
Specifying and Controlling Agents in Haskell

Martin Sulzmann and Edmund S. L. Lam

School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

{sulzmann,lamsoonl}@comp.nus.edu.sg

Abstract. We present a domain-specific language embedded into Haskell
to program software agents.We use monads to maintain a clear separa-
tion among the different levels of reasonings, e.g. lower-level reasoning
operations concerning the agent’s beliefs and actions versus higher-level
operations dealing with the agent’s goals and plans. This serves as a basis
for composable high level abstractions supporting complex specification
and control regimes in a concise and reusable manner.

1 Introduction

Software agents are entities that carry out complex tasks pro-actively in a dy-
namically changing environment. They have been successfully applied in numer-
ous areas such as air-traffic controlling, tele-communications, space exploration
and business processes. While there exist well-established frameworks to specify
agents, there is no general consense how to implement them in todays general-
purpose programming languages. Hence, there is often a significant gap between
agent’s specification and the actual implementation.

In this paper, we aim to close this gap by designing an agent-oriented lan-
guage embedded into Haskell. The key idea of our approach is to maintain a clear
distinction between low-level and high-level reasoning operations. Low-level op-
erations involve the agent’s beliefs and actions whereas high-level operations
involve the agent’s goals and plans. Each level of reasoning (computation) is
described by a monad [22, 16]. Thus, we can maintain a clear separation among
the different levels of reasoning and support the modular development of more
complex reasoning operations.

Typical low-level reasoning operations involve non-monotonic updates. For
instance, consider an agent moving a certain object from one to location to an-
other. As we will see, linear logic [8] is the natural choice to model this type of rea-
soning. In our implementation we employ Constraint Handling Rules (CHRs) [7],
which are a executable specification of a fragment of linear logic [3], to specify
the agent’s lower level reasoning. High-level reasoning operations deal with the
agent’s goals and plans. For example, consider the goal of moving an object to
a designated location. A plan is a series of low-level actions to achieve a goal.
Finding and implementing the plan is the programmer’s task. However, we can
assist the programmer, by introducing sophisticated control-structures such as
back-tracking which are implemented on top of the low-level operations.



Specifically, our contributions are:

– We define an agent domain monad to implement the agent’s low-level rea-
soning operations. The basic agent domain operations such as actions and
queries are specifiable via CHRs (Section 2).

– We demonstrate how to introduce higher-level reasoning operations via a
goal-directed planning monad which is based on a back-tracking mechanism
(Section 3).

The implementation including examples is available via [2]. To keep the presen-
tation simple, we have resisted to impose a type system on our agent-specific
language extension. This would be possible using Haskell’s advanced typing fea-
tures such as generalized algebraic data types [18] and type classes with exten-
sions [21].

Next, we review the basics of BDI agents on which our approach is based.
We conclude in Section 4 where we also discuss related work.

The present paper is based on previous work reported in [12]. Our implemen-
tation makes use of Gregory J. Duck’s CHR solver written in Haskell [6]. We
assume that the reader is familiar with the concept of monads in Haskell [17].

1.1 Background: BDI Agents

The Belief-Desire-Intention (BDI) agent model [4, 20] allows to explain hu-
man practical reasoning and future directed intentions. Fueled by the increasing
demands for complex systems performing high level management and control
tasks in dynamic environments, the BDI model has been adopted by many re-
searchers of agent-oriented systems as a way of representing the mental attitudes,
motivations and decisions of autonomous agents in such complex dynamic envi-
ronments.

There exist many different interpretations of the BDI agent model. We will
consider a simple example known as the Block World to explain our interpreta-
tion of the BDI agent model. The Block world comprises of several blocks and
tables. Blocks must be stacked on top of tables and can be moved by a robotic
arm (the agent) by means of 2 primitive actions, get some block x, and put some
x on some y. The aim of the robot is to solve the problem of building a tower of
blocks in a certain configuration, starting from an initial state. To describe the
agent’s knowledge of its domain, we introduce the following predicates:

Predicates Meaning

On(x, y) x is on y, where x ∈ Blocks y ∈ Blocks ∪ Tables

Clear(x) top of x is clear, where x ∈ Blocks

Empty Robot arm is empty
Holds(x) Robot arm is holding x, where x ∈ Blocks

Predicates are the basic atoms of the agent’s belief-base. The Block World
agent can be described in terms of the BDI model as follows:

2



– Beliefs represent the agent’s understanding of the current state of its world.
The agent’s beliefs also includes inference rules that represent the laws of
the domain, as well as the changes caused by actions (eg. get and putOn)
executed in the domain. Such changes in the agent’s belief are necessarily
non-monotonic, because of the ’linear’ nature of the world. For example,
an instance of the agent’s belief of block world may include the predicate
On(B1 ,B2 ), stating that block B1 is on top of block B2 . But this belief
will no longer hold after the agent executes get block B1 .

Hence, we will use linear logic where predicates are treated as expendable
resources rather than irrefutable truths. This corresponds more to properties
of a dynamically changing physical domain. The Block World actions can be
accurately represented by the following linear implications:

(get) !(∀x , y. Empty ⊗ Clear(x ) ⊗ On(x , y) ⊸ Holds(x ) ⊗ Clear(y))
(putOn) !(∀x , y. Holds(x ) ⊗ Clear(y) ⊸ Empty ⊗ On(x , y))

Informally speaking, the implication (⊸) says replace the left-hand-side con-
juncts (⊗) with the right-hand-side. For example, the application of get
to Empty ⊗ Clear(B1 ) ⊗ On(B1 ,B2 ) will result in the removal of Empty
(among others) before introduction of Holds(B1) (among others), thus avoid-
ing inconsistency.

– Desires (more commonly known as goals) represent the state of the world
which the agent is attempting to achieve. Desires of a Block World agent
are simply the stacking configuration of the blocks which the agent must
achieve. For example, from the initial configuration

Empty,On(B1 ,B2 ),On(B2 ,B3 ),On(B3 ,T1 ),Clear (B1 ),Clear(T2 ),Clear(T3 )

the agent tries to achieve the goal

Empty,On(B1 ,B2 ),On(B2 ,B3 ),On(B3 ,T3 ),Clear (B1 ),Clear(T1 ),Clear(T2 )

Goals are the motivations behind the agent’s intentions.

– Intentions represent the actions which the agent has chosen to execute.
This sequence of actions is also known as the plan. Plans may include other
plans. We may also develop plans on the fly and abandon plans if they turn
out to be unsuccessful. Plans in the Block World are essentially a sequence
of get and putOn actions which can be executed to achieve a certain desired
stacking configuration of blocks. For example, the sequence of actions

get(B1 ), putOn(B1 ,T2 ), get(B2 ), putOn(B2 ,B1 ), get(B3 ), putOn(B3 ,T3 ),
get(B2 ), putOn(B2 ,B3 ), get(B1 ), putOn(B1 ,B2 )

represents a possibly plan to achieve the above goal.

We write putOn(b1 , b2 ) to indicate that action

!(∀x , y. Holds(x ) ⊗ Clear(y) ⊸ Empty ⊗ On(x , y))

3



is applied in a context where x is instantiated by b1 and y is instantiated by
b2. Similarly, we write get(b) to represent application of an instance of the
action

!(∀x , y. Empty ⊗ Clear(x ) ⊗ On(x , y) ⊸ Holds(x ) ⊗ Clear(y))

where x is instantiated by b. There is no need to explicitly instantiate y

because every object x can on at most one object y. That is, y is functionally
defined by x.

1.2 Our Approach towards BDI Agent Programming

In our approach, we stratify the different levels of reasoning operations of a BDI
agent. At the lowest level, we find operations dealing with beliefs and actions
(which influence the state of beliefs). As argued above, we can specify these
operations with a linear logic. In Section 2, we introduce the agent domain
monad which provides the interface to the agent’s actions and belief base. Linear
logic (action) rules are implemented by CHRs which are executed within the
agent domain monad. Via CHRs we can also program queries, i.e. allowing the
agent to extract information from its belief base, and impose agent domain
specific laws. The functionality of the agent domain monad is sufficient to write
a simple planing algorithm for the Block World. In Section 3, we introduce a
goal-directed planning monad built on top of the agent domain monad which
provides for a basic control structure to support higher-level reasoning operations
involving goals and plans. The monadic encapsulation of each level of reasoning
supports for a clean interface and also prevents undesirable interactions among
the different levels of reasoning.

2 The Agent Domain Monad

2.1 Belief Base and Agent Actions

Beliefs are represented by the following data structures.

-- Belief base

data Term = Var String | Const String

data Constraint = Predicate String [Term]

-- interface

on :: Term -> Term -> Constraint

on x y = Predicate "On" [x,y]

get :: Term -> Constraint

get x = Action "get" [x]

...

Notice that beliefs are first-order. That is, constraints may contain variables.
We represent (linear logic) actions via CHR simplification rules whose repre-

sentation is as follows.

4



-- Actions

data CHRRule = SimpRule [Constraint] [Constraint]

-- interface

(<==>) :: [Constraint] -> [Constraint] -> CHRRule

For example, the linear logic rules from above

(get) !(∀x , y. Empty ⊗ Clear(x ) ⊗ On(x , y) ⊸ Holds(x ) ⊗ Clear(y))
(putOn) !(∀x , y. Holds(x ) ⊗ Clear(y) ⊸ Empty ⊗ On(x , y))

are represented by the CHRs

getRule :: Term -> Term -> CHRRule

getRule x y = [get x,empty,clear x,on x y] <==> [holds x,clear y]

putOnRule x y :: Term -> Term -> CHRRule

putOnRule x y = [putOn x y,holds x,clear y] <==>

[empty,clear x,on x y]

Notice that we use constraints such as get x to trigger actions. We assume that
these (action) constraints only appear on the left-hand side of CHRs. CHRs
have a simple operational reading in terms of rewritings among multisets of
constraints. The first CHR states that if we find matching copies of constraints
get x, empty, clear x and on x y in the constraint store, we replace (simplify)
these constraints by holds x and clear y. In contrast to Prolog, CHRs are
multi-headed and we only instantiate constraints in the head of a CHR constraint
but not constraints in the store. Hence, CHRs support forward chaining whereas
Prolog supports backward chaining. We take it for granted that CHRs provide
for an executable specification of a fragment of linear logic. The interested reader
is referred to [3] for more details behind the connection between CHRs and linear
logic.

The agent domain monad provides a low-level interface to the agent’s beliefs
and actions specified via CHRs.

-- Agent domain monad (simplified)

type State = ([Constraint],[CHRRule])

type Domain a = Domain (State-> (State,a))

instance Monad Domain where ...

initStore :: [Constraint] -> Domain ()

initRules :: [CHRRule] -> Domain ()

newVar :: Domain Term

const :: String -> Domain Term

applyAction :: Constraint -> Domain Bool

-- Monadic action interface

getM :: Term -> Domain Bool

getM x = applyAction (get x)

putOnM :: Term -> Term -> Domain Bool

putOnM x y = applyAction (putOn x y)

5



The above represents a state monad where each CHR application results into a
new state (i.e. constraint store). For presentation purposes, we have simplified
the Domain monad and also leave out the (obvious) body of the instance decla-
ration. In our actual implementation, we also record exceptional behavior such
as an inconsistent constraint store etc. We refer to [2] for the details. Functions
initStore and initRules initialize the belief base and the action rules. Func-
tion newVar deals with variable names generation and const create a constant
in the agent domain monad. We will see applications of these functions shortly.

The underlying CHR solver is invoked via applyAction. We assume that
the input argument is a (action) constraint which is added to the constraint
store. Then, we exhaustively apply CHRs to the current constraint store. Recall
that we use (action) constraints to trigger (action) rules. We return True if the
(action) constraint has been removed, i.e. the action has fired. Otherwise, we
return False.

Depending on the application, we may be interested to verify certain prop-
erties. A typical property is action determinism. A deterministic action is one
which produces a unique effect (output) from each current state (input). The
advantage of our approach is that we can check for action determinism by ver-
ifying termination and confluence of CHRs. Termination guarantees that there
is no infinite sequence of CHR applications starting from some initial constraint
store. Confluence guarantees that different derivations starting from the same
point can always be brought together again. Clearly, both conditions imply ac-
tion determinism. However, termination and confluence are often too strong in
general. For example, confluence may only hold for all “reachable” states by
the agent. The important insight is that to guarantee action determinism it
is sufficient to verify the weaker condition of “reachable” confluence. We refer
the interested reader to[12] where we show how to refine the standard test of
CHR confluence [1] to verify “reachable” confluence for CHRs describing agent
actions. Specifically, we verify action determinism for the Block World.

We conclude this (sub)section by giving a simple program making use of the
functionality provided by the agent domain monad.

blockWorldInstance :: Domain Bool

blockWorldInstance = do

-- Initialize belief base

b1 <- const "B1"; b2 <- const "B2"; b3 <- const "B3";

t1 <- const "T1"; t2 <- const "T2"; t3 <- const "T3";

initStore [empty,on b1 b2,on b2 b3,on b3 t1,clear b1,

clear t2,clear t3]

-- Initialize rules

x <- newVar

y <- newVar

initRule [getRule x y,putOnRule x y]

-- Execute block world actions get(B1) followed by putOn(B1,T3)

getM b1

putOnM b1 t3

6



Execution of the above program proceeds roughly as follows. The first action
getM b1 adds get b1 to the initial belief base which leads to

[get b1,empty,on b1 b2,on b2 b3,on b3 t1,clear b1,clear t2,clear t3]

CHR [get x,empty,clear x,on x y] <==> [holds x,clear y] applies which
yields

[holds b1,clear b2,on b2 b3,on b3 t1,clear b1,clear t2,clear t3]

No further CHRs are applicable. Notice that we have removed the action con-
straint get b1. That is, the action has fired. Hence, we return True. Next, we
apply the action putOnM b1 t3 which results in

[putOn b1 t3,holds b1,clear b2,on b2 b3,on b3 t1,clear b1,clear t2,clear t3]

This time the CHR [putOn x y,holds x,clear y] <==> [empty,clear x,on

x y] is applicable and we obtain

[empty,on b1 t3,on b2 b3,on b3 t1,clear b1,clear b2, clear t2]

As before, the action rule has successfully fired. Hence, we return True.

2.2 Queries and Domain Laws

We yet need to provide some basic query functions such that the agent is able
to observe its environment.

test :: [Constraint] -> Domain Bool

queryAny :: [Term] -> [Constraint] -> Domain (Maybe [Term])

queryAll :: [Term] -> [Constraint] -> Domain [[Term]]

Function call test cs returns True if the constraints cs are (syntactically) con-
tained in the current constraint store. Otherwise, we return False. Function call
queryAny vs cs returns any mappings to variables vs such that constraints cs
are contained in the constraint store. Via queryAll we can find all mappings.
For example, queryAny [y] [on y b0] finds any block y which is on block b0

whereas queryAll [y] [clear y] finds all objects y which are clear. In case
of queryAny we use the Maybe monad to signal failure whereas for queryAll we
simply return the empty list.

The implementation of queries is rather straightforward by using CHR prop-
agation rules which are represented as follows.

(==>) :: [Constraint] -> [Constraint] -> CHRRule

data CHRRule = SimpRule [Constraint] [Constraint]

| PropRule [Constraint] [Constraint]

In contrast to simplification rules which perform non-monotonic updates (by
replacing instances of the right-hand constraints with the left-hand side con-
straints), a propagation rules only propagates (i.e. adds) the right-hand side

7



constraints. Thus, we can implement queryAll [y] [clear y] by applying the
CHR propagation rule [clear y ==> answer y]. For each instance of clear y

we add answer y to the constraint store. What remains is to collect (i.e. remove)
all answer constraints to build the requested mapping. We remark that CHR im-
plementations avoid infinite application of CHR propagation rules by assuming
that these rules are only applied once on the same set of constraints [1].

CHR propagation rules are also useful to encode domain-specific laws. For
example, [on x y, clear y ==> false] enforces the law that any belief base
with a clear object which has another object on top of it is inconsistent. We
assume that false represents the always unsatisfiable constraint.

2.3 A Simple Block World Agent

We have now everything in place to implement a simple Block World agent to
clear the top of a block b0.

planClearTopOf :: Term -> Domain ()

planClearTopOf b0 = do

isClear <- test [clear b0] -- check if block b0 is clear

if isClear then

return () -- b0 is already clear, so do nothing

else do

y <- newVar

z <- newVar

(Just [b1]) <- queryAny [y] [on y b0] -- find b1, which is on b0

planClearTopOf b1 -- clear top of b1

(Just [b2,b3]) <- queryAny [y,z] [clear y,clear z]

-- find 2 possible relocations b2 and b3

getM b1

case (b2 == b0) of

True -> do -- if b2 is b0, do not put b1 back on b0

putOnM b1 b3

return ()

False -> do

putOnM b1 b2

return ()

The current functionality is sufficient to implement agents in terms of the
low-level operations such as actions and queries. Higher-level operations involv-
ing the agent’s goals, intentions and plans must still be programmed in Haskell.
The advantage of our approach is that we can build more sophisticated control
structures on top of the agent domain monad to reason about goals and plans. A
typical example would be a backtracking monad [10] which allows us to search
for a plan to achieve a certain goal. We can also easily build more sophisti-
cated queries in terms of basic queries. In the next section, we will explore these
possibilities.

8



3 The Goal-Directed Planning Monad

On top of the agent domain monad, we introduce a state monad to keep track of
the goals we are trying to achieve and a simple back-tracking monad to support
reasoning by search. The monad definitions are straightforward and can be found
elsewhere [2].

type Goals = [Constraint]

type Plan a = Plan (Goals -> Domain (PlanStatus (Goals,a)))

data PlanStatus a = PlanSucc a | PlanFail

instance Monad Plan where ...

The existing functions operating on the agent domain monad Domain can
be straightforwardly lifted to the goal-directed planning monad Plan [13]. We
can also reuse all function names by applying type class overloading [11, 23]. For
brevity, we omit the straightforward details. In the following, we introduce two
high-level reasoning operations, elseTry and subGoal, to support back-tracking
and goal-directed planning. We explore their usefulness via a series of small
examples.

3.1 Planning by Search via Back-Tracking

Previously (in the agent domain monad), each action returned a Boolean value
to indicate whether the action has fired or not. We explicitly had to react to the
outcome of an invocation of an action. In the Planmonad we will abort the plan if
execution of an action is blocked. That is, we will raise an execption if the action
did not fire. Hence, we redefine the action invocation function applyAction as
follows.

applyAction :: Constraint -> Plan ()

applyAction act = do

-- Execute Domain Monad’s ’applyAction’

isSucc <- doDomain (applyAction act)

case isSucc of

True -> return ()

False -> abortPlan

We assume that the doDomain lifts a Domain computation into the Plan monad
and abortPlan simply signals failure (by returning PlanFail inside the monad).

Abortion of plans is only useful if we can program composite plans, where
the failure of a primary plan would result in the activation of a contingency
plan. For this, we introduce the elseTry operation, which provides exactly this
functionality.

9



elseTry :: Plan a -> Plan a -> Plan a

elseTry (Plan p1) (Plan p2) =

Plan (\s -> do st <- getStore

stat <- p1 s

case stat of

PlanFail -> do setStore st

p2 s

PlanSucc (s’,a) -> return (PlanSucc (s’,a))

Functions getStore and setStore serve the obvious purpose of getting and
(re)setting the current store. They are only available within our library to prevent
“unsafe” use of them. The definition of elseTry should contain no surprises. In
the event that plan p1 is unsuccessful, the constraint store is restored to its
original before we attempt to execute plan p2. Below is a Block World planning
algorithm which makes use of the elseTry operation.

planGetTopOf :: Term -> Plan ()

planGetTopOf x = (getM x) ‘elseTry‘ (getTop x)

where

getTop x = do

y <- newVar

mb <- queryAny [y] [on y x]

case mb of

Just [y] -> planGetTopOf y

Nothing -> abortPlan

We model a ’brute’ force get plan operation that tries to get x. If getM x fails
(i.e. aborts), we attempt to get the top most block on top of x. If this operation
fails as well, we abort the plan (which essentially means that the robot is already
holding x).

3.2 Goal-Directed Planning with Back-Tracking

So far, we have not used the “goal” state. Goals are lists of constraints which the
agent tries to achieve by executing plans, i.e. sequences of actions. After we have
achieved a goal, the goal should be removed. Hence, we need to further adjust
the definition of the applyAction function and update the goals each time an
action has fired.

applyAction :: Constraint -> Plan ()

applyAction act = do

-- Execute Domain Monad’s ’applyAction’

isSucc <- doDomain (applyAction act)

case isSucc of

True -> updateGoals

False -> abortPlan

10



After firing an action, the updateGoals function takes the current state of the
constraint store and goals and removes from the goals all constraints which are in
the store. The following transition relation describes the applyAction operation
in more detail.

(Goal-Directed Action)
{a} ∪ C 

∗

P
C′ G′ = G − C′

(G C)
a

 (G′ C′)

G refers to the input goal state and {a}∪C 
∗

P
C′ denotes that firing of CHRs

on the input constraint store C where we have inserted the action constraint
a leads to the output constraint store C′. We assume here that the action has
successfully fired. The output goals are set to be the (set) difference between the
input goals and the output constraint store.

Using goals to direct plans becomes interesting once we provide the ability to
assert the success of goals. For this, we introduce the subPlan operation which
takes a goal g and two plans p1 and p2. If p1 achieves goal g, we continue with
p2. Otherwise, we abort.

subPlan :: Goals -> Plan a -> Plan b -> Plan b

subPlan gs p1 p2 = do

currGoals <- getGoals

setGoals gs

a <- p1

gs <- getGoals

case (gs == []) of

True -> do setGoals (currGoals ‘diff‘ gs)

p2

False -> abortPlan

Functions getGoals and setGoals get and (re)set the current goals. Function
diff takes the difference between two lists (treating lists as multi-sets). The
important point to remember is that we only proceed with plan p2, if after
executing of plan p1 the goals gs have been achieved (i.e. they are not present
in the final constraint store after p1’s execution).

To illustrate the use of subPlan, we implement a plan to move a certain
block x onto any arbitrary object y. First, we define two auxiliary functions
queryAnyNotSelected and planDropOn,

-- Specialized query

queryAnyNotSelected :: [Term] -> [Constraint] -> [Term] -> Plan (Maybe [Term])

queryAnyNotSelected ts cs sel = do

vss <- queryAll ts cs

let vss’ = (filter (\s2 -> sel ‘intersect‘ s2 == []) vss)

case vss’ of

[] -> return Nothing

(v:_) -> return (Just v)

11



-- A plan to drop the current object held onto y

planDropOn :: Term -> Plan ()

planDropOn y = do x <- newVar

mb <- queryAny [x] [holds x]

case mb of

Nothing -> abortPlan

Just x -> putOnM x y

Function queryAnyNotSelectedaccepts an additional argument sel :: [Term]

and only returns a match of variable values vs such that sel ‘intersect‘ vs

is the empty list. The plan planDropOn drops the current object held by the
robot onto some object y.

We are in the position to define the plan to move a certain block x onto any
arbitrary object y.

-- A plan to move x away from current location.

planMove :: Term -> Term -> Plan ()

planMove x y = do

(subPlan [holds x] (planGetTopOf x) (putOnM x y))

‘elseTry‘ (contPlanMove x y))

where

contPlanMove x y = do

z <- newVar

(Just z) <- queryAllNotSelected [z] [clear z] [x,y]

planDropOn z

planMove x y

The planMove operation uses the planGetTopOf operation described in the
previous section to obtain x (if possible). Recall that the planGetTopOf operation
may result into the robot holding x, or the robot holding some y which is top
most of object on x. Only when the robot is holding x, indicated by the goal
holds x, we can proceed to put x on y. If the robot is not holding x, it must
get rid of whichever object it is holding by dropping it on a object that is not x
or y, and attempt the plan of moving x again.

We would like to point that our goals are “dynamic”. There is no guarantee
that a goal once satisfied will remain to be satisfied For example, consider a
subgoal holds x where in some later stages of the plan, the robot will hold a
different object. This has to do with the fact that our agent domain is “linear’
Depending on the application, we may want to add “static” goals but we leave
out the details for future work.

4 Related Work and Conclusion

There are numerous agent-oriented programming languages which are based on
the BDI agent model. We refer to [15] for an overview. We believe that our work

12



has a number of novel aspects. We employ a linear logic constraint solver speci-
fiable via CHRs. Thus, we can concisely model the agent’s low-level reasoning
which involve the agent’s beliefs and actions as well as queries and domain spe-
cific laws. On top of these basic agent domain operations we can provide for rich
control structures implemented in Haskell to support high-level reasoning oper-
ations involving the agent’s goals and plans. By using monads we can prevent
undesirable interactions among the different levels of reasoning and provide for
the modular development of more complex reasoning operations.

Our work can also be viewed as an attempt to achieve multi-paradigm pro-
gramming in Haskell using monads as the key concept. There are similarities
to [14] which aims at integrating linear logic forward chaining with Prolog style
backward chaining. We yet have to work out the exact details

Currently, we only support single agents. However, we believe that we can
support multi agents by simulating concurrency [5]. In the future, we plan to
support true concurrency by Haskell with concurrency extensions [19, 9].

The latest release of our system, including further examples, can be down-
loaded via

http://www.comp.nus.edu.sg/~lamsoonl/adom

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Proc. of CP’97, LNCS, pages 252–266. Springer-Verlag, 1997.

2. Specifying and controlling agents in haskell.
http://www.comp.nus.edu.sg/˜ lamsoonl/adom.

3. H. Betz and T. Frühwirth. A Linear-Logic Semantics for Constraint Handling
Rules. In Proc of CP’05, volume 3709 of LNCS, pages 137–151. Springer-Verlag,
2005.

4. M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
1987.

5. K. Claessen. A poor man’s concurrency monad. Journal of Functional Program-

ming, 9(3):313–323, 1999.

6. G.J. Duck. Haskell chr. http://www.cs.mu.oz.au/ gjd/haskellchr/.

7. T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and

Trends, LNCS. Springer-Verlag, 1995.

8. J. Y. Girard. Linear Logic: Its Syntax and Semantics. In Proc. of Workshop on

Linear Logic, Cornell University, number 222. Cambridge University Press, 1995.

9. T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory
transactions. In Proc. of PPoPP’05, pages 48–60. ACM Press, 2005.

10. R. Hinze. Deriving backtracking monad transformers. In Proc. of ICFP’00, pages
186–197. ACM Press, 2000.

11. S. Kaes. Parametric overloading in polymorphic programming languages. In In

Proc. of ESOP’88, volume 300 of LNCS, pages 131–141. Springer-Verlag, 1988.

12. E.S.L. Lam and M. Sulzmann. Towards agent programming in CHR. Technical
Report CW 452, Katholieke Universteit Leuven, 2006. Informal Proc. of CHR
2006, Third Workshop on Constraint Handling Rules.

13



13. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proc. of POPL’95, pages 333–343. ACM Press, 1995.

14. P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic Concurrent Linear
Logic Programming. In Proc. of PPDP’05, pages 35–46, 2005.

15. V. Mascardi, D. Demergasso, and D. Ancona. Languages for programming BDI-
style agents: an overview. In Proc. of WOA 2005, pages 9–15. Pitagora Editrice
Bologna, 2005.

16. E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
17. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003.
18. S. Peyton Jones, D.Vytiniotis, G. Washburn, and S. Weirich. Simple

unification-based type inference for GADTs. http://research.microsoft.com/ si-
monpj/papers/gadt/, November 2005.

19. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. of

POPL’96, pages 295–308. ACM Press, 1996.
20. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proc. of

the First Intl. Conference on Multiagent Systems, 1995.
21. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding

functional dependencies via constraint handling rules. Journal of Functional Pro-

gramming, 2006. To appear.
22. P. Wadler. Comprehending monads. In LFP ’90: Proceedings of the 1990 ACM

conference on LISP and functional programming, pages 61–78. ACM Press, 1990.
23. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Proc.

of POPL’89, pages 60–76. ACM Press, 1989.

14


