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Preface

Being in the age of information—so to speak: information flooding—intelligent tech-
nologies for information mining and retrieval have become an important as well as ex-
citing field of research. In this connection, methods of text-based information retrieval
receive special attention, which results from the fundamental role of written text, but
also because of the high availability of the Internet. E.g., information retrieval methods
have the potential to improve the quality of the standard keyword search; moreover, they
strike a path to the new developments from the field of the Semantic Web. In this sense,
text-based information retrieval can be regarded as the heart of many IR applications.

There are various techniques and methods being used for text-based information re-
trieval tasks, which stem from different research areas: machine learning algorithms,
models from computer linguistics and psychology, paradigms from the field of user
interaction and modeling, or algorithms for information visualization. The develop-
ment of powerful retrieval tools requires the combination of these developments, and
in this sense the workshop shall provide a platform that spans the different views and
approaches.

The following list gives examples from classic and ongoing research topics from the
field of text-based information retrieval: document models and similarity measures for
special retrieval tasks, automatic category formation in document corpora and search
results; topic identification and auto-abstracting: characterization of documents by key-
words; plagiarism analysis: identification and evaluation of similar text sections; ontolo-
gies and the Semantic Web: analysis of annotated texts (RDF, RDFS, DAML+OIL),
usage, construction, and maintenance of ontologies for retrieval tasks, OWL; cross-
language retrieval, multilingual retrieval, and machine translation for IR; concepts and
techniques for information visualization, user modeling, and interaction in the context
of particular retrieval tasks; link analysis and Web dynamics; relevance feedback and
personalization; evaluation, construction of test collections, and user studies.
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Abstract. Cluster analysis of dialogs with transport directory service allows 
revealing the typical scenarios of dialogs, which is useful for designing 
automatic dialog systems. We show how to parameterize dialogs and how to 
control the process of clustering. The parameters include both data of transport 
service and features of passenger’s behavior. Control of clustering consists in 
manipulating the parameter’s weights and checking stability of the results. This 
technique resembles Makagonov’s approach to the analysis of dweller’s 
complaints to city administration. We shortly describe the MajorClust method 
developped by Benno Stein’s group and demonstrate its work on real person-to-
person dialogs provided by Spanish railway service. 

1 Introduction  

In the recent years, much effort has been devoted to development of automatic dialog 
systems. This topic is well represented at the conferences related with Dialog 
Processing [6]. One of the first phases in the design of such systems consists in 
definition of the dialog domain, as well as the different types of dialogs to be 
conducted. The type of dialog depends on the information requested (which is 
reflected in lexical and semantic restrictions of the task), the type of user (novice or 
expert), etc. Usually this analysis is performed manually basing on a set of real 
person-to-person dialogs. Then the obtained classification is used to define the 
behavior of the dialog manager or to acquire a corpus of dialogs by using the Wizard 
of Oz technique [5]. 

In this paper, we consider another technique consisting in: 

  manual parameterization of dialog set; 
  filtering selected parameters; 
  objective clustering. 

These steps correspond to the approach developed by Makagonov [3] for the 
analysis of letters and complaints of Moscow dwellers directed to Moscow city 
administration.  

                                                           
* Work done under partial support of the Government of Valencia, Mexican Government 

(CONACyT), R2D2 CICYT (TIC2003-07158-C04-03), and ICT EU-India 
(ALA/95/23/2003/077-054). The paper is a reprint of a paper published in Proceedings of 
TSD-2005. 



The set of parameters is supposed to reflect both the specificity of a given public 
service and some features of a passenger. We show how to make correct scaling for 
quantitative or qualitative parameters of a dialog. Analysis of the parameter’s 
distribution allows detecting and eliminating non-informative parameters. Clustering 
is applied both to dialogs themselves and to their parameters. 

The procedure of clustering uses the MajorClust method recently developed by 
Stein et al. [7]. This method was selected because it proved to be more adequate to 
data and problem settings than other methods. We briefly describe it below. 

In the experiments we used examples related with Spanish railway directory 
inquires, obtained in the framework of Basurde projects [1]. 

2 Parameterization 

2.1  Examples of dialogs and their parameterization 

The final purpose of dialog parameterization is to present all acts of dialogs in the 
form of the numerical matrix “objects/parameters”, where the objects are dialogs 
themselves and the parameters are characteristics reflecting both railway service and 
passenger behavior. Such a matrix allows calculating the distance (similarity) between 
objects, which is the input data for any method of cluster analysis. 

Table 1 shows the difficulties of parameterization (the records are translated from 
Spanish into English). Here US stands for a user and DI for a directory inquire 
service. This example concerns the train departure from Barcelona to the other 
destinations both near the Barcelona and in other provinces of Spain. Such limited 
dialogs constitute approximately 25% of total number of dialogs, other dialogs being 
2 to 5 times longer. This dialog gives an impression on the difficulties of dialog 
parameterization.  

Table 1. Example of real dialog between passengers and directory inqui80 

DI:  Renfe, good day 
US:  Yes, good day 
DI:  Yes, well.  
US:  OK, could you  inform me about the 
        trains that go from here, from       
        Barcelona to Valladolid? 
DI:  What day it will be? 
US:  The next Thursday. 
DI:  Let us to see. <PAUSE> on Thursday is off 
       the one at thirteen, which come at twenty  

       two hours to Valladolid 
US:  Are there any more?   
DI:  No, on Thursday only this one, eh? 
US:  Nothing more, say me, please. 
DI:  Exactly.  
US:  <CONTINUALLY> before the  
        Wednesday or Thursday.  
DI:  The train will be exactly at evening,  
       on Thursday or Friday it is off. 
US:  Thank you, bye 

One can note the following three features of such dialogs: many aspects concerning 
the trip are not reflected in a specific dialog; many characteristics are diffuse; and 
much information is presented in a hidden form. To take into account these 
circumstances, we use nominal scales with the value “indifference” and interval 
scales, respectively. All parameters are normalized to the interval [0, 1]. The 
parameters we initially introduced are presented below: 



(1) City weight (City). This parameter reflects the economic importance of the city. Its 
possible values are 0.75, 0.5, 0.25, 0, reflecting large, middle, small, and local cities, 
respectively. The value 1 is reserved. 

(2) Complexity (Cx). In our case, this binary parameter reflects the necessity of 
transfer. 

(3) Urgency and definiteness (U/D). This numerical parameter is introduced to reflect 
the profile of passenger rather then the railway service.  Its possible values are 1, 0.5, 
and 0: urgent departure at the same day, departure at a certain day during a week or 
month, and the indifference to the day of departure. 

(4) Round trip (T/F). It is a binary parameter with obvious values 1 and 0.  

(5) Time of  departure (T). This parameter is presented in the form of three nominal 
scales with two binary values 1 and 0 for each of them:  indifference to time (Ti), 
leaving in the morning or in the day (Tm), leaving in the evening or at night (Te). 

(6) Time of departure on return (F). This parameter is similar to the previous one.  

(7) Sleeping car (Car). It is a binary parameter. 

(8) Discounts (Ds). It is a binary parameter meaning whether or not a passenger 
discussed his/her possible discount with directory inquire service. 

(9) Knowledge (Kn). This parameter reflects any a priori information a passenger 
possesses about railway service. Values 1 and 0.5 mean the passenger wants to check 
up or refers to any previous information, respectively; otherwise, we use 0. 

(10) Length of talking (Tk). This parameter can serve as an indicator of question 
complexity or the passenger’s competence. It has five numerical values from 1 to 0 
with step 0.25, which correspond to non-uniform scale of question-answer numbers.  

(11) Politeness  (Pl). We introduced formal rules for evaluation of this characteristic. 
Value 1 means that the passenger uses “you” in the polite form (Spanish distinguishes 
two degrees of polite treatment, reflected in different forms of “you” and verbal 
conjugation), “please”, and apologetic style (reflected in the use of subjunctive forms 
in Spanish). Value 0.5 means a passenger uses “you” in polite form or in normal 
familiar form together with subjunctive forms; otherwise, we use 0.   

Given these parameters, our example can be presented in a parameterized form, as 
shown in Table 2. Here Ti-Tm-Te and Fi-Fm-Fe are nominal scales for qualitative 
parameters (5) and (6). 

Table 2. Parameterized example 

City Cx U/D T/F Ti-Tm-Te Fi-Fm-Fe Car Kn Ds Tk Pl 

0.25 0 0.5 0 0   0   1 1   0   0 0 0 0 0 0.5 



2.2  Parameter filtering 

The clustering procedure requires that the introduced parameters be filtered in order 
to reduce the influence of any strong dominant processes and any sources of possible 
noise. The former can hide the real structure we want to reveal and the latter can 
disfigure it. For this, all parameters are divided into the following three groups [3]: 

  Parameters from the first group have a significant value for almost all objects; 
  Parameters from the second group have a significant value for a small fraction of 

the total number of objects; 
  Parameters from the third group have a significant value for more than, say, 30% 

of the total number of objects. 

By a significant value of a parameter, we generally mean a value larger than 50% 
of the maximum value for this parameter. By almost all objects or a small fraction of 
all objects, we mean 90%–95% and 5%–10% of the total number of objects, 
respectively.  

From the point of view of the system, the parameters in the first group reflect the 
processes in a system of higher level in comparison with the one under consideration. 
The parameters in second group reflect the processes in a subsystem [3]. On the 
current level of data consideration, the mentioned groups of parameters should be 
eliminated. 

This conclusion is supported by cluster analysis. From the point of view of cluster 
analysis, the first group of parameters is oriented to the uniform object set, i.e. to one 
cluster, whereas the second group of parameters is oriented to very granulated object 
set, at least 10 clusters or more [4]. The first situation is not interesting at all, and the 
second one is too detailed for reflecting the structure as a whole. Therefore, cluster 
analysis approach also confirms the necessity of eliminating of both groups of 
parameters. 

To apply these results to our data set, we calculated the average value for each 
parameter; see Table 3.   

Table 3. Average value of each parameter for 100 dialogs, in percents. 

City Cx U/D T/F To-Tm-Te  Fi-Fm-Fe  Car Kn Ds Tk Pl 

37 7 44.5 35 32  32   36 80   9   11 18 4 9 31 40 

Since the maximum value of each parameter is equal to 1, we can easily select the 
parameters of the second group: Cx, Fm, Fe, Kn, Ds.  For all these parameters, the 
number of significant values is less or equal to 10%. As for the first group, we 
decided to eliminate the parameter Fi, because its value is very close to the boundary 
value of 90% and from the other hand, this parameter is not interesting for 
interpretation: it means the indifference to the time of departure from the point of 
destination. 



3 Clustering 

3.1 Method of clustering 

For a moment, there are dozens of methods and their modifications in cluster analysis, 
which can satisfy practically all necessities of users. The most popular ones are K-
means, oriented on the structures of spherical form, and Nearest Neighbor (NN), 
oriented on the extended structures of chain form [2]. In our work, we use the 
MajorClust method, recently developed by Stein et al. [7], which has the following 
advantages over the mentioned two:  

  MajorClust distributes objects to clusters in such a way that the similarity of an 
object to the assigned cluster exceeds its similarity to any other cluster. This 
natural criterion provides the grouping of objects, which better corresponds to the 
users’ intuitive representation. Neither K-means nor NN methods possess such 
optimization property: they do not evaluate the similarity between clusters. 

  MajorClust determines the number of clusters automatically and in all cases tends 
to reduce this number. K-means requires the number of cluster to be given, and NN 
does not determine this number at all: cutting of the dendrite is performed by the 
user. 
MajorClust has been successfully used with various data sets and demonstrated 

very good results [8]. The main disadvantage of MajorClust is its runtime. However, 
in case of sparse matrix of relations this disadvantage is not essential. In our problem, 
we are faced just with this case because of a weak similarity between the majority of 
objects. These weak connections are eliminated, which gives the mentioned matrix. 

3.2 Distance matrixes and manipulations with them 

In our clustering procedure, we used two distance matrices: objects/objects 
(cities/cities) and parameters/parameters. To construct such matrices, we define the 
distance measure and apply it to the source objects/parameters matrix. It is well 
known that: 

  Cosine measure is used if the proportion between object’s coordinates is important, 
but not their specific values. This is the case when the coordinates have the same 
meaning. 

  Euclidean measure is used when the contribution of each coordinate to object’s 
properties is important. This is the case when the coordinates have different 
meaning.  

Therefore, we used the cosine measure to evaluate the distance between parameters 
whose coordinates were cities, and Euclidean measure to evaluate the distance 
between objects (cities) whose coordinates were parameters. 

During clustering procedure we changed the distance matrix: 

  To emphasize the role of  certain objects (cities) while clustering parameters or 
certain parameters while clustering objects; 



  To reveal stronger but less numerous clusters; 
  To determine the stable number of clusters. 

The first goal is reached by weighting the coordinates of objects or parameters, 
respectively. The second goal is achieved by eliminating weak connections between 
objects. At in the last case we vary the connections between objects and observe the 
changes of number of clusters. 

4 Experiments 

4.1 Experimental data 

The data we used in the experiments were a corpus of 100 person-to-person dialogs of 
Spanish railway information service. The short characteristic of the corpus (length of 
talking, volume of lexis) is described in [1]. The data were analyzed in detail in [5] 
for constructing artificial dialogs.   

4.2 Clustering parameters 

Here in all experiments we used the cosine measure with the admissible level of 
connections not less than 0.7. In the first experiment all objects (cities) had no any 
privileges. In the second one the more important cities, that is the large and middle 
cities (see above) obtained  the weight 5. It was the minimum weight, which allowed 
revealing new result.          

Experiment 1. Two parameters City Weight  and Length of  Talking were joined to 
one cluster and the others remained the independent ones.      

Experiment 2.  Three parameters City Weight, Urgency and Definiteness and Length 
of  Talking were joined to one cluster and the other parameters remained independent.  

These results can be easily explained: the larger the city, the more possibilities to 
get it, the longer discussion a passenger needs. The urgency of trip is usually related 
with large cities: usually the trip to the small cities is completed without any hurry. 

4.3 Clustering objects (dialogs) 

Here in all experiments, we used Euclidean distance measure with the admissible 
level of connections not greater than 0.5 of the maximum. Then the distances were re-
calculated to the similarity measure. In the first experiment, all parameters were 
equal.  In the second experiment, we wanted to emphasize the properties of 
passengers.  For this, we assigned the weight 2 to the parameters Urgency and 
Definiteness, Length of Talking and Politeness. This weight was the minimum one to 
obtain the significant differences with the first experiment. Parameters presented in 



nominal scales were weighted by the coefficient 0.33 that is inverse value to the 
number of scales. Cluster descriptions are presented below.      

Experiment 1.   

Cluster 1 (10 objects).  The large and middle cities, no urgent trips (only 10%), round 
trips, night trips (70%-90%), sleeping cars, enough long talking.       

Cluster 2 (25 objects). No urgent trips (only 8%), round trips, a few number of night 
trips (25%), no sleeping cars.   

Cluster 3 (8 objects). Small cities (75%), undefined day of departure, one-way trips, 
night trips (90%), sleeping cars.      

Cluster 4 (57 objects). Small or local cities (75%), one-way trips, no sleeping cars, 
short talking (80%). 

Experiment 2.  

Cluster 1 (31 objects). No urgent trips, no night trips (only 20%), only ordinary 
politeness.   

Cluster 2 (44 objects). Urgent trips or defined days of trips (95%), advanced level of 
politeness (85%).  

Cluster 3 (12 objects). Only small and middle cities, no urgent trips, one-way trips 
(75%), short talking (85%), the highest level of politeness.  

Cluster 4 (13 objects). Only small and local cities, undefined days of trip, one-way 
trips (75%), no night trips (only 15%), short talking (75%), advanced level of 
politeness.  

Some of the clusters were expected (e.g. the cluster 4 in both experiments) and the 
others need to be analyzed more closely.  In all cases in comparison with manual 
classification where only costs and time-table were considered, our experiments gave 
the additional information [5]. Table 4 presents some examples of clustered objects.   

Table 4. Examples of objects from cluster 3 in the experiment 2 

City U/D T/F Ti Tm Te Car Tk Pl Name of city 
0.25 0.5 0 1 0 0 0 0.25 1 Girona 
0.5 0.5 0 0 1 0 0 0.25 1 Alicante 

5 Conclusions  

Results  The quality of automatic dialog systems used in public transport service 
crucially depends on the scenarios of dialogs. These scenarios may be determined by 
means of clustering in the space of parameters defined by an expert. We have shown 
(a) how to parameterize the records of dialog and to solve the problems of 
incompleteness and diffuseness of the source data; (b) how to accomplish the 



clustering procedure providing stability of results and their usefulness for a user. We 
have tested the MajorClust method for this and recommend using it for such type of 
problems.  The obtained results were judged by experts as interesting and useful for 
determining the main themes of dialogs and the profile of passengers related with 
these themes. This information can be used to the design of scenarios for an 
acquisition of dialogs person-to-machine by means of the Wizard of Oz technique. 

Future work In the future, we plan to consider more extensively the problems of 
Knowledge Discovery and to use both geographic information and the other 
parameters related with transport service. 

Acknowledgement. The authors thank Sven Meyer zu Eissen for valuable 
discussion of application and tuning MajorClust, which allowed us to significantly 
improve our results. 
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Abstract. It is widely known that spectral techniques are very effec-
tive for document retrieval. Recently, a lot of effort has been spent by
researchers to provide a formal mathematical explanation for this effec-
tiveness [3]. Latent Semantic Indexing, in particular, is a text retrieval
algorithm based on the spectral analysis of the occurrences of terms in
text documents. Despite of its value in improving the quality of a text
search, LSI has the drawback of an elevate response time, which makes
it unsuitable for on-line search in large collections of documents (e.g.,
web search engines). In this paper we present two approaches aimed to
combine the effectiveness of latent semantic analysis with the efficiency
of text matching retrieval, through the technique of query expansion. We
show that both approaches have relatively small computational cost and
we provide experimental evidence of their ability to improve document
retrieval.

1 Introduction

One of the most important tasks of an information retrieval system is
to return, in response to a user query generally expressed as a set of
terms, the subset of the managed documents which best matches the
information necessity expressed by the user. Text matching is, beyond
doubt, the most common technique used to accomplish this document
retrieval task; the search is performed by looking for (and returning to
user) the documents which contain the set, or a subset, of the terms
included in the query. Two classical factors may negatively affect the
quality of text matching search: polysemy, i.e., the same term may have
different meanings (e.g., “web”), and synonymy, i.e., two distinct terms
with the same meaning may be used interchangeably (e.g., “car” and
“automobile”). In the former case, documents that are not relevant may
be erroneously returned, while in the latter case, documents relevant
to the user query may not be returned. To avoid these two and other
similar problems, one would ideally like to represent documents (and
queries) not by terms, but by the underlying (latent, hidden) concepts
referred to by the terms. Unfortunately, as many works clearly point out,
it is not possible to once-and-for-all define a universal terms-concepts



mapping structure, since this one heavily depends on the specific
collection of documents we are dealing with.
Latent Semantic Indexing (LSI), introduced by Deerwester et al. in [5,6],
is a technique to automatically compute from a documents collection
a sort of semantic structure; this is achieved by applying a spectral
decomposition technique, like the Singular Value Decomposition, on
the data structure representing the occurrence of terms in documents.
Documents (and queries) are represented and compared into this
reduced “concept” space where, possibly, a document can be adjacent to
(and thus relevant for) a query, even if the two do not have any term in
common, but nevertheless share some underlying concept. LSI proved to
be a very effective retrieval technique: it has been repeatedly reported
that LSI outperforms classical text matching techniques, also addressing
the problems of polysemy and synonymy[1,12]. This success has been
empirically attributed to its ability to reduce noise, redundancy and
ambiguity in the managed data structures. One of the still unsolved
central questions on LSI is that the computational cost of the retrieval
process strongly depends on the size of the collection. This makes LSI
not appropriate for retrieving documents from huge collections, when
we want to provide a fast online query answer.

Therefore we have on one side text matching, with fast response time
but unsatisfactory filtering capabilities on the the document base, and
on the other side LSI and similar techniques having powerful selection
capabilities but high computational costs. In this paper we present two
techniques that take advantage of the information provided by LSI data
structures to enhance the quality of text matching search without in-
creasing its response time. Both approaches process the user query by
altering the set of terms included in it. We wish to remark that even if
we present our approaches as a way to improve the effectiveness of text
matching, the techniques introduced here, and more generally query ex-
pansion techniques, are fairly independent from the underlying retrieval
algorithm used.
Our first technique, that we named LS-Thesaurus, is inspired by the
work by Qiu and Frei [14]: they showed that the retrieval effectiveness
of text matching can be improved by using a thesaurus, i.e., a structure
indicating the similarity between each pair of terms. The idea is simple
and natural: if terms in the query are relevant to the documents the
user is looking for, these documents should contain also terms similar to
the ones in the query. Consider the following example: suppose that the
query “football games” is provided, and that this paper is included in
the document collection. A text matching search would certainly include
this document in the answer set but, obviously, this is not a document
relevant to football games. However, if we expand the query by adding
terms that are conceptually similar to the ones included in it, relevant
documents are likely to be ranked higher. Our approach differs from the
original work of Qiu and Frei because we make use of the data structures
provided by the LSI technique, to generate the thesaurus.
LS-Filter, that is the second technique we present in this paper, can be
intuitively described as a way to put in the query the more appropriate



terms for retrieving documents “conceptually related” to the query. To
do this we project the query in the reduced concepts space generated by
LSI; here we emphasize the largest components, that are the “important”
concepts embedded in the query, and at the same time we set to zero the
components with a small value, i.e., that are not relevant to the query.
The modified vector is projected back in the terms space; our hope is
that this new set of terms is better representative of the most important
concepts in the query.
The rest of the paper is organized as follows: Section 2 provides the
necessary background to understand our techniques, detailed respectively
in Section 3 and Section 4. We present preliminary experimental results
in Section 5, and final remarks are addressed in Section 6

2 Basic concepts and notation

In this section we define the preliminary concepts and techniques required
to describe our main results. While doing this, we also fulfill the twofold
task of fixing the notation used in the rest of the paper and presenting
the relevant works in literature.

2.1 Term-document matrix and Text-Matching

search

Consider a collection D = {d1, . . . , dn} of n text documents. Let T =
{t1, . . . , tm} be the set of distinct index terms in D. The index terms are
usually a subset of all the distinct terms occurring in the documents in
D. Generally, this subset is composed only of words that are “relevant
to retrieve the document” thus, for example, common words like articles
and connectives are not considered as index terms. The term-document

matrix of D is an m× n matrix A, representing a function of the occur-
rences of index terms in the documents in a compact way that can be
efficiently managed and used by a text retrieval system. Matrix A has
the following structure:

A =

d1 d2 · · · dn

t1
t2
...

tm

0

B

B

B

@

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · ·

...
am,1 am,2 · · · am,n

1

C

C

C

A

(1)

where element ai,j is generally a real number indicating the relative
weight of term ti in document dj . In its simplest form, A is a binary
matrix where:

ai,j =



1 if term ti occurs in document dj

0 otherwise

In literature a vast set of more refined term-weighting schemes are shown
to provide, at least for particular data sets, better retrieval performances.



In the rather general tf-idf (term frequency-inverse document frequency)
weighting scheme, for instance, the value of element ai,j is a function of
two orthogonal factors:
– A local factor (or term frequency factor) L(i, j), measuring the in-

fluence (or relevance) of term ti in document dj . A commonly used
formula for L(i, j) is:

L(i, j) =
freq(i, j)

maxi∈[1,m] freq(i, j)

where freq(i, j) is the frequency of term ti in document dj , i.e., the
number of occurrences of ti in dj , divided by the total number of
index terms in dj .

– A global factor (or inverse document frequency factor) G(i), whose
aim is to de-amplify the relative weight of terms which are very
frequently used in the collection. A commonly used formula for G(i)
is:

G(i) = log
n

ni

where ni is the number of documents containing term ti.
See [15] for a more detailed description of the various term weighting
schemes presented in literature.

While using a text retrieval system, the user submits a set of (possibly
weighted) terms which, by his knowledge, best represent the information
he is looking for. In our vectorial model, we can represent a user query
as an m-dimensional vector q = (q1, . . . , qm) (the query vector), where
qi = wi if term ti is present in the query with weight wi (or qi = 1
if terms are not weighted), and qi = 0 otherwise. In the following we
assume 0 ≤ qi ≤ 1, for all i ∈ [1, m].
In response to a user query, the system returns a score for each
document in D, indicating its relevance to the query. Formally, the
output of a search algorithm is an n-dimensional vector r = (r1, . . . , rn)
(the rank vector), where the value ri measures the relevance of doc-
ument di for the query expressed by q. We assume that if ri > rj

then document di is more relevant than document dj for the given query.

Let A be a term-document matrix representing a collection D of doc-
uments, and let q be a non zero query vector1 given as input to the
text-matching search algorithm (or simply TM). Algorithm TM returns
as output the following rank vector:

r = q ·A

Note that A is a sparse (possibly binary) matrix and q is a sparse
(possibly binary) vector. Therefore the matrix-vector product q · A can
be computed very efficiently. For instance, if, as commonly happens,
the size of the query is limited to k terms, then Algorithm TM on a
document base of n documents has cost O(kn).

1 Here we are assuming that at least one term of the query occurs in the collection



2.2 Query Expansion and Similarity Thesaurus

By query expansion or, more generally, query reweighting, we mean the
process aimed to alter the weights, and possibly the terms, of a query.
Usually, this process can be driven by the feedback provided by the user
to the system (for instance, by selecting, among the retrieved documents,
the ones that are considered more interesting). In this case the target is to
refine a previously performed search. Indeed, a query can be reweighted
also by exploiting a “knowledge”, stored in the system, about terms usage
in the particular collection of documents under exam. For instance, if in
the collection of documents the term “automobile” is used often, then
the system should add this term to a query containing only the term
“car”. In this paper we focus on this latter approach.
A commonly used method to have a statistic estimation of relationships
among terms in a collection of documents, is to compute the term-term
correlation matrix AAT . If, for instance, we use the tf-idf weighting
scheme, then the entries of AAT measure the co-occurence of terms in
documents.
Qiu and Frei present in [14] an alternative approach to measure the term-
term relation. Their idea is to compute the probability that a document
is representive of a term. To do that, they propose the following weighting
scheme:

ai,j =

8

>

<

>

:

(0.5+0.5∗
freq(i,j)

maxj freq(i,j)
)∗itf(j)

r

P

n
l=1

((0.5+0.5∗
freq(i,l)

maxl freq(i,l)
)∗itf(j))2

if freq(i, j) > 0

0 otherwise

(2)

where, as before, freq(i, j) is the frequency of occurences of term ti in
document dj and, for each term ti, maxj freq(i, j) is the maximum fre-
quency of term ti over all the documents in the collection. Furthermore,
let mj the number of distinct terms in the document dj , the inverse

term frequency is defined as,

itfj = log
m

mj

(3)

In order to distinguish this particular term-document matrix from the
ordinary one defined in Section 2.1, we denote it as A.
A similarity thesaurus is a term-term correlation matrix S defined as:

S = AA
T
.

A query vector q can be reweighted by using matrix S in the following
way. First the vector s = qS is computed. Then a threshold function
ξ(s, xr) is applied to s. Assuming that s = (s1, . . . , sm), function ξ(s, xr)
returns an m-dimensional vector s

′ = (s′1, . . . , s
′
m) such that:

s
′
i =



si if si is among the xr largest (absolute) elements in s

0 otherwise

In other words, function ξ sets to zero all the elements of s which are
not among the largest xr elements, considering their absolute value. Note



that computing the function ξ requires time linear in the size of s. The
obtained vector s

′ is then normalized, by dividing all its elements by
|q| =

Pm

i=1 qi, thus obtaining a new vector s
′′. Finally, the expanded

query q
′ is computed as q

′ = q + s
′′.

Query expansion techniques dates back to the work done by Maron and
Kuhns in 1960 [9]. Automatic query expansion, despite the not encour-
aging results shown in the early work done by Lesk [8], Sparck Jones and
Barber [16] and Minker et al. [10], where it seemed not an effective tech-
nique, has been revaluated after the researches made by Vorhees [18], by
Crouch and Yang [4] and by Qiu and Frei [13].
The use of a thesaurus to improve the retrieval effectiveness has been
introduced by Qiu and Frei in [14], where the authors use a global simi-
larity thesaurus, and in [4] by Crouch and Yang. The difference in their
approaches is on the type of the thesaurus: Qiu and Frei use a similarity
thesaurus, i.e., a thesaurus based on the similarity between terms; the
thesaurus proposed by Crouch and Young is statistical, i.e., is based on
statistical co-occurences of the terms.

2.3 Latent Semantic Indexing

If we look at matrix A as a set of n distinct column vectors, we can
interpret the elements of each column vector as the coordinates of the
corresponding document in the m-dimensional subspace spanned by the
terms in the collection. Intuitively, the more two documents (or a doc-
ument and a query) are similar, the more the corresponding vectors are
“close” to each other in the m-dimensional subspace. Polysemy and syn-
onymy issues get their own interpretation in this context: along the same
vector may lay two or more distinct meanings (polysemy), or, vice versa,
the same concept may be spread along different vectors (synonymy).
The main idea behind Latent Semantic Indexing is to pre-compute
a k-rank approximation of matrix A (with k ≪ m), and to score
documents according to their proximity to the given query vector in this
low dimensional subspace. Experimentally, LSI turned out to be very
effective in documents retrieval, overcoming, in most cases, the problems
of polysemy and synonymy. A widely accepted intuitive explanation is
that, more than terms, are the “latent semantic” concepts that should
index the documents and the query.

As we said, LSI algorithm has a preprocessing offline phase. During this
step the Singular Value Decomposition (or simply SVD) of A is com-
puted. This is a way to rewrite A as a product of three matrices:

A = U Σ V
T

where:
U is a m × m orthonormal matrix 2, whose column vectors are the

eigenvectors of A AT ;

2 A square matrix M is orthonormal if is regular (detM 6= 0) and if MT = M−1; so,
for a orthonormal matrix M it holds M−1 ·M = MT ·M = I .
Also det M = ±1.



V is a n×n matrix whose column vectors are the eigenvectors of AT A;

Σ is a m× n matrix made as follows:

Σ =

»

Σr 0
0 0

–

where Σr = diag(σ1, . . . , σr). The values σ1, . . . , σr are called sin-

gular values, are decreasingly ordered, and correspond to the square
roots of the eigenvalues of A AT . Note that r is the rank of matrix
A, and obviously r ≤ n.

We get a k-rank approximation Ak of A, by considering only the largest
k singular values and fixing the remaining (r−k) singular values to zero.
Therefore,

Ak = Uk Σk V
T

k (4)

where:

– Uk = U (1:m,1:k) is the m×k matrix composed by the first k columns
of U ; 3

– Vk = V (1:n,1:k) is the n× k matrix composed by the first k columns
of V ;

– Σk = Σ(1:k,1:k) is the diagonal k × k matrix whose elements are the
k largest singular values.

Note that Ak has still size m× n. A well known theorem by Eckart and
Young (see [7]) states that, among all the m×n matrices of rank at most
k, Ak is the one that minimizes the distance from A, measured by the
Frobenius norm.
The i-th row vector of Vk defines the components of document di in the k-
dimensional subspace spanned by the column vectors of Uk. Observe that
Vk = AT Uk Σ−1

k . When a user query q is given as input to algorithm LSI,
the projection of q in the k dimensional subspace is computed as: qk =
q Uk Σ−1

k . Then the score of each document di is obtained by measuring
the distance between the i-th row vector of Vk and the query vector qk.
One way to do this is to compute the cosine of the angle between the
two vectors:

ri = cos
“

qk, V
(i:i,1:k)

k

”

where V
(i:i,1:k)

k is the i-th row of Vk. The computational cost of LSI is thus
O(kn). Note that, unlike TM, the matrices Vk, Uk and the vector qk are
dense and therefore their product cannot be efficiently computed. This
computational cost, which heavily depends on the size of the collection
of documents, makes LSI unsuitable for online applications dealing with
huge collections of documents, like, for instance, web search engines.

Papadimitriou et al. present a formal probabilistic analysis of the LSI as
a IR tool in [12]. Azar et al. [1], in a more general context from Papadim-
itriou et al. , justify from a theoretical point of view both the empirical
success of LSI and its effectiveness against the problem of polysemy.

3 In this paper we use the colon notation to define submatrices: by A(i:j,k:l) (with
i ≤ j and k ≤ l) we denote the submatrix of A having element ai,k as the upper left
element and aj,l as the lower right element.



Algorithm 1 Algorithm LS-Thesaurus Pre-Process

1: Input: a collection of documents D;
2: Output: a Similarity Thesaurus, i.e., a m×m matrix Sk;
3:
4: Compute the term-document matrix A from D;

5: (U,Λ)←EIGEN(AA
T
);

6: Uk←U (1:m,1:k);
7: Λk←Λ(1:k,1:k);
8: Sk←Uk Λk UT

k ;

Algorithm 2 Algorithm LS-Thesaurus Expand

1: Input: a query vector q, a similarity thesaurus Sk,
2: a positive integer xr;
3: Output: a query vector q

′;
4:
5: s← q Sk;
6: s

′← ξ(s, xr);

7: s
′′← s

′

|q|
, where |q| =

Pm

i=1 qi;

8: q
′← q + s

′′;

3 LS-Thesaurus Algorithm

In this section the first of our two approaches is presented. The idea here
is to generate a similarity thesaurus like the one described in Section 2.2.
In this case, however, the similarity matrix S is computed starting from
a low rank approximation of A (as in LSI). We can formally define our
similarity matrix Sk in the following way:

Sk = Ak A
T

k = Uk Σk V
T

k V k Σ
T

k U
T

k = Uk Σ
2
k U

T

k (5)

Note that U and the diagonal elements of Σ correspond respectively to

the eigenvectors and the eigenvalues of matrix AA
T
. Therefore, in the

preprocessing step, we compute the eigenvalues and the eigenvectors of

matrix AA
T

(through the function EIGEN()). We assume that the set
of eigenvalues λ1, . . . , λr is returned in the form of a diagonal matrix
Λ = diag(λ1, . . . , λr), while the eigenvectors are returned as the column
vectors of a matrix U . The preprocessing step ends by returning the
similarity matrix Sk computed as described in Equation (5). The query
expansion is performed in the same way as in the original similarity
thesaurus.

4 LS-Filter Algorithm

In this section we present our second query expansion technique, de-
noted as LS-Filter. Here we start from the following assumption. In the
LSI algorithm documents and queries are projected (and compared) in



Algorithm 3 Algorithm LS-Filter Pre-Process

1: Input: a collection of documents D;
2: Output: a pair of matrices (P, P−1);
3:
4: Compute the term-document matrix A from D;
5: (U,Σ, V )←SV D(A);
6: Uk←U (1:m,1:k);
7: Σk←Σ(1:k,1:k);
8: P←Σ−1

k UT
k ;

9: P−1←Uk Σk;

Algorithm 4 Algorithm LS-Filter Expand

1: Input: a query vector q, matrices (P, P−1),
2: two positive integers xc and xt;
3: Output: a query vector q

′;
4:
5: p←P q;
6: p

′← ξ(p, xc);
7: p

′′←P−1
p
′;

8: q
′← ξ(p′′, xt);

a k-dimensional subspace. The axes of this subspace represent the k

most important concepts arising from the documents in the collection.
The user query tries to catch one (or more) of these concepts by using
an appropriate set of terms. However, it may happen that, due to user
obliviousness or to intrinsic properties of the collection, the set of terms
in the user query is not the best suitable for a text matching search.
What algorithm LS-Filter tries to do is to “guess” the concepts the user
is indicating with its query and to find the most suitable terms for re-
trieving, by a text matching search, the most relevant documents for
these concepts.
This is achieved by projecting the query vector q into the reduced
(“concepts”) space generated by LSI (through a precomputed matrix
P = Σ−1

k UT
k ). The k-dimensional vector p we obtain measures the re-

lation between the query and each of the k (latent) concepts contained
in the collection. The algorithm filters it by setting to zero the elements
having small absolute values (by using function ξ). The filtered vector
p
′ is then projected back in the terms space, thus obtaining a vector p

′′

which provides the (weighted) terms that are the counterimage of the
concepts is the query. Finallly, we apply again function ξ, thus leaving in
the final expanded query q

′ only the xt terms having the largest weights.

5 Experimental results

In this section we present the results of the experimental studies we ac-
complished so far. We compared the behavior of the following approaches:



– TM: the simple text matching;
– LS-T: text matching with queries previously expanded by LS-

Thesaurus algorithm;
– LS-F: text matching with queries previously expanded by LS-Filter

algorithm;
– LSI: the full LSI computation as described in Section 2.3.

Dataset. Our data set are three books from O’Reilly (www.oreilly.com).
They are publicly downloadable (in HTML version) from [11], and are an
interesting (and difficult) dataset because they are quite specific (they
all are related with computer science), and the correlation between them
is high if compared to more heterogeneous collections of documents. We
considered each HTML page as a different document, and indexed all the
text of the page (excluding the tags). The overall number of documents
is more than 3000, 1500 of which were from the first book, 1000 from
the second book and the remaining 500 were from the last one. This
collection is larger than the standard small datasets like CISI and MED
[2] but its size allows a fast experimental setup, as opposite, for example,
to the huge corpora provided for the TREC conferences [17].

Retrieval performance evaluation. To evaluate the effectiveness of
these different IR techniques we used the standard precision versus recall
diagrams at the eleven standard recall levels [2]. We briefly recall its
definition.
Let q be a given user query. Let R ⊆ D be the subset of documents
which are relevant to q (usually determined by human experts), and let
|R| be the number of such documents. Moreover, we define Ah, for any
integer h ∈ [1, n], as the set of the h most relevant documents for q (we
assume there are no ties), according to the rank vector returned by the
system we are evaluating. Let Rah = R ∩ Ah be the intersection of the
sets Ah and R. The recall and precision measures are defined as follows:
– Recallh is the ratio between the number of relevant documents in

Ah and the total number of relevant documents:

Recallh =
|Rah|

|R|

– Precisionh is the fraction of relevant document in Ah:

Precisionh =
|Rah|

|Ah|
=
|Rah|

h

Note that the value of Recallh increases as the value of h increases (for
h = n, Recalln = 1).
We first compute the values of Recallh and Precisionh for each
h = 1, . . . , n. Then we plot the precision-recall diagram by computing,
through interpolation, the values of Precisionh, corresponding to the
values of h for which Recallh = 0.0, 0.1, 0.2, . . . 1 (the standard recall
levels).

Overview of the results. The precision-recall diagram for the tests
we conducted, is plotted in Figure 1; we can observe that the techniques
we propose performs between LSI and TM. It is interesting also to note
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Fig. 1. Average precision at eleven standard recall levels

their relative performance: LS-T behaves better in the first half of the
plot, and then is outperformed. To complete the picture, in Figure 2 is
it shown the average of the times needed by each algorithm to respond a
query, depending on the size of the collection. We notice that there are
two different y-axis; the left one, whose range is from 0 to 60 seconds,
measures the LSI while the right one, ranged 0 to 6 seconds, measures
the other techniques (TM, LS-F and LS-Thaving roughly the same per-
formances)4. The plot confirms at least one order of magnitude between
LSI and the other techniques. These results indicate that the techniques
we propose are a good trade-off between retrieval effectiveness and time
performance.

Is it interesting to notice that, despite the (worst-case) running time of
LS-T is obviously linear in the number of the terms in the collection (and
definitely worse than LSI, linear in the number of documents), in practice
the similarity thesaurus matrix is largely sparse (Qiu and Frei observed
that usually around 3% of the entries are not zeroes). This means that
every term can index its similar terms, and we can still provide a fast
query answer. Consistently with the observation of Qiu and Frei our
thesaurus has around 2,7% of non-zero entries.
We conclude by presenting, in Table 1, some examples of queries ex-
panded by algorithm LS-Filter. We note that in some cases the system
works as we would like to, for example when it adds the terms “bourne”

4 We would like to point out that our IR system has been implemented to study
and evaluate different techniques and therefore we focus only on the relative perfor-
mances; in an optimized real IR system answer times can be significantly smaller.
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and “prompt” to the query “shell logout”; sometimes, however, it adds
misleading terms, like “ctrl” to the query “job control”. We also see that
the weight of the terms in the original query can be less than the one
of the added terms; see for example the weight of term “control” in the
query “job control”.

6 Conclusions

In this paper we introduced two techniques, LS-Thesaurus and LS-Filter,
that allow fast user query answer based on the LSI reduced space matrix.
The preliminary experimental tests showed that our approaches perform
well, and are a good trade-off between LSI and more simple methods
like text matching. However, to evaluate the real effectiveness of both
techniques we definitely need to perform more experiments on further
data sets. We are working in this direction, and we are developing an
open IR system that would allow to easily test different techniques.

We want to point out that the thesaurus generated according to LS-

Thesaurus can be useful not only in the query expansion process, but
also as a tool by itself. Moreover it can be used in an online style: the
user can ask a query, see a list of similar terms and then he can decide
to refine the query by adding some of these terms.
For the LS-Filter, we must remark its double behavior. In cases where
the query terms correctly express the concept behind the query, this al-
gorithm is able to outline and discard concepts of no interest, providing



java beans job control shell logout zip file

java 0.58136 job 0.42763 shell 0.68739 file 0.71548
bean 0.54392 background 0.12985 bourne 0.11818 util 0.16258
jdk 0.24954 echo 0.10754 login 0.09497 zip 0.15056
property 0.09444 number 0.09974 perl 0.09123 checksum 0.09776
nbsp 0.08534 list 0.07858 prompt 0.09851
amp 0.07158 control 0.06929
job 0.07119 ctrl 0.06882
program 0.06206 object 0.06669
value 0.05819 line 0.05827

filename 0.05827

Table 1. Examples of query expanded by LS-Filter: user queries (first row) and the
corresponding terms and weights.

more suited terms for the search. Sometimes (very often) query terms
are still ambiguous and don’t catch the real concept of interest. In these
cases, we are not able to provide a correct retrieval; furthermore, the con-
cept filtering can cut-off the concept of interest (with no high ranking),
providing absolutely incorrect terms. The performances, in these cases,
are vary bad, worse than simple text-matching. That is why in some
cases the average graphics show for LS-Filter performances comparable
to simple text-matching search.
This technique could be more effective if an appropriate user relevance
feedback helps to discriminate relevant concepts in cases of ambiguous
queries. In the system we are implementing, we want to provide the
ability to select from the collection a set of terms with high discrimi-
nating power above concepts. In this way, every retrieved document is
presented with all the discriminating terms it contains. Furthermore, ev-
erytime there is an ambiguity in the query among two or more concepts,
the system is able to prompt the user for selection (/deselection) of the
discriminating terms associated with ambiguous concepts. By selecting
(/deselecting) one or more of these terms, or one or more of the retrieved
documents, the user implicitly choices the concept of interest, allowing
this way a more precise retrieval.
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Abstract. The Semantic Web is a quite controversial concept, which is 
discussed extensively. Nevertheless most discussions showed that ways 
handling semantic metadata are needed urgently. Semantic metadata allows the 
storage of information which not only includes a set of concepts, but also the 
relations between the concepts in computable way. Within this paper an 
indexing and retrieval technique for semantic metadata is presented. The paper 
includes the discussion of a graph based data model for MPEG-7 based 
semantic metadata and an indexing technique for this model is outlined. Details 
on the implementation are given and a preliminary evaluation of the retrieval 
performance is included. As a last chapter related work is compared to our 
approach and pointers to related projects are given. 

Introduction  

While low level metadata of multimedia documents can be extracted automatically, 
high level and semantic metadata has to be created manually or semi-automatically. 
Current research projects aim to optimize the extraction of high level metadata and so 
to bridge the semantic gap, which identifies the inability of machines to gain 
understanding of the meaning of the data without human help (see also 
[DelBimbo1999], [Smeulders2000]). At present, semantic descriptions have to be 
created, at least in parts, manually. Human computer interaction (HCI) methods and 
information retrieval methods exist, that support the user in the annotation task. 
Different formats and approaches for creation and storage of semantic descriptions are 
currently discussed and in use, wherefrom MPEG-7 is one of them. 

Given that the high level descriptions already exist, retrieval mechanisms for 
searching and browsing the multimedia content based on the high level descriptions 
have to be found. In case of textual descriptions and keywords the task can be 
simplified to text and keyword retrieval. Semantic descriptions, as they are used in 



this paper, consist of concepts and relations, which allow the expression of complex 
issues like for instance the fact “Mathias Lux is in Graz, which is in Austria” in a 
machine interpretable manner, leaving no room for misinterpretation. Semantic 
descriptions in our understanding belong to the area of knowledge representation and 
ontologies, which is described in short in the context of the Semantic Web in 
[Daconta 2003].  

MPEG-7, called the Multimedia Content Description Interface, is, unlike MPEG-1, 
2 and 4, no video or audio coding standard but a XML based standardized way to 
store annotations for multimedia documents (see e.g. [Martinez 2003]). MPEG-7 
documents are built from descriptors, which are organized in descriptor schemes. One 
specific part of MPEG-7, the Semantic Descriptor Scheme (Semantic DS), allows the 
creation of semantic annotations based on a standardized and extendable ontology for 
annotation of multimedia content. Within the Semantic DS different Semantic 
Descriptors (Semantic Ds) are specified, which represent for instance agents, 
locations, events, time points or periods or concept. These Semantic Ds are 
interconnected pair wise with Semantic Relations, which are defined within the 
MPEG-7 standard (e.g. agentOf, patientOf, locationOf, etc.). The Semantic DS allows 
describing e.g. the content of a scene or an image like specifying: “The location of 
Mathias Lux is Graz, which in Austria”. An example of a visual representation of a 
semantic description is given in Fig. 4. MPEG-7 can be expressed either in XML or a 
binary representation optimized for transmission and storage. A comprehensive 
description of the Semantic DS and its usage within an application are given in 
[Martinez 2003]. The MPEG-7 standard and its applications are described in detail in 
[Kosch 2003]. 

While the MPEG-7 standard defines how semantic descriptions have to be stored 
and coded and how these definitions can be adopted and extended, it fails to define 
how to retrieve multimedia content using these semantic descriptions. Applying 
Semantic Web1 ideas and methods the MPEG-7 based semantic annotations can be 
converted to RDF2 (see [Hunter 2001] for details) and stored within a triple database, 
which allows querying the semantic descriptions with a RDF specific query language 
like SPARQL3. This allows data retrieval of the semantic descriptions (For more 
information on the Semantic Web see [Daconta 2003]). To realize information 
retrieval on semantic descriptions, featuring for instance retrieval and ranking of 
partially matching semantic annotation, above method is not applicable (for a detailed 
discussion on differences between information and data retrieval see [Baeza-Yates 
1999]). Although with SPARQL a precise query using a complex query language can 
be defined, partial matches or result sorting based on relevance functions, which 
allow the ranking of the results of the query, are not supported. Ongoing work on 
searching ontologies and RDF based information is described at the end of this paper. 

Within this paper an approach for an extended retrieval mechanism, based on 
standard information retrieval techniques, for MPEG-7 based semantic descriptions is 
given. The approach has been implemented within a prototype and extends a previous 
approach (see [Lux 2005]) in precision and recall. In the next chapter the method is 

                                                           
1 http://www.w3.org/2001/sw/ 
2 http://www.w3.org/RDF/ 
3 http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/ 



described. The proposed method has been implemented within an open source 
project4, details are given in section 3. The evaluation in section 4 is followed by a 
conclusion in section 5. An outlook on future developments and research task is given 
to close the paper. 

Architecture 

The main goal of this approach is to overcome the restrictions of inference used for 
searching semantic metadata by merging graph matching methods with current state 
of the art text methods. Thereby the benefits of semantic enriched descriptions and the 
performance of current retrieval information retrieval methods is combined. TF*IDF, 
which is short for Term Frequency - Inverse Document Frequency, is a method for 
term weighting in text document indices to enhance retrieval performance while 
inverted lists or files allow fast term based retrieval of text documents (see [Baeza-
Yates 1999] or chapter 14 in [Hand 2001] for details).  

The input for the retrieval process is a semantic description, given by the user. The 
output lists all relevant semantic descriptions in the database sorted by their relevance 
compared to the query. To achieve these goals a mathematical and data model for the 
semantic descriptions had been built and a retrieval strategy had been created. 

The Model of the MPEG-7 Semantic Description Scheme 

All semantic descriptions consist of nodes, which are semantic descriptors extended 
from the semantic base descriptor, and relations, which interconnect two different 
nodes. The MPEG-7 Semantic DS can be seen as directed graph, whereas the nodes 
are the vertices and the relations are the directed edges. The graph is not necessarily 
connected, as relations are not mandatory. As all the nodes and relations are identified 
by descriptors, a semantic description is a labeled graph, whereas the MPEG-7 
descriptors are the labels for the edges and vertices. Screenshots of visual 
representations are given in Figure 1 and Figure 5. 

For the definitions of graphs, directed graphs (digraphs) and labelled graphs see 
[Diestel 2000] or [Tittmann 2003]. For the sake of simplicity two nodes cannot be 
connected through two different relations and a relation cannot have one single node 
as start and end node. In graphs based on semantic DS no two nodes can have the 
same label (the same descriptor), so the node labels are unique. Each directed edge 
can be inverted as there exists an inverse of each MPEG-7 based semantic relation. 
 

                                                           
4 Caliph & Emir is available at sourceforge.net: http://caliph-emir.sourceforge.net 



Fig. 1. Example of the representation of a MPEG-7 based semantic description. The green 
boxes represent the semantic objects, while the blue labeled arrows symbolize the relations of 
the description. 

The Term Space for the MPEG-7 Semantic DS 

Based on the identified constraints of a directed labelled graph with unique node 
labels and edges, that can be inverted, an efficient retrieval strategy can be designed 
as follows: The idea of fast retrieval of graph based structures is not new, as the 
contribution of Simmons in 1966 (see [Simmons 1966]) shows. Common retrieval 
techniques for graphs are the usage of metrics like the maximum common subgraph 
metric, or the graph edit distance. A straight forward implementation using this 
distance measures results in search time O(n), whereas n defines the number of graphs 
in the database. Please note that the distance or similarity calculation between two 
graphs is NP-hard in respect to the number of nodes and edges of the graphs to 
compare (see e.g. [Valiente 2002]). Another approach is the filtering of the database 
with a fast (less than linear search time) algorithm and the ranking of the results with 
a slower metric which is described in chapter 12 in [Baeza-Yates 1999]. This method 
has been successfully used for graphs e.g. in [Fonseca 2004] for clipart retrieval by 
using graph eigenvalues as filters like in [Shokoufandeh 1999]. A more promising 
approach for MPEG-7 semantic DS, if the usage of an existing text search engine is 
constraint, is the usage of a path index (see e.g. the description of GraphGrep or the 
Daylight database in [Shasha 2002]). A path index allows the fast retrieval of graphs 
based on paths (sequences of nodes connected by edges, whereas the number of edges 
defines the length o the path) of different lengths extracted from the graphs. The 
extracted paths can be interpreted as index terms for a graph. 

The graph can be expressed using all paths, which are sequences of nodes 
interconnected by edges, of chosen length. Paths of length 0 are the nodes themselves 
while paths of length 1 are triples as used in RDF. Paths of length 0 and length 1 have 
unique string representations for MPEG-7 based semantic descriptions as shown in 



[Lux 2005]. To allow the usage of wildcard nodes at least the paths of length 2 have 
to be used, for which a unique string representation can be defined as shown below. 
The graph can be stored using the paths of length 0, 1 and 2 as index terms. Using a 
query graph all paths of the query graph are extracted and used as search terms. The 
ranking is done by TF*IDF on the index terms, which are the paths of the graphs. 

Implementation 

For the implementation an existing open source tool, called Emir (from Experimental 
Metadata based Image Retrieval), has been extended. Together with the annotation 
tool Caliph (Common And LIght-weight PHoto annotation) Emir allows the 
organisation, annotation and retrieval of digital photos based on MPEG-7 documents. 
Emir features content based and keyword based retrieval of images annotated by 
Caliph. Based on the open source retrieval engine Lucene5 an index for node 
descriptors has been implemented in a previous project (see [Lux 2005]), where the 
string representations of paths of length 0 and 1 also have been implemented. As the 
query graph can consist of query strings for the node values, query expansion based 
on the node descriptors is used as described in [Lux 2005]. All path representations 
are constructed from node IDs, which identify a unique node descriptor in the index, 
and relation names or wildcards for nodes or relations. For the usage for terms within 
Lucene the path representations were adopted: all white spaces were replaced by ‘_’ 
and all paths start with a leading ‘_’. The leading ‘_’ allows the usage of wildcards at 
the start of a path expression. 

 

Fig. 2. Example for a graph following the model of MPEG-7 semantic DS graph. Node 
descriptors are already substituted with node IDs. Only the node IDs, which point to the node 
descriptors, are shown. 

For the graph given in Figure 2 the terms for paths of length 0 and 1 would for 
example be: 

                                                           
5 http://lucene.apache.org 



Table 1. Extracted path terms of length 0 and 1 from graph shown in Fig 1. Note that the path 
_locationOf_4_2 has been inverted. This is done to normalize the edge directions in the index. 

Term Path length 
_1 0 
_2 0 
_3 0 
_4 0 
_agentOf_1_2 1 
_locationOf_4_2 1 
_patientOf_3_2 1 

  
For the creation of terms from paths of length 2 following method has been 
introduced: The input of the method is either a graph representing a semantic DS or a 
query graph. In a first step all paths of length 2 are extracted from the graph (see 
[Valiente 2002] for details on the algorithms). For each of these extracted paths the 
unique string representation has to be created as follows: 
 

1. Compare the start node of the path with the end node of the path 
2. If the start node is bigger than the end node reverse the path: 

a. Switch end and start node 
b. Switch and invert first and second relation 

3. Create string in order: start node – first relation – middle node – second 
relation – end node with ‘_’ as separator. 

4. Prepend ‘_’ to the string. 
 
This results for the graph shown in Fig. 1 in following additional path terms: 

Table 2. This table shows all available extracted path terms of length 2 from the graph shown 
in Figure 2. 

Term Path length 
_1_agentOf_2_patient_3 2 
_1_agentOf_2_location_4 2 
_3_patientOf_2_location_4 2 

 
All these above shown terms are used to index the semantic description with Lucene, 
all terms are used as Lucene tokens without stemming or other pre-processing. For 
queries the terms are constructed in a similar manner with one exception: Wildcards 
for nodes and relations can be used. For relations the adoption is straightforward: As 
Lucene supports wildcard queries for a wildcard relation the String ‘*’ is inserted 
instead of the relation name, e.g. _*_1_2 instead of _agentOf_1_2. To support 
undirected wildcard relations two relation query terms are constructed and combined 
with a Boolean OR, like (_*_1_2 OR _*_2_1) . For paths of length 2 only the ‘*’ is 
inserted instead of the relation name as the order of the path only depends on the start 
and end node.  

For nodes in paths of length 0 the query string is omitted. For paths of length 1 and 
middle nodes in paths of length 2 the node ID is replaced with a ‘*’. For start and end 



nodes in paths of length 2 a Boolean query clause has to be constructed as the order of 
the start and end node cannot be used to identify the term representation, e.g. 
(_*_patientOf_2_location_4 OR 4_locationOf_2_patient_*). Note that the relations 
have to be inverted in this case. 

A simple example for a wildcard query would be: “Find all semantic descriptions 
where Mathias Lux is doing something at the I-Know”. In a first step possible 
candidates for nodes are identified to construct the query graphs. Assuming that for 
Mathias Lux the node with ID 28 has been found, while for I-Know the node with ID 
93 has been found, the query graph would look like “[28] [93] [*] [agentOf 1 3] 
[locationOf 3 2]”. The numbers within the relations reference the node using their 
position in the node list. Such a query would result in a query like “_28 _93 
_agentOf_28_* _locationOf_*_93 _28_agentOf_*_locationOf_93”.  

Note that arbitrary methods, which are not restricted to text retrieval, could be used 
to identify candidate nodes in this approach. Methods different from term based text 
retrieval were not implemented in this state of the project but possible mechanisms 
include multimedia retrieval like content based image retrieval, or Latent Semantic 
Indexing. 

Evaluation 

The data repository, which was used for evaluation, consists of 85 different semantic 
descriptions of digital photos from two different scientific conferences, the I-Know 02 
and the I-Know 04.  

Table 3. This table summarizes the size of the graphs of the test data set. In the description 46 
different semantic objects (names, locations, events, etc.) were used. 

 Min Max Median 
Nodes 3 11 5.5 
Relations 2 12 5.6 

 
All descriptions consist of a minimum of 3 nodes up to 11 nodes with a median of 5.5 
nodes and 2 to 12 relations with a median of 5.6. Each of these descriptions was taken 
as query input for the evaluation and the average precision at 11 standard recall levels 
was calculated. The test set was generated by taking the query graph, and ranking all 
graphs based on the maximum common subgraph distance. The maximum common 
subgraph distance, formally defined and proved as metric in [Bunke 1998], was 
chosen, because it is a metric that takes structure as well as content into account and it 
is a good representative for a group of similar metrics including the graph edit 
distance and the minimum common supergraph metric The main idea of this metric is 
to compare the size of the maximum common subgraph mcs(G1, G2) to the maximum 
of the size of the Graphs G1 and G2 as shown in (1) (see also [Bunke 1997]).  
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The best ten ranked documents made up the test set and precision and recall for the 
query results based on the path index and the full text index were calculated. For the 
full text index search the node IDs were converted back to the node labels, which 
were concatenated to a query string. The full text index itself contains all non-tag 
strings of the MPEG-7 XML document, including all semantic object labels, 
descriptions, etc. 
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Fig. 3. Average precision at 11 standard recall levels using a test set generated with the 
maximum common subgraph metric. The lowest graph shows the performance of the full text 
search compared maximum common subgraph metric, while the other three graphs show the 
performance of path index based method using different term weighting schemes. 

As can be seen easily the usage of the path index gives a better retrieval performance 
compared to the full text index for a test set generated with the maximum common 
subgraph distance. This can be easily explained as the full text index cannot take the 
structure of the semantic descriptions with its relations and paths into account, while 
the path index, to a limited account, can do this.  

Experiments with different relevance functions, which are called “scoring 
functions” in Lucene, revealed that there is an obvious difference between the built-in 
Lucene Scorer and a straight forward classical TF*IDF implementation.  
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The Lucene scoring function, shown in (2), can be explained as follows: TF(t, d) 
calculates the term frequency of term t in document d by using the square root of the 
term count, IDF(t) the inverse document frequency of the term defined by 
log(numDocs/(docFreq+1)) + 1. Function b(t.field, d) takes the boost factor for the 
specific field into account, while lNorm(t.field, d) penalizes longer fields with much 
content. With the function coord(q, d) documents matching more terms of query q are 
scored higher, while qNorm(q) tries to normalize the score based on the length of the 
query. 

The tested term weighting schemes used in the valuation were taken from the 
Lucene implementation. For the classical TF*IDF weighting  the score function 
shown in (2) was modified by removing all factors inside the sum apart from  TF(t, d) 
and IDF(t), for the TF weigthing scheme the IDF(t) factor was removed too. 

The Lucene scoring function outperforms the classical TF*IDF implementation 
and the term frequency scoring function. We assume that the coord(q, d) factor is the 
reason for the different performance of the classical TF*IDF and the Lucene score 
function by reflecting the denominator of the maximum common distance metric. 
Between classical TF*IDF implementation and the term frequency scoring function 
only slight differences in retrieval performance can be identified. 

Conclusion 

Comparing the path index with the full text index based approach and taking a look at 
the precision and recall it can be easily seen, that the resulting relevance function is 
more similar to the maximum common subgraph metric than the relevance function 
based on terms in the full text index, which allows the retrieval of descriptions that 
have a common sub-description with the query description. The adopted TF*IDF 
based scoring function of Lucene proves as best choice for calculating relevance of 
matching documents. The approach based on triples of 1-path indices stored in a file 
for retrieval with regular expressions, as presented in [Lux 2005], has in comparison 
to the method presented in this paper only limited use. While the 2-path index based 
technique allows the retrieval of model graphs, which have a common subgraph with 
the query graph, the approach in [Lux 2005] only allows retrieval of model graphs, 
where the query is a subgraph of the model graph. 

One of the benefits of the presented method is the expected increased runtime 
performance. This is because of the term index based retrieval compared to the linear 
search although the worst case, where a term (or path in this case) is part of each 
graph in the database, also has runtime linear in the number of graphs. Linear search 
using the maximum common subgraph metric is rather slow as the problem of 
subgraph isomorphism is in NP (see e.g. [Valiente 2002]). Additional benefit is the 
increased focus on the graph structure of the semantic descriptors, which increases the 



precision compared to the full text index approach. The support for precise search 
with wildcard nodes is limited to one wildcard node in a 2-path:  

 

Fig. 4. Two examples for a graphical query, where '*' denotes a wildcard node. In Query 1 
there is only one wildcard, while in Query 2 two wildcards in a sequence occur. 

Following example shows the problem with two wildcards in a row based on the 
queries shown in Figure 4: For Query 1 in the retrieval of structures similar to the one 
shown above can be guaranteed, as the constructed query terms 
“_1_relation_*_relation_2” and “_*_relation_2_relation_3” define Query 1 
unmistakeable. For Query 2 the terms “_1_relation_*_relation_*” and 
“_*_relation_*_relation_3” could also match a graph with only three nodes like the 
one identified by term “_1_relation_2_relation_3”.  

Due to the usage of Lucene as search engine the retrieval is fast and stable and the 
implementation effort could be minimized as TF*IDF and inverted lists were not 
implemented for this project.  

The usage of the query expansion mechanism for generation of the query graphs 
resulted in performance problems with very unspecific queries as reported in [Lux 
2005]. Within this extension a solution based on query refinement was integrated: For 
each node defined by a query string a list of possible candidate nodes is shown. A 
selection of one candidate node is possible to reduce the number of expanded query 
graphs. 



 

Fig. 5. Integration of the selection of possible candidates for a node to reduce the number of 
expanded query graphs. With a mouse click a context menu appears which allows the selection 
of a specific node. 

While the original query of Figure 5 would result after expansion in 14 query graphs, 
a selection of one of the nodes in the context menu would reduce the number of query 
graphs to 2. 

Future Work 

Above evaluation has shown that the usage of a 2-path index improves retrieval 
performance. Another interesting aspect to evaluate is the general performance for 
differing sizes of paths, longer than 2 edges. Another evaluation task will be to create 
test sets based on wildcard node queries and define result sets with an error correcting 
maximum common subgraph (mcs) distance measure as described in [Berretti 2004]. 
This error correcting maximum common subgraph distance allows the integration of 
node and edge distances and optimizes the distance between two graphs to a 
minimum. This method is currently used in the area of content based image retrieval, 
but can be adapted to the retrieval of semantic metadata easily provided that node and 
edge distance functions exist. 

The technique introduced within this paper can also be applied to other graph 
based representations of semantic information like it is done in the Semantic Web 



standards RDF and OWL6. Further adoptions to standards and scenarios that aren’t 
based on MPEG-7 are currently issue of research.  

Another promising idea is the usage of the suffix tree retrieval model (see [Meyer 
zu Eissen 2005] for details) instead of the vector space model. Retrieval with the 
suffix tree model using the paths of a graph would allow the efficient search for 
graphs, which have paths in common. This allows the combination of content and 
structure, like it is done by sophisticated graph matching algorithms like error 
correcting maximum common subgraph distance of Berretti et. al. 

State of the Art Graph based and Semantic Web Retrieval 

In contrast to the presented approach inference has been identified in [Carroll 2002] 
as main tool for retrieval in the Semantic Web. Examples for inference based queries 
are “Show me every photo showing a person is living in Graz” or “Play a rock concert 
recorded in Graz, where at least one rock band member has long hair”. All facts are 
investigated and all matching true facts fulfilling all given constraints are returned. 
This is a Boolean concept as there is no grade of falseness or truth. Although it was 
tried to show that distance calculation between graphs based on graph isomorphism, 
which is also called graph matching, does not prove useful for RDF, recent work 
shows possible applications for MPEG-7 (see Lux and Granitzer in [Lux 2005]) and 
conceptual graphs (see [Zhong 2002], [Zhu 2002] and [Yang 1993]). As Corby, Dieng 
and Hubert showed in [Corby 2000] that there is a bijective transformation between 
conceptual graphs and the RDF/XML serialization of the RDF Model the results of 
Zhong et. al. can be applied to RDF as well. Arguments against inference in semantic 
search engines are summarized in [Alesso 2004]. Main points of critique are the 
incompleteness and the halting problem for large ontologies. 

Search engines for the Semantic Web, which do not rely on inference, have been 
already created using different approaches. In [Rocha 2004] a retrieval system, which 
allows the retrieval of resources in an ontology by spreading activation, was 
presented. The main flaw of this approach is that an overall ontology has to be built, 
which implies that many small heterogeneous ontologies have to be mediated. The 
OntoSeek system, described in [Guarino 1999], implements query expansion of 
search queries based on ontologies. The actual retrieval process does no take relations 
into account, but relies on terms identifying concepts. The ranking of the results is 
done using a graph similarity metric. The metadata search engine Swoogle (see [Ding 
2004]) harvests and indexes RDF based metadata and ontologies and allows retrieval 
based on the literals used in the indexed RDF data. Ranking of the results is based on 
the in and out degrees of the found nodes and concepts, similar to the PageRank 
algorithm (for details on PageRank see e.g. [Rogers 2002]). 

In [Stojanovic 2003] a ranking mechanism for matching expressions resulting from 
inference is given. The query is formulated in an ontology query language, matching 
instances within an ontology driven knowledge base are returned. The approach is 
based on node distance in hierarchical structures or in other words on a tree edit 

                                                           
6 http://www.w3.org/TR/owl-features/ 



distance measure. To create a query a user has to acquire knowledge upon the 
underlying ontology. As though this approach could be used to solve a part of the 
problems solved with our method several differences can be stated: In comparison to 
the technique presented in this paper the query formulation heavily depends on the 
ontological definition of the conceptual hierarchy of the knowledge base. The 
querying mechanism focuses on the retrieval of concept fulfilling different aspects 
defined in the query, while the technique presented in this paper aims to retrieve 
graph based structures similar to the one a user specified. Unlike the approach in of 
Stojanovic et. al. the approach presented in this paper allows the retrieval using a not 
connected graph (a non empty graph G is called connected if any two vertices are 
linked by a path in G). Furthermore our approach is performance optimized as it uses 
adopted standard approved text retrieval methods. 

In [Shasha 2002] GraphGrep was introduced, an approach for indexing undirected 
graphs with node labels, which are unique within a single graphs. The approach can 
be easily adopted to directed graphs with labelled nodes and edges and uses a path 
index of variable length, which means in this case that the maximum length of the 
indexed paths can be given at indexing time. However this approach does not allow 
wildcard queries, was only used for database filtering and does not give a relevance 
function for the retrieved graphs. It has not been tested upon retrieval performance 
and size of the index. 

 [Yan 2004] introduces a system for the retrieval of chemical structures, which is 
capable of indexing graphs based on their paths. The decision upon which paths are 
integrated in the index is made using a graph structure frequency measure. This 
frequency measure implements a TF*IDF variant and allows the indexing of paths, 
which are longer and more significant instead of many less significant paths, which 
are omitted for indexing. Unfortunately the authors did not evaluate the retrieval 
performance using precision and recall, although their approach is compared to 
GraphGrep. However a comparison with our approach would be inapproprioate: The 
use case of retrieving chemical structures is quite different to the use case of retrieval 
of MPEG-7 based semantic descriptions: Within molecules node labels are not 
unique, e.g. paths of different lengths consisting of multiple carbon atoms can occur, 
for instance in benzene hexachloride. 
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Abstract Cluster analysis is the art of detecting groups of similar objects in large data sets—
without having specified these groups by means of explicit features. Among the various cluster
algorithms that have been developed so far the density-based algorithms count to the most ad-
vanced and robust approaches.

However, this paper shows that density-based cluster analysis embodies no principle with clearly
defined algorithmic properties. We contrast the density-based cluster algorithms DBSCAN and
MajorClust, which have been developed having different clustering tasks in mind, and whose
strengths and weaknesses can be explained against the background of the dimensionality of the
data to be clustered.

Our motivation for this analysis comes from the field of information retrieval, where cluster anal-
ysis plays a key role in solving the document categorization problem. The paper is organized as
follows: Section 1 recapitulates the important principles of cluster algorithms, Section 2 discusses
the density-based algorithms DBSCAN and MajorClust, and Section 3 illustrates the strengths
and weaknesses of both algorithms on the basis of geometric data analysis and document catego-
rization problems.

Key words: density-based cluster analysis, high-dimensional data, document categorization

1 Cluster Algorithms

This section gives a short introduction to the problem of cluster analysis and outlines existing cluster
approaches along the classical taxonomy. Moreover, it presents an alternative view to cluster algo-
rithms, which is suited to explain different characteristics of their behavior.

1.1 The Classical Taxonomy of Cluster Algorithms

Definition 1 (Clustering). Let D be a set of objects. A clustering C ⊆ {C | C ⊆ D} of D is a
division of D into sets for which the following conditions hold:

⋃
Ci∈C Ci = D, and ∀Ci, Cj ∈ C :

Ci ∩ Cj �=i = ∅. The sets Ci are called clusters.

With respect to the set of objects D the following shall be stipulated:

– |D| = n
– The objects in D represent points in the Euclidean space of dimension m.
– Based on a metric d : D × D → R, the similarity or the dissimilarity between any two points in

D can be stated.
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Figure 1. The classical taxonomy of cluster algorithms.

A cluster algorithm takes a set D of objects as input and operationalizes a strategy to generate a
clustering C. Informally stated, the overall objective of a cluster algorithm is to maximize the inner-
cluster similarity and to minimize the intra-cluster similarity. The fulfillment of this objective can be
quantified by a statistical measure like the Dunn index, the Davies-Bouldin index, or the Λ-measure
[3, 5, 35].

Various cluster algorithms have been devised so far; usually they are classified with respect to their
underlying algorithmic principle, as shown in Figure 1. Note that among these principles only the
meta-search-controlled algorithms pursue a strategy of global optimization; hierarchical, iterative, as
well as density-based algorithms are efficient implementations of particular heuristics. In the following
we shortly outline the working principles.

Hierarchical Algorithms. Hierarchical algorithms create a tree of node subsets by successively subdi-
viding or merging the objects in D. In order to obtain a unique clustering, a second step is necessary
that prunes this tree at adequate places. Agglomerative hierarchical algorithms start with each ver-
tex being its own cluster and union clusters iteratively. For divisive algorithms on the other hand, the
entire graph initially forms one single cluster which is successively subdivided. Representatives are k-
nearest-neighbor, linkage, Ward, minimum-spanning-tree,or min-cut methods . Usually, these methods
construct a complete similarity matrix, which results in O(n2) runtime [8, 10, 32, 17, 25, 38, 40].

Iterative Algorithms. Iterative algorithms strive for a successive improvement of an existing cluster-
ing and can be further classified into exemplar-based and commutation-based approaches. The former
assume for each cluster a representative, i. e. a centroid (for interval-scaled features) or a medoid (oth-
erwise), to which the objects become assigned according to their similarity. Iterative algorithms need
information with regard to the expected cluster number, k. Well-known representatives are k-Means,
k-Medoid, Kohonen, Fuzzy-k-Means. The runtime of these methods is O(nkl), where l designates the
number of iterations to achieve convergence [16, 27, 20, 23, 39, 13, 14, 24, 15, 36].

Commutation-based approaches take a random clustering or the outcome of another cluster algo-
rithm as starting point and successively exchange nodes between the clusters until some cluster quality
criterion is fulfilled [9, 21, 19].

Density-based Algorithms. Density-based algorithms try to separate the set D into subsets of similar
densities. In the ideal case they can determine the cluster number k automatically and detect clusters
of arbitrary shape and size. Representatives are DBSCAN, MajorClust, or Chameleon. The runtime
of these algorithms is in magnitude of hierarchical algorithms, i, e., O(n 2), or even O(n log(n)) for
low-dimensional data if efficient data structures are employed [34, 7, 18].

Meta-Search Algorithms. Meta-search algorithms treat clustering as an optimization problem where
a global goal criterion is to be minimized or maximized. Though this approach offers maximum
flexibility, there runtime is typically unacceptably high. Meta-search driven cluster detection may
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Table 1. Characterization of cluster algorithms with respect to the number of investigated items (points, clusters)
and their ability to recover from suboptimum decisions.

be operationalized by genetic algorithms, simulated annealing, or a two-phase greedy strategy
[2, 30, 31, 30, 29, 11, 22, 41].

1.2 An Alternative View to Cluster Algorithms

Experience has shown that—with respect to the clustering quality—density-based cluster algorithms
outperform hierarchical as well as iterative approaches. 3 By definition, globally optimizing cluster
algorithms will produce better clustering results; however, they play only an inferior role in practice:

(1) their runtime performance is usually unacceptable compared to the other approaches,
(2) for most clustering problems it is difficult to formally specify a global goal criterion.

Hierarchical cluster algorithms are well suited to detect complex structures in the data; however,
they are susceptible to noise. Both properties result from the fact that—based on a pairwise similarity
comparison of any two items—nearest neighbors are always fusioned. Iterative algorithms behave
robustly with respect to noise but preferably detect spherical clusters. Density-based cluster algorithms
provide a high flexibility with respect to cluster forms and address the problem of noise detection by
simultaneously examining several items. Table 1 summarizes the properties.

The following section presents two density-based cluster algorithms in greater detail and discusses
their properties.

2 Density-based Cluster Analysis with DBSCAN and MajorClust

A density-based cluster algorithm operationalizes two mechanisms:

(1) one to define a region R ⊆ D, which forms the basis for density analyses;
(2) another to propagate density information (the provisional cluster label) of R.

In DBSCAN a region is defined as the set of points that lie in the ε-neighborhood of some point
p. Cluster label propagation from p to the other points in R happens if |R| exceeds a given M inP ts-
threshold (cf. Figure 2). The following advantages (+) and disadvantages (–) are bound up with this
concept:

+ good clustering results for geometrical and low dimensional data, if cluster distances can be in-
ferred unambiguously from the density information in D,

3 With respect to runtime performance density-based algorithms can be considered being in between hierarchical
and iterative approaches.
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Figure 2. Illustration of DBSCAN’s cluster process; to obtain the shown clustering result a MinPts-value from
{3, 4, 5} is required.

+ efficient runtime behavior of O(n log(n)), if the R-tree data structure is employed to answer region
queries for D,

– parameters that characterize the density (ε, M inP ts) are problem-specific and must be chosen
manually,

– if great variations in the point density or unreliable similarity values require a large ε-neighbor-
hood, the density analysis becomes questionable: DBSCAN implements no intra-region-distance
concept, and all points in the ε-neighborhood of some point are treated equally.

– in high dimensions (> 10-20), the underlying R-tree data structure degenerates to a linear search
and makes an MDS-embedding of D necessary, which affects both runtime and classification
performance.

In MajorClust a region is not of a fixed size but implicitly defined by the current clustering C. While
DBSCAN uses the point concentration in ε-neighborhoods to estimate densities, MajorClust derives
its density information from the attraction a cluster C exerts on some point q, which is computed as
the sum of all similarity values ϕ(q, p), p ∈ C. Cluster label propagation from C to q happens if
the attraction of C with respect to q is maximum among the attraction values of all clusters in C (cf.
Figure 3). Observe that the “true” density values for some data set D evolve during the clustering
process. The following advantages (+) and disadvantages (–) are bound up with this concept:

+ robust for narrow data sets, for high-dimensional data, and for unreliable similarity values since
the density computation does not rely on a fixed number of points and does consider distance
information as well,

+ adapts automatically to different problems: no parameters must chosen manually,
– with respect to runtime not so efficient as DBSCAN, since points are re-labeled several times,
– clusters that are extended in one dimension are not reliably identified, since during re-labeling a

tie-situation may occur (“tie-effect”).

➜ ➜*

point under investigation with
illustrated cluster attractions:

Figure 3. Illustration of MajorClust’s clustering process; each cluster C exerts attraction to some point q depend-
ing on both its size, |C|, and distance to q.



The above discussion reveals the strong and weak points of both algorithms, and the experiments
presented in Section 3 will illustrate this behavior at realistic cluster problems. The next two subsec-
tions give a pseudo-code specification of both algorithms.

2.1 DBSCAN

DBSCAN operationalizes density propagation according to the principle “accessibility from a core
point”: Each point whose ε-neighborhood contains more points than MinPts is called a core point.
Each point which lies in an ε-neighborhood of a core points p adopts the same cluster label as p.
The DBSCAN-algorithm propagates this relation through the set D. The algorithm terminates if each
points is either assigned to a certain cluster or classified as noise.

Algorithm DBSCAN.
Input: object set D, region radius ε, density threshold MinPts.
Output: function γ : D → N, which assigns a cluster label to each point.

(01) Label := 1
(02) ∀p ∈ D do γ(p) := ′UNCLASSIFIED ′ enddo
(03) ∀p ∈ D do
(04) if γ(p) = ′UNCLASSIFIED ′ then
(05) if ExpandCluster(D,p,Label , ε,MinPts) = true then Label := Label + 1
(06) endif
(07) enddo

Function ExpandCluster.
Input: object set D, CurrentPoint , Label , ε, MinPts.
Output: true or false .

(01) seeds := regionQuery(D, CurrentPoint , ε)
(02) if |seeds| < MinPts then
(03) γ(CurrentPoint ) := ′NOISE ′
(04) return false
(05) else
(06) ∀p ∈ P do γ(p) := Label enddo
(07) seeds := seeds \ {CurrentPoint}
(08) while seeds �= ∅ do
(09) p := seeds.first()
(10) result := regionQuery(D, p, ε)
(11) if |result| ≥ MinPts then
(12) ∀ResPoint ∈ P do
(13) if γ(ResPoint) ∈ {′UNCLASSIFIED ′, ′NOISE ′} then
(14) if γ(ResPoint) = ′UNCLASSIFIED ′ then seeds := seeds ∪ {ResPoint}
(15) γ(ResPoint ) := Label
(16) endif
(17) enddo
(18) endif
(19) seeds := seeds \ {p}
(20) enddo
(21) return true
(22) endif

Remarks. The function regionQuery(D, p, ε) returns all points in the ε-neighborhood of some point p.



2.2 MajorClust

MajorClust operationalizes density propagation according to the principle “maximum attraction wins”:
The algorithm starts by assigning each point in D its own cluster. Within the following re-labeling
steps, a point adopts the same cluster label as the majority of its weighted neighbors. If several such
clusters exist, one of them is chosen randomly. The algorithm terminates if no point changes its cluster
membership.

Algorithm MajorClust.
Input: object set D, similarity measure ϕ : D × D → [0; 1], similarity threshold t.
Output: function γ : D → N, which assigns a cluster label to each point.

(01) i := 0, ready := false
(02) ∀p ∈ D do i := i + 1, γ(p) := i enddo
(03) while ready = false do
(04) ready := true
(05) ∀q ∈ D do
(06) γ∗ := i if

∑
{ϕ(p, q) | ϕ(p, q) ≥ t and γ(p) = i} is maximum.

(07) if γ(q) �= γ∗ then γ(q) := γ∗, ready := false
(08) enddo
(09) enddo

Remarks. The similarity thershold t is not a problem-specific parameter but a constant that serves for
noise filtering purposes. Its typical value is 0.3.

3 Illustrative Analysis

This section presents selected results from an experimental analyses of the algorithms DBSCAN and
MajorClust. Further details and additional background information can be found in [4].

3.1 A Low-Dimensional Application: Analysis of Geometrical Data

The left-hand side of Figure 4 shows a map of the Caribbean Islands, the right-hand side shows a
monochrome and dithered version (approx. 20,000 points) of this map, which forms the basis of the
following cluster experiments.

A cluster analysis with DBSCAN requires useful settings for ε and MinPts . Figure 5 shows the
clustering results with selected values for these parameters. Note that in this application the quality of
the resulting clustering was more sensitive with respect to ε than to MinPts . 4

4 Ester et al. propose a heuristic to determine adequate settings for ε and MinPts; however, the heuristic is
feasible only for two-dimensional data [7].

Figure 4. Map of the Carribean Islands (left) and its dithered version (right).



ε = 5.0, MinPts = 4 ε = 10.0, MinPts = 5ε = 3.0, MinPts = 3

Figure 5. DBSCAN-clusterings of the Caribbean Islands for selected parameter settings.

A cluster analysis with MajorClust does not require the adjustment of special parameters. However,
to alleviate noise effects the algorithm should apply a similarity threshold of (about) 0.3, i. e., discard
all similarity values that are below this threshold. Figure 6 shows an intermediate clustering (left) and
the resulting final clustering (right); obviously not all islands where correctly identified—a fact for
which the formerly explained “tie-effect” is responsible.

3.2 A High-Dimensional Application: Document Categorization

Cluster technology has come into focus in recent years, because it forms the backbone of most docu-
ment categorization applications [33]. At the moment it is hard to say which of the approaches shown
in Figure 1 will do this job best: k-means and bisecting k-means are used because oft their robustness,
the group-average approach produces similar or even better clustering results but is much less effi-
cient, and from the density-based approaches the MajorClust-algorithm has repeatedly proved is high
classification performance especially for short documents [1].

In this place we will report on experiments that rely on the Reuters-21578 corpus, which comprises
texts from politics, economics, culture, etc. that have been carefully assigned to approx. 100 (sub-)
categories by human editors [26]. For our experiments we constructed sub-corpora with 10 categories,
each consisting of 100 documents that belong exclusively to a single category. The selected documents
were transfered into the vector space model (VSM); the necessary pre-processing includes stop-word
filtering, stemming, and the computation of term weights according to the tf -idf -scheme. Note that
the resulting word vectors represent points in a space with more than 10,000 dimensions.

Since DBSCAN relies on the R-tree data structure it cannot process high-dimensional data (see
Subsection 3.3), and multi dimensional scaling (MDS) had to be employed to embed the data into a

Figure 6. Left: Clustering after the first iterations of MajorClust; right: the resulting clustering.
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Figure 7. Classification performance of the algorithms in the document categorization task.

low-dimensional space. To account for effects that result from embedding distortions, MajorClust was
applied to both the high-dimensional and the embedded data. The quality of the generated clusterings
was quantified by the F -measure, which combines the achieved precision- and recall-values relative to
the 10 classes.5

Figure 7 shows the achieved classification performance: The x-axis indicates the number of di-
mensions of the embedding space (from 2 to 13), the y-axis indicates the F -measure value. The hori-
zontal line with an F -measure value of 0.72 belongs to MajorClust when applied to the original, high-
dimensional data; with respect to the embedded data MajorClust dominates DBSCAN—independent
of the dimension. In particular, it should be noted that the shown (high) F -measure values for DB-
SCAN are the result of extensive experimenting with various parameter settings.

Observe in Figure 7 that embedding can actually improve classification performance: If the num-
ber of dimensions in the embedding space equals the cluster number or is slightly higher, the noise-
reduction effect compensates for the information loss due to the embedding error. 6 Put another way:
Each dimension models a particular, hidden concept. This effect can be utilized for retrieval purposes
and became known as Latent Semantic Indexing [6].

3.3 A Note on Runtime Performance

Both algorithms implement a density propagation heuristic that analyzes a region R with k contiguous
points (recall Table 1). Based on R, DBSCAN performs a simple point count, while MajorClust eval-
uates the similarities between all points in R and some point q. Given an efficient means to construct
the region R as ε-neighborhood of a point p, the runtime of both algorithms is in the same order of
magnitude (cf. Figure 8).

To answer region queries, the R-tree data structure was employed in the above experiments [12].
For low-dimensional data, say, m < 10, this data structure finds the ε-neighborhood for some p in
O(log(n)), with n = |D|. As a consequence, the runtime of both algorithms is in O(n log(n)). Since

5 An F -measure value of 1 indicates a perfect match; however, F -measure values > 0.7 must be considered as
certainly good since we are given a multi-class assignment situation where 10 classes are to be matched.

6 The embedding error is called “stress” in the literature on the subject.
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MajorClust evaluates the attraction of each point several times, its runtime is a factor above the runtime
of DBSCAN.

Note that the R-tree data structure degenerates for higher dimensions (m > 100) and definitely
fails to handle the high-dimensional vector space model. 7 I. e., a high-dimensional cluster analysis task
like document categorization cannot directly be tackled with DBSCAN but requires a preceding data
embedding step. At the moment the fastest embedding technology is the MDS-variant described in
[28], which has not been tested for high-dimensional document models yet.

Summary and Current Work

This paper presented the classical and a new view to cluster technology and then delved into a com-
parison of the density-based cluster algorithms DBSCAN and MajorClust. This comparison is the first
of its kind and our discussion as well as the experiments are interesting for the following reasons:
(1) Density-based cluster analysis should be considered as a collective term for (heuristic) approaches

that quantify and propagate density information. In particular, no uniform statements regarding
runtime-behavior or suited problem classes can be made.

(2) Since strengths and weaknesses of (density-based) cluster algorithms can be explained with the
dimensionality of the data, a better mapping from algorithms to cluster problems may be devel-
oped.

Our current work concentrates on runtime issues of density-based cluster analysis for high-
dimensional data: We investigate how the technology of Fuzzy fingerprints can be utilized to speed-up
the region query task; the key challenge in this connection is to handle the inherent incompleteness of
this retrieval technology.
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