of these edges. More particularly each circuit unit is a directed graph of
depth one (i.e., one layer of input nodes, one layer of output nodes, and no
“hidden layer”) and the update functions are linear threshold functions.

A directed edge from a node representing R1 to a node representing R2

contains binding information called the connection binding R1 3 R2. If the nodes
represent R1( x1, x2, x3) and R2( y1, y2, y3), then the binding information could
specify, for example, that x1 and y2 have to represent the same object in the
image but that x2, x3, y1 and y3 may be objects arbitrarily different from each
other.

There may be several connections from R1 to R2, each one corresponding to a
different connection binding and having a different weight. For example, if R2

represents the notion of grandparent and R1 that of parent, then in the
definition of the former one may wish to invoke the latter twice with different
bindings.

Thus, if grandparent_via( x1, x2, x3) is to represent that x1 is the grandparent
of x3 via x2, and if parent( y1, y2) represents that y1 is the parent of y2, then
there would be two connections from parent to grandparent_via: In one, the
binding would be x1 5 y1, x2 5 y2 while in the other x2 5 y1 and x3 5 y2. If the
weight of each connection is 1 and the threshold at the node grandparent_via is
2, then the appropriate conjunction parent( x1, x2)∧parent( x2, x3) would be
computed.

The scene s in an image unit contains information about which relations hold
for which object sets. An aggregate of circuit units will be evaluated for any one
scene S node by node. For a node that represents relation R( x1, . . . , xi) the set
of all bindings u{ x1, . . . , xi} 3 {a1, . . . , aN} that make R hold will be
evaluated. If the node R has inputs from nodes R1 and R2, and the gate at R
evaluates the threshold function R1 1 R2 $ 2, for example, then R will fire for
a binding u if there exist bindings u1, u2 of the variables of R1 and R2 that are
consistent with u with respect to the connection bindings R1 3 R and R2 3 R,
and make both R1 and R2 true.
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We note that in the example of the previous paragraph, if R 5 grandparent_
via and R1 5 R2 5 parent, and N 5 5, then for u ( x1) 5 a5, u ( x2) 5 a2,
u ( x3) 5 a4, the node for R would fire for binding u if the following conditions
held: parent(a5, a2) 5 1 and parent(a2, a4) 5 1. The reason is that the
bindings u1 and u2, where u1( y1) 5 a5, u1( y2) 5 a2, u2( y1) 5 a2 and u2( y2) 5
a4 are consistent with u with respect to the stated connection bindings for the
two occurrences of parent( y1, y2), and make these two occurrences true.

More generally, it may be that R( x1, x2) is a function of R1( y1, y2) and
R2( z1, z2) and arguments occur in R1 and R2 that are not bound to the
arguments of R by the connection bindings. Suppose, for example, that y1 5 x1,
z1 5 x2 and that y2 and z2 are not bound. Then, the architecture allows the
unbound variables to be quantified, either universally or existentially, and this
information to be encoded in the corresponding connection binding, as long as
the quantification in R1 is independent of that in R2. Thus

f~?yR1~ x1, y! , @zR2~ x2, z!! f R~ x1, x2! (2.1)

is possible where f is a threshold function of two Boolean arguments. The
existential quantification ?yR1 denotes that, for some object y in the scene,
R1( x1, y) is true. The universal quantification @zR2 denotes that, for all objects
z in the scene, R2( x2, z) is true. The important constraint is that the quantifica-
tions in the various arguments of f cannot constrain each other. This restriction
we call independently quantified arguments (IQA). This is the main single
technical innovation that permits the architecture to successfully unify learning
and reasoning in a relational setting while retaining computational tractability. It
provides a direct method of learning in a relational domain by means of a
propositional learning algorithm. This is described in more detail in Valiant
[2000]. Certain alternative ways of treating relations systematically in a learning
context appear to introduce intractability almost from the start [Haussler 1989].

2.2. AN IMPLEMENTATION OF IMAGE UNITS. We shall describe an implemen-
tation that is oriented towards predicate calculus notation, but extends it in the
directions advocated in this paper to allow for effective learning with attribute-
efficiency and error-resilience. We consider the following restriction of the
language of predicate calculus (e.g., Russell and Norvig [1995, p. 186]). As
constants, we shall choose the base objects !B 5 {a1, . . . , aN} of the image
unit. We allow a set 5 of base relations of arities that are arbitrary but upper
bounded by a constant a. We use no function symbols. We represent variable
names by { x1, . . . , xn} and relations will be defined in terms of these. For
illustrative purposes, we shall observe that any programmed system in which
knowledge is described as Horn clauses, without function symbols can be
embedded into this framework. The central role in AI systems of this language of
description is discussed by Russell and Norvig [1995, pp. 265–277] and this is also
the datalog framework in databases [Ullman 1984]. We are observing, therefore,
that in at least this one possible implementation of our architecture, it is the case
that a significant class of existing programmed systems can be embedded. Our
main claim, however, is that the additional benefits of being more expressive and
of having a powerful learning capability make our system superior in kind over
Horn representations. Also, while we are showing here that the function
computed at a circuit gate can be interpreted as a logical rule, it is the case that
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such a function can be associated with probabilistic information in addition, such
as a probability of being correct.

The two features of predicate calculus that we exclude, therefore, are constants
that refer directly to individuals in the world, for example, Shakespeare, and
functions that can be applied to them to refer to other individuals, for example,
mother_of(Shakespeare). In our system, the only constants are the predefined
base objects of the image, which are internal constructs of the system. In order to
refer to an individual like Shakespeare, we shall use a unary predicate that can
be applied to a base object. Thus, Shakespeare (a3) would express the fact that
a3 has the attributes of Shakespeare. Also, we dispense with function symbols by
referring to the resulting object as a base object, and by expressing the necessary
relationship by an appropriate relation symbol. Thus instead of saying x1 5
mother_of( x2) we would say mother_of( x1, x2), where the latter is a binary
relation. In these senses, we ensure that the two linguistic restrictions, on
constants and functions symbols, do not constrain absolutely what can be
expressed. The aim of these restrictions is to impose some upper bound, namely
N, on the number of token objects that the system needs to represent in an image
at any one time. Note that by using appropriate encodings one can have such a
token object in the image represent a set of many objects in the world.

A term will be therefore a base object ai, and an atomic sentence will be a
single relation such as mother_of [ 5 applied to the appropriate number of base
objects (e.g., mother_of(a3, a7). A Horn rule will be an implication

Ri1
~ xi1,1, · · · xi1,a(i1)! ∧ · · · ∧ Rir

~ xir,1, · · · , xir,a(ir)!

f Ri0
~ xi0,1, · · · , xi0,a(i0)! .

where Rij
[ 5 and a(k) is the arity of Rk [ 5. We note that 5 may include the

zero arity relation False which signifies logical impossibility and may be used
meaningfully for Ri0

on the right-hand side of an implication. Horn rules may
have some of the x arguments instantiated by fixed values from !, but all the
other x variables are to be interpreted as quantified universally over !.

A binding u is a mapping from { x1, . . . , xn} to {a1, . . . , aN}. We say that a
relation R( x1, x2, x3) is made true by u if R(u ( x1), u ( x2), u ( x3)), or R(u ( x))
for short, holds. The derivation rule modus ponens is the following:

“if Ri1
( x) ∧ . . . ∧ Rir

( x) f Ri0
( x)” is a rule,

and if, for some binding u, Rij
(u ( x)) holds for 1 # j # r,

then Ri0
(u ( x)) also holds.

In a logic-based system, we would program a set of rules of the form (2.1) and
consider the input to be a set of atomic sentences. We could then consider the
output to be the set of all atomic sentences that can be deduced from the input
by applying the rules using modus ponens in all possible ways. This output could
be derived in the logical framework by means of forward chaining [Russell and
Norvig 1995, p. 273].

Let us now describe the implementation of the neuroidal architecture into
which this process embeds naturally. In this implementation, the contents of the
image will be simply the atomic sentences of the input. The circuits will
implement the rules as follows: For each relation R [ 5, there will be a gate in
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the circuit. We shall assume that each relation R occurs on the right-hand side in
just one rule – otherwise, we replace multiple occurrences of R on the right-hand
side by different names, say R1, R2, . . . , Rm and add a new rule R1 ∨ R2 ∨ . . .
∨ Rm f R. For such rules, we can use the identity connection binding from each
Ri to R.

For each Horn rule Ri1
∧ Ri2

∧ . . . ∧ Rir
f Ri0

, we shall make a connection to
Ri0

from each Rij
(1 # j # r). This connection will have the appropriate

connection binding, defined below. At the Ri0
node, we shall implement the

equivalent of an AND gate in terms of a threshold gate with threshold r. In other
words, we regard the values of the Rij

as Boolean {0, 1}, and have a gate that
realizes

Ri0
5 1 if and only if O

j51

r

Rij
$ r .

Executing this threshold gate will correspond, therefore, to performing one
application of modus ponens.

To simulate OR gates, which are used as shown above if multiple occurrences
of the same relation occurs on the right-hand side, we also use a threshold gate
but have 1 as the threshold instead of r, that is, ¥ Rij

$ 1.
In this implementation we consider the network to evaluate for each gate all

possible bindings u: { x1, . . . , xn} 3 {a1, . . . , aN} so as to find all the ones, if
any, that make the gate evaluate to one. In the case that the aggregate of circuit
units is acyclic, we can form a topological sort of their nodes (e.g., Knuth [1973])
and for one such topologically sorted order evaluate each node in succession.
The evaluation of each node is for all the Nd bindings u, where d # a is the arity
of the relation R at that node. More generally the circuits will contain cycles,
which allow recursive rules to be expressed. This makes the evaluation mecha-
nisms slightly more complex, though still polynomial time for constant a. Full
details of this can be found in Valiant [2000].

Our architecture is more expressive than is required for evaluating these Horn
clauses in several respects. The ability to quantify arguments is one such respect.
We shall therefore now clarify the nature and meaning of the connection
bindings and independent argument quantifications: Each rule with r relations on
the left corresponds to a threshold function with r arguments, where each
argument has its own connection binding. Consider the following rule with r 5 2:

?x1R1~ x1, x2, x3! ∧ ?x4R2~ x3, x4, x5! f R3~ x2, x3, x5! . (2.2)

This notation expresses the connection bindings implicitly. The binding of the
connection from R1 to R3 says simply that the second parameter of R1 binds with
the first parameter of R3, the third parameter of R1 binds with the second of R3,
and that x1 is quantified existentially. Similarly the binding of the connection
from R2 to R3 identifies the first parameter of R2 with the second parameter of
R3, and the third parameter of R2 with the third of R3. The naming of the
variables in each rule or gate can express this precisely. Note that in this example
the implication is that any binding of x1 that makes R1 true, can be combined
with any binding for x4 that makes R2 true, in order to make R3 true. For
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example, if elsewhere in the rule set, we have the rules R4 ( x7, x8, x9) f R1 ( x7,
x8, x9) and R4 ( x7, x8, x9) f R2( x8, x7, x9), then it will be sufficient for these
two rules to be satisfied for two different values of u ( x7) in order to make R3
true, since (2.2) did not require otherwise.

If from some Ri there is more than one connection, then for conceptual
purposes it is simplest to think about an expanded circuit in which the Ri node is
replicated so that each node now has just one connection directed away from it
and hence the circuit is a tree. This is because connection bindings impose joint
constraints on the several inputs to a node but not to the several outputs.

Note also that any correspondence between two variables occurring in two
relations on the left hand side (i.e., x3 in the example (2.2)) can be enforced only
by having x3 as an explicit variable in the right hand side relation, that is, R3 in
the example. This can be circumvented, however, in the following sense: We
could create a gate called R6( x2, x5) for computing ?x1?x3?x4 (R1( x1, x2, x3) ∧
R2( x3, x4, x5)) by first evaluating R3( x2, x3, x5) as in (2.2) and having an
additional rule ?x3R3( x2, x3, x5) f R6( x2, x5).

The evaluation process can be viewed as being performed on a graph structure.
In this graph, the input nodes with no predecessors will each represent a
relational expression, such as R(a3, a4, a7). To evaluate a gate at R, we simply
enumerate all the Nd bindings of the d variables that appear in it. First, we scan
all the atomic sentences in the image that contain R and see which bindings make
R true before any rules are applied. Then, for each binding, and for each
predecessor node, if any, we determine whether that binding can make true the
quantified expression, for example, ?x1R1( x1, x2, x3) that is the corresponding
argument in the rule for R. Having done this for each predecessor, we can, for
each binding compute the value of the gate at the current node, whether it is a
disjunction, conjunction, or more generally, an arbitrary linear threshold gate.
Note that the complexity of this task that is contributed by the binding problem is
Nd. It is exponential in the maximum arity of the relations, and not in the number
of base objects or the number of relations in a rule! This fact encapsulates the
computational benefits of IQA. (Note, however, that the arity may be made
larger than in some equivalent predicate calculus representations by the restric-
tion that all binding information is in the connections. This necessitates that if
some correspondences among the variables need to be enforced on the left-hand
side of a rule, they must be made explicit on the right-hand side. For example, if
we wish to represent father( x, z) ∧ mother( z, y) f grandfather( x, y), then in
analogy with how R6 above is represented by means of R3, our representation of
grandfather will need to be in terms of grandfather_via that has a third
argument, say t, that is to be identified with the two occurrences of z by
connection bindings.)

It is easy to verify that such an evaluation algorithm will compute all satisfying
bindings for each relation that is represented at the nodes, in exactly the same
way as would applying modus ponens in all possible ways to the rules.

From what has been said, it should be clear that our architecture is expressive
enough that programmed systems based on modus ponens and the Horn rules we
have described can be embedded into it. What the architecture adds to such
systems is more expressivity and a capability for learning. The gates we allow are
not just Boolean conjunctions and disjunctions, but linear threshold functions.
This allows a host of learning algorithms, discussed in later sections, that provide
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provable learning capabilities that are not known to be available in strictly logical
representations.

Learned rules can be incorporated in the architecture in a number of ways. A
learned rule takes the form of an equivalence, rather than an implication in the
first instance [Valiant 2000]. Even then it is natural to use it in just one
direction–as if it were an implication–in order to justify the deduction that a
certain base relation R holds for a set of base objects when a certain complex set
of conditions is satisfied.

With regard to learnability, we note that there are theoretical results that show
for certain classes of functions that extending the representation of the learner
may make the original class more easily learned, while restricting the learner to
the minimal Boolean representation needed for expressing the functions would
make the task NP-complete [Pitt and Valiant 1988]. While the quoted results
refer to the polynomial time criterion, as we shall discuss below at length, we also
desire and seek here the very significant further advantages that learning be
achieved with both attribute-efficiency and error-resilience. The expressiveness
of our architecture reflects these considerations.

3. Semantics

We cannot expect to develop a set of robust mechanisms for processing
representations of knowledge without a robust semantics for the representation.
The emphasis here is both on the necessity of semantics, that relates the
representation to some reality beyond itself, as well as robustness to the many
uncertainties, changes and errors in the world or in communications with the
world, with which the system will need to cope.

The need for semantics explains the attractiveness of formal logic and proba-
bility theory in AI research. It is the need for robustness that forces us to look
beyond these, to notions centered on learning. The semantics we shall describe
here, PAC semantics is based on the notion of computationally feasible learning
of functions that are probably approximately correct [Valiant 1984].

To explain the contrast in viewpoints consider the situation calculus described
in McCarthy and Hayes [1969]. There, a situation is “the complete state of the
world”, and general facts are relations among situations. Thus, P f Q means
that for all situations for which P holds Q holds also. This is an all embracing
claim about some universe that is difficult to grade gracefully and becomes
problematic in the real world where authoritative definitions of P and Q
themselves may be difficult to identify.

In contrast, PAC semantics makes qualified behavioral assertions about the
PAC behavior of a particular system in a particular environment. In PAC
semantics, P and Q would be defined as functions computed by fixed algorithms
or circuits within a system that takes input through a fixed feature set from a
fixed but arbitrarily complex world. The inputs range over a set X that consists of
all possible combinations of feature values that the input feature detectors can
detect. There is a probability distribution D over this set X that characterizes the
world in all the aspects that are discernible to the feature detectors of the system.
The P and Q could correspond to nodes in a circuit. The relationship between P
and Q would be typically of the following form: If a random example is taken
from D that makes the P node fire, then it also makes the Q node fire with a
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certain probability. The latter probability would, at best, be known to be in some
range with a certain confidence. Thus, the semantics is relative to both the
computational and sensory abilities of the system, and refers to an outside world
about which direct observations can be made only one observation at a time. The
claims that the semantics makes about a rule do not go beyond what is
empirically verifiable in a computationally feasible way by the system operating
in the world.

In addition to making observations from D, the system can also acquire rules
by being told them. It can then use these as working hypotheses, subject to
subsequent empirical testing by the system against observations from D, and
make deductions using them. The general goal of the system is to accumulate
knowledge about the world in the form of rules that hold in D with a probability
that is estimatable by the system.

Rules are intended to capture the time-invariant aspects of the world. Their
subject matter may, nevertheless, be how things change with time. A rule may,
for example, express the later consequence of an action. Such rules, which relate
different points in time, can be invariants of the world and hence PAC learnable.

In this paper, PAC semantics has the following more particular aspect. The
domain X of observations refer to the possible contents of an image, or the
system’s “mind’s eye” rather than the external world directly. A person’s
knowledge of physics, kings or dinosaurs is rarely based on direct observations.
The computational significance of this approach is that it restricts the domain of
discourse to the fixed set of internal token objects a1, . . . , aN. The philosophical
significance is that, unlike the conventional semantics of predicate calculus when
applied to unaxiomatized knowledge, it makes the domain of discourse specific.

In constructing an artificial system, we envisage that one would take advantage
of the possibility of training each circuit unit separately. Typically a unit will take
as inputs the outputs of input devices or other circuit or image units to which it is
connected. It would see the world through a set of features that are themselves
filtered through the input devices and circuits of the system. In contrast, the
outputs of the unit being trained will be directly accessible to the trainer, who
can venture to train each such output to behave as desired. If the system consists
of a chain of circuit units trained in sequence in the above manner, then the
errors in one circuit need not propagate to the next. Each circuit will aim to be
accurate in the PAC sense as a function of the external inputs–the fact that
intermediate levels of gates only approximate the functions that the trainer
intended is not necessarily harmful as long as each layer relates to the approxi-
mations at the previous layer in a robustly learnable manner. At each internal
level, these internal feature sets may nevertheless permit accurate PAC learning
at that next stage. That this is indeed possible for natural data sets remains to be
proved. Some analysis of this issue of hierarchical learning has been attempted
[Rivest and Sloan 1994].

We note that by iteratively modifying the contents of image units by means of
functions computed by circuit units our architecture can perform computations
that are more dynamic than what the conventional static view of circuits might
suggest. All the computational functions of the system, including those that use
the image for reasoning as outlined in Section 4.7, for example, need to be
effective in the PAC sense.
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The key advantage of PAC semantics is that it gives an intellectual basis for
understanding learning and thereby validates empiricism and procedural views of
knowledge. Inductive learning will be the key to overcoming the impediments
that are to be enumerated in the next section. These will include defaults,
nonmonotonic reasoning, inconsistent data, and resolving among alternatives.
Intelligent systems will inevitably meet the dilemmas that these issues raise but
they will have a learned response to at least the more common manifestations of
them. For knowledge that can be systematized and expressed consistently by
formal logics, the traditional declarative semantics offer the important advan-
tages of compositionality, and easier comprehensibility. For other kinds of
knowledge, where systematizations are not known, these benefits of traditional
logic may not be attainable in the same sense.

We mention that PAC learning, when offered as a basis for intelligent systems
or cognitive science, suggests the following view. The world is arbitrarily complex
and there is little hope that any system will ever be able to describe it in detail.
Nevertheless by learning some simple computational circuits such systems can
learn to cope, even in a world as complex as it is. In the first instance, we define
these circuits to act in a deterministic way. It is the complexities of the world and
the uncertainties in the system’s interactions with it that force the framework of
the semantics to be probabilistic.

The circuits can be represented as a set of rules [Valiant 2000] and each rule
can be associated with probabilistic information, such as an estimate of the
probability that the rule holds and a confidence level that is justified for this
estimate. If such extra information is available then a variety of probabilistic
reasoning mechanisms (e.g., [Pearl 1988] beyond those described in this paper
can be brought to bear in addition. We note, however, that probabilistic rules
may make the learning task less tractable [Kearns and Schapire 1994].

Besides the question of whether the rules correspond to probabilistic state-
ments, there is the independent question of whether the circuits are allowed
randomization in their behavior, so that under identical conditions they produce
different results at different times as a result of internal random choices.

Reasoning with probabilistic rules, and randomization in the circuits could be
both incorporated within the scope of PAC semantics and the neuroidal architec-
ture. This paper, however, emphasizes that deterministic circuits that represent
rules that are correct with high probability may form an adequate basis for
constructing systems for cognitive computations.

4. Some Algorithmic Mechanisms

In this section, we shall enumerate a series of algorithmic techniques for the
described architecture. We claim that these mechanisms address issues that are
fundamental to large-scale systems that are to perform cognitive computations.
Our observation here is that they can be brought together to provide a powerful
overall methodology within a single framework.

4.1. CONFLICT RESOLUTION. The circuit units will contain large numbers of
nodes. In general, each node corresponds to a concept or action and has some
reference to the world or to the internal constructs of an image unit. Let us
suppose that each one, when regarded separately, is highly accurate, correct say

867A Neuroidal Architecture for Cognitive Computation



on 99% of the natural input distribution. The problem that arises is that because
of the sheer number of nodes, perhaps in the hundreds of thousands, a large
number of the nodes will typically behave incorrectly on almost any one input.

In a natural scene, we expect a certain moderate number of the predicates
represented in the circuits to hold and the corresponding nodes to fire. However,
among the large numbers of remaining nodes a certain number that should not
fire will do so also. Further, some of these will be in semantic conflict with the
correct ones. They may recommend inconsistent actions (e.g., “go left” as
opposed to “go right”) or inconsistent classifications (e.g., “horse” versus “dog”).

This is a fundamental and inescapable issue for which a technical solution is
needed. A conventional approach might be to suggest that each node be given a
numerical “strength,” and that in situations where several nodes fire in conflict
the one with highest strength be chosen to be the operative one. However, before
this can be offered as a technical solution, one would need to exhibit mechanisms
for deriving and updating these strengths. Further, this approach makes the
assumption, without justification, that a single totally ordered set of numerical
strengths is sufficient for the overall resolving process.

Our approach is the following: we have a large number of circuit nodes,
computing functions u1, . . . , un, say, of the scene S. We assume that each ui is
correct in the PAC sense with high probability. The proposed resolving mecha-
nism is to have another set v1, . . . , vn of nodes where vi corresponds to ui. The
purpose of vi is the following: When vi fires this will be taken to assert that ui is
firing, and further that ui is preferred over all the other uj that may be firing. The
implementation will have a circuit unit with uj (1 # j # n) as inputs and vi (1 #
i # n) as outputs, and with a connection from each uj to each vi. Each vi will be
a linear threshold function of the uj. Thus, if u7, when firing, is to be preferred to
all the other uj except for u2, u5 and u8, any of which are preferred over u7, then
the appropriate linear inequality to be computed at v7 will be

u7 2 u2 2 u5 2 u8 $ 1 . (4.1)

This will have the effect that v7 will fire if and only if u7 fires and none of u2, u5

or u8 fires.
The force of this approach is two-fold. First, it is more expressive than the

regime in which there is a single global ordering on strengths. For each ui, one
can individually specify which uj dominate it. Second, the representation needed
for expressing the preferences, namely linear threshold functions, are learnable
attribute-efficiently and with error-resilience as further discussed in subsequent
subsections.

We are therefore suggesting that the conflict resolution problem when formu-
lated in this reasonably expressive sense has a simple and effective technical
solution: the correct resolutions can be learned from examples of past behavior.

The justification of our architecture that we further elaborate in subsequent
sections can be viewed as the conjunction of a variety of facets of the same
fundamental idea: learning can resolve many otherwise problematic issues, and
the neuroidal architecture can support an appropriate learning mechanism in
each case. We chose to discuss this conflict resolution problem first as it is a
particularly simple and convincing instance of this idea.
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4.2. LEARNING FROM FEW CASES. Systems based on massive knowledge bases
need to have effective mechanisms for coping with the issues of scale. In the
previous section, for example, we suggested that a learning mechanism for linear
threshold functions can address the issue of conflict resolution. In a similar
fashion, we shall invoke learning as the solution to a variety of other questions
also. It is, therefore, necessary to address the problem of how the learning
process itself faces the issue of scalability.

The basic problem is fundamental and widely recognized. If there are n
functions represented in the system, and each one can depend potentially on a
large fraction of the n 2 1 others, as a linear threshold (or some other) function,
then there are potentially of the order of n parameters to set when learning any
one of these functions. It is a remarkable fact that biological learning systems
appear to be able to learn from relatively few examples, certainly many fewer
than n for which reasonable estimates exceed 105. Some mechanism needs to be
present to enable very high dimensional systems to learn from a number of
interactions with the world that are very small compared with this dimension.
The most generic statistical considerations suggest that to learn a function of n
variables, of the order of n examples are needed [Ehrenfencht et al. 1989]. In
cognition, many fewer seem to be sufficient.

The theory that has been developed to shed light on this phenomenon is that
of attribute-efficient learnability. The remarkable fact is that for certain function
classes of n variables one can prove that certain learning algorithms converge to a
good hypothesis after a number of examples that depends on n not linearly, but
much more slowly, sometimes logarithmically.

The phenomenon of attribute-efficient learning was first demonstrated by
Haussler [1988]. A striking embodiment of this idea followed in the form of
Littlestone’s Winnow algorithm for learning linear threshold functions [Little-
stone 1988]. The algorithm is similar in form to the classical perceptron
algorithm except that the updates to the weights are multiplicative rather than
additive. Thus, algorithm WINNOW2 maintains as its hypothesis a linear
threshold function ¥ wivi . Q, where Q is fixed and each coefficient wi $ 0. On
each input vector v, the algorithm multiplies each coefficient wi by (1 1 b) if
vi 5 1, the example is positive and v does not satisfy the hypothesis. It multiples
wi by 1/(1 1 b) if vi 5 1, the example is negative and v does satisfy the
inequality. In all the other cases, wi is unchanged. The modification gives the
algorithm the remarkable property that when learning a monotone k-variable
Boolean disjunction over {u1, . . . , un} the number of examples needed for
convergence, whether in the PAC or mistake-bounded sense, is upper bounded
by ck log2 n, where c is a small constant [Littlestone 1988; 1989]. Thus, the
sample complexity is linear in k, the number of relevant variables, and logarith-
mic in the number of irrelevant ones.

Littlestone’s Theorem 9 [Littlestone 1988] adapted to the case where coeffi-
cients can be both positive and negative (his Example 6) has the following more
general statement; For X # {0, 1}n suppose that, for the function g: X 3
{0, 1}, there exist d (0 , d , 1), n1, n2, . . . , nn $ 0 and n# 1, n# 2, . . . , n# n $
0 such that for all (u1, . . . , un) [ X

O
i51

n

~n iui 1 n# i~1 2 ui!! $ 1 if g~u1, · · · , un! 5 1
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and

O
i51

n

~n iui 1 n# i~1 2 ui!! # 1 2 d if g~u1, · · · , un! 5 0 .

Then the algorithm WINNOW2 with Q 5 2n and b 5 1 1 d/ 2 applied to the
variable set (u1, . . . , un, 1 2 u1, . . . , 1 2 un) makes at most a fixed constant
times the following number of mistakes:

nd22Q21 1 ~d21 1 d22 ln Q! O
i51

n

~n i 1 n# i! . (4.2)

Here, Q and b are parameters of the algorithm and d, which quantifies the
margin by which positive and negative examples are separated, is a parameter of
the space of examples. For a monotone disjunction of k out of n variables, we
can have n i 5 1 for the k variables in the disjunction, with all the other n i 5 0,
and all n# i 5 0. Then, clearly d 5 1. Hence, Eq. (4.2) becomes O(k log n). For
linear inequalities with (positive and negative) integer coefficients whose magni-
tudes sum to Z, (4.2) becomes O(Z2 log n) (e.g., Valiant [2000]). In all these
cases the algorithm can be adapted so that it has similar bounds in the PAC
model [Littlestone 1989].

For linear inequalities of the form (4.1), we see that the particular example
given is equivalent to 1/4 (u7 1 (1 2 u2) 1 (1 2 u5) 1 (1 2 u8)) $ 1 so that
d 5 1/4. In general, if there were k negative terms, then d 5 1/(k 1 1). In order
to make the margin larger, it is better to learn the negation of (4.1), namely (1 2
u7) 1 u2 1 u5 1 u8 $ 1 so that d 5 1. The generalization of this to k terms
would also give d 5 1 and hence the O (k log n) bound.

It appears that some mechanism for attribute-efficiency is essential to any
large scale learning system. The effectiveness of Winnow itself has been demon-
strated in a variety of experiments. A striking example in the cognitive domain is
offered in the work of Golding and Roth on spelling correction [Golding and
Roth 1999]. Even in the presence of tens of thousands of variables, Winnow is
able to learn accurately from few examples, sometimes fewer than 100. The
perceptron algorithm also performs well if the examples have few nonzero
attributes.

The question arises whether attribute-efficient learning is possible for more
expressive knowledge representations. Recently some positive evidence for this
has been found. Under a certain projection operation attribute-efficient learning
algorithms can be composed to yield algorithms for more expressive representa-
tions that are still attribute-efficient. In Section 4.4, we shall discuss this further.

Finally, we note that attribute-efficient learning is closely related to the issue
of relevance, which has been widely discussed in the statistics and AI literature.
Conventionally, in statistical analysis, for example, one would expect to prepro-
cess a database containing historical observations in order to identify the
attributes that are relevant to the classification or action in question. One would
then eliminate the irrelevant attributes, apply a learning algorithm to the
database after the irrelevant features have been removed, and then apply the
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learned hypothesis to new cases. There is, however, no evidence that biological
systems have such an explicit preprocessing stage. Winnow achieves the same
overall effect implicitly, without explicitly identifying which variables are irrele-
vant in a preprocessing stage. What it offers therefore seems novel and impor-
tant. (Note that A. Beimel has observed that given an implicit method, such as
Winnow, one can explicitly identify the relevant variables by a binary search
technique that needs about k log n applications of the implicit method.)

4.3. LEARNING AND REASONING ABOUT MULTIPLE OBJECTS. It is well known
that even in the propositional context both learning and reasoning need to be
carefully formulated if exponential computational complexity is to be avoided. It
is further known that if this is to be achieved in a multi-object rather than a
propositional framework, then further orthogonal sources of computational
intractability present themselves [Haussler 1989]. The main technical achieve-
ment of the neuroidal architecture is that it brings together learning, reasoning,
and multi-objects domains within a computationally tractable formulation. The
technique that is central to this is that of IQA – independently quantified
arguments – which was defined in Section 2 and is analyzed extensively in Valiant
[2000].

Most basically, if there are relations R0, R1, . . . , Rm represented as nodes
then the circuit can represent, evaluate and learn rules of a form of which the
following is an instance:

f~?y1?y2R1~ y1, x1, y2! , @y3?y4R2~ x1, x2, y3, y4!! ; R0~ x1, x2! . (4.3)

Here, f is a two argument function from an easily learned class, such as linear
threshold functions. Such a rule is to be evaluated for a particular scene s in an
image. Evaluation means that the truth value of f is computed for a fixed binding
u: { x1, x2} 3 {a1, . . . , aN}, and this value is assigned as the value of R0
( x1, x2). The quantification over the y variables refers to quantifications over the
objects in one particular scene. Thus, for a scene where R2 is defined for every
4-tuple of objects and x1, x2 are fixed by u, the quantified expression
@y3?y4R2( x1, x2, y3, y4) is either true or false. Hence, for any one scene, any
fixed function f acquires a Boolean value, as will also therefore R0( x1, x2). For
this reason, if relational expressions such as 4.3 are to be learned then this can be
done by an arbitrary propositional learning algorithm for f. Learning can then be
viewed as taking place from a set of scenes taken randomly from a distribution D
in the PAC sense. All the algorithmic techniques of propositional learning can
then be applied directly. The only restriction needed is that the variables
quantified over in the different arguments of f be disjoint. This is satisfied if the
y variables that are quantified over in the respective Ri relations are disjoint for
distinct values of i.

To ensure that both learning and evaluation are polynomial time in the
relevant parameters, including particularly the number of object tokens N in the
image, the only substantial restriction that is needed is that the relations all have
arities bounded by a fixed constant a. We therefore need to assume that
knowledge can be represented in terms of relations of bounded arity. This is
discussed further in Valiant [2000].

4.4. LEARNING MORE COMPLEX FUNCTIONS AND STRATEGIES. While in our
current state of knowledge there is compelling evidence that linear threshold
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functions offer an attractive building block because of their learning properties,
it remains unresolved whether a better choice exists. Clearly, the intention of our
architecture is that each new function that is learned or programmed be
expressible in terms of old ones already represented in the system. When
discussing learning in general the crucial issue always is how far removed the new
function can be allowed to be from the old ones already represented, without
necessitating a learning capability that is computationally intractable. In other
words, the issue is one of the granularity of the relative complexity of the
successive functions that can be learned.

From what we have said, linear threshold functions offer a level of granularity
that is computationally attractive. The two questions raised therefore are: (1) is
this level of granularity sufficiently large to offer a convincing approach to
building cognitive systems and (2) can this granularity be enlarged (i.e., to richer
knowledge representations) while retaining attribute-efficient learning and error-
resilience.

Even when a function class is expressible as linear inequalities, this represen-
tation may be impractically large if many compound features need to be created.
For example, for Boolean variables {u1, . . . , un} each of the 22n

Boolean
functions can be expressed as a linear disjunction of monomials over {u1, . . . ,
un, u# 1, . . . , u# n} and hence as a linear inequality, but this requires a new variable
for each potential monomial, and there are 3n of these (since each ui can be
present positively, present negatively, or absent.)

Examples of function classes that can be expressed as linear inequalities over
the n base variables are: disjunctions, conjunctions, and threshold-k functions. In
the last case we would have

O
i51

n

wi $ k ,

where wi is a variable over the reals that is given value 1 if ui 5 1, and zero
otherwise. A further class that can be so expressed is that of 1-decision lists
[Rivest 1987]. These test for a sequence of literals vi1

, . . . , vim
, where vij

[ {u1,
. . . , un, u# 1, . . . , u# n}. If the literal vij

is true, then the function is defined to be
a constant cj for cj [ {0, 1}; otherwise, the next literal vij11

is tested. Decision
lists can be expressed as linear inequalities over n variables w1, . . . , wn

corresponding to u1, . . . , un. The size of the coefficients grows exponentially,
however, with n. In the special case that the cj sequence alternates between 0
and 1 a small number of times, this growth is more limited [Valiant 1999]. For
example, if cj has value 0 for all except d of the m values of j, then the decision
list can be expressed as a linear inequality with integer coefficients, where the
magnitudes of the coefficients, and also their sum, is upper bounded by (2m/d)d.
If d ,, m then this is much better than the general upper bound which is
exponential in m. Also, we see that this inequality can be expressed so as to fit
the requirements of expression 4.2 for Winnow. We then have d 5 (2m/d)2d

and the sum of the magnitudes of the coefficients bounded by 1, so that the
mistake bound is quadratic in (2m/d)d and logarithmic in n.
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The question of characterizing the classes of linear inequalities that are
learnable attribute-efficiently remains unsettled. The possibility that unrestricted
1-decision lists can be so learned has not been excluded.

Another question is whether attribute-efficient learning can be achieved by
classes of functions beyond linear inequalities. A positive indication on this is
provided by projection learning, which is a technique that extends the scope of
attribute-efficient learnability. It allows algorithms that are attribute-efficient to
be composed so as to obtain learning algorithms for more expressive representa-
tions that are still attribute-efficient. These representations can be viewed as
restricted multilayer networks, as contrasted with the single layer linear threshold
functions. Since Winnow is the paradigmatic attribute-efficient algorithm cur-
rently known, the present applications of projection learning are based on
composing Winnow with itself.

The basic idea is that for Boolean variables u1, . . . un we define a set J 5 {r1,
. . . , r r} of projections that each map {0, 1}n to {0, 1}. For example, we could
have r 5 2n and for each literal , [ {u1, . . . , un, u# 1, . . . , u# n} we have a
projection r, defined on a vector u of Boolean values as r,(u) 5 1 iff , 5 1 on
u. This is the class of single variable projections. An alternative class has r 5 2k

with each member of J being a conjunction l1l2
. . . lk where l i [ {ui, u# i}, that is,

if k 5 3 and r 5 u1u# 2u# 3 then r(u) 5 1 iff u1u# 2u# 3 5 1.
For each r [ J we consider the function f(u)r(u). Clearly this equals zero for

u such that r(u) 5 0, and it equals f(u) otherwise. The hope is that for some of
the restrictions r, the function f(u)r(u) can be learned more accurately than can
f(u) directly, and that the f(u)r(u) that are learned for the various r’s cover the
whole domain {0, 1}n of f(u).

Suppose that, for the various choices of r [ J, the function learned that
approximates f(u) on r(u) 5 1 is f9r(u). Then ¥ f9r(u)r(u) is taken as the
approximation of f that has been learned. The main result in Valiant [1999]
states that if the f(u)r(u) belong to a class that is learnable attribute-efficiently
on the restricted domain {u u r(u) 5 1} by an algorithm A say, and if a
disjunction can be learned attribute-efficiently by an algorithm B that shares
certain specified properties with Winnow, then provided f(u) 5 ¥ fr(u)r(u),
f(u) can be learned attribute-efficiently, in the sense that the needed sample
complexity depends linearly on the number of relevant r’s and the number of
relevant variables in all the fr, but only logarithmically on the total number r of
projections and the total number n of variables.

The motivation of projection learning is to learn more effectively in cases in
which a representation more complex than linear thresholds is needed. In any
one application domain, we may have no a priori reason to believe that such a
representation is necessary. What we expect to find is that projection learning
will always yield at least as good results as simple Winnow, (but at the expense of
requiring more examples) and may yield better results when linear representa-
tions are insufficient.

Projection learning can be viewed in the first instance as an intuitive approach
to the problem of distinct varieties or contexts. For example, to develop a system
that distinguishes apes from other animals it may be useful to have projections
for the four varieties of apes, and in that way learn a recognizer for each one
separately.
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An area in which complex representations may need to be learned is that of
strategies and plans. Here production systems are widely believed to have useful
expressivity [Newell and Simon 1972]. Khardon has shown that a rich class of
these can be learned using decision list algorithms [Khardon 1988]. The dilemma
here is that no attribute-efficient learning algorithm is known for decision lists,
unless the number of alternations is small, as explained in the previous section.
Hence, we may have to look at the flatter disjunctive structures that arise in
projection learning to find representations that are learnable attribute-efficiently.

4.5. LEARNING AS AN APPROACH TO ROBUSTNESS. Learning appears to be an
inevitable and central component to any large scale intelligent system because of
its unique role in ensuring robustness and avoiding brittleness. Robustness has
many aspects, and we believe that no alternative approach is currently known for
addressing these on a broad front.

One aspect of the robustness problem is that different parts of a large system
need to be compatible with each other. For example, in a large system consisting
of many programmed rules some mechanism is needed to ensure that the basic
predicates in terms of which the rules are expressed are used consistently across
the system. This compatibility has to be maintained even for systems that are
continuously modified and enlarged. This issue is addressed directly by PAC
semantics, as previously discussed.

A second important aspect of robustness is resilience to errors. Systems will
acquire knowledge both by inductive learning as well as by explicit programming.
Errors and inconsistencies may occur in either kind of input, and mechanisms are
needed for coping with these.

In the case of inductive learning, the issue of noise has been studied
extensively. On the theoretical side a range of noise models have been consid-
ered, ranging from a malicious adversarial model [Kearns and Li 1993; Valiant
1985] to the more benign random classification noise model, where the only
noise is in the classification of the examples and this is random [Angluin and
Laird 1988]. At least for the more benign models, there are some powerful
general techniques for making learning algorithms resilient to noise in some
generality [Kearns 1993].

For the problem of learning linear separators, there exist theoretical results
that show that there is no fundamental computational impediment to overcoming
random classification noise [Blum et al. 1996; Cohen 1997]. Currently somewhat
complex algorithms are needed to establish this rigorously. In practice, fortu-
nately, natural algorithms such as the perceptron algorithm and Winnow behave
well on natural data sets (e.g., Roth [1998]) even where there is no a priori
reason to believe that linear thresholds should work at all, or evidence that the
noise is generated by any one fixed process. This empirical evidence lends
credence to the use of linear threshold algorithms for complex cognitive data
sets.

The issue of coping with noise also arises when knowledge is acquired by
programming. The view we take here is that we use the same PAC semantics for
programmed rules as for inductively learned rules. Thus, the system would have
high confidence in a rule that agreed with many examples. A programmed rule is
therefore one which is treated as a working hypothesis, and discarded if evidence
builds up against it.
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In addition to the opportunity to discard rules there is also one for refining
them. Thus we may have programmed rules P f R and Q f ¬R as working
hypotheses, but discover that they do not hold in all cases. In particular, it may
happen that in some relatively rare cases both P and Q hold and therefore the
rules contradict each other. It may be that after sufficiently many observations it
is found that P ∧ Q f ¬R is a reliable rule. In that case, we would refine P f
R to P ∧ ¬Q f R. The main point is that the dilemma that arises from two
potentially contradictory rules is resolved by learning, even in the case that the
original rules themselves are programmed rather than learned. The refined rule
may be derived by any one of the several mechanisms we have discussed, as the
reader may verify: P ∧ ¬Q may be generated automatically as a compound
feature, a linear conflict resolution mechanism may establish a priority, or,
thirdly, projection learning may be invoked.

4.6. LEARNING AS AN APPROACH TO THE PROBLEM OF CONTEXT. It has been
widely observed that rules that express useful commonsense knowledge often
need qualification – they hold only in certain contexts. Thus, a rule P f R or
P [ R may hold if context Q is true, but not necessarily otherwise. Frames in the
sense of Minsky [1975] can be viewed as contexts that have a rich set of
associated rules. The PAC semantics of such a rule is that on the subdomain in
which Q holds, P f R is the case, at least with high probability. In our
architecture, the simplest view to take is that it can cope easily with a context Q
if it has a node for recognizing whether an input satisfies Q. If there is a node in
a circuit unit that recognizes Q, then a subcircuit that implements P ∧ Q f R
will implement exactly what is wanted, the rule P f R applying in the subdomain
in which Q holds. The question remains as to how domain sensitive knowledge
can be learned. One answer is suggested immediately by projection learning;
each concept R that is learned is also learned for the projections defined by every
other concept Q that has been previously learned or programmed. Thus, if we
have nodes for Q and R, then a complex set of conditions P that guarantee R in
the context of Q can be learned from examples, for any Q and R. This would be,
of course, computationally onerous unless the choice of Q is restricted somehow.

4.7. REASONING. Reasoning is concerned with arriving at a deduction about a
combination of circumstances that has been encountered rarely before or not at
all. It, therefore, complements inductive learning. In the neuroidal architecture,
the rare or novel combination of circumstances is represented in an image, and
the reasoning process is carried out, in the most basic case, by the circuit units
that evaluate the contents of this image. In more complex cases, the results of the
circuit evaluation will modify the contents of the image so that one or more
further circuit evaluations can be applied to it in succession. For example, an
instance of planning would be to run through several stages of the expected
future sequence of events that would follow from a set of circumstances. Each
circuit evaluation would update the contents of the image so as to describe the
circumstances at the next stage in time.

What is the general nature of the reasoning process that can be expected to be
achieved in one stage of circuit evaluation?

Much past effort has been put into seeing whether the various formalisms that
have been suggested for reasoning in AI, at least those outside the probabilistic
realm, can be formulated within predicate calculus. The general answer found to
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this question is in the affirmative – many of the various alternative formalisms,
including those based on graph models, can be so expressed. Some of these
alternative formalisms, and the necessary transformations are described by
Russell and Norvig [1995].

Instead of reformulating this body of work so as to fit our architecture, we
shall be content here to claim that a substantial part of it can be supported
directly without change. In particular, we described an implementation of our
architecture that can support generalized modus ponens on function free Horn
clauses by performing an appropriate circuit evaluation. It follows that our
architecture can do reasoning in all these frameworks whenever the translation
results in Horn clauses. Further, the computational costs of this reasoning
process can be quantified, as can the accuracy of the deductions made, as in
described more fully in Valiant [2000].

In addition, our architecture has capabilities for reasoning beyond those
provided by circuit evaluations alone. In particular, the circuits and the image
units can be used together more proactively within the reasoning process. As
previously mentioned, the evaluation of a circuit may result in various actions on
the image, such as the addition of further objects, the addition of statements of
further relationships, or the deletion of an object. Thus, a circuit may cause the
execution of a step of a more complex reasoning strategy. In evaluating a scene,
a circuit may add an object to the image to represent something already in the
scene but at a later time, and add a relationship that expresses the future
condition of the object. In this way, the circuits evaluate a representation of a
likely scenario following on from the one currently depicted. In other words, we
need circuits that are able to make useful modifications to the scene in a highly
content dependent manner.

The upshot is that in addition to information about the external world, as
implied in previous sections, the circuits will contain further information con-
cerning the strategies that are to be used for the internal deliberations of the
system. These deliberations will be seriously restricted, of course, by computa-
tional constraints, such as limits on the number N of objects that are allowed in a
scene.

4.8. LEARNING AS AN APPROACH TO INCOMPLETE INFORMATION AND NONMONO-
TONIC PHENOMENA. A fundamental issue in the design of any system that
reasons is to define what the reasoning process is to accomplish in cases in which
the available information is incomplete. Systems that attempt to describe the
world declaratively appear to encounter methodological problems here. The
difficulty is that such systems need to take a generic view of how to treat
incomplete information – they need a uniform theory, such as circumscription or
the closed world assumption that takes positions on how to resolve the unknown
[Ginsberg 1989; McCarthy 1980; McDermott and Doyle 1980].

PAC semantics offers an advantage here – it resolves the unknown separately
in each case by using information learned from past experience of cases where
similar features to the case in hand were similarly unknown. Consider the
paradigm of nonmonotonic reasoning exemplified by the widely discussed exam-
ple of the bird called Tweety [Ginsberg 1989]. The system is invited to take
positions on whether Tweety flies both before and after it is revealed to it that
Tweety is, in fact, a penguin. The observation that motivates our approach here
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is that gates in circuits take values at all times. Suppose that in a brain, for
example, there is a two-valued gate intended to recognize penguins. This would
take value 1 say, when a penguin is identified, in the PAC sense, and 0 when
what is seen is identified in the PAC sense as not being a penguin. However, this
gate must also take some value in cases where conventionally one would say that
the system has not taken a position on whether the object in question is a
penguin or not. Suppose that in these cases the gate takes the value 0. Then, we
could say that a 1 value means {penguin} and a 0 means {not penguin,
undetermined}. In this sense, circuits represent internally the three cases {yes,
no, undetermined} even if no explicit provision has been made for the third case.
This means that learning and rule evaluations in the system are carried out with
a semantics in which the undetermined value of each variable is represented.
This is true both when a predicate is represented by a single gate having just two
possible values (whether representing {yes, undetermined}/{no} or {yes}/{no,
undetermined} by the two values) and also when there is a more explicit
representation, say by a pair of binary gates whose four possible value combina-
tions do distinguish among the three cases {yes}, {no}, and {undetermined}.
Hence, once the system has reached stability in learning it will cope with
instances of incomplete information exactly as it does with ones with complete
information [Valiant 1994; 1995]. One could say further that in natural learning
systems instances of incomplete information are the natural ones, and usually the
only ones available.

Pursuing this example further, suppose that the system has a rule “bird 5 1
and penguin 5 0f flies 5 1”. Suppose also that the gates “bird”, “penguin”, and
“flies” all have value 0 if the truth of the corresponding predicate is undeter-
mined in the system. Suppose further that this rule has been found to be
consistent with most natural cases experienced by the system in accordance with
the probability distribution D. It will then follow that for instances in which
birdhood is confirmed but penguinhood is undetermined, it will be a reasonable
conclusion that flies will be true and that the corresponding gate should indeed
have value 1 to indicate that. This will be a valid inference since the same was
true for past cases in the PAC sense. Thus, the undefined is resolved here by
learning from the distribution D, as seen through the feature set of the system. In
this example, D captures the fact that in the particular source of examples to
which this system was exposed, in the majority of cases where a bird was
identified but nothing was said about penguinhood, the bird did indeed fly.

In artificial systems, of course, the undefined value p may be treated more
explicitly. For example, as previously mentioned, gates may take three values {0,
1, p}, or, closer to the spirit of our architecture, the three values may be encoded
by a pair of binary gates.

Defaults may be viewed from this same perspective. Ignorance of the value of
a predicate is rightly interpreted as not relevant to the value of another predicate
if in natural past cases of ignorance of the former, a certain consequence was
true with high probability for the latter. We regard defaults as rules where
certain predicates are assumed to have the undetermined value in the precondi-
tion. Their validity arises from the fact that they had proved accurate in the past,
or that they could be deduced from those that had. Further examples are given in
Roth [1995] and Valiant [1994; 1995].
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5. Systems Design

We shall be concerned here with the issue of constructing systems using the
neuroidal architecture that have superior capabilities over existing systems in
some useful task. Considerable experimentation in this direction will be needed
before the potential and limitations of the general approach can be evaluated.

It has been asked whether in our architecture one still has to design systems,
exactly as one would in a programmed approach to artificial intelligence systems,
and all that is offered are some mechanisms for the automatic adjustment of
weights. While in some sense the answer to this is yes, the important point is that
the additional learning capability appears to offer a new level of functionality.
Above all, it offers a robust unified approach to infusing knowledge into a system
in bulk. Further, it offers a unified methodology for dealing with a broad range
of issues, including conflict resolution, nonmonotonic phenomena, incomplete
information, and the problem of context among others.

Because of the learning-intensive nature of the architecture, it is an inherent
characteristic of it that any discussion of the design of a system cannot be
divorced from that of the nature of the training data. Indeed, the primary
impediment to experimentation at present is the scarcity of suitable training data.
Natural language and vision are potentially sources of ample data. The charac-
teristics that make a data set appropriate are that the data is labelled, implicitly
or explicitly, that the knowledge it contains is self-contained and that the
information can be extracted using known techniques. Thus, the system design
has to bypass unsolved problems in natural language processing or computer
vision.

There is already ample evidence that the basic learning mechanism used by the
architecture is appropriate. It has been demonstrated on a wide range of natural
language tasks, and one from computer vision, that attribute-efficient learning of
linear separators is effective on existing data sets [Golding and Roth 1999; Roth
1998; 2000]. This basic learning mechanism can be contrasted with alternative
approaches: learning with hidden units as in back-propagation, reinforcement
learning, learning using feature sets that are hand-crafted separately for each
application, and learning with heuristics for constructing new features. Attribute-
efficient learning with linear separators appears to offer a successful unified and
mechanized approach to the inductive component of the problem.

Conventional design principles offer a start in designing systems in this
architecture. In a programmed system, one expects to construct various modules
for various functionalities, and have these interface with each other. In particu-
lar, one may have a hierarchy of functions, lower-level modules processing the
inputs directly, and higher level modules processing the outputs of the lower
level ones. Thus, an acyclic graph of circuit units, in which some low level
modules mimic the modules that would be used in, say, a language system, is one
possible starting point.

There are also some design choices that are unique to the architecture. For
creating new compound features, there are various possibilities. Because of the
centrality of attribute-efficient learning algorithms, an obvious method is to
generate large numbers of combinations of attributes in a systematic simple way.
Any relevant ones so discovered will be valuable, and the irrelevant ones will do
little harm. One approach is to generate for any variable set the set of
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conjunctions of all pairs of them. Another choice is to create conjunctions of just
those pairs that occur with high correlation. More generally one can generate
some set of polynomially generable combinations [Valiant 1985]. The intention is
that large numbers of variables, even if most are irrelevant, will not degrade
performance.

Figure 1 gives a block diagram of a simple example of a system that extracts
knowledge from natural languages text inputs. The first layer performs some
shallow parsing, determining, for example, subject– object classifications. The
second layer extracts the atomic relationships found. The goal is to extract
whatever knowledge can be reliably extracted, ignoring any parts of the text that
cannot be analysed with confidence. The third layer contains rules among
relationships, and hence may already capture complex facts about the world. The
second and third layers are both connected to an image unit that records the
relations that have been established as holding for the text being analysed.
Where accurate programmed knowledge is available, such as dictionaries and
thesauri, these would be used where possible, for example, to recognize syn-
onyms or the “is-a” relation.

The construction of such a system would then involve designing the feature set
and interfaces among the modules, and providing the necessary training data for
each module.

We note that Roth’s evolving SNOW system incorporates some of the
mechanisms described in this paper, and this is discussed further in Khardon et
al. [1999].

FIG. 1. Block diagram of a simplified example of a potential neuroidal system. The thesaurus is an
example of an available programmed resource. Layers 2–5 consist of circuit units that contain all the
learned knowledge, and may be trained separately in succession. The text categorizer is specific to the
application, while the other circuit units may store more generic knowledge that might be shared by
many applications.
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In order to construct significant systems along these lines, corpora suitably
annotated with the appropriate levels of knowledge may have to be created. In
other words, substantial infrastructure will need to be manufactured to provide
the teaching materials for these systems. This would compensate for any
shortcoming in the range of preprogrammed features that we are able to devise.
Although large amounts of reliable knowledge are already available in linguistic
format, there are many obstacles to preparing or selecting useful linguistic
teaching materials. Much commonsense knowledge is nowhere encoded, and
much text produced by humans contains linguistic constructs that are currently
difficult for machines to analyze. These facts make the preparation of the
teaching materials challenging, but, we believe, not insurmountable.

6. Conclusion

We have described a series of arguments that suggest that many of the problems
that have been identified as obstacles to artificial intelligence systems at a
conceptual level, can be solved in principle if one gives inductive learning a
suitable central role. In this respect the proposed architecture differs from other
general approaches to cognitive architectures that have been described, such as
Anderson [1983]; Newell [1990], and Newell and Simon [1972], in which induc-
tive learning plays a much smaller role.

Central to the proposed architecture is the notion of an image unit that relates
to the concepts of short-term and working memory in psychology and cognitive
science. Its computational role can perhaps be best understood by considering
the notion of registers in computer systems. Registers are the most active storage
elements in a digital computer – it is there that new values are evaluated.
However, they make up only a negligible fraction of the overall storage capacity.
Their constrained and localized nature appears to be a consequence of the fact
that the circuits that are needed to act on them are complex and require a
substantial investment. We believe that in an architecture for performing cogni-
tive computations the active storage area that represents general relational
information needs to be constrained and localized for broadly similar reasons,
namely the complexity of the circuits that need to act on this area. It is this active
storage area that we seek to capture with the notion of an image unit.

Also central to the development is the use of PAC semantics. Its role can be
viewed in terms of a modification of the Turing Test that it suggests. Turing’s
criterion for whether a machine could think was that the performance of the
machine should be indistinguishable in a specified sense from that of a human, to
an interrogator communicating via a teleprinter [Turing 1950]. The significance
of this informally stated criterion is that it is a purely behavioral one. What PAC
semantics offers is a precise way of formulating such behavioral criteria. In
particular it insists that both the task being learned, and the distribution of inputs
over which learning is performed and performance measured, need to be
identified. Any pairing of a specific task and a specific distribution then defines a
different instance of this modified Turing Test.

The tasks in which we are interested here are those involving a large amount of
knowledge that has not been systematized into an exact science. A possible
limited area in which one might hope to test the performance of a system at such
a task is that of intelligent word processing. One can imagine a word processor

880 LESLIE G. VALIANT



that not only detects misspelled words, but does a succession of more and more
intelligent tasks, such as suggesting alternative words and phrasing, or noting
confusions or inconsistencies, much as a teacher might when correcting an essay.
There appears to be a continuum of tasks of increasing difficulty in this area.
Systems could invoke more and more world knowledge in their suggestions, and
their perceived performance would increase correspondingly. One can imagine
experiments in which commentary to writers is provided variously by humans and
machines, and the writers’ task is to distinguish which one was the source. Such
an instance of a modified Turing Test would therefore refer to a concrete real
world distribution of cases generated, for example, by twelve-year-old students,
and created independently of the context of the test. Each such distribution
would define a different task and therefore a different test. For an empirical
validation of our architecture, one would need to show that systems can be built
that pass such specific tests of ever higher levels of difficulty.
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