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l.
am.a
.ukThe HOL system is a me
hanized proof assistant for higher order logi
 that hasbeen under 
ontinuous development sin
e the mid-1980s, by an ever-
hanginggroup of developers and external 
ontributors. We give a brief overview of vari-ous implementations of the HOL logi
 before fo
using on the evolution of 
ertainimportant features available in a re
ent implementation. We also illustrate howthe module system of Standard ML provided se
urity and modularity in the 
on-stru
tion of the HOL kernel, as well as serving in a separate 
apa
ity as a usefulrepresentation medium for persistent, hierar
hi
al logi
al theories.Re
eived July 20, 2000; revised July 20, 2000; a

epted July 20, 20001. INTRODUCTIONIn the early 1980s, Mike Gordon took up an implemen-tation of Chur
h's formulation of Simple Type The-ory (1) as a platform for resear
h in hardware veri�-
ation. Both the logi
 and the system were 
alled HOL(Higher Order Logi
). Gordon re
ounts the story of thedevelopment of HOL in (2). The implementation andthe logi
 were both in
uential, spawning mu
h resear
h,and also other implementations.The original HOL implementation was derived fromthat of LCF (3), and subsequent implementations ofHOL 
ontinue to be heavily in
uen
ed by ideas fromLCF. The LCF approa
h implements a logi
 in a stronglytyped programming metalanguage. The 
entral designtenet of an LCF-style system is that the primitive in-feren
e rules of the logi
 are the only 
onstru
tors ofan abstra
t type of theorems. The type of theorems isthe 
enterpie
e of the kernel of the logi
. On top ofthe kernel, people not experts in the logi
 
an safely de-velop further fa
ilities and theories by programming inthe metalanguage.There have been a number of implementations of theHOL logi
 in the LCF tradition:HOL88 (4) was the �rst major publi
 release of an im-plementation of HOL. The system was responsiblefor the popularity of HOL, and had a large amountof support theories, and do
umentation. The sys-tem was programmed in Classi
 ML, the originalML language developed in the LCF proje
t. Classi
ML was itself implemented in Lisp.HOL90 (5) was a re-implementation, by the se
ond au-thor (under the supervision of Graham Birtwistle),of HOL88 in Standard ML (SML). The goal ofHOL90 was to provide nearly-identi
al fun
tional-ity to HOL88, but with more speed.ProofPower (6) is a 
omplete re-implementation of

HOL, also in SML, by a team from ICL. One ma-jor appli
ation of the system has been to providea me
hanization of the Z spe
i�
ation language.ProofPower was re
ently used to verify a `one-wayregulator'. This is a real industrial system and wasthe �rst formal veri�
ation to attain the highestlevel of 
erti�
ation from the UK authorities (7).Isabelle/HOL (8) is an appli
ation of the Isabelle log-i
al framework to the HOL logi
. Isabelle/HOL isone of the most highly-engineered HOL systems.There are many novelties in Isabelle/HOL; perhapsthe most important is that rules are not programs,as in LCF, but are formulae in the Isabelle meta-logi
. In Isabelle, inferen
e rules are applied viahigher order uni�
ation.LAMBDA (9) was a 
ommer
ial implementation ofHOL by the 
ompany Abstra
t Hardware (now de-fun
t). The implementation was in
uen
ed by theIsabelle approa
h: rule appli
ation was by higherorder uni�
ation. LAMBDA provided a highly de-veloped user interfa
e for hardware design.HOL Light (10) had its genesis in an SML implementa-tion by John Harrison and the se
ond author aimedat dis
overing how small a HOL kernel 
ould be.Harrison then ported the system to Caml-Light andhas sin
e redeveloped it 
ompletely. HOL Light isnow being used for 
oating point algorithm veri�-
ation at Intel (11).HOL98 began as an adaptation, by Ken Larsen andthe se
ond author, of HOL90 to Mos
ow ML. Theemphasis of Mos
ow ML on fast separate 
ompila-tion enabled a signi�
ant re-design of the system,parts of whi
h are des
ribed in the sequel.As 
an be seen, there are 
urrently several distin
tstrands of HOL implementation in progress. Our pur-The Computer Journal, Vol. 00, No. 0, 0000



2 M Norrish and K Slindpose in this paper is to re
ount some of the signi�
antmilestones of one thread of HOL development, namelythat pro
eeding from HOL88 to HOL90 to HOL98. Weshall �rst give a survey of how 
ertain important fa
il-ities of HOL98 evolved, in
luding re
ent work aimed atwrapping proof tools up as distributed 
omponents in a`plug-and-play' ar
hite
ture. Finally, we des
ribe somesigni�
ant aspe
ts of the implementation of HOL98.2. THEOREM PROVING TOOLSIn this se
tion we des
ribe various important fa
ilitiessupporting proof in HOL98. We do not 
laim that thesefa
ilities are unique (similar support exists in most 
on-temporary me
hanized proof assistants), and 
annotpoint to a pre-existing `grand design'. In fa
t, sup-port tools and theories have typi
ally been 
reated inresponse to short
omings in the system exposed by at-tempted veri�
ations. Although this approa
h is ad ho
,the 
urrent set of tools in HOL98 allows mu
h betterprogress to be made in formalizations than in earlierin
arnations of HOL.The fa
ilities break down into de�nition prin
iples,proof pro
edures, previously built theories, syntax sup-port and inter-tool linkage.2.1. De�nition Prin
iplesMaking de�nitions is a 
ru
ial aspe
t of veri�
ation.The HOL logi
 only provides very simple de�nition fa-
ilities, whi
h are too low-level for many formalizations.In response, an enduring aspe
t of HOL developmenthas been the 
onstru
tion of ever more powerful de-rived de�nition prin
iples|whi
h redu
e via inferen
eto appli
ations of the primitive de�nition fa
ilities. Inthe following, we highlight some of the 
urrent fun
tion-ality.Indu
tively de�ned sets Indu
tive de�nitions are 
om-mon in mathemati
s and 
omputer s
ien
e; for example,they are used to build datatypes like the natural num-bers and lists. They are heavily used to model proofsystems, in formalizing stati
 and dynami
 operationalsemanti
s; for example, SML (12), CCS (13) and C (14).They may also be used in the 
onstru
tion of re
ursivefun
tions.An indu
tive de�nition pa
kage takes as input a spe
-i�
ation of the `rules' used to add elements to the de-sired set. It then de�nes the desired set (or sets, mutu-ally re
ursive de�nitions are supported), and returns apa
kage of useful theorems: the rules for building ele-ments in the set, an indu
tion prin
iple, and a `
ases' (orinversion) theorem, useful for breaking down elementsof the set based on how they were 
onstru
ted. The�rst indu
tive de�nition pa
kage for HOL was due toMelham (15); a subsequent implementation by Harrisonadditionally allowed in�nitary hypotheses in rules (16).

Datatype de�nitions Many HOL formalizations requirethe de�nition of new types. For example, ML-styledatatypes are 
ommonly used to model the abstra
tsyntax of programming languages and the state-spa
e ofelaborate transition systems. In HOL98, su
h datatypes(at least, those that are indu
tive, or, alternatively, havea model in an initial algebra) may be spe
i�ed using thesyntax in Figure 1.type-spe
 ::= [binding ;℄* bindingbinding ::= id = 
onstr-spe
| id = re
ord-spe

onstr-spe
 ::= [
lause |℄* 
lause
lause ::= id| id of [type =>℄* typere
ord-spe
 ::= <| [id : type ;℄* id : type |>FIGURE 1. Datatype De
larationDatatype spe
i�
ations allow the use of re
ord types,whi
h may be re
ursive. For example, the followingdatatype 
ould be used to formalize a simple �le system.file = Text of string | Dir of dire
tory ;dire
tory =<| owner : string ;files : (string * file) list |>When a datatype is de�ned, a number of standardtheorems are automati
ally proved about the new type:the 
onstru
tors of the type are proved to be inje
tiveand disjoint, indu
tion and 
ase analysis theorems areproved, and ea
h type also has a `size' fun
tion de�nedfor it. Size fun
tions for types map values of the typesinto N and are used by the fun
tion de�nition pa
kagein termination proofs. The standard theorems aboutdatatypes are all 
olle
ted in an internal database andused by several other pa
kages, e.g., the simpli�er.The datatype pa
kage of HOL98 took some time toevolve to its present state. The pa
kage in HOL88 wasported to HOL90 and was 
entral in many veri�
ations.However, it did not provide advan
ed features su
h asmutually re
ursive types and re
ursion under type oper-ators. Sin
e these features are often required, espe
iallywhen modelling 
omputer languages, extension pa
k-ages, e.g., (17), were written in HOL90. These pa
kageswere 
ru
ial for many 
hallenging veri�
ations; however,they were somewhat diÆ
ult to use, and as a result, inHOL98 we have adopted and extended a datatype pa
k-age from HOL Light.One observation about datatype de�nition pa
kagesimplemented via inferen
e is that they are diÆ
ult towrite, and also seem to be somewhat ineÆ
ient whendealing with large datatypes featuring mu
h nesting un-der type 
onstru
tors. Whether signi�
antly more ef-�
ient inferen
e-based pa
kages are possible should beinvestigated.The Computer Journal, Vol. 00, No. 0, 0000



A Thread of HOL Development 3Re
ursive fun
tion de�nition Re
ursive fun
tions arepervasive in formalization. In HOL88 and HOL90,the only re
ursion style supported was primitive re-
ursion over the 
onstru
tors of datatypes. In or-der to make it easy to spe
ify more 
omplex re
ur-sive fun
tions, a pa
kage based on well-founded re-
ursion was developed (18, 19). The pa
kage handlesmany re
ursion styles (nested, mutual, higher-order,and s
hemati
 (19)) and a

epts equations in the pat-tern mat
hing style popular in fun
tional programminglanguages. In 
ontrast to primitive re
ursion, the for-mat of whi
h guarantees termination (and thus total-ity), a fun
tion de�ned by well-founded re
ursion mustbe proved to terminate; HOL98 attempts to prove ter-mination automati
ally, but the 
urrent terminationprover, although useful, is quite basi
.A fun
tion de�ned by well-founded re
ursion alsospe
i�es a useful indu
tion theorem in whi
h the in-du
tive hypothesis holds for the arguments to re
ursive
alls. For ea
h re
ursive de�nition, HOL98 automati-
ally derives this `
ustomized' indu
tion theorem froma general well-founded indu
tion theorem (20).2.2. Proof pro
eduresThe primitive inferen
e rules of HOL are too low-levelon their own to support interesting veri�
ations. Thus,an enduring aspe
t of HOL development is proof au-tomation, a
hieved by using ML to 
ompose proof pro-
edures. A 
onstraining fa
tor in this pro
ess has beenthe requirement that the pro
edure use dedu
tive stepsin HOL, but many (most?) of the de
ision pro
eduresfound in the literature are not des
ribed dedu
tively.In spite of this obsta
le, a number of su
h experiments,dis
ussed below, have shown the feasibility of this en-terprise.De
ision pro
edures When a proof goal arises that liesin a de
idable set of formulas, it is desirable that thegoal be proved without further human e�ort. A numberof de
ision pro
edures have been implemented in HOLover the years.For the fragment of HOL 
orresponding to proposi-tional logi
, a na��ve algorithm has been provided in thesystem for some time; however, it is only suitable forsmall problems. An ROBDD-based algorithm is dis-
ussed in Se
tion 2.5.For the fragment of HOL 
orresponding to �rst or-der logi
, a model elimination pro
edure (21) has beenextremely useful in raising the level of automation inmany veri�
ations. An interesting aspe
t of this pro-
edure is that it 
ondu
ts proof sear
h in ML using anon-HOL-spe
i�
 representation; in 
ase the sear
h issu

essful, the representation provides enough informa-tion to generate a HOL proof.HOL98 provides three de
ision pro
edures for vari-ous 
avours of arithmeti
. The earliest, due to Boul-ton (22, x5.2), solves most universally and some exis-

tentially quanti�ed formulas in linear arithmeti
 overN. The treatment of universal formulas is a adaptationof Hodes' method (23) to N and is in
omplete be
auseit does not take divisibility into a

ount; for example, itfails to prove 8x: 2x 6= 5. The pro
edure for existentialformulas is Shostak's SUP-INF pro
edure (24), whi
his also in
omplete.HOL98 in
ludes a 
omplete pro
edure for all univer-sally quanti�ed linear formulas over R. This was imple-mented by Harrison as part of his do
toral resear
h (25,x5). In that work, Harrison also implemented a versionof Tarski's de
ision pro
edure for real �elds but, dueto its 
omputational 
omplexity, this pro
edure is notoften useful and is not publi
ly available.Re
ently, an implementation of Cooper's algo-rithm (26) for de
iding full Presburger arithmeti
 overZ and N has been implemented by the �rst author.Results suggesting that Cooper's method 
an outper-form Hodes' method on universal formulas have beenreported (27). While our implementation of Cooper'smethod is not yet mature enough to 
ompete with Boul-ton's 
ode on those goals they 
an both solve, it provesmany goals qui
kly enough to be promising for inter-a
tive use. For example, it proves the group axiom forZ 9!e: (8x: 9!y: x+ y = e) ^ (8x: x+ e = x)in 0.6s on a 600 MHz Pentium III.Nelson and Oppen's method for 
ombining de
isionpro
edures, whi
h in
ludes an implementation of 
on-gruen
e 
losure, is also available in the system (28).Simpli�
ation Simpli�
ation is a pervasive a
tivity inproof. The HOL98 simpli�er was implemented by DonSyme, inspired by the powerful simpli�er in Isabelle.The 
ore algorithm of the simpli�er is based on aPaulson-style rewriter (29), whi
h traverses the termM to be simpli�ed, and repeatedly attempts to applyrewrite rules at all subterms of M . This basi
 engine isaugmented with the following features:� Conditional rewrite rules of the form
1 ^ � � � ^ 
n � (x = y)may be applied. The simpli�er re
ursively invokesitself on the side 
onditions generated. This invo-
ation may in turn try to apply further 
onditionalrewrites. The sta
k of side 
onditions is not allowedto ex
eed a user-spe
i�ed depth.� So-
alled 
ongruen
e rules may be applied; theseenable the rewriter to a

umulate and dis
ard 
on-text as a term is traversed. For example, whileoperating on a term if b then e1 else e2, simpli-�
ation of e1 
an assume b, and simpli�
ation of e2
an pro
eed while assuming :b. Similarly, P 
anbe assumed while simplifying Q in P � Q.� Rewrite rules are applied using a simple form ofhigher order mat
hing, 
losely related to the algo-rithm dis
overed by Miller (30).The Computer Journal, Vol. 00, No. 0, 0000



4 M Norrish and K Slind� Standard rewrite rules arising from datatype de�ni-tions are automati
ally in
orporated into the sim-pli�
ation pro
ess.� The simpli�er 
an be extended with arbitrary proofpro
edures. These are invoked by the simpli�er onappropriate sub-terms and are passed the 
urrenta

umulated 
ontext. The use of Boulton's lineararithmeti
 pro
edure during simpli�
ation has dra-mati
ally shortened many veri�
ations. This is byno means the last word on the integration of de
i-sion pro
edures into simpli�
ation: a higher level ofintera
tion between arithmeti
 de
ision pro
eduresand a simpli�er has been reported in (31).Support for simpli�
ation in HOL88 and HOL90 wasmu
h more basi
: only un
onditional rewrite rules 
ouldbe applied, and on-the-
y invo
ation of de
ision pro
e-dures was thought to be prohibitively slow. The amaz-ing in
rease in 
omputational power in standard work-stations and PCs over the last de
ade has meant thatoperations previously thought to be slow|and thusonly suitable for intera
tive appli
ation during proof|are now fast enough to be used deep inside automatedtools.Computation Many tasks arising during veri�
ationamount to no more than evaluation of logi
al fun
tions,e.g., redu
ing ground terms built up from boolean andarithmeti
 operators. Histori
ally, HOL systems imple-mented ad ho
 simpli�ers for su
h tasks. In re
ent work(32), Barras implemented an abstra
t ma
hine for 
all-by-value redu
tion in HOL. A novel aspe
t of this workis that the a
tual redu
tion steps are implemented byinferen
e rules. The result is a derived inferen
e rulethat evaluates ground HOL terms, just as if by an MLinterpreter. Although Barras' inferen
e rule runs mu
hslower than a 
onventional ML implementation, theslowdown is a 
onstant fa
tor; moreover, the pro
edureis suÆ
iently qui
k to provide a general-purpose solu-tion for many redu
tion tasks arising during veri�
a-tion. In 
ontrast to Barras' LCF-style inferen
e rule, theACL2 and PVS systems use 
omputation in their meta-language (Lisp) to perform su
h tasks as 
al
ulation inthe logi
. The ACL2 system also implements symboli
evaluation for logi
ally de�ned fun
tions, and this hasbeen found to be very useful in veri�
ations (33). Itremains to provide a general purpose and relatively ef-�
ient symboli
 simulation rule in HOL98.2.3. Veri�
ation theoriesA range of theories embodying basi
 mathemati
alstru
tures have been built in the HOL system: pairs,disjoint unions, the `option' type, numbers (N, Z andR), lists, `lazy' lists, relations, �nite and in�nite setsand multisets, �nite maps, strings, and words. Othermathemati
al developments in the system in
lude lineartime temporal logi
, !-automata, analysis over metri
spa
es, polynomials, and probability theory. In general,

these theories have not been provided by the HOL de-velopers; instead, they are often user 
ontributions. Asa result, theory development has not been systemati
:a theory is often built when needed to support a par-ti
ular veri�
ation exer
ise. If the theory seems to havewide utility, it is then in
orporated into the standarddistribution.Numerous 
omputer s
ien
e oriented formalizationshave also been 
onstru
ted in HOL, in
luding theoriesfor Hoare Logi
, UNITY, CCS, �-
al
ulus, SML, C,
omputability theory, et
. In 
ontrast to the `standard'mathemati
al theories above, these theories, while vitalto their developers' needs, seem not to have been widelyadopted. This seems to suggest that either a truly use-ful veri�
ation formalism has yet to be invented, or thatstandard mathemati
s suÆ
es.2.4. Syntax supportVeri�
ations of any size require intera
tion with theproof assistant. A 
ommon a
tivity is thus the pars-ing and printing of logi
al obje
ts e.g., formulas. Theparsing and pretty-printing support o�ered in HOL98 issigni�
antly more 
exible than that of HOL90, whi
hprovided only a �xed grammar, and the ability to de-
lare new in�xes. Another 
hange is that, in 
ontrastto HOL88 and HOL90, the HOL98 parser and pretty-printer are now 
ompletely separate from the logi
alkernel. This has two bene�ts: 
ore fun
tionality is not
ompromised by the intrusion of unrelated 
ode, andthe parser 
an implement abstra
tions of its own (su
has overloading) that have no re
e
tion in the underlyinglogi
. Below we dis
uss three syntax support featuresre
ently added to HOL98.Expli
it grammars The parser is expli
itly parameter-ized by a grammar, whi
h re
ords the produ
tions usedby the parsing algorithm, as well as pre
eden
e levelsfor operators. For example, `+' is re
orded as beinga left asso
iative in�x at level 500. By making parsingexpli
itly dependent on grammar values, the system be-
omes more robust and 
exible be
ause library 
ode 
anparse with respe
t to a spe
i�
 grammar. This providesan important kind of stati
 s
oping for HOL expressionsthat are parsed as a library loads.Mix-�x forms The parser uses operator pre
eden
eparsing (34, x4.6). This algorithm is simple to imple-ment, deterministi
, and runs eÆ
iently. To add to thesingle-token pre�xes, suÆxes and in�xes provided bythis te
hnique, we have made a simple extension to thenotion of operator: an operator is not ne
essarily a sin-gle token (su
h as +), but 
an also be a sequen
e oftokens and non-terminals. There are four �xities: in�x,pre�x, suÆx, and `
lose-�x'; these are the four possibil-ities arising from two independent 
hoi
es: whether ornot an argument to the left of the operator is possible,and whether or not an argument to the right is possi-The Computer Journal, Vol. 00, No. 0, 0000



A Thread of HOL Development 5ble. For example, if-then-else is viewed as pre�x oper-ator where the �rst two arguments are en
losed withinthe tokens (between the if-then and between the then-else). Only the last argument is subje
t to binding 
om-petition with other operators. This simple extensionmakes sense of the 
lose-�x �xity, whi
h might be usedto implement syntax representing \semanti
 bra
kets"as [| |℄.Overloading Spe
ifying that a 
onstant is to be over-loaded in HOL98 is straightforward: one simply spe
i�eswhi
h 
onstants should be instan
es of whi
h overloadednames. For example, one 
an require that addition overN and Z (separate fun
tions in HOL) should both be in-stan
es of the + identi�er. Type inferen
e is used to helpresolve overloading. Following the example of Haskell,HOL98 also overloads numerals (sequen
es of digits) in-habiting di�erent types. This is a
hieved by treatingevery o

urren
e of a numeral n as if it were the term&n, where & is an overloaded symbol denoting a 
ontext-determined inje
tion fun
tion into the appropriate nu-meri
 domain. With this s
heme, type inferen
e is usedas a basis for sele
ting the inje
tion fun
tion 
oer
ing anumeral to an integer, natural number or a real.Our parser, while quite 
exible, is not as general, noras sophisti
ated as that of Isabelle, whi
h uses Earley'snon-deterministi
 
ontext-free parsing algorithm (35).Also, the approa
h to overloading in Isabelle is based ontype 
lasses (36), whi
h in turn re
e
ts the spe
i�
ationof types in the underlying obje
t logi
. HOL98 does notsupport type 
lasses, so it is reasonable not to for
e theuser to 
onform to any parti
ular organisation of theiroverloaded 
onstants.2.5. Inter-tool linkagesAn important fa
et of HOL98 is its a

eptan
e of the rôlethat external tools have to play in the use of intera
tivetheorem-proving systems. Histori
ally, the attitude inHOL implementations has been rather 
autious: exter-nal tools might prove results qui
kly, and dependably,but they might also be in
orre
t.Su
h a purist approa
h is not always pragmati
allyjusti�ed. Systems su
h as Lifted-FL (37), used by In-tel to verify aspe
ts of 
hip design, rely on a seam-less integration between the logi
al 
ore and externaltools, whi
h are typi
ally highly engineered for theirproblem domain. The PVS system (38) has also inte-grated a number of external tools, in
luding a model-
he
ker (39).The PROSPER proje
t (40) is one response to thedemand for integration of external tools with HOL. Ithas developed a 
ommon framework for the linking to-gether of veri�
ation tools. Communi
ation of terms,types and theorems is done using the basi
 HOL repre-sentations, providing an abstra
t syntax with whi
h to
ommuni
ate logi
al obje
ts over 
omputer networks.Implementations of the interfa
e are available for the

C, Java, SML and Python programming languages.An early inter-tool linkage using PROSPER was per-formed by Hurd (41), who linked HOL98 and the resolu-tion prover Gandalf (42). Gandalf provides a reasonablydetailed log of su

essful proofs, and Hurd's 
onne
tionautomati
ally translates these logs to HOL proofs that,when exe
uted, prove the goal originally sent to Gan-dalf. Thus, worries about soundness are 
ir
umvented:Gandalf sear
hes for and provides a proof, not just anassertion that the goal is true.This kind of proof-re
onstru
tion approa
h is not pos-sible with a tool that produ
es nothing that 
ould be
onstrued as a proof. If one wants to use su
h a tool,the results it produ
es must simply be a

epted as HOLtheorems. However, the soundness of HOL is therebyimperiled. The solution adopted by HOL98 is to tag allsu
h foreign theorems. A tag signi�es that the theo-rem in question was generated externally, and identi�esthe sour
e. The primitive inferen
e rules of HOL havebeen adapted to a

umulate and propagate any tagsthat appear in theorems, mu
h in the same way that hy-potheses are a

umulated and propagated in inferen
e.There is thus a logi
al `audit trail' providing the userwith information about whi
h tools have 
ontributedto a result. PROSPER te
hnology has been used byS
hneider and Ho�mann to link HOL98 to SMV (43),and it is also used to provide a 
omponent-style inter-fa
e to Prover Te
hnology's 
ommer
ial implementationof St�almar
k's algorithm (44).In a separate development, re
ent work by Gor-don (45), allows ROBDDs (an eÆ
ient representationof propositional formulas) to be used inside HOL98 in aprin
ipled, yet eÆ
ient way. Purported theorems 
om-ing from appli
ation of ROBDD algorithms are taggedbefore being admitted as HOL theorems.3. ASPECTS OF IMPLEMENTING HOLWe now des
ribe some aspe
ts of the HOL98 imple-mentation, fo
using mainly on design issues. Mu
h ofthe art and s
ien
e of implementing abstra
t spe
i�-
ations in a programming language involves mappingspe
i�
ation-level 
on
epts onto 
onstru
ts provided inthe programming language. Below we dis
uss how the
onstru
ts of Standard ML supported the implementa-tion of important properties required by HOL.3.1. The HOL logi
The HOL logi
 is built on the syntax of a lambda 
al
u-lus having a polymorphi
 type system somewhat similarto that of ML.2 The logi
 is 
lassi
al and has a set the-oreti
 semanti
s, in whi
h types denote non-empty setsand the fun
tion spa
e denotes total fun
tions. Thelogi
 
omprises four 
omponents: types, terms, theo-rems, and theories.2Type variables may o

ur in HOL types, just as in ML; how-ever, full let-style polymorphism in the HOL logi
 would lead toin
onsisten
y and is not allowed.The Computer Journal, Vol. 00, No. 0, 0000



6 M Norrish and K Slind3.1.1. TypesTypes and terms are built with respe
t to signatures.A type signature (
) assigns arities to type operators.A HOL type is either a type variable, or a 
ompoundtype built by applying a type operator in 
 of arity kto a list (of length k) of types. Initially, 
 
ontainstype operators denoting truth values (bool), fun
tionspa
e (written �1 ! �2), and an in�nite set of individu-als (ind). A type 
onstant, su
h as bool, is a 
ompoundtype built from a member of 
 with arity 0. Althoughthe abstra
t syntax of types is easily 
aptured with anML datatype de
laration, the arity 
he
k in the 
on-stru
tion of 
ompound types means that types may notbe freely 
onstru
ted.3.1.2. TermsHOL terms are typed �-
al
ulus expressions built withrespe
t to a signature (�
), whi
h assigns types builtfrom 
 to term 
onstants. A term 
an be 
onstru
tedin only four ways: it is either a variable, an instan
e ofa 
onstant in �
, an appli
ation (M N) of a termM oftype �1 ! �2 to a term N of type �1, or a lambda ab-stra
tion. (In our opinion, one of the strengths of HOLis the small number of ways a term may be 
onstru
ted.)Initially, �
 
ontains 
onstants denoting equality (=),impli
ation (�), and Hilbert's inde�nite des
ription op-erator (").The abstra
t syntax of HOL terms is also easily 
ap-tured with an ML datatype de
laration; however, asfor types, terms may not be freely 
onstru
ted, sin
e aterm must be well-typed with respe
t to �
.The interfa
e routines for manipulating HOL termspresent a so-
alled name-
arrying syntax. In our threadof HOL development, there have been four implementa-tions of this interfa
e: the HOL88 implementation useda name-
arrying representation from LCF; early imple-mentations of HOL90 also used a name-
arrying inter-nal representation of terms; later versions representedterms with deBruijn indi
es; and the 
urrent implemen-tation, due to Bruno Barras, uses expli
it substitutions.Sin
e terms are an abstra
t type, these internal 
hangeshave not been externally visible.Types and terms form the basis of the prelogi
, inwhi
h basi
 algorithmi
 manipulations on types andterms are de�ned: e.g., the free variables of a type orterm, substitution, mat
hing, and �- and �-
onversion.These algorithms are used to implement higher-levelsyntax manipulations, and are also used to implementthe dedu
tive system.3.1.3. Theorems, Axioms, and De�nitionsDi�erent but equivalent presentations of the dedu
tivesystem of HOL 
an be found in (4) or Appendix Aof (25). The important thing is that a �xed set of prim-itive rules and axioms is used as a basis upon whi
hmore 
omplex derived rules may be built by program-ming in the metalanguage. The primitive rules of HOL


an be used to build a 
onventional set of natural dedu
-tion style rules, with introdu
tion and elimination rulesfor all the standard logi
al 
onne
tives. The usual rulesfor equality reasoning are also derivable from the prim-itives. A �nal rule is provided for instantiating typevariables in a theorem.Theorems are easy to represent by an ML datatypewith �elds for the hypotheses and 
on
lusion of the the-orem. The type of theorems is abstra
t in order to meetthe requirement that a new theorem may only be pro-du
ed by appli
ation of a primitive rule of inferen
e.The HOL logi
 distinguishes between axioms and def-initions. An axiom is an arbitrary well-typed formulathat is simply asserted to be a theorem. It is very easyto assert axioms, but experien
e has shown that it is alltoo easy to introdu
e in
onsisten
y this way. An alter-native, popular among users of HOL, is to make de�-nitions and derive the desired 
onsequen
es by proof.Prin
iples for de�ning types and terms form part ofthe HOL logi
, and the previous se
tion has des
ribedadvan
ed de�nition fa
ilities, whi
h 
ouple the 
onve-nien
e of asserting axioms with the soundness of usingprimitive inferen
e.3.1.4. TheoriesThe HOL logi
 provides a very simple notion of theory :loosely speaking, a HOL theory is a 
olle
tion of theo-rems that have been derived from a set of axioms in asignature. Sin
e signatures are extensible, as is the setof axioms, and also the set of derived theorems, someme
hanism is needed to handle di�erent extensions ofthe initial theory o

urring when di�erent theories areformalized. It is straightforward to support su
h exten-sions in a single session; however, it is more diÆ
ult tosupport persistent theories, in whi
h a theory may bedeveloped and then stored on disk, to be reloaded in asubsequent session. This is dis
ussed in more detail inSe
tion 3.2.2.3.2. Implementing HOLWe dis
uss two 
entral aspe
ts of implementing HOL inthis se
tion: �rst, how to se
urely implement the HOLkernel; se
ond, how to represent theories so that theyare persistent. We do not imagine that our approa
hesare distinguished in any way over others; however, ourdis
ussion reveals|by example|useful ML program-ming idioms that we think are not well enough known.The �rst idiom uses SML modules to build a multi-stru
ture abstra
t datatype. The se
ond idiom showshow ML stru
tures, normally thought of as 
ontainersfor programs, also serve very well as 
ontainers for hi-erar
hi
al data.3.2.1. Multi-stru
ture ADTsThe prin
ipal design 
hallenge in implementing HOL
omes from a tension between en
apsulation and mod-ularity. We have seen that HOL types, terms, and theo-The Computer Journal, Vol. 00, No. 0, 0000



A Thread of HOL Development 7rems must be implemented by abstra
t datatypes; theo-ries keep tra
k of the state of a logi
al development andthus they must also be prote
ted from arbitrary usermeddling. Thus, the implementations of types, terms,theorems, and theories need to be en
apsulated in akernel. Inside the kernel, dire
t a

ess to representa-tions of abstra
t types is permitted, and the state ofthe system 
an be viewed and altered by any pie
e of
ode in the kernel. From outside however, a

ess to therepresentations and states of the kernel is stri
tly 
on-trolled by kernel 
ode that maintains important systeminvariants, su
h as well-typedness.On the other hand, it seemed quite natural in theimplementation to divide the kernel into four separatemodules Type, Term, Thm, and Theory implementingtypes, terms, theorems, and theories. The 
on
i
t ariseswhen a fun
tion in a kernel module either needs a

essto the representation of an abstra
t type de
lared inanother kernel module, or when it dire
tly manipulatesstate held in another kernel module. In our design,this gives rise to mutual dependen
ies among the kernelmodules. Sin
e user level programming also a

essesthe very same Type, Term, Thm, and Theory modules, itwould be 
atastrophi
 if 
riti
al kernel representationsand datastru
tures were user-a

essible.ML provides several means of solving this problem.To some, the simplest solution would use the abstra
tdatatype fa
ility of Core ML. Although this approa
his possible, it did not appeal to us: it would requirefour mutually re
ursive abstra
t types (they are mu-tually dependent, but not re
ursively so), held in one(large) �le, whi
h we thought was insuÆ
iently modu-lar. Instead, we were more interested in applying theabstra
tion fa
ilities available at the module level.The solution we settled on builds the kernel from its
omponent stru
tures. First a version of Type, 
alledRawType, is built whi
h exposes its representation andinternal state. From RawType, a raw version of Term,
alled RawTerm, is built whi
h also exposes its repre-sentation and internal state. RawType and RawTerm arethen 
urtailed to the desired user-level stru
tures Typeand Term by signature restri
tion. Following this, thestru
tures Thm and Theory 
an be built by applying thefun
tors THM and THEORY. Note that Thm a

esses therepresentation of terms. Also, Theory uses signature-update fun
tions provided by RawType and RawTerm;signature restri
tion removes these dangerous fun
tionsto obtain the safe stru
tures.lo
al stru
ture RawType = TYPE()stru
ture RawTerm = TERM(RawType)instru
ture Type:Type = RawTypestru
ture Term:Term = RawTermstru
ture Thm = THM(RawTerm)stru
ture Theory =THEORY(stru
ture Thm = Thmstru
ture Term = RawTerm)endThe whole development is wrapped in a module-

level lo
al ... in ... end blo
k so that RawType andRawTerm are ephemeral, disappearing after the multi-stru
ture kernel is 
reated. Users 
an only a

ess ker-nel fun
tions through Type, Term, Thm, and Theory, and
annot therefore dire
tly a

ess the internal representa-tions or modify the state of the kernel.This design is not perfe
t; for example, the fun
torsTYPE, TERM, THM, and THEORY 
ontinue to exist afterthe kernel is built, 
luttering up the fun
tor names-pa
e. They 
ould be rede�ned to be va
uous, but thatis hardly elegant.3.2.2. Persistent theoriesThe 
on
ept of theory segment is used to formalize per-sistent theories. Con
eptually, a segment is a 
ontainerin whi
h related logi
al entities are stored. Theory seg-ments are hierar
hi
ally arranged by a dependen
y re-lation that tells when one segment depends on 
on
eptsor results formalized in another parent segment. Thetheory T 
orresponding to a segment is built by takingthe 
omponent-wise union of all the segments found inthe transitive 
losure of the parent relation. There isa root segment 
orresponding to the initial signaturesand axioms of HOL.A typi
al pie
e of work with HOL98 
onsists in a num-ber of sessions. In the �rst of these, a new theory, Tsay, is 
reated by importing some existing theory seg-ments, making a number of de�nitions, and perhapsproving and storing some theorems in the 
urrent seg-ment. Eventually the 
urrent segment is exported todisk. The 
on
rete result will be a �le 
ontaining thetheory segment 
reated during the session and whosean
estry represents the desired logi
al theory T . Sub-sequent sessions 
an a

ess the de�nitions and theoremsof T by importing the �le; this avoids having to loadthe tools and replay the proofs that 
reated the theoryin the �rst pla
e.In HOL90, theory segments were stored on disk in anad ho
 format whi
h required mu
h 
ode implementinginput and output of segments. A more serious prob-lem was that fet
hing elements from a segment was dy-nami
: for example, a

essing the arithmeti
 theoremADD CLAUSES was done via fun
tion 
all:theorem "arithmeti
" "ADD_CLAUSES"Thus, mapping segment-level bindings to ML-levelbindings 
ould only happen dynami
ally. As a 
onse-quen
e, it was generally impossible to determine thedependen
ies in a 
olle
tion of ML 
ode with theories.In HOL98, theory segments are dire
tly representedby ML stru
tures: the bindings of a theory seg-ment 
an be represented by ML variable bindings,and the parenthood relation 
an be mapped into thedependen
y of stru
tures. With this representation,the above theorem is stored in a stru
ture namedarithmeti
Theory, under the binding ADD CLAUSES,whi
h 
an be a

essed using the standard `dot' notation,The Computer Journal, Vol. 00, No. 0, 0000



8 M Norrish and K Slindi.e., arithmeti
Theory.ADD_CLAUSES. Sin
e theory-level binding is a
hieved by the binding of variables ina stru
ture, dependen
y analysis of HOL formalizations
an be a
hieved by extending ML dependen
y analysis.This has been implemented by the �rst author, and theresulting tool, 
alled Holmake, is now extensively usedfor dependen
y maintenan
e in large HOL98 formaliza-tions, in
luding the whole distribution.4. CONCLUSIONSThe HOL system has been under development in oneform or another for almost twenty years. In that time,though the number of implementations has burgeoned,the spe
i�
ation of the logi
 has been stable. This hasgiven many people the 
han
e to implement and developvarious tools for the same logi
. For example, the 
ur-rent implementation of HOL98 bene�ts greatly from thetools available in Harrison's HOL Light implementation.Signi�
ant e�ort has been expended to port tools fromHOL Light to HOL98, but this has always been reason-ably straightforward, sin
e the two systems implementthe same spe
i�
ation.The amazing improvements in speed and memory
apa
ity of 
omputers over the past two de
ades hasmeant that di�erent design 
hoi
es be
ame possiblewith the passage of time. We have given some indi-
ation of how this story has played out in the develop-ment of a sequen
e of HOL implementations. In general,the transition has been towards ever-higher levels of au-tomation, and away from 
onsiderations based purelyon speed and memory 
onsumption. System interfa
eshave also been gradually generalized in many ways. Wethink that this trend will 
ontinue, for the wider uptakeof formal veri�
ation will require simpler interfa
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