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The HOL system is a mechanized proof assistant for higher order logic that has
been under continuous development since the mid-1980s, by an ever-changing
group of developers and external contributors. We give a brief overview of vari-
ous implementations of the HOL logic before focusing on the evolution of certain
important features available in a recent implementation. We also illustrate how
the module system of Standard ML provided security and modularity in the con-
struction of the HOL kernel, as well as serving in a separate capacity as a useful
representation medium for persistent, hierarchical logical theories.
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1. INTRODUCTION

In the early 1980s, Mike Gordon took up an implemen-
tation of Church’s formulation of Simple Type The-
ory (1) as a platform for research in hardware verifi-
cation. Both the logic and the system were called HOL
(Higher Order Logic). Gordon recounts the story of the
development of HOL in (2). The implementation and
the logic were both influential, spawning much research,
and also other implementations.

The original HOL implementation was derived from
that of LCF (3), and subsequent implementations of
HOL continue to be heavily influenced by ideas from
LCF. The LCF approach implements a logic in a strongly
typed programming metalanguage. The central design
tenet of an LCF-style system is that the primitive in-
ference rules of the logic are the only constructors of
an abstract type of theorems. The type of theorems is
the centerpiece of the kernel of the logic. On top of
the kernel, people not experts in the logic can safely de-
velop further facilities and theories by programming in
the metalanguage.

There have been a number of implementations of the
HOL logic in the LCF tradition:

HOLS88 (4) was the first major public release of an im-
plementation of HOL. The system was responsible
for the popularity of HOL, and had a large amount
of support theories, and documentation. The sys-
tem was programmed in Classic ML, the original
ML language developed in the LCF project. Classic
ML was itself implemented in Lisp.

HOL90 (5) was a re-implementation, by the second au-
thor (under the supervision of Graham Birtwistle),
of HOL88 in Standard ML (SML). The goal of
HOL90 was to provide nearly-identical functional-
ity to HOLS88, but with more speed.

ProofPower (6) is a complete re-implementation of

HOL, also in SML, by a team from ICL. One ma-
jor application of the system has been to provide
a mechanization of the Z specification language.
ProofPower was recently used to verify a ‘one-way
regulator’. This is a real industrial system and was
the first formal verification to attain the highest
level of certification from the UK authorities (7).

Isabelle/HOL (8) is an application of the Isabelle log-
ical framework to the HOL logic. Isabelle/HOL is
one of the most highly-engineered HOL systems.
There are many novelties in Isabelle/HOL; perhaps
the most important is that rules are not programs,
as in LCF, but are formulae in the Isabelle meta-
logic. In Isabelle, inference rules are applied via
higher order unification.

LAMBDA (9) was a commercial implementation of
HOL by the company Abstract Hardware (now de-
funct). The implementation was influenced by the
Isabelle approach: rule application was by higher
order unification. LAMBDA provided a highly de-
veloped user interface for hardware design.

HOL Light (10) had its genesis in an SML implementa-
tion by John Harrison and the second author aimed
at discovering how small a HOL kernel could be.
Harrison then ported the system to Caml-Light and
has since redeveloped it completely. HOL Light is
now being used for floating point algorithm verifi-
cation at Intel (11).

HOL98 began as an adaptation, by Ken Larsen and
the second author, of HOL90 to Moscow ML. The
emphasis of Moscow ML on fast separate compila-
tion enabled a significant re-design of the system,
parts of which are described in the sequel.

As can be seen, there are currently several distinct
strands of HOL implementation in progress. Our pur-
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pose in this paper is to recount some of the significant
milestones of one thread of HOL development, namely
that proceeding from HOL88 to HOL90 to HOL98. We
shall first give a survey of how certain important facil-
ities of HOL9S8 evolved, including recent work aimed at
wrapping proof tools up as distributed components in a
‘plug-and-play’ architecture. Finally, we describe some
significant aspects of the implementation of HOL9S.

2. THEOREM PROVING TOOLS

In this section we describe various important facilities
supporting proof in HOL98. We do not claim that these
facilities are unique (similar support exists in most con-
temporary mechanized proof assistants), and cannot
point to a pre-existing ‘grand design’. In fact, sup-
port tools and theories have typically been created in
response to shortcomings in the system exposed by at-
tempted verifications. Although this approach is ad hoc,
the current set of tools in HOL98 allows much better
progress to be made in formalizations than in earlier
incarnations of HOL.

The facilities break down into definition principles,
proof procedures, previously built theories, syntax sup-
port and inter-tool linkage.

2.1. Definition Principles

Making definitions is a crucial aspect of verification.
The HOL logic only provides very simple definition fa-
cilities, which are too low-level for many formalizations.
In response, an enduring aspect of HOL development
has been the construction of ever more powerful de-
rived definition principles which reduce via inference
to applications of the primitive definition facilities. In
the following, we highlight some of the current function-
ality.

Inductively defined sets Inductive definitions are com-
mon in mathematics and computer science; for example,
they are used to build datatypes like the natural num-
bers and lists. They are heavily used to model proof
systems, in formalizing static and dynamic operational
semantics; for example, SML (12), CCS (13) and C (14).
They may also be used in the construction of recursive
functions.

An inductive definition package takes as input a spec-
ification of the ‘rules’ used to add elements to the de-
sired set. It then defines the desired set (or sets, mutu-
ally recursive definitions are supported), and returns a
package of useful theorems: the rules for building ele-
ments in the set, an induction principle, and a ‘cases’ (or
inversion) theorem, useful for breaking down elements
of the set based on how they were constructed. The
first inductive definition package for HOL was due to
Melham (15); a subsequent implementation by Harrison
additionally allowed infinitary hypotheses in rules (16).

Datatype definitions Many HOL formalizations require
the definition of new types. For example, ML-style
datatypes are commonly used to model the abstract
syntax of programming languages and the state-space of
elaborate transition systems. In HOL98, such datatypes
(at least, those that are inductive, or, alternatively, have
a model in an initial algebra) may be specified using the
syntax in Figure 1.

type-spec [binding ;]* binding

binding

id = constr-spec
| id = record-spec

constr-spec  ::= [clause |]* clause

clause ::= id
| id of [type =>]* type

record-spec  ::= <| [id : type ;|* id : type |>

FIGURE 1. Datatype Declaration

Datatype specifications allow the use of record types,
which may be recursive. For example, the following
datatype could be used to formalize a simple file system.

file = Text of string | Dir of directory ;
directory =
<| owner : string ;
files : (string * file) list |>

When a datatype is defined, a number of standard
theorems are automatically proved about the new type:
the constructors of the type are proved to be injective
and disjoint, induction and case analysis theorems are
proved, and each type also has a ‘size’ function defined
for it. Size functions for types map values of the types
into N and are used by the function definition package
in termination proofs. The standard theorems about
datatypes are all collected in an internal database and
used by several other packages, e.g., the simplifier.

The datatype package of HOL98 took some time to
evolve to its present state. The package in HOL88 was
ported to HOL90 and was central in many verifications.
However, it did not provide advanced features such as
mutually recursive types and recursion under type oper-
ators. Since these features are often required, especially
when modelling computer languages, extension pack-
ages, e.g., (17), were written in HOL90. These packages
were crucial for many challenging verifications; however,
they were somewhat difficult to use, and as a result, in
HOL98 we have adopted and extended a datatype pack-
age from HOL Light.

One observation about datatype definition packages
implemented via inference is that they are difficult to
write, and also seem to be somewhat inefficient when
dealing with large datatypes featuring much nesting un-
der type constructors. Whether significantly more ef-
ficient inference-based packages are possible should be
investigated.
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Recursive function definition Recursive functions are
pervasive in formalization. In HOL88 and HOL90,
the only recursion style supported was primitive re-
cursion over the constructors of datatypes. In or-
der to make it easy to specify more complex recur-
sive functions, a package based on well-founded re-
cursion was developed (18, 19). The package handles
many recursion styles (nested, mutual, higher-order,
and schematic (19)) and accepts equations in the pat-
tern matching style popular in functional programming
languages. In contrast to primitive recursion, the for-
mat of which guarantees termination (and thus total-
ity), a function defined by well-founded recursion must
be proved to terminate; HOL98 attempts to prove ter-
mination automatically, but the current termination
prover, although useful, is quite basic.

A function defined by well-founded recursion also
specifies a useful induction theorem in which the in-
ductive hypothesis holds for the arguments to recursive
calls. For each recursive definition, HOL98 automati-
cally derives this ‘customized’ induction theorem from
a general well-founded induction theorem (20).

2.2. Proof procedures

The primitive inference rules of HOL are too low-level
on their own to support interesting verifications. Thus,
an enduring aspect of HOL development is proof au-
tomation, achieved by using ML to compose proof pro-
cedures. A constraining factor in this process has been
the requirement that the procedure use deductive steps
in HOL, but many (most?) of the decision procedures
found in the literature are not described deductively.
In spite of this obstacle, a number of such experiments,
discussed below, have shown the feasibility of this en-
terprise.

Decision procedures When a proof goal arises that lies
in a decidable set of formulas, it is desirable that the
goal be proved without further human effort. A number
of decision procedures have been implemented in HOL
over the years.

For the fragment of HOL corresponding to proposi-
tional logic, a naive algorithm has been provided in the
system for some time; however, it is only suitable for
small problems. An ROBDD-based algorithm is dis-
cussed in Section 2.5.

For the fragment of HOL corresponding to first or-
der logic, a model elimination procedure (21) has been
extremely useful in raising the level of automation in
many verifications. An interesting aspect of this pro-
cedure is that it conducts proof search in ML using a
non-HOL-specific representation; in case the search is
successful, the representation provides enough informa-
tion to generate a HOL proof.

HOL98 provides three decision procedures for vari-
ous flavours of arithmetic. The earliest, due to Boul-
ton (22, §5.2), solves most universally and some exis-

tentially quantified formulas in linear arithmetic over
N. The treatment of universal formulas is a adaptation
of Hodes’ method (23) to N and is incomplete because
it does not take divisibility into account; for example, it
fails to prove Vz.2x # 5. The procedure for existential
formulas is Shostak’s SUP-INF procedure (24), which
is also incomplete.

HOL98 includes a complete procedure for all univer-
sally quantified linear formulas over R. This was imple-
mented by Harrison as part of his doctoral research (25,
§5). In that work, Harrison also implemented a version
of Tarski’s decision procedure for real fields but, due
to its computational complexity, this procedure is not
often useful and is not publicly available.

Recently, an implementation of Cooper’s algo-
rithm (26) for deciding full Presburger arithmetic over
Z and N has been implemented by the first author.
Results suggesting that Cooper’s method can outper-
form Hodes’ method on universal formulas have been
reported (27). While our implementation of Cooper’s
method is not yet mature enough to compete with Boul-
ton’s code on those goals they can both solve, it proves
many goals quickly enough to be promising for inter-

active use. For example, it proves the group axiom for
7

Ne.(Ve.y.z+y=e)A(Ve. 2z +e=1x)

in 0.6s on a 600 MHz Pentium III.

Nelson and Oppen’s method for combining decision
procedures, which includes an implementation of con-
gruence closure, is also available in the system (28).

Simplification Simplification is a pervasive activity in
proof. The HOL98 simplifier was implemented by Don
Syme, inspired by the powerful simplifier in Isabelle.
The core algorithm of the simplifier is based on a
Paulson-style rewriter (29), which traverses the term
M to be simplified, and repeatedly attempts to apply
rewrite rules at all subterms of M. This basic engine is
augmented with the following features:

e (Conditional rewrite rules of the form
aaN--Nep D(z=y)

may be applied. The simplifier recursively invokes
itself on the side conditions generated. This invo-
cation may in turn try to apply further conditional
rewrites. The stack of side conditions is not allowed
to exceed a user-specified depth.

e So-called congruence rules may be applied; these
enable the rewriter to accumulate and discard con-
text as a term is traversed. For example, while
operating on a term if b then e; else es, simpli-
fication of e; can assume b, and simplification of e,
can proceed while assuming —b. Similarly, P can
be assumed while simplifying @ in P D Q.

e Rewrite rules are applied using a simple form of
higher order matching, closely related to the algo-
rithm discovered by Miller (30).
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e Standard rewrite rules arising from datatype defini-
tions are automatically incorporated into the sim-
plification process.

e  The simplifier can be extended with arbitrary proof
procedures. These are invoked by the simplifier on
appropriate sub-terms and are passed the current
accumulated context. The use of Boulton’s linear
arithmetic procedure during simplification has dra-
matically shortened many verifications. This is by
no means the last word on the integration of deci-
sion procedures into simplification: a higher level of
interaction between arithmetic decision procedures
and a simplifier has been reported in (31).

Support for simplification in HOL88 and HOL90 was
much more basic: only unconditional rewrite rules could
be applied, and on-the-fly invocation of decision proce-
dures was thought to be prohibitively slow. The amaz-
ing increase in computational power in standard work-
stations and PCs over the last decade has meant that
operations previously thought to be slow—and thus
only suitable for interactive application during proof—
are now fast enough to be used deep inside automated
tools.

Computation Many tasks arising during verification
amount to no more than evaluation of logical functions,
e.g., reducing ground terms built up from boolean and
arithmetic operators. Historically, HOL systems imple-
mented ad hoc simplifiers for such tasks. In recent work
(32), Barras implemented an abstract machine for call-
by-value reduction in HOL. A novel aspect of this work
is that the actual reduction steps are implemented by
inference rules. The result is a derived inference rule
that evaluates ground HOL terms, just as if by an ML
interpreter. Although Barras’ inference rule runs much
slower than a conventional ML implementation, the
slowdown is a constant factor; moreover, the procedure
is sufficiently quick to provide a general-purpose solu-
tion for many reduction tasks arising during verifica-
tion. In contrast to Barras’ LCF-style inference rule, the
ACL2 and PVS systems use computation in their meta-
language (Lisp) to perform such tasks as calculation in
the logic. The ACL2 system also implements symbolic
evaluation for logically defined functions, and this has
been found to be very useful in verifications (33). It
remains to provide a general purpose and relatively ef-
ficient symbolic simulation rule in HOL9S.

2.3. Verification theories

A range of theories embodying basic mathematical
structures have been built in the HOL system: pairs,
disjoint unions, the ‘option’ type, numbers (N, Z and
R), lists, ‘lazy’ lists, relations, finite and infinite sets
and multisets, finite maps, strings, and words. Other
mathematical developments in the system include linear
time temporal logic, w-automata, analysis over metric
spaces, polynomials, and probability theory. In general,

these theories have not been provided by the HOL de-
velopers; instead, they are often user contributions. As
a result, theory development has not been systematic:
a theory is often built when needed to support a par-
ticular verification exercise. If the theory seems to have
wide utility, it is then incorporated into the standard
distribution.

Numerous computer science oriented formalizations
have also been constructed in HOL, including theories
for Hoare Logic, UNITY, CCS, w-calculus, SML, C,
computability theory, etc. In contrast to the ‘standard’
mathematical theories above, these theories, while vital
to their developers’ needs, seem not to have been widely
adopted. This seems to suggest that either a truly use-
ful verification formalism has yet to be invented, or that
standard mathematics suffices.

2.4. Syntax support

Verifications of any size require interaction with the
proof assistant. A common activity is thus the pars-
ing and printing of logical objects e.g., formulas. The
parsing and pretty-printing support offered in HOL9S8 is
significantly more flexible than that of HOL90, which
provided only a fixed grammar, and the ability to de-
clare new infixes. Another change is that, in contrast
to HOL88 and HOL90, the HOL98 parser and pretty-
printer are now completely separate from the logical
kernel. This has two benefits: core functionality is not
compromised by the intrusion of unrelated code, and
the parser can implement abstractions of its own (such
as overloading) that have no reflection in the underlying
logic. Below we discuss three syntax support features
recently added to HOL98.

Ezplicit grammars The parser is explicitly parameter-
ized by a grammar, which records the productions used
by the parsing algorithm, as well as precedence levels
for operators. For example, ‘+’ is recorded as being
a left associative infix at level 500. By making parsing
explicitly dependent on grammar values, the system be-
comes more robust and flexible because library code can
parse with respect to a specific grammar. This provides
an important kind of static scoping for HOL expressions
that are parsed as a library loads.

Miz-fix forms The parser uses operator precedence
parsing (34, §4.6). This algorithm is simple to imple-
ment, deterministic, and runs efficiently. To add to the
single-token prefixes, suffixes and infixes provided by
this technique, we have made a simple extension to the
notion of operator: an operator is not necessarily a sin-
gle token (such as +), but can also be a sequence of
tokens and non-terminals. There are four fixities: infix,
prefix, suffix, and ‘close-fix’; these are the four possibil-
ities arising from two independent choices: whether or
not an argument to the left of the operator is possible,
and whether or not an argument to the right is possi-
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ble. For example, if-then-else is viewed as prefix oper-
ator where the first two arguments are enclosed within
the tokens (between the if-then and between the then-
else). Only the last argument is subject to binding com-
petition with other operators. This simple extension
makes sense of the close-fix fixity, which might be used
to implement syntax representing “semantic brackets”

as [I - I]1.

Overloading Specifying that a constant is to be over-
loaded in HOL98 is straightforward: one simply specifies
which constants should be instances of which overloaded
names. For example, one can require that addition over
N and Z (separate functions in HOL) should both be in-
stances of the + identifier. Type inference is used to help
resolve overloading. Following the example of Haskell,
HOL98 also overloads numerals (sequences of digits) in-
habiting different types. This is achieved by treating
every occurrence of a numeral n as if it were the term
&n, where & is an overloaded symbol denoting a context-
determined injection function into the appropriate nu-
meric domain. With this scheme, type inference is used
as a basis for selecting the injection function coercing a
numeral to an integer, natural number or a real.

Our parser, while quite flexible, is not as general, nor
as sophisticated as that of Isabelle, which uses Earley’s
non-deterministic context-free parsing algorithm (35).
Also, the approach to overloading in Isabelle is based on
type classes (36), which in turn reflects the specification
of types in the underlying object logic. HOL98 does not
support type classes, so it is reasonable not to force the
user to conform to any particular organisation of their
overloaded constants.

2.5. Inter-tool linkages

An important facet of HOL9S is its acceptance of the role
that external tools have to play in the use of interactive
theorem-proving systems. Historically, the attitude in
HOL implementations has been rather cautious: exter-
nal tools might prove results quickly, and dependably,
but they might also be incorrect.

Such a purist approach is not always pragmatically
justified. Systems such as Lifted-FL (37), used by In-
tel to verify aspects of chip design, rely on a seam-
less integration between the logical core and external
tools, which are typically highly engineered for their
problem domain. The PVS system (38) has also inte-
grated a number of external tools, including a model-
checker (39).

The PROSPER project (40) is one response to the
demand for integration of external tools with HOL. It
has developed a common framework for the linking to-
gether of verification tools. Communication of terms,
types and theorems is done using the basic HOL repre-
sentations, providing an abstract syntax with which to
communicate logical objects over computer networks.
Implementations of the interface are available for the

C, Java, SML and Python programming languages.

An early inter-tool linkage using PROSPER was per-
formed by Hurd (41), who linked HOL98 and the resolu-
tion prover Gandalf (42). Gandalf provides a reasonably
detailed log of successful proofs, and Hurd’s connection
automatically translates these logs to HOL proofs that,
when executed, prove the goal originally sent to Gan-
dalf. Thus, worries about soundness are circumvented:
Gandalf searches for and provides a proof, not just an
assertion that the goal is true.

This kind of proof-reconstruction approach is not pos-
sible with a tool that produces nothing that could be
construed as a proof. If one wants to use such a tool,
the results it produces must simply be accepted as HOL
theorems. However, the soundness of HOL is thereby
imperiled. The solution adopted by HOL9S is to tag all
such foreign theorems. A tag signifies that the theo-
rem in question was generated externally, and identifies
the source. The primitive inference rules of HOL have
been adapted to accumulate and propagate any tags
that appear in theorems, much in the same way that hy-
potheses are accumulated and propagated in inference.
There is thus a logical ‘audit trail’ providing the user
with information about which tools have contributed
to a result. PROSPER technology has been used by
Schneider and Hoffmann to link HOL98 to SMV (43),
and it is also used to provide a component-style inter-
face to Prover Technology’s commercial implementation
of Stalmarck’s algorithm (44).

In a separate development, recent work by Gor-
don (45), allows ROBDDs (an efficient representation
of propositional formulas) to be used inside HOL9S in a
principled, yet efficient way. Purported theorems com-
ing from application of ROBDD algorithms are tagged
before being admitted as HOL theorems.

3. ASPECTS OF IMPLEMENTING HOL

We now describe some aspects of the HOL98 imple-
mentation, focusing mainly on design issues. Much of
the art and science of implementing abstract specifi-
cations in a programming language involves mapping
specification-level concepts onto constructs provided in
the programming language. Below we discuss how the
constructs of Standard ML supported the implementa-
tion of important properties required by HOL.

3.1. The HOL logic

The HOL logic is built on the syntax of a lambda calcu-
lus having a polymorphic type system somewhat similar
to that of ML.2 The logic is classical and has a set the-
oretic semantics, in which types denote non-empty sets
and the function space denotes total functions. The
logic comprises four components: types, terms, theo-
rems, and theories.

2Type variables may occur in HOL types, just as in MT; how-
ever, full let-style polymorphism in the HOL logic would lead to
inconsistency and is not allowed.
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3.1.1. Types

Types and terms are built with respect to signatures.
A type signature () assigns arities to type operators.
A HOL type is either a type variable, or a compound
type built by applying a type operator in ) of arity k
to a list (of length k) of types. Initially, {2 contains
type operators denoting truth values (bool), function
space (written 71 — 73), and an infinite set of individu-
als (ind). A type constant, such as bool, is a compound
type built from a member of ) with arity 0. Although
the abstract syntax of types is easily captured with an
ML datatype declaration, the arity check in the con-
struction of compound types means that types may not
be freely constructed.

3.1.2. Terms

HOL terms are typed A-calculus expressions built with
respect to a signature (Xq), which assigns types built
from {2 to term constants. A term can be constructed
in only four ways: it is either a variable, an instance of
a constant in g, an application (M N) of a term M of
type 71 — 7o to a term N of type 7, or a lambda ab-
straction. (In our opinion, one of the strengths of HOL
is the small number of ways a term may be constructed.)
Initially, ¥ contains constants denoting equality (=),
implication (D), and Hilbert’s indefinite description op-
erator (g).

The abstract syntax of HOL terms is also easily cap-
tured with an ML datatype declaration; however, as
for types, terms may not be freely constructed, since a
term must be well-typed with respect to ¥q.

The interface routines for manipulating HOL terms
present a so-called name-carrying syntax. In our thread
of HOL development, there have been four implementa-
tions of this interface: the HOLS88 implementation used
a name-carrying representation from LCF; early imple-
mentations of HOL90 also used a name-carrying inter-
nal representation of terms; later versions represented
terms with deBruijn indices; and the current implemen-
tation, due to Bruno Barras, uses explicit substitutions.
Since terms are an abstract type, these internal changes
have not been externally visible.

Types and terms form the basis of the prelogic, in
which basic algorithmic manipulations on types and
terms are defined: e.g., the free variables of a type or
term, substitution, matching, and a- and S-conversion.
These algorithms are used to implement higher-level
syntax manipulations, and are also used to implement
the deductive system.

3.1.3.  Theorems, Axioms, and Definitions

Different but equivalent presentations of the deductive
system of HOL can be found in (4) or Appendix A
of (25). The important thing is that a fixed set of prim-
itive rules and axioms is used as a basis upon which
more complex derived rules may be built by program-
ming in the metalanguage. The primitive rules of HOL

can be used to build a conventional set of natural deduc-
tion style rules, with introduction and elimination rules
for all the standard logical connectives. The usual rules
for equality reasoning are also derivable from the prim-
itives. A final rule is provided for instantiating type
variables in a theorem.

Theorems are easy to represent by an ML datatype
with fields for the hypotheses and conclusion of the the-
orem. The type of theorems is abstract in order to meet
the requirement that a new theorem may only be pro-
duced by application of a primitive rule of inference.

The HOL logic distinguishes between axioms and def-
initions. An aziom is an arbitrary well-typed formula
that is simply asserted to be a theorem. It is very easy
to assert axioms, but experience has shown that it is all
too easy to introduce inconsistency this way. An alter-
native, popular among users of HOL, is to make defi-
nitions and derive the desired consequences by proof.
Principles for defining types and terms form part of
the HOL logic, and the previous section has described
advanced definition facilities, which couple the conve-
nience of asserting axioms with the soundness of using
primitive inference.

3.1.4. Theories

The HOL logic provides a very simple notion of theory:
loosely speaking, a HOL theory is a collection of theo-
rems that have been derived from a set of axioms in a
signature. Since signatures are extensible, as is the set
of axioms, and also the set of derived theorems, some
mechanism is needed to handle different extensions of
the initial theory occurring when different theories are
formalized. It is straightforward to support such exten-
sions in a single session; however, it is more difficult to
support persistent theories, in which a theory may be
developed and then stored on disk, to be reloaded in a
subsequent session. This is discussed in more detail in
Section 3.2.2.

3.2. Implementing HOL

We discuss two central aspects of implementing HOL in
this section: first, how to securely implement the HOL
kernel; second, how to represent theories so that they
are persistent. We do not imagine that our approaches
are distinguished in any way over others; however, our
discussion reveals by example useful ML program-
ming idioms that we think are not well enough known.
The first idiom uses SML modules to build a multi-
structure abstract datatype. The second idiom shows
how ML structures, normally thought of as containers
for programs, also serve very well as containers for hi-
erarchical data.

3.2.1.  Multi-structure ADTs

The principal design challenge in implementing HOL
comes from a tension between encapsulation and mod-
ularity. We have seen that HOL types, terms, and theo-
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rems must be implemented by abstract datatypes; theo-
ries keep track of the state of a logical development and
thus they must also be protected from arbitrary user
meddling. Thus, the implementations of types, terms,
theorems, and theories need to be encapsulated in a
kernel. Inside the kernel, direct access to representa-
tions of abstract types is permitted, and the state of
the system can be viewed and altered by any piece of
code in the kernel. From outside however, access to the
representations and states of the kernel is strictly con-
trolled by kernel code that maintains important system
invariants, such as well-typedness.

On the other hand, it seemed quite natural in the
implementation to divide the kernel into four separate
modules Type, Term, Thm, and Theory implementing
types, terms, theorems, and theories. The conflict arises
when a function in a kernel module either needs access
to the representation of an abstract type declared in
another kernel module, or when it directly manipulates
state held in another kernel module. In our design,
this gives rise to mutual dependencies among the kernel
modules. Since user level programming also accesses
the very same Type, Term, Thm, and Theory modules, it
would be catastrophic if critical kernel representations
and datastructures were user-accessible.

ML provides several means of solving this problem.
To some, the simplest solution would use the abstract
datatype facility of Core ML. Although this approach
is possible, it did not appeal to us: it would require
four mutually recursive abstract types (they are mu-
tually dependent, but not recursively so), held in one
(large) file, which we thought was insufficiently modu-
lar. Instead, we were more interested in applying the
abstraction facilities available at the module level.

The solution we settled on builds the kernel from its
component structures. First a version of Type, called
RawType, is built which exposes its representation and
internal state. From RawType, a raw version of Term,
called RawTerm, is built which also exposes its repre-
sentation and internal state. RawType and RawTerm are
then curtailed to the desired user-level structures Type
and Term by signature restriction. Following this, the
structures Thm and Theory can be built by applying the
functors THM and THEORY. Note that Thm accesses the
representation of terms. Also, Theory uses signature-
update functions provided by RawType and RawTerm;
signature restriction removes these dangerous functions
to obtain the safe structures.

local structure RawType = TYPE()
structure RawTerm = TERM(RawType)
in
structure Type:Type = RawType
structure Term:Term = RawTerm
structure Thm = THM(RawTerm)
structure Theory =
THEORY (structure Thm = Thm
structure Term = RawTerm)
end

The whole development is wrapped in a module-

level local ... in ... end block so that RawType and
RawTerm are ephemeral, disappearing after the multi-
structure kernel is created. Users can only access ker-
nel functions through Type, Term, Thm, and Theory, and
cannot therefore directly access the internal representa-
tions or modify the state of the kernel.

This design is not perfect; for example, the functors
TYPE, TERM, THM, and THEORY continue to exist after
the kernel is built, cluttering up the functor names-
pace. They could be redefined to be vacuous, but that
is hardly elegant.

3.2.2. Persistent theories

The concept of theory segment is used to formalize per-
sistent theories. Conceptually, a segment is a container
in which related logical entities are stored. Theory seg-
ments are hierarchically arranged by a dependency re-
lation that tells when one segment depends on concepts
or results formalized in another parent segment. The
theory T corresponding to a segment is built by taking
the component-wise union of all the segments found in
the transitive closure of the parent relation. There is
a root segment corresponding to the initial signatures
and axioms of HOL.

A typical piece of work with HOL98 consists in a num-
ber of sessions. In the first of these, a new theory, T
say, is created by importing some existing theory seg-
ments, making a number of definitions, and perhaps
proving and storing some theorems in the current seg-
ment. Eventually the current segment is exported to
disk. The concrete result will be a file containing the
theory segment created during the session and whose
ancestry represents the desired logical theory 7. Sub-
sequent, sessions can access the definitions and theorems
of 7 by importing the file; this avoids having to load
the tools and replay the proofs that created the theory
in the first place.

In HOL90, theory segments were stored on disk in an
ad hoc format which required much code implementing
input and output of segments. A more serious prob-
lem was that fetching elements from a segment was dy-
namic: for example, accessing the arithmetic theorem
ADD_CLAUSES was done via function call:

theorem "arithmetic" "ADD_CLAUSES"

Thus, mapping segment-level bindings to ML-level
bindings could only happen dynamically. As a conse-
quence, it was generally impossible to determine the
dependencies in a collection of ML code with theories.

In HOL98, theory segments are directly represented
by ML structures: the bindings of a theory seg-
ment can be represented by ML variable bindings,
and the parenthood relation can be mapped into the
dependency of structures. With this representation,
the above theorem is stored in a structure named
arithmeticTheory, under the binding ADD_CLAUSES,
which can be accessed using the standard ‘dot’ notation,
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i.e., arithmeticTheory.ADD_CLAUSES. Since theory-
level binding is achieved by the binding of variables in
a structure, dependency analysis of HOL formalizations
can be achieved by extending ML dependency analysis.
This has been implemented by the first author, and the
resulting tool, called Holmake, is now extensively used
for dependency maintenance in large HOL98 formaliza-
tions, including the whole distribution.

4. CONCLUSIONS

The HOL system has been under development in one
form or another for almost twenty years. In that time,
though the number of implementations has burgeoned,
the specification of the logic has been stable. This has
given many people the chance to implement and develop
various tools for the same logic. For example, the cur-
rent implementation of HOL98 benefits greatly from the
tools available in Harrison’s HOL Light implementation.
Significant effort has been expended to port tools from
HOL Light to HOL98, but this has always been reason-
ably straightforward, since the two systems implement
the same specification.

The amazing improvements in speed and memory
capacity of computers over the past two decades has
meant that different design choices became possible
with the passage of time. We have given some indi-
cation of how this story has played out in the develop-
ment of a sequence of HOL implementations. In general,
the transition has been towards ever-higher levels of au-
tomation, and away from considerations based purely
on speed and memory consumption. System interfaces
have also been gradually generalized in many ways. We
think that this trend will continue, for the wider uptake
of formal verification will require simpler interfaces to
more powerful tools.
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