
A Thread of HOL DevelopmentMihael Norrish and Konrad SlindUniversity of Cambridge Computer LaboratoryEmail: fmn200,kxsg�l.am.a.ukThe HOL system is a mehanized proof assistant for higher order logi that hasbeen under ontinuous development sine the mid-1980s, by an ever-hanginggroup of developers and external ontributors. We give a brief overview of vari-ous implementations of the HOL logi before fousing on the evolution of ertainimportant features available in a reent implementation. We also illustrate howthe module system of Standard ML provided seurity and modularity in the on-strution of the HOL kernel, as well as serving in a separate apaity as a usefulrepresentation medium for persistent, hierarhial logial theories.Reeived July 20, 2000; revised July 20, 2000; aepted July 20, 20001. INTRODUCTIONIn the early 1980s, Mike Gordon took up an implemen-tation of Churh's formulation of Simple Type The-ory (1) as a platform for researh in hardware veri�-ation. Both the logi and the system were alled HOL(Higher Order Logi). Gordon reounts the story of thedevelopment of HOL in (2). The implementation andthe logi were both inuential, spawning muh researh,and also other implementations.The original HOL implementation was derived fromthat of LCF (3), and subsequent implementations ofHOL ontinue to be heavily inuened by ideas fromLCF. The LCF approah implements a logi in a stronglytyped programming metalanguage. The entral designtenet of an LCF-style system is that the primitive in-ferene rules of the logi are the only onstrutors ofan abstrat type of theorems. The type of theorems isthe enterpiee of the kernel of the logi. On top ofthe kernel, people not experts in the logi an safely de-velop further failities and theories by programming inthe metalanguage.There have been a number of implementations of theHOL logi in the LCF tradition:HOL88 (4) was the �rst major publi release of an im-plementation of HOL. The system was responsiblefor the popularity of HOL, and had a large amountof support theories, and doumentation. The sys-tem was programmed in Classi ML, the originalML language developed in the LCF projet. ClassiML was itself implemented in Lisp.HOL90 (5) was a re-implementation, by the seond au-thor (under the supervision of Graham Birtwistle),of HOL88 in Standard ML (SML). The goal ofHOL90 was to provide nearly-idential funtional-ity to HOL88, but with more speed.ProofPower (6) is a omplete re-implementation of

HOL, also in SML, by a team from ICL. One ma-jor appliation of the system has been to providea mehanization of the Z spei�ation language.ProofPower was reently used to verify a `one-wayregulator'. This is a real industrial system and wasthe �rst formal veri�ation to attain the highestlevel of erti�ation from the UK authorities (7).Isabelle/HOL (8) is an appliation of the Isabelle log-ial framework to the HOL logi. Isabelle/HOL isone of the most highly-engineered HOL systems.There are many novelties in Isabelle/HOL; perhapsthe most important is that rules are not programs,as in LCF, but are formulae in the Isabelle meta-logi. In Isabelle, inferene rules are applied viahigher order uni�ation.LAMBDA (9) was a ommerial implementation ofHOL by the ompany Abstrat Hardware (now de-funt). The implementation was inuened by theIsabelle approah: rule appliation was by higherorder uni�ation. LAMBDA provided a highly de-veloped user interfae for hardware design.HOL Light (10) had its genesis in an SML implementa-tion by John Harrison and the seond author aimedat disovering how small a HOL kernel ould be.Harrison then ported the system to Caml-Light andhas sine redeveloped it ompletely. HOL Light isnow being used for oating point algorithm veri�-ation at Intel (11).HOL98 began as an adaptation, by Ken Larsen andthe seond author, of HOL90 to Mosow ML. Theemphasis of Mosow ML on fast separate ompila-tion enabled a signi�ant re-design of the system,parts of whih are desribed in the sequel.As an be seen, there are urrently several distintstrands of HOL implementation in progress. Our pur-The Computer Journal, Vol. 00, No. 0, 0000

2 M Norrish and K Slindpose in this paper is to reount some of the signi�antmilestones of one thread of HOL development, namelythat proeeding from HOL88 to HOL90 to HOL98. Weshall �rst give a survey of how ertain important fail-ities of HOL98 evolved, inluding reent work aimed atwrapping proof tools up as distributed omponents in a`plug-and-play' arhiteture. Finally, we desribe somesigni�ant aspets of the implementation of HOL98.2. THEOREM PROVING TOOLSIn this setion we desribe various important failitiessupporting proof in HOL98. We do not laim that thesefailities are unique (similar support exists in most on-temporary mehanized proof assistants), and annotpoint to a pre-existing `grand design'. In fat, sup-port tools and theories have typially been reated inresponse to shortomings in the system exposed by at-tempted veri�ations. Although this approah is ad ho,the urrent set of tools in HOL98 allows muh betterprogress to be made in formalizations than in earlierinarnations of HOL.The failities break down into de�nition priniples,proof proedures, previously built theories, syntax sup-port and inter-tool linkage.2.1. De�nition PriniplesMaking de�nitions is a ruial aspet of veri�ation.The HOL logi only provides very simple de�nition fa-ilities, whih are too low-level for many formalizations.In response, an enduring aspet of HOL developmenthas been the onstrution of ever more powerful de-rived de�nition priniples|whih redue via infereneto appliations of the primitive de�nition failities. Inthe following, we highlight some of the urrent funtion-ality.Indutively de�ned sets Indutive de�nitions are om-mon in mathematis and omputer siene; for example,they are used to build datatypes like the natural num-bers and lists. They are heavily used to model proofsystems, in formalizing stati and dynami operationalsemantis; for example, SML (12), CCS (13) and C (14).They may also be used in the onstrution of reursivefuntions.An indutive de�nition pakage takes as input a spe-i�ation of the `rules' used to add elements to the de-sired set. It then de�nes the desired set (or sets, mutu-ally reursive de�nitions are supported), and returns apakage of useful theorems: the rules for building ele-ments in the set, an indution priniple, and a `ases' (orinversion) theorem, useful for breaking down elementsof the set based on how they were onstruted. The�rst indutive de�nition pakage for HOL was due toMelham (15); a subsequent implementation by Harrisonadditionally allowed in�nitary hypotheses in rules (16).

Datatype de�nitions Many HOL formalizations requirethe de�nition of new types. For example, ML-styledatatypes are ommonly used to model the abstratsyntax of programming languages and the state-spae ofelaborate transition systems. In HOL98, suh datatypes(at least, those that are indutive, or, alternatively, havea model in an initial algebra) may be spei�ed using thesyntax in Figure 1.type-spe ::= [binding ;℄* bindingbinding ::= id = onstr-spe| id = reord-speonstr-spe ::= [lause |℄* lauselause ::= id| id of [type =>℄* typereord-spe ::= <| [id : type ;℄* id : type |>FIGURE 1. Datatype DelarationDatatype spei�ations allow the use of reord types,whih may be reursive. For example, the followingdatatype ould be used to formalize a simple �le system.file = Text of string | Dir of diretory ;diretory =<| owner : string ;files : (string * file) list |>When a datatype is de�ned, a number of standardtheorems are automatially proved about the new type:the onstrutors of the type are proved to be injetiveand disjoint, indution and ase analysis theorems areproved, and eah type also has a `size' funtion de�nedfor it. Size funtions for types map values of the typesinto N and are used by the funtion de�nition pakagein termination proofs. The standard theorems aboutdatatypes are all olleted in an internal database andused by several other pakages, e.g., the simpli�er.The datatype pakage of HOL98 took some time toevolve to its present state. The pakage in HOL88 wasported to HOL90 and was entral in many veri�ations.However, it did not provide advaned features suh asmutually reursive types and reursion under type oper-ators. Sine these features are often required, espeiallywhen modelling omputer languages, extension pak-ages, e.g., (17), were written in HOL90. These pakageswere ruial for many hallenging veri�ations; however,they were somewhat diÆult to use, and as a result, inHOL98 we have adopted and extended a datatype pak-age from HOL Light.One observation about datatype de�nition pakagesimplemented via inferene is that they are diÆult towrite, and also seem to be somewhat ineÆient whendealing with large datatypes featuring muh nesting un-der type onstrutors. Whether signi�antly more ef-�ient inferene-based pakages are possible should beinvestigated.The Computer Journal, Vol. 00, No. 0, 0000

A Thread of HOL Development 3Reursive funtion de�nition Reursive funtions arepervasive in formalization. In HOL88 and HOL90,the only reursion style supported was primitive re-ursion over the onstrutors of datatypes. In or-der to make it easy to speify more omplex reur-sive funtions, a pakage based on well-founded re-ursion was developed (18, 19). The pakage handlesmany reursion styles (nested, mutual, higher-order,and shemati (19)) and aepts equations in the pat-tern mathing style popular in funtional programminglanguages. In ontrast to primitive reursion, the for-mat of whih guarantees termination (and thus total-ity), a funtion de�ned by well-founded reursion mustbe proved to terminate; HOL98 attempts to prove ter-mination automatially, but the urrent terminationprover, although useful, is quite basi.A funtion de�ned by well-founded reursion alsospei�es a useful indution theorem in whih the in-dutive hypothesis holds for the arguments to reursivealls. For eah reursive de�nition, HOL98 automati-ally derives this `ustomized' indution theorem froma general well-founded indution theorem (20).2.2. Proof proeduresThe primitive inferene rules of HOL are too low-levelon their own to support interesting veri�ations. Thus,an enduring aspet of HOL development is proof au-tomation, ahieved by using ML to ompose proof pro-edures. A onstraining fator in this proess has beenthe requirement that the proedure use dedutive stepsin HOL, but many (most?) of the deision proeduresfound in the literature are not desribed dedutively.In spite of this obstale, a number of suh experiments,disussed below, have shown the feasibility of this en-terprise.Deision proedures When a proof goal arises that liesin a deidable set of formulas, it is desirable that thegoal be proved without further human e�ort. A numberof deision proedures have been implemented in HOLover the years.For the fragment of HOL orresponding to proposi-tional logi, a na��ve algorithm has been provided in thesystem for some time; however, it is only suitable forsmall problems. An ROBDD-based algorithm is dis-ussed in Setion 2.5.For the fragment of HOL orresponding to �rst or-der logi, a model elimination proedure (21) has beenextremely useful in raising the level of automation inmany veri�ations. An interesting aspet of this pro-edure is that it onduts proof searh in ML using anon-HOL-spei� representation; in ase the searh issuessful, the representation provides enough informa-tion to generate a HOL proof.HOL98 provides three deision proedures for vari-ous avours of arithmeti. The earliest, due to Boul-ton (22, x5.2), solves most universally and some exis-

tentially quanti�ed formulas in linear arithmeti overN. The treatment of universal formulas is a adaptationof Hodes' method (23) to N and is inomplete beauseit does not take divisibility into aount; for example, itfails to prove 8x: 2x 6= 5. The proedure for existentialformulas is Shostak's SUP-INF proedure (24), whihis also inomplete.HOL98 inludes a omplete proedure for all univer-sally quanti�ed linear formulas over R. This was imple-mented by Harrison as part of his dotoral researh (25,x5). In that work, Harrison also implemented a versionof Tarski's deision proedure for real �elds but, dueto its omputational omplexity, this proedure is notoften useful and is not publily available.Reently, an implementation of Cooper's algo-rithm (26) for deiding full Presburger arithmeti overZ and N has been implemented by the �rst author.Results suggesting that Cooper's method an outper-form Hodes' method on universal formulas have beenreported (27). While our implementation of Cooper'smethod is not yet mature enough to ompete with Boul-ton's ode on those goals they an both solve, it provesmany goals quikly enough to be promising for inter-ative use. For example, it proves the group axiom forZ 9!e: (8x: 9!y: x+ y = e) ^ (8x: x+ e = x)in 0.6s on a 600 MHz Pentium III.Nelson and Oppen's method for ombining deisionproedures, whih inludes an implementation of on-gruene losure, is also available in the system (28).Simpli�ation Simpli�ation is a pervasive ativity inproof. The HOL98 simpli�er was implemented by DonSyme, inspired by the powerful simpli�er in Isabelle.The ore algorithm of the simpli�er is based on aPaulson-style rewriter (29), whih traverses the termM to be simpli�ed, and repeatedly attempts to applyrewrite rules at all subterms of M . This basi engine isaugmented with the following features:� Conditional rewrite rules of the form1 ^ � � � ^ n � (x = y)may be applied. The simpli�er reursively invokesitself on the side onditions generated. This invo-ation may in turn try to apply further onditionalrewrites. The stak of side onditions is not allowedto exeed a user-spei�ed depth.� So-alled ongruene rules may be applied; theseenable the rewriter to aumulate and disard on-text as a term is traversed. For example, whileoperating on a term if b then e1 else e2, simpli-�ation of e1 an assume b, and simpli�ation of e2an proeed while assuming :b. Similarly, P anbe assumed while simplifying Q in P � Q.� Rewrite rules are applied using a simple form ofhigher order mathing, losely related to the algo-rithm disovered by Miller (30).The Computer Journal, Vol. 00, No. 0, 0000

4 M Norrish and K Slind� Standard rewrite rules arising from datatype de�ni-tions are automatially inorporated into the sim-pli�ation proess.� The simpli�er an be extended with arbitrary proofproedures. These are invoked by the simpli�er onappropriate sub-terms and are passed the urrentaumulated ontext. The use of Boulton's lineararithmeti proedure during simpli�ation has dra-matially shortened many veri�ations. This is byno means the last word on the integration of dei-sion proedures into simpli�ation: a higher level ofinteration between arithmeti deision proeduresand a simpli�er has been reported in (31).Support for simpli�ation in HOL88 and HOL90 wasmuh more basi: only unonditional rewrite rules ouldbe applied, and on-the-y invoation of deision proe-dures was thought to be prohibitively slow. The amaz-ing inrease in omputational power in standard work-stations and PCs over the last deade has meant thatoperations previously thought to be slow|and thusonly suitable for interative appliation during proof|are now fast enough to be used deep inside automatedtools.Computation Many tasks arising during veri�ationamount to no more than evaluation of logial funtions,e.g., reduing ground terms built up from boolean andarithmeti operators. Historially, HOL systems imple-mented ad ho simpli�ers for suh tasks. In reent work(32), Barras implemented an abstrat mahine for all-by-value redution in HOL. A novel aspet of this workis that the atual redution steps are implemented byinferene rules. The result is a derived inferene rulethat evaluates ground HOL terms, just as if by an MLinterpreter. Although Barras' inferene rule runs muhslower than a onventional ML implementation, theslowdown is a onstant fator; moreover, the proedureis suÆiently quik to provide a general-purpose solu-tion for many redution tasks arising during veri�a-tion. In ontrast to Barras' LCF-style inferene rule, theACL2 and PVS systems use omputation in their meta-language (Lisp) to perform suh tasks as alulation inthe logi. The ACL2 system also implements symbolievaluation for logially de�ned funtions, and this hasbeen found to be very useful in veri�ations (33). Itremains to provide a general purpose and relatively ef-�ient symboli simulation rule in HOL98.2.3. Veri�ation theoriesA range of theories embodying basi mathematialstrutures have been built in the HOL system: pairs,disjoint unions, the `option' type, numbers (N, Z andR), lists, `lazy' lists, relations, �nite and in�nite setsand multisets, �nite maps, strings, and words. Othermathematial developments in the system inlude lineartime temporal logi, !-automata, analysis over metrispaes, polynomials, and probability theory. In general,

these theories have not been provided by the HOL de-velopers; instead, they are often user ontributions. Asa result, theory development has not been systemati:a theory is often built when needed to support a par-tiular veri�ation exerise. If the theory seems to havewide utility, it is then inorporated into the standarddistribution.Numerous omputer siene oriented formalizationshave also been onstruted in HOL, inluding theoriesfor Hoare Logi, UNITY, CCS, �-alulus, SML, C,omputability theory, et. In ontrast to the `standard'mathematial theories above, these theories, while vitalto their developers' needs, seem not to have been widelyadopted. This seems to suggest that either a truly use-ful veri�ation formalism has yet to be invented, or thatstandard mathematis suÆes.2.4. Syntax supportVeri�ations of any size require interation with theproof assistant. A ommon ativity is thus the pars-ing and printing of logial objets e.g., formulas. Theparsing and pretty-printing support o�ered in HOL98 issigni�antly more exible than that of HOL90, whihprovided only a �xed grammar, and the ability to de-lare new in�xes. Another hange is that, in ontrastto HOL88 and HOL90, the HOL98 parser and pretty-printer are now ompletely separate from the logialkernel. This has two bene�ts: ore funtionality is notompromised by the intrusion of unrelated ode, andthe parser an implement abstrations of its own (suhas overloading) that have no reetion in the underlyinglogi. Below we disuss three syntax support featuresreently added to HOL98.Expliit grammars The parser is expliitly parameter-ized by a grammar, whih reords the produtions usedby the parsing algorithm, as well as preedene levelsfor operators. For example, `+' is reorded as beinga left assoiative in�x at level 500. By making parsingexpliitly dependent on grammar values, the system be-omes more robust and exible beause library ode anparse with respet to a spei� grammar. This providesan important kind of stati soping for HOL expressionsthat are parsed as a library loads.Mix-�x forms The parser uses operator preedeneparsing (34, x4.6). This algorithm is simple to imple-ment, deterministi, and runs eÆiently. To add to thesingle-token pre�xes, suÆxes and in�xes provided bythis tehnique, we have made a simple extension to thenotion of operator: an operator is not neessarily a sin-gle token (suh as +), but an also be a sequene oftokens and non-terminals. There are four �xities: in�x,pre�x, suÆx, and `lose-�x'; these are the four possibil-ities arising from two independent hoies: whether ornot an argument to the left of the operator is possible,and whether or not an argument to the right is possi-The Computer Journal, Vol. 00, No. 0, 0000

A Thread of HOL Development 5ble. For example, if-then-else is viewed as pre�x oper-ator where the �rst two arguments are enlosed withinthe tokens (between the if-then and between the then-else). Only the last argument is subjet to binding om-petition with other operators. This simple extensionmakes sense of the lose-�x �xity, whih might be usedto implement syntax representing \semanti brakets"as [| |℄.Overloading Speifying that a onstant is to be over-loaded in HOL98 is straightforward: one simply spei�eswhih onstants should be instanes of whih overloadednames. For example, one an require that addition overN and Z (separate funtions in HOL) should both be in-stanes of the + identi�er. Type inferene is used to helpresolve overloading. Following the example of Haskell,HOL98 also overloads numerals (sequenes of digits) in-habiting di�erent types. This is ahieved by treatingevery ourrene of a numeral n as if it were the term&n, where & is an overloaded symbol denoting a ontext-determined injetion funtion into the appropriate nu-meri domain. With this sheme, type inferene is usedas a basis for seleting the injetion funtion oering anumeral to an integer, natural number or a real.Our parser, while quite exible, is not as general, noras sophistiated as that of Isabelle, whih uses Earley'snon-deterministi ontext-free parsing algorithm (35).Also, the approah to overloading in Isabelle is based ontype lasses (36), whih in turn reets the spei�ationof types in the underlying objet logi. HOL98 does notsupport type lasses, so it is reasonable not to fore theuser to onform to any partiular organisation of theiroverloaded onstants.2.5. Inter-tool linkagesAn important faet of HOL98 is its aeptane of the rôlethat external tools have to play in the use of interativetheorem-proving systems. Historially, the attitude inHOL implementations has been rather autious: exter-nal tools might prove results quikly, and dependably,but they might also be inorret.Suh a purist approah is not always pragmatiallyjusti�ed. Systems suh as Lifted-FL (37), used by In-tel to verify aspets of hip design, rely on a seam-less integration between the logial ore and externaltools, whih are typially highly engineered for theirproblem domain. The PVS system (38) has also inte-grated a number of external tools, inluding a model-heker (39).The PROSPER projet (40) is one response to thedemand for integration of external tools with HOL. Ithas developed a ommon framework for the linking to-gether of veri�ation tools. Communiation of terms,types and theorems is done using the basi HOL repre-sentations, providing an abstrat syntax with whih toommuniate logial objets over omputer networks.Implementations of the interfae are available for the

C, Java, SML and Python programming languages.An early inter-tool linkage using PROSPER was per-formed by Hurd (41), who linked HOL98 and the resolu-tion prover Gandalf (42). Gandalf provides a reasonablydetailed log of suessful proofs, and Hurd's onnetionautomatially translates these logs to HOL proofs that,when exeuted, prove the goal originally sent to Gan-dalf. Thus, worries about soundness are irumvented:Gandalf searhes for and provides a proof, not just anassertion that the goal is true.This kind of proof-reonstrution approah is not pos-sible with a tool that produes nothing that ould beonstrued as a proof. If one wants to use suh a tool,the results it produes must simply be aepted as HOLtheorems. However, the soundness of HOL is therebyimperiled. The solution adopted by HOL98 is to tag allsuh foreign theorems. A tag signi�es that the theo-rem in question was generated externally, and identi�esthe soure. The primitive inferene rules of HOL havebeen adapted to aumulate and propagate any tagsthat appear in theorems, muh in the same way that hy-potheses are aumulated and propagated in inferene.There is thus a logial `audit trail' providing the userwith information about whih tools have ontributedto a result. PROSPER tehnology has been used byShneider and Ho�mann to link HOL98 to SMV (43),and it is also used to provide a omponent-style inter-fae to Prover Tehnology's ommerial implementationof St�almark's algorithm (44).In a separate development, reent work by Gor-don (45), allows ROBDDs (an eÆient representationof propositional formulas) to be used inside HOL98 in aprinipled, yet eÆient way. Purported theorems om-ing from appliation of ROBDD algorithms are taggedbefore being admitted as HOL theorems.3. ASPECTS OF IMPLEMENTING HOLWe now desribe some aspets of the HOL98 imple-mentation, fousing mainly on design issues. Muh ofthe art and siene of implementing abstrat spei�-ations in a programming language involves mappingspei�ation-level onepts onto onstruts provided inthe programming language. Below we disuss how theonstruts of Standard ML supported the implementa-tion of important properties required by HOL.3.1. The HOL logiThe HOL logi is built on the syntax of a lambda alu-lus having a polymorphi type system somewhat similarto that of ML.2 The logi is lassial and has a set the-oreti semantis, in whih types denote non-empty setsand the funtion spae denotes total funtions. Thelogi omprises four omponents: types, terms, theo-rems, and theories.2Type variables may our in HOL types, just as in ML; how-ever, full let-style polymorphism in the HOL logi would lead toinonsisteny and is not allowed.The Computer Journal, Vol. 00, No. 0, 0000

6 M Norrish and K Slind3.1.1. TypesTypes and terms are built with respet to signatures.A type signature (
) assigns arities to type operators.A HOL type is either a type variable, or a ompoundtype built by applying a type operator in
 of arity kto a list (of length k) of types. Initially,
 ontainstype operators denoting truth values (bool), funtionspae (written �1 ! �2), and an in�nite set of individu-als (ind). A type onstant, suh as bool, is a ompoundtype built from a member of
 with arity 0. Althoughthe abstrat syntax of types is easily aptured with anML datatype delaration, the arity hek in the on-strution of ompound types means that types may notbe freely onstruted.3.1.2. TermsHOL terms are typed �-alulus expressions built withrespet to a signature (�
), whih assigns types builtfrom
 to term onstants. A term an be onstrutedin only four ways: it is either a variable, an instane ofa onstant in �
, an appliation (M N) of a termM oftype �1 ! �2 to a term N of type �1, or a lambda ab-stration. (In our opinion, one of the strengths of HOLis the small number of ways a term may be onstruted.)Initially, �
 ontains onstants denoting equality (=),impliation (�), and Hilbert's inde�nite desription op-erator (").The abstrat syntax of HOL terms is also easily ap-tured with an ML datatype delaration; however, asfor types, terms may not be freely onstruted, sine aterm must be well-typed with respet to �
.The interfae routines for manipulating HOL termspresent a so-alled name-arrying syntax. In our threadof HOL development, there have been four implementa-tions of this interfae: the HOL88 implementation useda name-arrying representation from LCF; early imple-mentations of HOL90 also used a name-arrying inter-nal representation of terms; later versions representedterms with deBruijn indies; and the urrent implemen-tation, due to Bruno Barras, uses expliit substitutions.Sine terms are an abstrat type, these internal hangeshave not been externally visible.Types and terms form the basis of the prelogi, inwhih basi algorithmi manipulations on types andterms are de�ned: e.g., the free variables of a type orterm, substitution, mathing, and �- and �-onversion.These algorithms are used to implement higher-levelsyntax manipulations, and are also used to implementthe dedutive system.3.1.3. Theorems, Axioms, and De�nitionsDi�erent but equivalent presentations of the dedutivesystem of HOL an be found in (4) or Appendix Aof (25). The important thing is that a �xed set of prim-itive rules and axioms is used as a basis upon whihmore omplex derived rules may be built by program-ming in the metalanguage. The primitive rules of HOL

an be used to build a onventional set of natural dedu-tion style rules, with introdution and elimination rulesfor all the standard logial onnetives. The usual rulesfor equality reasoning are also derivable from the prim-itives. A �nal rule is provided for instantiating typevariables in a theorem.Theorems are easy to represent by an ML datatypewith �elds for the hypotheses and onlusion of the the-orem. The type of theorems is abstrat in order to meetthe requirement that a new theorem may only be pro-dued by appliation of a primitive rule of inferene.The HOL logi distinguishes between axioms and def-initions. An axiom is an arbitrary well-typed formulathat is simply asserted to be a theorem. It is very easyto assert axioms, but experiene has shown that it is alltoo easy to introdue inonsisteny this way. An alter-native, popular among users of HOL, is to make de�-nitions and derive the desired onsequenes by proof.Priniples for de�ning types and terms form part ofthe HOL logi, and the previous setion has desribedadvaned de�nition failities, whih ouple the onve-niene of asserting axioms with the soundness of usingprimitive inferene.3.1.4. TheoriesThe HOL logi provides a very simple notion of theory :loosely speaking, a HOL theory is a olletion of theo-rems that have been derived from a set of axioms in asignature. Sine signatures are extensible, as is the setof axioms, and also the set of derived theorems, somemehanism is needed to handle di�erent extensions ofthe initial theory ourring when di�erent theories areformalized. It is straightforward to support suh exten-sions in a single session; however, it is more diÆult tosupport persistent theories, in whih a theory may bedeveloped and then stored on disk, to be reloaded in asubsequent session. This is disussed in more detail inSetion 3.2.2.3.2. Implementing HOLWe disuss two entral aspets of implementing HOL inthis setion: �rst, how to seurely implement the HOLkernel; seond, how to represent theories so that theyare persistent. We do not imagine that our approahesare distinguished in any way over others; however, ourdisussion reveals|by example|useful ML program-ming idioms that we think are not well enough known.The �rst idiom uses SML modules to build a multi-struture abstrat datatype. The seond idiom showshow ML strutures, normally thought of as ontainersfor programs, also serve very well as ontainers for hi-erarhial data.3.2.1. Multi-struture ADTsThe prinipal design hallenge in implementing HOLomes from a tension between enapsulation and mod-ularity. We have seen that HOL types, terms, and theo-The Computer Journal, Vol. 00, No. 0, 0000

A Thread of HOL Development 7rems must be implemented by abstrat datatypes; theo-ries keep trak of the state of a logial development andthus they must also be proteted from arbitrary usermeddling. Thus, the implementations of types, terms,theorems, and theories need to be enapsulated in akernel. Inside the kernel, diret aess to representa-tions of abstrat types is permitted, and the state ofthe system an be viewed and altered by any piee ofode in the kernel. From outside however, aess to therepresentations and states of the kernel is stritly on-trolled by kernel ode that maintains important systeminvariants, suh as well-typedness.On the other hand, it seemed quite natural in theimplementation to divide the kernel into four separatemodules Type, Term, Thm, and Theory implementingtypes, terms, theorems, and theories. The onit ariseswhen a funtion in a kernel module either needs aessto the representation of an abstrat type delared inanother kernel module, or when it diretly manipulatesstate held in another kernel module. In our design,this gives rise to mutual dependenies among the kernelmodules. Sine user level programming also aessesthe very same Type, Term, Thm, and Theory modules, itwould be atastrophi if ritial kernel representationsand datastrutures were user-aessible.ML provides several means of solving this problem.To some, the simplest solution would use the abstratdatatype faility of Core ML. Although this approahis possible, it did not appeal to us: it would requirefour mutually reursive abstrat types (they are mu-tually dependent, but not reursively so), held in one(large) �le, whih we thought was insuÆiently modu-lar. Instead, we were more interested in applying theabstration failities available at the module level.The solution we settled on builds the kernel from itsomponent strutures. First a version of Type, alledRawType, is built whih exposes its representation andinternal state. From RawType, a raw version of Term,alled RawTerm, is built whih also exposes its repre-sentation and internal state. RawType and RawTerm arethen urtailed to the desired user-level strutures Typeand Term by signature restrition. Following this, thestrutures Thm and Theory an be built by applying thefuntors THM and THEORY. Note that Thm aesses therepresentation of terms. Also, Theory uses signature-update funtions provided by RawType and RawTerm;signature restrition removes these dangerous funtionsto obtain the safe strutures.loal struture RawType = TYPE()struture RawTerm = TERM(RawType)instruture Type:Type = RawTypestruture Term:Term = RawTermstruture Thm = THM(RawTerm)struture Theory =THEORY(struture Thm = Thmstruture Term = RawTerm)endThe whole development is wrapped in a module-

level loal ... in ... end blok so that RawType andRawTerm are ephemeral, disappearing after the multi-struture kernel is reated. Users an only aess ker-nel funtions through Type, Term, Thm, and Theory, andannot therefore diretly aess the internal representa-tions or modify the state of the kernel.This design is not perfet; for example, the funtorsTYPE, TERM, THM, and THEORY ontinue to exist afterthe kernel is built, luttering up the funtor names-pae. They ould be rede�ned to be vauous, but thatis hardly elegant.3.2.2. Persistent theoriesThe onept of theory segment is used to formalize per-sistent theories. Coneptually, a segment is a ontainerin whih related logial entities are stored. Theory seg-ments are hierarhially arranged by a dependeny re-lation that tells when one segment depends on oneptsor results formalized in another parent segment. Thetheory T orresponding to a segment is built by takingthe omponent-wise union of all the segments found inthe transitive losure of the parent relation. There isa root segment orresponding to the initial signaturesand axioms of HOL.A typial piee of work with HOL98 onsists in a num-ber of sessions. In the �rst of these, a new theory, Tsay, is reated by importing some existing theory seg-ments, making a number of de�nitions, and perhapsproving and storing some theorems in the urrent seg-ment. Eventually the urrent segment is exported todisk. The onrete result will be a �le ontaining thetheory segment reated during the session and whoseanestry represents the desired logial theory T . Sub-sequent sessions an aess the de�nitions and theoremsof T by importing the �le; this avoids having to loadthe tools and replay the proofs that reated the theoryin the �rst plae.In HOL90, theory segments were stored on disk in anad ho format whih required muh ode implementinginput and output of segments. A more serious prob-lem was that fething elements from a segment was dy-nami: for example, aessing the arithmeti theoremADD CLAUSES was done via funtion all:theorem "arithmeti" "ADD_CLAUSES"Thus, mapping segment-level bindings to ML-levelbindings ould only happen dynamially. As a onse-quene, it was generally impossible to determine thedependenies in a olletion of ML ode with theories.In HOL98, theory segments are diretly representedby ML strutures: the bindings of a theory seg-ment an be represented by ML variable bindings,and the parenthood relation an be mapped into thedependeny of strutures. With this representation,the above theorem is stored in a struture namedarithmetiTheory, under the binding ADD CLAUSES,whih an be aessed using the standard `dot' notation,The Computer Journal, Vol. 00, No. 0, 0000

8 M Norrish and K Slindi.e., arithmetiTheory.ADD_CLAUSES. Sine theory-level binding is ahieved by the binding of variables ina struture, dependeny analysis of HOL formalizationsan be ahieved by extending ML dependeny analysis.This has been implemented by the �rst author, and theresulting tool, alled Holmake, is now extensively usedfor dependeny maintenane in large HOL98 formaliza-tions, inluding the whole distribution.4. CONCLUSIONSThe HOL system has been under development in oneform or another for almost twenty years. In that time,though the number of implementations has burgeoned,the spei�ation of the logi has been stable. This hasgiven many people the hane to implement and developvarious tools for the same logi. For example, the ur-rent implementation of HOL98 bene�ts greatly from thetools available in Harrison's HOL Light implementation.Signi�ant e�ort has been expended to port tools fromHOL Light to HOL98, but this has always been reason-ably straightforward, sine the two systems implementthe same spei�ation.The amazing improvements in speed and memoryapaity of omputers over the past two deades hasmeant that di�erent design hoies beame possiblewith the passage of time. We have given some indi-ation of how this story has played out in the develop-ment of a sequene of HOL implementations. In general,the transition has been towards ever-higher levels of au-tomation, and away from onsiderations based purelyon speed and memory onsumption. System interfaeshave also been gradually generalized in many ways. Wethink that this trend will ontinue, for the wider uptakeof formal veri�ation will require simpler interfaes tomore powerful tools.ACKNOWLEDGEMENTSWe thank the anonymous referees for their detailed andhelpful omments.The seond author sinerely thanks Graham Birtwistlefor inspiration and enouragement during the past 15years. Graham adopted ML and HOL early and withharateristi vigour; as usual, he was streets ahead!REFERENCES[1℄ Alonzo Churh. A formulation of the Simple Theory ofTypes. Journal of Symboli Logi, 5:56{68, 1940.[2℄ M. J. C. Gordon. From LCF to HOL: a short history.In Gordon Plotkin, Colin Stirling, and Mads Tofte, ed-itors, Proof, language and interation: essays in hon-our of Robin Milner, Foundations of Computing, pages169{185. MIT Press, 2000.[3℄ M. J. C. Gordon, Robin Milner, and Christopher P.Wadsworth. Edinburgh LCF: A Mehanised Logi ofComputation. Number 78 in Leture Notes in Com-puter Siene. Springer, 1979.

[4℄ M. J. C. Gordon and T. Melham (editors). Introdutionto HOL: a theorem proving environment. CambridgeUniversity Press, 1993.[5℄ Konrad Slind. An implementation of higher order logi.Master's thesis, University of Calgary Computer Si-ene Department, 1991. Available as tehnial report91-419-03.[6℄ R. D. Arthan. A report on ICL HOL. In Arher et al.(48), pages 280{283.[7℄ International Computers Limited (ICL).One way regulator, 1990. Seehttp://www.itse.gov.uk/gi-bin/plview.pl?dono=44.[8℄ Lawrene C. Paulson. Isabelle: A Generi TheoremProver. Springer-Verlag LNCS 828, 1994.[9℄ Mik Franis, Simon Finn, Ellie Mayger, and RogerHughes. Referene manual for the LAMBDA system.Tehnial Report 4.2.1, Abstrat Hardware Limited,1992.[10℄ John Harrison. HOL Light: a tutorial introdution. InMandayam Srivas and Albert Camilleri, editors, Pro-eedings of the First International Conferene on For-mal Methods in Computer-Aided Design (FMCAD'96),volume 1166 of Leture Notes in Computer Siene,pages 265{269. Springer-Verlag, 1996.[11℄ John Harrison. A mahine-heked theory of oatingpoint arithmeti. In Bertot et al. (46), pages 113{130.[12℄ Myra VanInwegen. The mahine-assisted proof of pro-gramming language properties. PhD thesis, Universityof Pennsylvania, Deember 1996.[13℄ Monia Nesi. A formalization of the proess algebraCCS in higher order logi. Tehnial Report 278, Com-puter Laboratory, University of Cambridge, Deember1992.[14℄ Mihael Norrish. C formalised in HOL. PhD thesis,Computer Laboratory, University of Cambridge, 1998.[15℄ T. Melham. A pakage for indutive relation de�nitionsin HOL. In Arher et al. (48), pages 350{357.[16℄ John Harrison. Indutive de�nitions: automation andappliation. In Shubert et al. (47), pages 200{213.[17℄ E. L. Gunter. A broader lass of trees for reursive typede�nitions for HOL. In J. J. Joye and C.-J. H. Seger,editors, Higher Order Logi Theorem Proving and itsAppliations: 6th International Workshop (HUG'93),number 780 in Leture Notes in Computer Siene,pages 141{154. Springer-Verlag, Vanouver, B.C., Au-gust 11-13 1994.[18℄ Konrad Slind. Funtion de�nition in higher order logi.In Theorem Proving in Higher Order Logis, number1125 in Leture Notes in Computer Siene, Turku, Fin-land, August 1996. Springer-Verlag.[19℄ Konrad Slind. Reasoning about Terminating Fun-tional Programs. PhD thesis, Institut f�ur Informatik,Tehnishe Universit�at M�unhen, 1999. Aessible athttp://www.l.am.a.uk/users/kxs/papers.[20℄ Konrad Slind. Derivation and use of indution shemesin higher order logi. In Theorem Proving in Higher Or-der Logis, number 1275 in Leture Notes in ComputerSiene, Murrary Hill, New Jersey, USA, August 1997.Springer-Verlag.[21℄ John Harrison. Optimizing proof searh in model elim-ination. In M. A. MRobbie and J. K. Slaney, edi-tors, 13th International Conferene on Automated De-dution, volume 1104 of Leture Notes in ComputerThe Computer Journal, Vol. 00, No. 0, 0000

A Thread of HOL Development 9Siene, pages 313{327, New Brunswik, NJ, 1996.Springer-Verlag.[22℄ R. J. Boulton. EÆieny in a fully-expansive theoremprover. PhD thesis, Computer Laboratory, Universityof Cambridge, May 1994.[23℄ Louis Hodes. Solving problems by formula manipula-tion in logi and linear inequalities. In D. C. Cooper,editor, Proeedings of the 2nd International Joint Con-ferene on Arti�ial Intelligene, pages 553{559, Lon-don, UK, September 1971. William Kaufmann.[24℄ R. E. Shostak. On the SUP-INF method for prov-ing Presburger formulas. Journal of the A.C.M.,24(4):529{543, Otober 1977.[25℄ John Harrison. Theorem Proving with the RealNumbers. CPHC/BCS Distinguished Dissertations.Springer, 1998.[26℄ D. C. Cooper. Theorem proving in arithmeti with-out multipliation. In Mahine Intelligene, volume 7,pages 91{99, New York, 1972. Amerian Elsevier.[27℄ P. Janii, I. Green, and A. Bundy. A omparison ofdeision proedures in Presburger arithmeti, Otober1997. Researh paper #872, Division of Informatis,University of Edinburgh.[28℄ R. J. Boulton. Combining deision proedures in theHOL system. In Shubert et al. (47), pages 75{89.[29℄ Lawrene Paulson. A higher order implementation ofrewriting. Siene of Computer Programming, 3:119{149, 1983.[30℄ D. Miller. Uni�ation of simply typed lambda-termsas logi programming. In K. Furukawa, editor, LogiProgramming, Proeedings of the Eighth InternationalConferene, pages 255{269. MIT Press, 1991.[31℄ R. S. Boyer and J S. Moore. Integrating deision pro-edures into heuristi theorem provers: A ase studyof linear arithmeti. Mahine Intelligene, 11:83{124,1988.[32℄ Bruno Barras. Programming and omputing in HOL.In J. Harrison and M. Aagaard, editors, Theorem Prov-ing in Higher Order Logis: 13th International Confer-ene, TPHOLs 2000, volume 1869 of Leture Notes inComputer Siene, pages 17{37. Springer-Verlag, 2000.[33℄ J Moore. Symboli simulation: An ACL2 approah. InG. Gopalakrishnan and P. Windley, editors, Proeed-ings of the Seond International Conferene on For-mal Methods in Computer-Aided Design (FMCAD'98),volume LNCS 1522, pages 334{350. Springer-Verlag,November 1998.[34℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman.Compilers: priniples, tehniques and tools. Addison-Wesley, 1986.[35℄ J. Earley. An eÆient ontext-free parsing algorithm.Communiations of the ACM, 13(2):94{102, February1970.[36℄ Tobias Nipkow. Order-sorted polymorphism in Is-abelle. In G�erard Huet and Gordon Plotkin, editors,Logial Environments, pages 164{188. Cambridge Uni-versity Press, 1993.[37℄ Mark D. Aagaard, Robert B. Jones, and Carl-Johan H.Seger. Lifted-FL: a pragmati implementation of om-bined model-heking and theorem proving. In Bertotet al. (46), pages 323{340.

[38℄ S. Owre, J. Rushby, and N. Shankar. PVS: A Proto-type Veri�ation System. In Deepak Kapur, editor,11th International Conferene on Automated Dedu-tion, volume 607 of Leture Notes in Arti�ial Intel-ligene, pages 748{752. Springer-Verlag, 1992.[39℄ S. Rajan, N. Shankar, and M.K. Srivas. An integrationof model-heking with automated proof heking. InConferene on Computer-Aided Veri�ation, CAV '95(LNCS 939), pages 84{97, Liege, Belgium, July 1995.[40℄ Louise A. Dennis, Graham Collins, Mihael Norrish,Rihard Boulton, Konrad Slind, Graham Robinson,M. J. C. Gordon, and T. Melham. The PROSPERtoolkit. In S. Graf and M. Shwartzbah, editors, Pro-eedings of the 6th International Conferene on Toolsand Algorithms for the Constrution and Analysis ofSystems (TACAS 2000), volume 1785 of Leture Notesin Computer Siene, pages 78{92, Berlin, Germany,Marh/April 2000. Springer.[41℄ Joe Hurd. Integrating Gandalf and HOL. In Bertotet al. (46), pages 311{321.[42℄ Tanel Tammet. Gandalf. Journal of Automated Rea-soning, 18(2):199{204, April 1997.[43℄ Klaus Shneider and Dirk W. Ho�mann. A HOL on-version for translating linear time temporal logi to !-automata. In Bertot et al. (46), pages 255{272.[44℄ Mary Sheeran and Gunnar St�almark. A tutorial onSt�almark's proof proedure for propositional logi.Formal Methods in System Design: An InternationalJournal, 16(1):23{58, January 2000.[45℄ M. J. C. Gordon. Linking higher order logi to binarydeision diagrams. In Jim Davies, Jim Woodok, andBill Rosoe, editors, Proeedings of the Symposium inCelebration of the work of C. A. R. Hoare, Cornerstonesin Computing. MaMillan, to appear.[46℄ Yves Bertot, Gilles Dowek, Andr�e Hirshowitz, Chris-tine Paulin, and Laurent Th�ery, editors. TheoremProving in Higher Order Logis, 12th InternationalConferene, TPHOLs '99, volume 1690 of Leture Notesin Computer Siene. Springer, September 1999.[47℄ E. T. Shubert, P. J. Windley, and J. Alves-Foss, ed-itors. Proeedings of the 8th International Workshopon Higher Order Logi Theorem Proving and Its Ap-pliations, volume 971 of Leture Notes in ComputerSiene. Springer-Verlag, September 1995.[48℄ Myla Arher, Je�rey J. Joye, Karl N. Levitt, andPhillip J. Windley, editors. Proeedings of the 1991 in-ternational workshop on the HOL theorem proving sys-tem and its appliations. IEEE Computer Soiety Press,August 1991.

The Computer Journal, Vol. 00, No. 0, 0000

