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1 Introduction

In this chapter we consider the problem of keyword focusing. In keyword fo-
cusing the input data is a collection of images that are annotated with a
given keyword, such as “car”. The problem is to attribute the annotation to
specific parts of the images. There exists plenty of suitable input data read-
ily available for this data mining type of problem. For instance, parts of the
pictorial content of the World Wide Web could be considered together with
the associated text. We propose an unsupervised approach to the problem.
Our technique is based on automatic hierarchical segmentation of the images,
followed by statistical correlation of the segments’ visual features, represented
using multiple Self-Organising Maps. The performed feasibility study experi-
ments demonstrate the potential usefulness of the presented method. In most
cases, the results from this data-driven approach agree with the manually de-
fined ground truth for the keyword focusing task. In particular, the algorithm
succeeds in selecting the appropriate level of hierarchy among the alternatives
available in the segmentation results.

The rest of the text is organised as follows. Section 2 reviews related fields
of image analysis and conceptually introduces the proposed keyword focus-
ing technique. In Section 3 we present an overview of some of the relevant
principles and techniques in image content analysis. Section 4 discusses the
role of the image segmentation subsystem in image content analysis, along
with reviewing some image segmentation principles. In Section 5 we define
and discuss the keyword focusing problem. We also propose and conceptu-
ally describe the statistical correlation method for keyword focusing on the
conceptual level. Section 6 describes in detail the proposed technical imple-
mentation of the statistical correlation method. Section 7 reports the results
of feasibility studies we performed with our implementation in two databases.
In Section 8 we present our conclusions and future views.
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2 Background

In recent years the world around us has become increasingly visual. The tech-
nological evolution has made it possible to produce and store huge amounts
of image data. The images can easily be indexed and searched according to
some simple attributes or metadata, such as the date of archival. However,
usually it is the content of the image that is more important for the future
use of the image.

When we imagine us humans describing an image, quite often we would
list what different parts the image contains, and then possibly describe the
major parts in more detail. In this light, partitioning the image to disparate
parts and describing it in terms of the content and relationship of these parts
appears to be a promising approach. Indeed, image segmentation is often a
crucial part in computerised image understanding systems, e.g. [42, 34, 1].
Part-based object representations also provide the basis for many theories of
object recognition in biological vision systems [43, 5, 31].

The traditional approach to image indexing has been to annotate images
textually according to their contents. Then the database of annotations can
be managed with conventional methods developed for textual databases. Un-
fortunately, the manual annotation method has severe shortcomings. In many
cases the data volume is so huge that manual annotation is plainly impossi-
ble. In addition, the manual annotations can capture only a small subset of
descriptions and interpretations of the images. The subjectivity and language
specificity of manual annotations makes their use nontrivial.

Against this background it is easy to see that automatic methods for
content-based image characterisation would be highly desirable. The aim of
content-based image retrieval (CBIR) research is to produce systems that au-
tomatically analyse the contents of given images, after which image databases
can be queried by visual content. An important subproblem of CBIR is the
automatic content analysis. Here one of the major challenges is the bridging of
the large semantic gap between low-level image descriptors traditionally used
in computer vision and the user’s desire to query the systems with high-level
semantic concepts.

The natural language, i.e. words, readily offers a symbolic representation
of semantic concepts. Recently, the problem of matching words and images has
attracted considerable research interest. Using textual annotations as proxy
might offer a helpful approach to the semantic similarity assessment problem
in CBIR. In the usual setting the word–image correspondence is regarded
as a machine learning problem. The correspondence is learned from a set of
annotated training images, after which the learned correlations can be used
to automatically annotate any images.

The correspondence between entities on different semantic levels can be
seen as an instance of emergence [44]. Emergence is a process where a new,
higher-level phenomenon results from co-operation of a large number of ele-
mentary processes. Thus, understanding and modelling emergence provides an
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approach to overcoming the semantic gap. One essential element of emergence
appears to be the involvement of large amounts data or processes. As there
are lots of example data available where images are described with words, the
image–keyword correspondence is a good example of a problem that can be
naturally studied from the viewpoint of emergence.

In this chapter, we show how soft computing techniques, more specifi-
cally the Self-Organising Map (SOM) [26], can be used in modelling the phe-
nomenon of emergence. In the following we propose a mechanism for the
emergence of semantic concepts from low-level features of image parts. We
consider a learning problem that differs somewhat from the typical automatic
annotation setting. We set the goal of the learning system to be keyword fo-

cusing, i.e. we consider the problem of identifying the areas in an image that
correspond to the keyword when we already know that the keyword must
correspond to some parts of the image.

In this chapter we approach the keyword focusing problem using an unsu-
pervised, data-driven method. We propose a two-stage mechanism that con-
sists of a feedforward image representation front end, followed by an inference
stage. The front end consists of image segmentation and feature extraction
components, and a neural vector space quantizer utilising the SOM. The in-
ference stage is based on finding statistical correlations between the annotat-
ing keywords and the representation formed by the front end. In addition to
this baseline approach, we also consider interlinking the image segmentation
step with the inference algorithm. In this case the unsupervised segmenta-
tion component produces a hierarchy of alternative tentative segmentations.
The final selection among these segmentations is made during the keyword
focusing process.

3 Image Content Analysis

Large part of computer vision research can be regarded to revolve around the
analysis of image content. In this presentation we consider some aspects of the
content analysis problem starting from the needs of content-based image re-
trieval (CBIR), e.g. [41, 20]. In content-based image retrieval image databases
are indexed with descriptors derived from the visual content of the images.
Image content analysis is thus an essential subproblem of CBIR, even though
it only seldom is addressed explicitly.

Most CBIR systems are concerned with approximate queries where the
goal is to find images visually similar to a specified target image. CBIR thus
requires methods for both characterisation of image content and meaningful
similarity assessment of the characterisations. A popular method of combining
these two aspects is to employ the vector space model depicted in Figure 1.
The idea behind the vector space model is to represent each image as a point or
more generally, a collection of points, in a vector space. When a distance metric
is defined for the vector space, the similarity assessment problem reduces
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Fig. 1. In the vector space model of image retrieval both the database images and
user queries are mapped into points in the feature (vector) space. The proximity of
points in the feature space is taken as an indication of image similarity.

to a geometric problem, e.g. finding points closest to the point that is the
representation of a given example image or otherwise specified query.

3.1 Semantic Levels of Image Content Characterisation

A central problem in content-based image retrieval is the semantic gap be-
tween the high-level semantic concepts we humans use in our reasoning and
the low-level visual features directly available to computers for their infor-
mation processing. This question can be elaborated by a categorisation of the
depth of image content characterisation into three semantic levels, as proposed
in [12]:

Level 1 contains characterisations by primitive features, such as colour,
shape or spatial location of image regions. The features used on this level
are both objective and directly obtainable from the image itself, with-
out the need to resort to external knowledge bases. Most of the existing
systems for general-purpose CBIR operate on this level.

Level 2 uses derived (sometimes called logical) attributes, involving some
sort of logical inference about the identity of objects in the image. A
useful distinction can be made between two sublevels: a) identification
of objects of a given type, and b) identification of individual objects or
persons. Usually one needs to use some kind of an outside knowledge store
to answer queries on this level.
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Level 3 uses abstract attributes for image content characterisation. This
means that significant high-level reasoning about the meaning and pur-
pose of the objects in the image must be carried out. Also this level can
usefully be divided into two: a) identification of named events or types
of activity (e.g. finding pictures of Finnish folk dancing), and b) identi-
fication of pictures with emotional or religious significance (e.g. finding
pictures of suffering). A need for image similarity queries on this level is
often encountered in practice.

Often (e.g.[21]) image retrieval based on the similarity on the semantic
levels 2 and 3 is collectively termed as semantic image retrieval. In the prac-
tical systems of the present, the most significant semantic gap exists between
the levels 1 and 2.

3.2 Feature Types by Spatial Extent

In the vector space model the visual content of images is represented by feature
vectors. The feature calculation component of such an image analysis system
thus considers the pixel representation of an image and forms a corresponding
fixed-length feature vector according to some rule. In the keyword focusing
application considered here we are interested in differentiating between the
parts of the images. We therefore extend the model and allow an image to be
represented with a set of feature vectors, each one corresponding to a part of
the image.

Approaches to feature calculation can be classified according to the way
the image is segmented, i.e. how its pixels are divided among the set of feature
vectors. The following characterisations are an augmented version of [41]:

1. Strong segmentation denotes the segmentation of an image according to
real world objects.

2. Weak segmentation is the term used for data-driven grouping of an image
into homogeneous regions.

3. Interest point detection identifies visually salient locations in an image.
4. Sign spotting reveals whether objects of (almost) fixed shape and a known

semantic interpretation are present in an image and where they are lo-
cated.

5. Partitioning divides images into geometrical areas, regardless of the image
data.

Grouping of pixels leads to various types of feature representation:

1. local features (correspond to sign spotting and interest point detection)
2. object features (correspond to strong segmentation)
3. region features (correspond to weak segmentation or partitioning)
4. global features (a special case of partitioning where all pixels belong to

the same region)
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These categories vary in the extent they combine feature values from dif-
ferent parts of an image. In one extreme is the local feature approach which
describes each found object and its feature values separately. The other ex-
treme is the global feature approach, which combines feature values from the
whole image.

In the current context we are interested in correlating the semantic inter-
pretations with locations in the images. The most relevant feature types to
this end are local, object and region features. We limit ourselves into the au-
tomatic analysis of the image content. This rules out object features, for the
bare reason that in a general setting, strong segmentation is still an unsolved
problem (cf. also Section 4). On the other hand, by definition the connection
between the features resulting from sign spotting and the semantics is already
known by definition and is therefore uninteresting.

The local features resulting from interest point detection are the first of
the two remaining feature types. Such local descriptors are calculated for
neighbourhoods of the interest points and are usually made invariant to some
image transformations, such as rotation and scaling. Examples of local features
include steerable filters [18], SIFT descriptor [32] and shape context [4]. For
a review on the subject see [33]. Local features have proven to be successful
in object recognition tasks, for example in the recent PASCAL Visual Object
Classes challenge [13] many of the best performing approaches used the SIFT
representation.

When correlating the image locations with semantic interpretation of the
content, the local feature based approach must overcome two challenges.
Firstly, one interest point is usually not enough to robustly define an object,
a configuration of multiple interest points must be considered simultaneously.
The typical solutions to that problem do not conform easily to the vector
space model. The second challenge is that it is desirable to attach semantic
interpretations to whole image regions, not only to some isolated points such
as corners. When using local features, a separate processing stage must be
devised to perform this inference.

Region features are the other remaining feature type that can be used
for keyword focusing. In the subsequent sections we explore the application
of region features, calculated for automatically obtained image segments, to
the keyword focusing task. For the experiments we have used a large vari-
ety of different low-level features. A detailed description of them is given in
Section 6.2.

4 Image Segmentation for Image Content Analysis

In this section we will briefly review some of the key issues related to the use of
image segmentation as a processing stage in an image content analysis system.
We first discuss the requirements the segmentation subsystem should fulfill
in order to be useful in this context. Then we review the principles behind
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the existing segmentation methods. Finally, we shortly discuss the use of the
segmentation results for image content similarity assessment.

4.1 Requirements for Segmentation Subsystem

Generic, complete and to-the-pixel accurate unsupervised segmentation is
virtually impossible [11]. Fortunately, less-accurate segmentations are useful
enough for applications of image content analysis. Often it is enough to be
able to locate salient regions of the image and calculate robust descriptions
for them. In contrast, some types of visual descriptors, e.g. shape features,
are more dependent on the segmentation accurately identifying the outline of
objects or regions.

Usually the desired result of image segmentation is a classification of each
pixel as having exactly one segment label, i.e. a partitioning of the image.
There exist some problems concerning such a disjoint labelling as it is quite
unnatural and not in accordance with human perception. At the first glance
more attention is certainly paid to larger regions, but subsequently also the
smaller, salient image details are registered equally well. The “mental seg-
mentation map”, that is, the decomposition of the image into its parts in the
mind of the observer, is not a flat two-dimensional map, but some sort of
hierarchy of image regions results. In that map, an image region may be a
part of different objects on different levels of the hierarchy.

As an example of hierarchically related regions we could think of a scene
from the Orient in Figure 2. On the root level the image can be divided to
three segments: sky, the fortress and the ground level (with the road and
the people). The “fortress” segment is marked with a white outline in the
leftmost figure. The fortress is further divided into wall and tower parts, the
tower consists of two levels, and if we look closer at the upper level we can
distinguish columns and two horisontal fascias. These steps are depicted in
the rightmost column of Figure 2.

There is no question whether the use of this kind of hierarchy information
could potentially be beneficial. The issue is more like whether we are able
to find a practical way to incorporate this kind of information into an image
content analysis system. In Section 6 we will present our implementation of a
keyword focusing system that utilises results of hierarchical segmentation.

4.2 Types of Segmentation Methods

Local Methods

Local segmentation methods try to detect local discontinuities in image
attributes. These local indications of segment boundaries can further be
grouped together to form contours of objects. The problem with local meth-
ods is that information occurring on a larger scale is not used. The local
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Fig. 2. Segment hierarchy of an image from the Orient. Subfigures display nested
segments with increasing detail.

neighbourhoods—often just a single pixel or a couple of pixels—are consid-
ered independently of each other and the presence of boundaries and their
attributes are determined separately for each neighbourhood. After edge de-
tection, contours—possibly closed—are identified by linking the found edge
segments with each other.

Often the information contained in the local neighbourhoods is not enough
to reliably locate edges. In addition, the edge information from different local
neighbourhoods may be contradictory or ambiguous.

Area-Based Methods

Area-based segmentation methods try to locate homogeneous areas in the
images. One of the problems of this approach is to determine what is ho-
mogeneous enough to be considered as a single region. Another problem is
the complete negligence of local edge information, resulting in difficulties in
locating reasonable region boundaries even in the case of unambiguous edge
information.

Region growing, region merging and region splitting are widely-used area-
based segmentation methods. In region growing new image pixels are ap-
pended to a seed region as long as the newly-created region still fulfills a
homogeneity criterion. Region merging tends to merge adjacent regions if the
resulting region stays homogeneous enough. Region splitting starts from in-
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homogeneous regions. They are split until the homogeneity region is fulfilled.
Often a combination of these area-based methods is used together.

Global Methods

In traditional area-based methods the regions are considered separately or
pair-wise at time. In contrast the global optimisation methods used in image
segmentation aim at partitioning the image into disjoint homogeneous regions
in an optimal way. When determining the optimality measure all the regions
in the image are taken into account simultaneously. There are, however, three
major difficulties in the global optimisation approach:

1. localisation of boundaries,
2. the tradeoff between the size and the number of regions,
3. the hierarchy of regions.

Boundary localisation problems are similar to those with area-based meth-
ods. The tradeoff between the size and number of regions means that if the
number of regions is chosen to be small, the average size of regions must be
large. Then it is likely that the segmentation misses small but salient or homo-
geneous regions due to undersegmentation. On the other hand, if the number
of regions is large, the image becomes oversegmented into many small regions
so that large regions and structures are completely fragmented.

As mentioned earlier, it would be desirable to have the segmentation algo-
rithm to output the complete region relation hierarchy instead of only one level
of it. In principle, there seems to be no reason why this could not be combined
with the idea of global optimisation. However, it may not be straightforward
to find a formulation that would both be rigorous and produce reasonable
results. In methods with simple local decision rules the hierarchy would be
easier to incorporate in some form. An issue also arises concerning whether
the segmentation hierarchy should be optimised as a whole or whether single
levels of the hierarchy could be optimised separately with some constraints
forcing the adjacent levels to be compatible.

4.3 Use of Segmentation in Image Content Analysis

Let us now assume that our images have been segmented and the contents of
the individual image segments described. How should the content of the images
then be characterised, and how should the characterisations be compared?
The latter problem arises particularly in CBIR, where the similarity of the
characterisations needs to be assessed. As long as the interest lies in individual
segments of images, no special techniques are needed.

Often, however, the goal of the system is not to assess similarity of indi-
vidual segments but of images in whole. Then a method must be devised to
propagate the segment similarity assessments to the image level. A straight-
forward alternative is to treat the segments as independent images. In that
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way the information about relationships between the segments—even about
co-occurrence in the image—is lost. Furthermore, the user might be inter-
ested in whole images instead of segments. Another approach is to let the
user define her interest in terms of example segments, e.g [7]. This, however,
could be laborious, as example images contain several segments. A solution to
this is to form an image similarity measure automatically from the segment
similarities without segment-level user intervention [46, 8, 24]. A more rigor-
ous alternative is to use generative models such as in [3, 6] to describe the
joint distribution of semantic concepts and a blob representation of the image
segments and then relegate the query to the concept level.

In the present application of keyword focusing, half of the issue becomes
redundant as the objects of interest are indeed image segments. Still, we are
left with the issue of converting image level examples to the realm of image
segments.

5 Focusing Keywords in Image Segments

The main topic of our present work, focusing of keywords to image segments,
is addressed in this section. In Section 5.1 the keyword focusing task is de-
fined and its potential application areas discussed. Section 5.2 reviews the use
of related techniques in some of the literature. In Section 5.3 we propose a
specific technique, statistical correlation method, for accomplishing the task
of keyword focusing. Finally, some characteristics of the statistical correlation
method are discussed in Section 5.4.

5.1 Task of Keyword Focusing

In the keyword focusing problem the input is a set of images, all of which are
annotated with a single keyword. The goal is to find the areas of the images
that correspond to the keyword. This can be considered as an unsupervised
machine learning problem: no labeled data is given that directly pinpoints the
appropriate image locations. In our solution to the problem we additionally
allow the learning system to use unlabeled auxiliary image data that is non-
specific to any given keyword. The auxiliary data can be considered as part of
the system in the sense that it remains the same regardless of the particular
keyword at hand.

Related to the intra-image keyword focusing, where the task is to compare
different parts of the same image, is the problem concerning the database-wide
identification of regions corresponding to a keyword. We denote this database-
wide ranking of locations according their likelihood to correspond to a specific
keyword with the term database-level keyword focusing. Intra-image keyword
focusing is a subproblem of the database-level keyword focusing in the sense
that a solution to the latter problem gives also an answer to the first problem.
One may also argue that solving the intra-image keyword focusing problem is
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a prerequisite to solving the database-level counterpart. This, in turn, explains
why keyword focusing can be regarded as a potential tool in solving a part of
the CBIR problem.

There are numerous collections of images available that can potentially be
used as training data for the focusing problem with minimal preparation. One
prototypical example is formed by the commercial illustration image databases
that are annotated with image-level keywords, for example the Corel image
gallery [10]. Many museums have annotated collections of digital images (e.g.
[14]). Also any image collection that is partitioned into classes can be used by
considering each class to represent a keyword. The images in the World Wide
Web along with the text they appear next to form a more speculative and an
overwhelmingly large instance of the keyword focusing problem.

The focusing problem is defined for all keywords, but of course a sensible
solution can be expected only for keywords that in reality can be localised
into some part in an image. For example, focusing the keyword “evening” to
a specific part of an image is usually senseless.

5.2 Keyword Focusing in Image Content Analysis

Learning the image–word correspondence has attracted considerable research
interest recently. Often the motivation has been to learn the correspondence
from a set of training images and then apply it to the automatic annotation
of a new set of unlabeled images. For the automatic annotation research the
keyword focusing is mostly a by-product, whose results are not explicitly
stated or analysed beyond its effect on the annotation performance. This is
reasonable since pairing images with keywords is somewhat different problem
than focusing the keyword further down to a certain location inside the image.
On the image level the prediction is often easier as the various objects in the
images are correlated. For instance, airplanes often appear together with sky.
Yet the location of sky in the images should not be called “airplane”.

The automatic annotation of images is more directed to database-level
relevance keyword problem than to intra-image keyword focusing. Some of
the models for automatic image annotation consider the image as a whole
(e.g. [38]) or use a rough geometrical division of the image (e.g. [35]). In [30] a
geometrically formed multi-resolution two-dimensional hidden Markov model
is used for modelling the images, but concepts are correlated with the model
as whole, not with its individual constituent parts. A more popular approach,
however, is to formulate the models more directly in terms of image segment–
keyword correspondence (e.g. [36, 3, 37, 16, 15, 6, 23, 19, 45]).

In a broader sense, any image analysis or classification task can be seen
as involving kind of keyword focusing if the problem solution includes the
identification of relevant image locations. In such settings, the existence of a
keyword is not explicit but implicit.

A straightforward approach to the focusing problem is a bottom-up or
feedforward process where the input images are first segmented and the sub-
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sequent focusing is then reduced to selecting the one or ones among these
segments that correspond to the keyword. An attempt to interlink the seg-
mentation and focusing phases is given in [6] where a Markov random field
(MRF) model combines the subtasks of segmentation on a coarse grid and
assigning the keywords to segments. On the other hand, even this approach
can be considered feedforward by regarding the coarse grid as a fixed segmen-
tation result and the MRF algorithm as the focusing stage. In Sections 6.1
and 6.5 we propose an approach that also takes a step into this direction.
In the proposed method we consider producing a hierarchical segmentation,
among whose levels the focusing stage selects the most appropriate one of the
alternative segmentations.

5.3 Statistical Correlation Method

Our proposed approach to the keyword focusing problem is based on statis-
tically correlating the keywords and image segments. For this we need a set
of training image data that consists of example images of the particular key-
word class and an auxiliary image collection. The outline of the approach is
the following:

1. Automatically segment the studied images.
2. Form feature space representations for the image segments.
3. Identify feature space regions that are more densely populated by the

example image segments than by the auxiliary image segments.
4. Find the example image segments with feature representations in the rel-

atively dense regions of the feature space and associate them with the
keyword.

As we see, two mechanisms are responsible for the working of the focusing
strategy: (1) the effect of concentration of the example image segments in
certain regions of the feature space, and (2) the negative influence of the aux-
iliary data in regions where it concentrates. The approach is thus qualitatively
similar to the term frequency – inverse document frequency (TF-IDF) formula
[39] successfully used in natural language (text and speech) retrieval. Also the
TF-IDF formula awards high correlation scores to terms that appear often in
the relevant documents (example images), but such terms are punished that
appear often also in the reference corpus (the auxiliary images).

Different from the natural language processing, in image processing the
representation of documents is not readily available in the form of words, but
must be constructed. In this sense the segment boundaries produced by the
segmentation algorithm correspond to the set of words in a document on the
syntactical level, and the feature representation of the segments corresponds
to the actual identity of the words, i.e. the semantic level. The segments and
their feature representations form together a blob representation [7] of the
image. Blob representations are often used in image analysis, for example in
automatic image captioning [3, 6].
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The purpose of the auxiliary data in the focusing algorithm is to give a
basis of comparison for determining whether a certain region of feature space
is more commonly populated by the actual example data than by images in
general. The discussion in [13] gives some perspectives to the issue of select-
ing appropriate auxiliary data. In principle, a collection of general domain
images could be used as auxiliary data regardless of the specific focusing task.
However, if the example images are known to come from a restricted domain,
using a narrower domain data set as auxiliary data as well will probably result
in better focusing performance.

5.4 Discussion

In the preceding we have approached the keyword focusing problem as a data
mining problem. We are interested in discovering new, previously unknown
relationships in the studied data. In this case, the novel discoveries are the
correlations of specific parts of the studied images with the keywords. This
approach can be contrasted with a pattern recognition approach, where the
goal is to learn a model from a labeled training data set and generalise it
to an unlabeled test set. This distinction corresponds to the one between
unsupervised and supervised learning.

A shortcoming of the statistical correlation principle is that inadequate
example data is likely to lead to spurious correlations. For instance, if the
example images are such that the sun and buildings always coincide, the
focusing algorithm can not be expected to tell these apart. When the correla-
tions between objects are artefacts of the example set, increasing the number
of example images can remove the ambiguous situations. Still, for genuine
correlations such as “sky” and “airplane”, the required amount of example
data could get impractically high before enough separate occurrences of the
keywords would be observed.

Especially serious this problem can be in object–part hierarchies. For in-
stance, motorbike wheels without a whole motorbike are rare in images, al-
though also such images exist. It would seem that the statistical correlation
learning should be augmented in these cases with some other learning principle
that could take such object hierarchies more directly into account.

6 System Implementation

This section describes in detail the implementation of the system we propose
for the unsupervised keyword focusing task. The system is implemented inside
the PicSOM1 CBIR software framework [27, 28, 29]. As an input, the system
takes two sets of images: a set of images annotated with a certain keyword

1 http://www.cis.hut.fi/projects/cbir/
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(positive examples), and a set of auxiliary background images (negative exam-

ples) As the result of the processing the system produces a segmentation of
the positive example images and ranks the segments according to their rele-

vance to the keyword, i.e. the likelihood of the segments to correspond to the
given keyword.

The proposed system consists of a feedforward pre-processing stage, fol-
lowed by an inference stage. In the preprocessing stage, both sets of images are
first hierarchically segmented and statistical visual features extracted from the
segments. The features are grouped into multiple feature spaces that are finally
quantized using a variant of the Self-Organising Map (SOM) [26]. The infer-
ence stage implements the statistical correlation method for keyword focusing
simultaneously for parallel quantized feature spaces. As a post-processing step
the produced ranking of the segments is re-ordered in an additional relevance
propagation step so that the hierarchy information in the segmentation re-
sults is explicitly taken into account. As a result, the system is able to au-
tomatically select the most appropriate level of hierarchy in the hierarchical
segmentations.

The rest of the section is organised as follows. Sections 6.1 and 6.2 discuss
the hierarchical image segmentation and feature extraction methods, respec-
tively. Section 6.3 describes the use of SOM in quantizing the feature spaces.
In Section 6.4 we delineate the implementation of the statistical correlation
principle. Section 6.5 describes the algorithm propagating the relevance within
the segment hierarchy.

6.1 Automatic Image Segmentation

For the current experiments we have used a generic image segmentation
method which is simple and somewhat rudimentary. Referring to the tax-
onomy of Section 4.2, the method is in essence a hybrid of area-based region
merging combined with a local edge heuristics. The method partitions the im-
ages to a fixed number of segments that are homogeneous in terms of average
colour in the CIE L*a*b* colour space [9].

The images in the database are segmented in two steps. In the first step
ISODATA variant of K-means algorithm [40] with a K value 15 is used to
compute an oversegmentation based on the colour coordinates of the pixels.
This step typically results in a few thousand separate segments.

In the second step the segments are merged. The difference dLab(r1, r2)
in the average CIE L*a*b* colour of regions r1 and r2 is used as the basis
for the merging criterion. In addition, the multi-scale edge strength e(r1, r2)
between the regions is also taken into account. The final merging criterion C
is weighted with a function s of the sizes |ri| of the to-be-merged regions ri:

C(r1, r2) = s (r1, r2)
(

dLab (r1, r2) + γe (r1, r2)
)

, (1)

where
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s(r1, r2) = min(|r1|/|I|, |r2|/|I|, a) + b (2)

is the size-weighting function, |I| is the number of pixels in the image and γ, a
and b are parameters of the method. The values for the parameters have been
selected to give visually feasible results for photographs and other images in
earlier applications. The same values (γ = 40, a = 0.02, b = 0.002) have been
used also in the current experiments.

The merging is continued until the desired number of regions are left. In
addition to these leaf segments, we also record the hierarchical segmentation
that results from running the region-merging algorithm on the leaf segments
until only one region remains. Such composite segments are considered in
our last experiments alongside with the leaf segments. Figure 3a shows an
example of a segmented image and Figure 3b the corresponding segmentation
hierarchy.

(a)

1
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7 6

(b)
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1,2,3,4,5,6,7
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1,2,5,67

6 1,2,5
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1
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Fig. 3. Example of a segmented image. Subfigure (a) displays the eight leaf seg-
ments found by the segmentation algorithm. Subfigure (b) shows the segmentation
hierarchy resulting from the continued region merging. Leaf segments are circled in
the tree.

6.2 Statistical Image Features

The PicSOM system implements a number of methods for extracting different
statistical visual features from images and image segments. These features
include a set of MPEG-7 content descriptors [22, 29] and additionally some
non-standard descriptors for colour, shape and texture.

Colour

Of the used MPEG-7 descriptors Color Layout, Dominant Color and Scal-
able Color describe the colour content in image segments. In addition to the
MPEG-7 colour descriptors, both the average colour in the CIE L*a*b* colour
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space [9] and three first central moments of the colour distribution are used
as colour features.

Shape

Besides the MPEG-7 Region Shape, the shape features include two non-
standard descriptors. The first consists of the set of the Fourier descriptors
for the region contour [2]. Fourier descriptors are derived from the following
expansion of the region contour:

z(s) =

∞
∑

n=−∞

zne
2πins

L . (3)

Here the Cartesian coordinates of the contour are represented by the real and
the imaginary parts of the complex function z(s), parametrized by the arc
length s. The resulting feature vector includes a fixed number of low-order
expansion coefficients zn. The coefficients are then normalised against affine
image transformations. In addition, the high-order coefficients are quadrati-
cally emphasized.

The second non-standard shape descriptor is formed from the Zernike mo-
ments [25] of the region shape. The Zernike polynomials are a set of polar
polynomials that are orthogonal in the unit disk. The Zernike moments Anm

are given by the expansion coefficients when the polar representation of the
region shape is represented in the basis of Zernike polynomials:

Anm =
n + 1

π

∑

x

∑

y

I(x, y)Vnm (ρ(x, y), θ(x, y)) , n − |m| even. (4)

Here n is the order of the moment, m the index of repetition, i, j are the
rectangular image coordinates, and ρ, θ the corresponding polar coordinates.
I(x, y) is the binary representation of the region shape and Vnm is the Zernike
polynomial:

Vnm(ρ, θ) = Rnm(ρ)eimθ (5)

Rnm(ρ) =

n−|m|
2

∑

s=0

(−1)s(n − s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
ρn−2s. (6)

The feature vector includes coefficients Anm up to order a selected order.
The feature is normalised against translation and scaling by fitting the region
inside the unit disk. Rotation invariance is achieved by taking the absolute
values of the coefficients.

Texture

We have used MPEG-7’s Edge Histogram descriptor to describe the statistical
texture in image segments. For non-standard description of a region’s texture
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the YIQ colour space Y-values of the region pixels are compared with the
values of their 8-neighbours. The feature vector describes the statistics of the
resulting distribution.

6.3 Quantizing the Features with Self-Organising Maps

The visual features are disjointly partitioned into feature spaces, each feature
space corresponding to the components of one visual descriptor. For instance,
the components of MPEG-7 Color Layout descriptor form one feature space.
The feature spaces are quantized using a variant of Self-Organising Map algo-
rithm. The SOM is an unsupervised, self-organising neural algorithm widely
used to visualise and interpret large high-dimensional data sets. The SOM
defines an elastic net of points that are fitted to the distribution of the data
in the input space.

The SOM consists of a two-dimensional lattice of neurons or map units. A
model vector mi ∈ R

d is associated with each map unit i. The map attempts
to represent all the available observations x ∈ R

d with optimal accuracy by
using the map units as a restricted set of models. During the training phase,
the models become ordered on the grid so that similar models are close to and
dissimilar models far from each other.

When training a SOM, the fitting of the model vectors is carried out by a
sequential regression process, where t = 0, 1, 2, . . . , tmax − 1 is the step index:
For each input sample x(t), first the index c(x) of the best-matching unit
(BMU) or the “winner” model mc(x)(t) is identified by the condition

∀i : ‖x(t) − mc(x)(t)‖ ≤ ‖x(t) − mi(t)‖ . (7)

The distance metric used here is usually the Euclidean one. After finding the
BMU, the vectors of map units constituting a neighbourhood centered around
the node c(x) are updated as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t) − mi(t)) . (8)

Here h(t; c(x), i) is the neighbourhood function, a decreasing function of the
distance between the ith and c(x)th nodes on the map grid. This regression
is reiterated over the available samples and the value of h(t; c(x), i) is let
decrease in time to guarantee convergence of the model vectors mi. Large
values of the neighbourhood function h(t; c(x), i) are used in the beginning of
the training for initialising the network, and small values on later iterations
are needed for fine-tuning. After the training, any vector in the feature space
can be quantized to a two-dimensional index by its BMU on the SOM.

6.4 Implementation of Statistical Correlation Inference

The implemented system performs statistical correlation separately in each of
the feature spaces. For an image segment, this results in a relevance score for
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each of the feature spaces, as will be described below. A combined relevance
score is then formed by summing the scores of all the feature spaces.

For the computational implementation of the statistical correlation prin-
ciple, all the positive image segments are projected to all the feature SOMs.
For each unit the number of segments projected to that particular unit is
counted. The counts form a sparse value field on the SOM surfaces. Due to
the SOM’s property of mapping similar objects in nearby map units, we are
motivated to spatially spread these sparse values by a low-pass filter, i.e. to
convolve them with a smoothing kernel. The size and shape of the convolution
kernel is selected in a suitable way in order to produce a smooth value map.
In the resulting map each location is assigned a relevance value according
to the number of positive objects mapped to the nearby units. This process
of obtaining smooth relevance maps can be seen as nonparametric density
estimation of the class of positive images in the latent spaces of the SOM
grids.

After forming the positive relevance map for each SOM surface, the same
procedure is repeated with the negative examples. These negative examples
are obtained from the auxiliary or background images. Then the estimates
of the positive P+

i (x, y) and negative P−
i (x, y) densities in SOM coordinates

(x, y) of the feature SOM i are combined by map-wise weighting and subtrac-
tion:

Pi(x, y) = P+
i (x, y) − λP−

i (x, y) . (9)

Here λ is a free parameter of the method. The appropriate value of the param-
eter seems to be a function of the sizes of the positive and negative example
image sets.

At this point each of the SOMs has a relevance map associated with it.
For each image segment, a final relevance score is then calculated by summing
the relevance scores of the segment’s BMUs on all the feature SOMs. Those
features that seem to distinguish well between positive and negative example
images are in this process implicitly weighted more than the others. This is
because the good distinction ability results in dense clusters of example images
on the corresponding SOMs and high concentrations of relevance in the kernel
estimation. If the images are scattered evenly on the map, the local peaks of
relevance are much smaller in amplitude.

6.5 Propagating Relevance within Segment Hierarchy

To augment the implementation of the statistical correlation principle, we
implement a mechanism for propagating relevance scores along the segmen-
tation hierarchy within a single image. The propagation takes place after the
relevance of individual segments has been evaluated by the SOMs. The sta-
tistical correlation is only able to indicate whether an individual segment or
segment combination is relevant to the keyword. In contrast, the propagation
algorithm simultaneously considers the relevance of several of the segments
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and their combinations that appear in the hierarchical segmentation of an
image. By explicitly using the hierarchical relationship of the segments, the
propagation algorithm is able to identify the largest combination of segments
that is likely to correspond to the keyword.

Further motivation for the propagation step stems from the keyword focus-
ing setting where we project both the leaf and the composite image segments,
contained in the beforehand formed segmentation hierarchy (see Figure 3),
to the same feature SOMs. We would then let the relevance scoring select
the most appropriate scale of segmentation among the alternatives. Many of
the useful low-level features are averaging, by which we mean that e.g. the
average colour of a segment formed by combining two blue segments is still
blue. We would like the relevance scoring mechanism to favour the merging
of segments to a composite segment if they are similar in the sense of an
averaging feature. However, some features are not averaging, e.g. the shape
features of a composite region are not weighted averages of the constituent
leaf regions. The composite shape will in some cases be characteristic to the
positive example images while the shapes of the constituent regions are not.
The scoring mechanism should favour also this type of composite segments
for non-averaging features.

We would want the scoring mechanism not to use any a priori informa-
tion whether the individual features are averaging or not. We require that the
scoring method favours combining of segments that are relevant and whose
combination is also relevant. On the other hand, also such combined segments
should be favoured whose children are not relevant, but the combined seg-
ments themselves are. Considering the two requirements, a non-linear score
propagation mechanism is needed for post-processing the relevance scores of
the segments in the hierarchy after the SOM-based relevance assessments.

To this end, the proposed system implements a simple multiplicative model
for propagating the relevance score pi of segment i upwards in the segmen-
tation hierarchy like the one seen in Figure 3. The propagation is initialised
by setting pi = r′i for the leaf segments. Here r′i denotes the score obtained
by normalising the relevance scores ri within the image Ii containing the
segment i:

r′i =
ri − r̄i

maxIj=Ii
rj − r̄i

(10)

r̄i =
1

|{j|Ij = Ii}|

∑

Ij=Ii

rj (11)

For composite segments, the propagation rule is given by

pi =

{

+r′i(r
′
i +

∑

j∈children(i) p+
j ) , if r′i > 0

−r′i(r
′
i +

∑

j∈children(i) p−j ) , otherwise.
(12)

The set children(i) refers to all segments j to whom i is the immediate parent.
Furthermore,
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p+
i = max(pi, 0)

p−i = min(pi, 0).

7 Experiments

We have tested the feasibility of our approach to keyword focusing with two
image databases. As the input we use, along with the images of the databases,
the knowledge about each image being either annotated or not annotated
with a specific keyword. The method is unsupervised: it does not learn to
reproduce the image-level training labels but extracts qualitatively different
labelling—labels for the image segments. The method’s performance is eval-
uated by comparing the data-driven segment labels with manually defined
ground truth.

In these experiments, the parameters of the proposed method, most impor-
tantly the used visual features, have been selected to optimise the performance
in the test tasks. For a quantitative study, this would not be an adequate pro-
cedure for parameter selection. Some other means—such as optimisation with
an independent data set—should be used. However, the used procedure serves
to demonstrate the viability of our approach if the parameters are chosen ap-
propriately.

The rest of the section is organised as follows. In Section 7.1 the meth-
ods for performance evaluation are described. Section 7.2 describes the two
databases used. In Section 7.3 we gain insight to the inner workings of the
proposed method by looking the SOM surface distributions corresponding to
quantized representations of different feature spaces. Section 7.4 presents more
quantitative results as the method’s outputs are compared to ground truth
via Receiver Operating Characteristic (ROC) curves.

7.1 Performance Evaluation

To evaluate the system’s performance in the focusing tasks, we have manually
defined a ground truth against which the system’s performance is compared.
To this end, we have first applied the automatic segmentation algorithm for
the images. Then we have manually annotated the segments in those images
which have been annotated with the studied keyword. In this annotation, we
have marked which of the segments cover the object the keyword refers to.
This annotation has been used only as a ground truth for the performance
evaluation.

In the last experiments we also evaluate the system’s ability to select
the appropriate level in the segmentation hierarchy among all the alterna-
tives produced by the hierarchical segmentation algorithm. To this end we
define another set of segment-level ground truth annotations—the best seg-
ment. The best segment is defined to be the segment combination contained
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in the automatically produced hierarchical segmentation that best resembles
the annotating keyword. Of course, choosing the best alternative is usually
somewhat subjective, especially as the results of the hierarchical segmentation
are often quite far from ideal. However, the task of selecting the best segment
defined in this manner still captures an important aspect of the performance
evaluation problem.

After having defined the ground truth classes for performance evaluation,
we measure the system’s performance with receiver operating characteristic
curves. For the shown figures, we have first generated separate ROC curves
for each database image annotated with the particular keyword. The curves
have then been averaged by considering the true positive rate to be a function
of the false positive rate. Thus, the curves are averaged graphically along the
vertical direction. Generating a separate curve for each image is motivated
by the fact that here we consider the task of focusing the keyword inside
individual images. The ordering of the segments in different images is not
regarded as relevant. The averaging procedure may not correspond to any
actual classification scenario, but is adequate to get a measure of average
performance for different images.

For the linear combination coefficient λ in Eq. (9) the value λ = 1/30 was
found to produce good results in the current experiments. This means that
the effect of an individual negative example segment is considerably smaller
than the effect of a positive segment. However, since the negative example
images were much more numerous, the resulting weight of the distribution of
negative segments is much larger than that of the positive examples.

7.2 Databases

The first of the two databases has been used to provide an easily understand-
able lightweight testbed for the framework. For this purpose, we have selected
a 900 image subset of the commercial Corel database [10]. The images depict
people, most of them models. We thus call this database the models database

from here on. As the keyword to be focused we chose the word “red”. We have
manually annotated the database for this keyword by defining the keyword
for an image if it contained a salient red object captured by the automatic
segmentation algorithm. 107 images of the database were judged to portray
red objects. The chosen keyword has straightforward connections to both im-
age segmentation and the visual features, and we thus hope the results to be
straightforward to interpret. This way we could focus our attention solely to
the keyword focusing mechanism, not the image segmentation. As the visual
features for this database we used one colour feature, colour moments, and
one local texture feature, the MPEG-7 Edge Histogram (cf. Section 6.2). We
expect to observe a different behaviour of these two features in the keyword
focusing task as colour is directly related to the target keyword whereas the
edge histogram is not.
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The second database we used is the 101 Object Categories database [17] of
the PASCAL Visual Object Classes Challenge2 . The database contains 9197
images divided into 101 semantic categories, each containing between 31 and
800 images, and a background or auxiliary class of 520 miscellaneous im-
ages. The database has been created mostly for object recognition purposes
and therefore does not contain detailed image-wise annotations. For the ex-
periments, we chose one of the categories, “lobster”, as the keyword to be
focused. A lobster is portrayed in 41 of the database images. The keyword
does not have a direct connection to the image segmentation algorithm or to
any specific feature representations as in the case of the first database. For
this database the set of visual features is selected by considering the concerted
ROC curves for the focusing tasks. In these curves all the segments of the im-
ages corresponding to the keyword are ordered in a common list according to
their relevance scores. Features are added to the set until further addition of
features no longer improves the equal error rate (EER) of the ROC curve.

7.3 Feature Distributions on SOM Surfaces

Models Database

Figure 4 displays how the feature distributions of the example segments
become projected on the feature SOM surfaces in the case of the models
database. The map surfaces have toroidal topology, i.e. the top edges are con-
nected to the bottom edges and the left edges to the right edges. This way
the visual analysis is more straightforward as we do not have to consider the
edge effects that can be significant in rectangular SOMs. The actual focusing
performance of the both topologies is according to our observations approxi-
mately the same. Distribution of the colour feature is shown in the left column
and that of the edge histogram feature in the right column. The input densi-
ties to the algorithm are densities on the rows (a) and (b). The row (c) is the
outcome of the algorithm, and row (d) can be seen as the desired outcome.
However, note that outside the feature space regions where there are segments
on row (a), the final qualification values on row (c) have no significance to the
outcome of the keyword focusing task.

As expected, the colour feature captures well the keyword “red”, as indi-
cated by the dense concentration of the positive example segments to specific
map surface regions. The segments are more widely spread on the edge his-
togram map surface. Furthermore, by comparing the distributions of true
“red” segments and all the keyword segments, we note that the distributions
peak at approximately same locations corresponding to the truly “red” seg-
ments. This happens even though the majority of the keyword segments are
false positives, i.e. they are not “red”. This is explained by the fact that the
non-red segments in the example images are distributed throughout the colour

2 http://www.pascal-network.org/challenges/VOC/
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(1a) (2a)

(1b) (2b)

(1c) (2c)

(1d) (2d)

Fig. 4. Distributions of models database segments on two feature SOM surfaces.
The left column (1) shows the distribution of colour feature, the right column (2)
the distribution of MPEG-7 Edge Histogram feature. Dark colour corresponds to
high density. Note that the distributions are normalised so that the maximum value
always corresponds to black colour. Therefore the shades in different subimages are
not comparable, only the shapes of the distributions. The top row (a) displays the
distribution of all the segments in the images that are annotated with the keyword
“red”. The second row (b) shows the distribution of all the segments in the models
database. The third row (c) shows the linear combination of the first and the second
row according to Eq. (9) which is used as the final qualification value of the segments
with respect to that feature. The relevance is spread on the second and third row
by the convolution mechanism discussed in Section 6.4. The fourth row (d) shows
the distribution of manually confirmed “red” segments (true positives).

feature space. Therefore, in any specific region of the feature space their con-
centration is still low and easily dominated by the locally peaking distribution
of the true positives.
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101 Object Categories

Figures 5 and 6 display the projections of the segments on the feature SOM
surfaces in a manner similar to Figure 4. In addition, however, the figures
include the distribution of best segments (cf. Section 7.1) on row (e) as we
also consider the problem of finding the most representative combined segment
among the segments in the hierarchical segmentation.

From the figures it can be seen that, in addition to the concentration of
positive example segments, the application of Eq. (9) and subtraction of the
background density due to the auxiliary images (row (b)) can be essential
to the focusing performance. For instance, by comparing the distributions on
the first and last rows of the Fourier feature (column (3) of Fig. 5), we notice
areas of false positives in the lower part of the first-row map near the left and
right edges. Successful keyword focusing requires suppression of these regions
and the subtraction of the background relevance seems to offer an effective
means for achieving this.

On the other hand, by comparing rows (a) and (d) of the texture feature
(column (4) of Fig. 5), we see that keyword focusing would require suppres-
sion of the lower right quadrant of the first-row SOM surface. However, the
background density is quite low in that region and therefore the region gets
amplified in application of Eq. (9). This leads one to expect the texture fea-
ture to perform poorly in keyword focusing, which is indeed confirmed to be
the case.

It can be seen that the shape features (columns (3) and (5) in Fig. 5 and
columns (3) and (4) in Fig. 6) are promising candidates for favouring the
best segments over other “lobster” segments. The large values of background
relevance coincide with some regions that are more pronounced in the distri-
bution of all “lobster” segments (row (d)) than in the distribution of the best
“lobster” segments (row (e)).

7.4 Performance in Keyword Focusing

Models Database

Figure 7 shows some examples of image segmentation and Figure 8 the ROC
curve, when the keyword focusing experiment applied onto keyword “red” in
the models database. In Figure 7c the focusing algorithm erroneously considers
the segment 4 to be more “red” than the segment 5. This can be explained
by the unusual shades of red and some dark areas in segment 5.

The almost ideal ROC curve of Figure 8 indicates the performance of the
system to be very satisfactory in general, with some rare exceptions. This is
also confirmed by manual inspection of the focusing results of the individual
images. We can thus confirm that when the feature spaces, image segmentation
and the studied keyword are compatible, the statistical correlation method is
an effective means for keyword focusing.
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(1a) (2a) (3a) (4a) (5a)

(1b) (2b) (3b) (4b) (5b)

(1c) (2c) (3c) (4c) (5c)

(1d) (2d) (3d) (4d) (5d)

(1e) (2e) (3e) (4e) (5e)

Fig. 5. Projections of segments associated with keyword “lobster” on 101 Object
Categories database to the feature SOM surfaces of the non-standard feature spaces.
Columns: (1) colour moments, (2) average colour, (3) Fourier shape, (4) texture
and (5) Zernike moments. Rows: (a) all segments of images annotated with keyword
lobster, (b) all segments in the database, (c) the combination of (a) and (b) according
to Eq. (9), (d) true “lobster” segments, (e) best “lobster” segments.

101 Object Categories

The system’s keyword focusing performance with keyword “lobster” in the
101 Object Categories was evaluated separately in two tasks: (1) identifying
any lobster segments in the segmentation hierarchy, and (2) selecting the
single best segment combination from the hierarchy. Both of these tasks were
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(1a) (2a) (3a) (4a) (5a)

(1b) (2b) (3b) (4b) (5b)

(1c) (2c) (3c) (4c) (5c)

(1d) (2d) (3d) (4d) (5d)

(1e) (2e) (3e) (4e) (5e)

Fig. 6. Projections of segments associated with keyword “lobster” on 101 Ob-
ject Categories database to the feature SOM surfaces of MPEG-7 feature spaces.
Columns: (1) Color Layout, (2) Dominant Color, (3) Edge Histogram, (4) Region
Shape and (5) Scalable Color. Rows: (a) all segments of images annotated with key-
word lobster, (b) all segments in the database, (c) the combination of (a) and (b)
according to Eq. (9), (d) true “lobster” segments, (e) best “lobster” segments.

performed with and without the intra-image relevance propagation mechanism
(cf. Section 6.5). This gives four variants of the problem altogether.

For each problem variant we state the results of using the set of features
that was found to perform best. The optimal feature sets were found to be
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Fig. 7. Examples of focusing the keyword “red” in the models database. The white
borders in the image indicate the eight regions found by the segmentation algorithm.
The number tags reflect the ordering of the segments produced by the focusing
algorithm. The tags of truly red segments (defined for evaluation purposes only) are
shown with double border.
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Fig. 8. The averaged ROC curve of focusing keyword “red” in the models database.

different for each problem variant, although the performance was not strongly
dependent on the choice of features. The robustness can be partially attributed
to the PicSOM system’s ability to automatically emphasise the most useful
features. Table 1 shows the optimal feature sets in the ROC EER sense, listed
in order of decreasing significance.
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Table 1. The feature sets optimised for variants of the focusing task

No propagation With propagation

Any segment colour moments colour moments
Fourier shape average colour
average colour Fourier shape
MPEG-7 Edge Histogram MPEG-7 Dominant Color
MPEG-7 Color Layout MPEG-7 Color Layout

MPEG-7 Scalable Color
MPEG-7 Edge Histogram

Best segment colour moments average colour
MPEG-7 Edge Histogram MPEG-7 Edge Histogram
Zernike Moments Zernike moments
MPEG-7 Scalable Color

Figure 9 provides some example cases of keyword focusing. In general,
the performance of the system in this task is satisfactory, although there are
cases where the system does not function as well as desired. In many cases of
failure, the reason can be tracked down to the unsatisfactory segmentation of
images. The lowermost row (c) of Figure 9 exemplifies such a situation. The
white background and kitchen tool cause the lobster to divide into two parts
and the segmentation algorithm does not even consider the merging of these
regions.

Comparison of columns (2) and (3) in Figure 9 shows the effect of the
relevance propagation algorithm. On the rows (a) and (c) the typicality in the
parallel feature spaces alone has been enough to capture the proper ordering
of the “lobster” segments (marked with a +), even placing the best segments
(marked with a *) on the top of the lists. On the row (b), however, the
relevance propagation step is required for the correct re-ordering of the list.

Figure 10 shows the ROC curves for three cases of the keyword focusing
task. The subfigures (a) and (b) correspond to the four variants identified in
the Table 1. It can be noted that the propagation of relevance along the seg-
mentation hierarchy improves performance in finding the single best segment
in (b), but does not significantly affect the performance in the task of finding
any lobster segments in (a). This was to be expected, as the rationale for
the relevance propagation is to re-order the segments that were found to be
relevant so that the most representative segment combinations are favoured.

Figure 10c shows the algorithm’s performance in finding the best segment
(* in Fig. 9) among the true lobster segments (+ in Fig. 9). This way the the
effect of the algorithm’s performance in finding any lobster segment among
all the segments is excluded. Figure 10c can thus be regarded as a residual
performance that remains when the effect of the good performance in the eas-
ier subtask (a) is eliminated from the task of subfigure (b). In Figure 10c the
relative ordering of the algorithms with and without relevance propagation
is similar to that in subfigure (b). This happens because the performance in
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Fig. 9. Examples of focusing the keyword “lobster” in the 101 Object Categories
database. The white borders in the images in column (1) indicate the eight regions
found by the segmentation algorithm. The numbers in the tags are arbitrarily chosen
segment labels. Columns (2) and (3) list the ordering of the segments output by
the focusing algorithm. Column (2) shows the algorithm results without relevance
propagation along the segmentation hierarchy. In column (3) the propagation is
included. The segments more likely to be associated with the keyword “lobster”
are on the top of the lists. In the lists segments marked with + have been manually
judged to consist of mostly lobsters. The asterisk (*) beside a segment label indicates
that the segment has been manually judged as the best segment, i.e. the segment
most representative of the keyword lobster. Note that we have considered only the
alternatives generated by the hierarchical segmentation algorithm. Therefore, for
instance, in the figure of row (b) the combined segment segment 1,2,4 is chosen as
the best segment as the combination 1,2,4,5 is not offered as an alternative by the
segmentation stage.
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finding any lobster segment is practically the same for the two algorithm al-
ternatives, as shown by subfigure (a). However, from the absolute magnitude
of the curves we see that also without relevance propagation the algorithm
performs considerably better than random selection. Thus the principle of typ-
icality in the selected feature spaces partly manages to favour the appropriate
composite segments over their constituent parts. Nonetheless, in a significant
proportion of cases the ordering is improved by augmenting the typicality
assessment with the relevance propagation step.
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Fig. 10. The averaged ROC curves of focusing keyword “lobster” in the 101 Ob-
ject Categories database. Solid lines correspond to the focusing algorithm without
the relevance propagation along segmentation hierarchy, the dashed line with the
propagation. Subfigure (a) measures the focusing accuracy of finding any “lobster”
segments. Subfigure (b) measures the accuracy of pinpointing the segment combi-
nation that is manually judged to be the best. Subfigure (c) measures in which
order the true lobster segments are found. Images with only one lobster segment are
excluded from this subfigure.

8 Conclusions and Future Views

In the light of the experiments, it is evident that the proposed statistical
correlation principle offers a viable approach to the keyword focusing problem.
However, it is clear that to function as a part of a real-world application,
this technique should be augmented with other learning principles in order
to produce keyword focusings that utilise the information contained in the
data more efficiently. This is kind of self-evident: a priori information makes
the learning problem easier. A lower-level, more general learning principle is
necessarily more laborious in the case where the a priori assumptions hold.

The presented experiments demonstrate the potential of a system archi-
tecture, where image data is first pre-processed by a feedforward type region
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segmentation and description front end. The inference algorithms are subse-
quently applied to the representations generated by the front end. Parallel
Self-Organising Maps provide a feasible means for constructing such a front
end. An analogy can be drawn between this and the cortical maps of the
human visual system.

The straightforward image segmentation algorithm and low-level visual
features in our current implementation are by no means optimal. The frame-
work, however, is useful and we have tried to make it easy to improve, add or
replace the individual components. There exists inevitably a limit to the per-
formance of low-level feedforward image segmentation, which can be overcome
only by interlinking the image segmentation with higher-level image under-
standing. A low-level preprocessing algorithm cannot be expected to connect
parts of objects that are visually sufficiently dissimilar. The borderline where
the feedforward front end should yield up the processing to the higher-level
inference algorithms, in this case the focusing algorithm, is quite vague. It
might be better to let the image segmentation interact more closely with the
focusing procedure and not consider the segmentation as a part of the front
end.

One could also include more information about the alternative segmen-
tations in the image representation by using a more versatile data structure
than a tree. The data structure could be equipped with the probabilities of
region merges. On the other hand, the data structure could include just more
alternative segmentations, resembling the data structures, e.g. lattices, used
in automatic speech recognition.

All in all, in the feasibility studies of this chapter we have demonstrated
that soft computing methods can be successfully used to explore the image–
word correspondence and the emergence of semantical concepts. More rigorous
experiments would have to be performed for more quantitative analysis. On
the other hand, it has been elucidated that the subproblems of content-based
image retrieval offer a challenging application area for soft computing tech-
niques.
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