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Abstract

We study distribution-dependent, data-dependent,
learning in the limit with adversarial disturbance.
We consider an optimization-based approachto learn-
ing binary classifiers from data under worst-case
assumptions on the disturbance. The learning pro-
cess is modeled as a decision-maker who seeks to
minimize generalization error, given access only to
possibly maliciously corrupted data. Two models
for the nature of the disturbance are considered:
disturbance in the labels of a certain fraction of
the data, and disturbance that also affects the po-
sition of the data points. We provide distribution-
dependent bounds on the amount of error as a func-
tion of the noise level for the two models, and de-
scribe the optimal strategy of the decision-maker,
as well as the worst-case disturbance.

1

Most of the work on learning in the presence of malicious
noise has been within the PAC framework, focusingquni-

ori, distribution independent bounds on generalization error
and sample complexity. This work has not fully addressed
the question of what a decision-maker must do when faced
with a particular realization of the data, and perhaps some
knowledge of the underlying distribution and the corrugtin
disturbance. The main contribution of this paper is the d
velopment of a robust optimization-based, algorithmi@eat
dependent, distribution-dependent approach to minimgizin
error of learning subject to adversarial disturbance.

In the adversarial PAC setup, a decision-maker has ac-
cess to IID samples from some source, only that a fraction
of these points are altered by an adversary. There are $ever
models for the noise which we discuss below. The decision-
maker is givere > 0 andd > 0 and attempts to learn an
e-optimal classifier with probability of at leagt— §. The
emphasis in [KL93], as well as in several follow-up works
(e.g., [BEKO2, ACB98, CBDF99, Ser03)) is on the sample
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complexity of learning in such setups and on particulary ba
data sources.

The algorithmic issue of the decision-maker’s optimal
strategy when faced with a certain disturbance level, ae.,
certain amount of possible data corruption, and a reatinati
of the data has not been adequately explored; see [Lai88]
for an initial discussion. While there are quite a few possi-
ble disturbance models that differ on the precise setupt(wha
the adversary know, what the adversary can do and in which
order), we focus on the strongest disturbance model where
the adversary has access to the actual distribution and can
modify it adversarialy within a constraint on the disturban
level. This “learning in the information limit” model is ude
to abstract other issues such as finite sample or limited ad-
versary (see [CBDF99] for a discussion on some relevant
models). In this paper we consider two different noise mod-
els, with the intention of addressing the algorithmic aspec
and the effect of the disturbance level. We note that we use
the term disturbance rather than noise because in our model
data are corrupted in a possibly adversarial way and the prob
abilistic aspect is essentially not relevant.

We deviate from the traditional learning setup in three
major assumptions. First, we focus on the question of how
the decision-maker should minimize error, rather than fol-
lowing PAC-style results of computing priori bounds on
that error. Moreover, our analysis is distribution speaficl
we do not focus on particularly bad data sources. Second, the
noise level is not assumed small and the decision-maker has
to incur error in all but trivial problems (this has been stud
ied in the malicious noise setup; see [CBT¥D]). Third,
we do not ask how many samples are needed to obtain low
generalization error, instead we assume that the disiitout
of the samples is provided to the decision-maker (equiva-
lently, one may think of this as considering the large sample
or “information theoretic” limit). However, this distritlion

ds corrupted by potentially persistent noise; we may caarsid

it as first tampered with by an adversary. After observing
the modified distribution, the decision-maker has to commit
to a single classifier from some predefined’®etThe per-
formance of the classifier chosen by the decision-maker is
measured on the original, true distribution (this is simita
the agnostic setup of [KSS92]). The question is what should
the decision-maker do? And how much error will he incur in
the worst case?

In order to answer these questions we adopt a robust
optimization-theoretic perspective, where we regard eaision-



maker as trying to make optimal decisions while facing an that in the worst case, both adversaries can cause an error
adversary. Our aim is to provide an analysis by identifying twice their power. In Section 4 we show how performance
optimal strategies, and quantify the error as a functiomeft degrades with the increase of this power. A technical proof
adversary’s strategy, i.e., the nature of the corruptistudi along with a somewhat surprising worked out example are
bance. We refer to the disturbance as selected by an adverdeferred to the appendix which is provided here to assist the
sary merely as a conceptual device, and not in strict analogyreviewers and will not be a part of the final submission.

to game theory. In particular, the decision-maker does not

assume that the corrupting noise is chosen with any specific2 ~ Setup and Definitions

aim; rather, the decision-maker selects a strategy to grote

himself in the worst-case scenario. In this section we give the basic definitions of the noisyrear

The true probability distribution is defined over the input 1N Setup. Also, we formulate the optimization problem vhic

space and on the labels. We focus on the case of proper learncharacterizes the optimal policy of the decision-maked, an

ing, where this amounts to a distribution and the true classi e worst-case noise. The decision-maker, after observing
fier. Then the adversary modifies the distribution of the tnpu  the noisy data, and knowing the power of the adversary, out-

points and the labels. The decision-maker observes the modPUts a decision in the classifier space. The disagreememnt wit
ified distribution and chooses a classifierfinto minimize the true classifier, is the generalization error. The denisi
theworst-caseerror. We note the relationship with [KSS92] Maker's goal is to minimize this, in the worst case. We allow
who use a slightly different model. In their model, the de- OUr decision-maker to output a so-called mixed strategy.

cision maker chooses a classifierfinknowing that the true Throughout this paper we focus on proper learning. We
classifier is in some “touchstone” clagsC H. They say let H denote a predefined set of classifiers from which the

that an algorithm facilitates learning (with respect to sslo  true classifier is drawn, and from which the decision-maker
function) if it learns a function fror{ thatis close to afunc- ~ Must choose. Moreover, we assume tHais finite for the

tion from T in the usual PAC sense (i.e., with high probabil- Sake of simplicity and to avoid some (involved but straight-
ity and small error after observing a number of samples poly- forward) technicalities. Indeed, there are three natutaire
nomial in one over the error, and one over the confidence). Sions to our work that we postpone, primarily due to space
As opposed to [KSS92] and most subsequent works, we dolimitations. First, while we focus on the proper learning
not focus on small noise and we ignore the sample complex-S€tup, the non-proper setup (as in [KSS92]) seems to nat-
ity aspect altogether. Instead, we focus on the policy anose Urally follow our framework. Second, the case of an infinite
by the decision maker and on the informational limits. Irttha S€t of classifier§{ could be resolved by eliminating clas-
respect, our work is most related to [CBD®9] who consid- sifiers that are “close” according to the observed measure.
ered the case of substantial noise. Their proposed strategy! Nis is particularly useful for the flip-only setup where the
that deals with noise, however, is based on randomizing two @dversary cannot make two classifiers substantially differ
strategies or using majority vote (phase 2 of the randomized®nt. Finally, while we do not consider sample complexity,
Algorithm SIH in [CBDFF99]). We propose a more princi- such results sh_ould not be too difficult to derive by imitgtin
pled approach to handling adversarial noise, leading to im- the arguments in [CBDFO9].

roved results. .
P . . - 2.1 The Learning Model
If the noise level and characteristics are unlimited, the

decision-maker cannot hope to do better than randomly guesdn this paper, we deviate from the PAC learning setup, and
ing. We therefore limit the noise, and allow the adversary to consider ar priori fixed underlying distributiom, that gen-
change only a given fraction of the distribution, which we €rates the Iocauon (not the labels) of the training dataisTh
refer to as “the power of the adversary”. An alternative view the error calculations we make are a function of the power
which is common in robust optimization [BTN99], is to con- ©f the adversary and also of the fixed probability measure
sider the power of the adversary adesign parameterAc- p. We use the symbgl throughout this paper, exclusively
cording to this view, the decision-maker tries to be restlie  in reference to the true probability distribution which gen
to a specified amount of uncertainty in the parameters of theates the location (not the label) of the points, and hence, is
problem. used to determine the generalization error. Given a partic-
ular classifierh, a true classifieh,,., and the underlying
probability measure:, the generalization error is given by
the error function

The paper is structured as follows. In Section 2 we de-
scribe the setup. We define two types of adversaries: one thal
can only flip a fraction of the points, and one that can also
move the points to another location. In Section 3 we con- A ) 5
sider the optimal solution pairs for the two different spsu Eulherues h) = @+ herue(7) 7 h(@)}-

We characterize the strategy of both the decision-maker antyye can extend this definition to a probability measure over
the adversary) and the specific distribution that genete&s 7 given by a weighting vector: = (ay, as, ... ) where
data. Taking such a distribution-dependent perspective al s~ — 1 anda; > 0. In that case, denoting the space of

lows us to characterize the decision-maker's optimaleiat  mixed strategies bydy,, and a particular mixed strategy by
as the solution to a linear program if the adversary can only

flip labels, or a robust optimization problem in the case ef th That is, rather than commit to a single classifier, our denisi
more powerful adversary that can also modify the measure.maker can commit to a randomized strategy, involving pdgsib
We further bound the error that may be incurred and show multiple classifiers.



a € Ay, we have
AN
g,u(htruc; Oé) = Z aigp(htruc; h”L)

We note that the mixing is often referred to as “proba-
bilistic concepts” or “probabilistic hypotheses” in maaai
learning. In the context of learning with adversarial noise
see [CBDF 99].

2.2 The Noise Model and The Decision-Maker

We next define the possible actions of the adversary and of
the decision-maker. As discussed above, in this paper we do

not consider sample complexity, and effectively consitler t
situation where the training sample is infinite in size (the i
formation theoretic limit). We model this situation by assu
ing that rather than training samples, the decision-mader r
ceives a distribution for each of the two labels. Since the ad
versary modifies this object in various ways (noise is adde

to the observations) we make some formal definitions which

facilitate discussion of this in the sequel.

Let X denote the space in which the training data exist.
In the typical, finite training data model, the decision-miak
has access to a collection of labelled poifts;;, I;) }, where
x; € X, andl; € {+,—}. In our case then, the decision-
maker receives a probability measure over this space
M(X x {+,—}) (M denotes the space of probability mea-
sures). We can represent such a measimga triple(\, py, u—),
whereyu, ;i are probability measures o, and represent
the distribution of the positive and negative-labelledn®i
respectively, and. € [0, 1] is the weight (or probability) of
the positively labelled region, and — ) that of the nega-
tively labelled region. The interpretation is that a pdattel
pair is generated by first choosing a label ‘or * —' with
probability A or 1 — A, respectively, and then a point is gener-
ated according to the corresponding distribution,or .
Thus, the underlying distribution generating the location
of the points (not the labels) is given By, + (1 —A)u_).
Thus, if hirue IS the true classifier, then in the absence of
any noise, we would observe = (A, u4, pu—), wherepu,

is the scaled restriction gf to the regionut, e (+) = {z :
htrue(z) = +1}, and similarly foru_:
_ X hewe ()}
By = A )
— M ! X{htrue(_)}
11— ’

where if A\ = 0 there is nou,, and if A = 1 there is no
u—. Indeed, the triplé€\, 4, u—) is completely defined by
1 and the true classifieliy,... Sincey is fixed, we write
(A pity 4= )y, tO denote the triple determined hy and

htruc .

Using this terminology, the adversary’s action is a map
T:MXxA{+,-}) — M@Xx{+-})
(/\7M+a:u—) (/\a:&-ﬁ-a,&—)'
We use the hat symbol,™’ throughout, to denote the
observation of the decision-maker. Therefore, while the tr

probability measure generating the point location is given
as above, by: = Auy + (1 — A)p—, the decision-maker

)‘ = :u(htrue(""));

.

[

observes an underlying probability measure of the form
Mg + (1= N)ji—.

The restrictions on this map determine the nature and
level of noise. We consider two models for the noise, i.e.,
two adversaries. First, we have a ‘flip-only’ adversary:-cor
responding to the noise model where the adversary can flip
some fixed fraction of the labels. We also consider a stronger
‘move-and-flip’ adversary who can not only flip a constant
fraction of the points, but may also change their locatiar. F
the flip-only adversary the underlying measyris the same
as the observed measute Therefore the decision-maker
minimizes the worst-case error where the worst case is over
all possibleh € H. This need not be true for the move-and-
flip adversary. In this case, the decision-maker has only par
tial information of the measurg against which generaliza-
tion error is computed, and hence the decision-maker must
protect himself against the worst-case error, considaihg

d possible classifiers € H, as well as all possible underlying

measureg consistent with the observatio(mi;, figy i),

We do not intend measurability questions to be an issue
in this paper. Therefore we assume throughout that all mea-
sures (and images under the adversary’s action) are measur-
able with respect to some natueafield G.

In each of the two cases above, the level of noise is de-
termined by how different the output probability measure
T\ pg,p—) = (N jir, i) can be from the true proba-
bility measurg A, piy, u—). A natural measure for this is the
notion of total variation. The distance, in total variatite-
tween measuresg, v, is defined as

1
[lv1 — vellrv 25 sup
k,Al,...,Ak eg
st A NA; =0fori#j

k
Z|V1(Az‘) — va(4;)].

This definition also holds for unnormalized measures. We
extend this definition to triple6\, 4, u—) by

~ N N A N
A by =) = (A, g, i) [ov = [[Apg = A |l ov+
1= N = (1= Xl
Therefore, we have:
Definition 1 An adversary using polic§’ (either flip-only,
or move-and-flip) has powerif given any triple(\, u4, p—),

his policyT" satisfies|T'(\, g, p—) — (N, pige, =) | 7v < 1.
We abbreviate this, and simply writd|| < 7.

We can now define the two notions of adversary introduced
above.

Definition 2 A flip-only adversary qf powen can choose
any policyl" such that|T'|| < 7, and(X, i+, i) = T(X, 14, )
satisfies

p=Ay + (L= Npe =AMy + (1= N = j.

Definition 3 A move-and-flip adversary of powgcan choose
any policyT" such that|T'|| < n.



The decision-maker must base his decision on the ‘noisy ob-
servations’ he receives, in other words, on the tr([iqu+, f-) =
T(\, p4, 4—) which he sees. His goal is to minimize the
worst-case generalization error, where the worst caskésta
over consistent € H, and also over consistent measures
1. We allow our decision-maker to play a so-called mixed
strategy, and rather than output a single classifier H,

to output a randomized strategy, interpreted to mean that
classifierh; is chosen with probabilityy;. We denote the
set of these mixed strategies By, and a particular mixed
strategy by € Ay. Then, the decision-maker’s strategy is
a map:

Dy s MX % {+,-})
()‘7/1-5-7/1—) — .

The idea is that if the decision-maker can eliminate some el-
ements ofH, but cannot identify a unique optimal choice,
then the resulting strategh,, » will output some measure
supported over the ambiguous elementsof We explic-

ity assume that the decision-maker’s policy is a function
of n, the power of the adversary. In a worst-case formula-
tion, a decision-maker without knowledgempis necessarily

s Ay

powerless. We also assume that the decision-maker knows

whether the adversary has flip-only, or move-and-flip power.
We do not assume that the decision-maker has any knowl-
edge of the underlying distributignthat generates the loca-
tion of the points. For the flip-only adversary, the decision
maker receives exact knowledge ‘for free’ since by ignoring
the {4, —}-labels, he obtains the true underlying distribu-
tion . Therefore in this case there is only a single consis-
tent underlying measure, namely, the correct measuaad
the decision-maker need only protect against the wors-cas
h € H. In the case of the move-and-flip adversary, however,
the decision-maker receives only partial knowledge of the
probability measure that generates the location of thetpoin
Given a strategyD of the decision maker and a rufe
for the adversary, we define the error for a given meagure
and a true classifig¥;, ., as:

A
EI‘I‘OI‘(/,L, htrum m, Da T) = [gﬂ(htruc; D(T((Av M+, /’L*)(hztric))))] .

2.3 An Optimization-Based Characterization

In this section we characterize the optimal policy of theisien-
maker, and also the worst-case policy of the adversary, i.e.
the worst-case noise, given the policy of the decision-make

The noise-selecting adversary has access to the true triple

(\, 4, 1), and seeks to maximize the true error incurred.
The decision-maker sees only the corrupted ver&lofi,, i),

. Therefore the worst case over all consistent triples be-
comes a worst case over all consistent classifiers.

When facing the move-and-flip adversary, it may no longer
be true that\ii; + (1 — A\)i— = u. Therefore the decision-
maker must consider the worst case over all consisteniclass
fiers, and also over all consistent underlying measusesgh
thaty = Ai4 + (1 — \)fa— for some possiblé, iy, fi—)
with total variation at most from (X, iy, fi_). We refer to
this set of consistent underlying measures as

s é q)(nv (5‘5 :&-ﬁ-a :&—))

We define the following two setups for a fixed measure
onX, hiwe € H, and a value) for the power of the adver-
sary.

(S1) The flip-only setup:

A .
Dy = argmin [ max [max (2.2)
Dy LTTI<n - heH
’ T flip-only

Error(u, h,n, D, T)H

T 2 argmax [Error(u, hipye, 7, D1, T)] -

T:||T||<n

T flip-only
The decision-maker knows and H, and can infer
since the adversary is flip-only. Thus he chooBgso
minimize the worst-case error, where the worst case is
over classifiers, € H. The adversary has prior knowl-
edge ofu, hiwe andH, and of course, and chooses his
strategy to maximize th&ue error, i.e., the error with
respect tdhy, . andp.

(S2) The move-and-flip setup:

[

max [ max

A .
Dy = argmin
TH|T||<n = re2
heH

D,,],H

(2.3)

Error(v, h,n, D, T)H

T 2 argmax [Error(u, hirue, 1, D2, T)] .
T:(|T||<n

Here the adversary is no longer constrained to fiiclo
that/i = u. Inthis case the decision-maker must choose
a policy D- to minimize the worst-case generalization
error, with respect tdh € H and also measures €

®. The adversary again tries to maximize the true error
W.I.t. hype @Nd .

We useError® (i 1,2) to denote the error ir51 and

and minimizes the worst-case error, where the worst case isS2 when y, hive, andn are clear from the context, i.e.,

taken over all possible, or consistent tripl@s i, i_) that

the particular adversary with power (flip-only, or move-

and-flip) could, under any policy, map to the observed triple

(A, fig i) 2 )
For the flip-only adversary, any consistent triple i

)
the decision-maker considers must satighy. +(1—\)ja— =

2We remark again that unlike the game-theoretic setup, the
decision-maker does not assume a rational adversary. Véideon
this case elsewhere.

Error’ = Error(n, hirue, n, Di, T;). We show below that the
max and min in both (2.2) and (2.3) are attained, and can be
computed by solving appropriate optimization problems. We
interpret the argmin/argmax as selecting an arbitrarynugti
solution if there are more than one.

The fact that the max and min in both (2.2) and (2.3) are
attained by some rule requires a proof. We show below that
this is indeed the case for both setups since the respective
rules can be computed by solving appropriate optimization
problems.



S1 and S2 are not equivalent. This follows by our assumption that the adversary has power
We first show by example that the “flip only” setup and the 7, and becausg.i (herue(—)) + (1 — A)p— (htrue (+)) = 0.
“move and flip” setup are not equivalent. This is the case ThereforeF is the set of classifiers i that could possibly
even for two classifiers. Indeed, consider the case= be equal tdh,e and thus Definition 4 above indeed gives
[—5,5] C R, with threshold classifierst = {h1, hs} with the set of feasible, and therefore ambiguous, classifiers. |
hi(+) = [0,5] andhy(+) = [1,5]. Then the disagreement particular, under the assumption of proper learning,. €
region is[0,1). Suppose; is the true classifier, and that 7.

the true underlying measueis uniform on[—5, 5], so that Next, the decision-maker must compute the valuepf
1([0,1)) = 10%. Forn < 5%, Error' = Error® = 0. for everyh € F, the feasible subset of classifiers. For any
Forn > 5%, however, both the flip-only and move-and- Mixed strategy (this is sometimes referred to as a “proba-
flip adversaries can cause error. Suppgse: 10%. In bilistic hypothesis”yx € Ay that the decision-maker might

S1, the decision-maker knows the trueand hence knows ~ €hoose, the error incurred is

that 4([0,1)) = n = 10%. Thus regardless of the action ) .

of the([adv)e)rsary, the decision-maker’'s optimal strategy is Eulirue; @) - = Z anp(A(h, here)),  (3.5)
(a1,0) = (1/2,1/2), and the error is therefoi@rror' = h# e
10/2 = 5%. In S2, however, the optimal strategy of the ad-
versary is unique: flip the labels of all the points[ih1).
The decision-maker se¢g[0,1)) = 10%, but because the

adversary has move-power, the decision-maker does not know . . ; S
: : Lo . ence his optimal strategy is the one that minimizes thetwors
1 exactly. His goal is to minimize the error in the worst case errorn?axh oy g,ug();Ltruc' 2). In the case of the flip-

case, where now the worst case is over classifiers, and alsoonI adversary, the decision-maker sees the probabiligeme
over possible underlying measures. From his observations, y Y P

the decision-maker can only conclude thatif.. = hs sure (A, fi4, fi-), and since he k?ovxs that = /, he can
then0% < u([0,1)) < 10%, and if hywe = ho, then c_o_rrectly compute the value(a(h', h _))_ for any two clas-
0% < u([0, 1)) < 20%. The worst-case error corresponding sifiersh’, h”. In other words, the decision-maker knows the

where for any two classifiers’, h”, we definea(h’, h') 2
{z : W'(x) # h"(x)} to be the region where they differ.
The decision-maker, however, does not knay,., and

to a strategya, as) is thereforemax{10a;; 20as}. Min- true weight of any region where two classifiers disagree, and
imizing this obj’ective function subject ta; Ty = 1 therefore we can state the following result which is a restat
andas, oz > 0, we find (a1, a2) = (1/3,2/3), and the ~ Mentofthe above.

true error (as opposed to the worst-case erroBrisn” = Proposition 5 The optimal policy of the decision-maker in
(1/3)-0+(2/3) - 10 = 20/3, which is greater thaRrror . S1 is given by computing the minimizer of:

3 Optimal Strategy and Worst-Case Noise min max > anp(A(h, hie))- (3.6)

In this section we consider S1 and S2, and determine optimal Atharue

strategies for the decision-maker, and the optimal styefteg Enumerating the sef as {hq,...,hx}, the optimala is
the adversary, i.e., the worst-case noise. computed by solving the following linear optimization prob
3.1 The Decision-Maker inS1 lem: .

First we consider the decision-maker’s optimal strategy fo i v ‘ e .

S1, i.e., in the face of the flip-only adversary. The decision- strouz Zi;égi o;p(A(hi b)) j=1,....k

maker outputs a mixed strategye As,. The support of the O%;ifio_ i1 I

weight vectorw is the subsef of ‘feasible’ classifiers irf,

which incur at most erron. This set is often referred 10 8 proor  The proof follows directly from the definition of
the “version space”. the error associated to any mixed strategygiven in (3.5).

Definition 4 Given the output, jiy, fi_) = T'(\, puy, pi) -

of a flip-only adversary with power, the set ofeasible and We note that in [CBDF 99] the question of howto choose

. o A - ) the best probabilistic hypothesis was considered. The solu
henceambiguoustlassifiers, 7 = F (A, fiy, i) € H, is tion there was to randomize between two (maximally apart)
given by classifiers or to choose a majority vote. We now explain why
A . . this is suboptimal. Consider three linear classifiers iregeh
F={heH : M (h(=))+ (1= ANa-(h(+)) < n}. position in the plané{ = {h1, hs, h3} and let’s suppose that
(3.4) there are 7 regions in the plane according to the agreement

: " ; f the classifiers (assume that(+) N ha(+) N hs(+) # 0).
Here we definei(+) to be the positively labelled region, 0 - i
andh(—) the negatively labelled region, o t - L (h(=)) Suppose that the decision maker observesjhahas sup

. " : , t only onhi(+) N ha(+) N hy(+) (assume thah =
is the measure of the positive labels observed in the reglonpor ! .
h(—). The measure of the region where the true classifier 1 — 35 and tha) < 1/4) and thayi_ has equal support of

; ; nonhy(—)Nhe(=)Nhs(+), hi(—) N ha(+) N hz(—) and
idslsagrees with the observed measure can be atmdstat I (+) A ha(—) N s (—). The example is constructed so that

A A choosing any one classifier, in the worst case can lead to an
A (Prue (=) + (1 = A= (hirue(+)) < . error of2n. Itis easy to see that a majority vote would lead to



a worst case error @&. Mixing between any two classifiers
would lead to a worst case error 2 as well. Mixing be-

tween the 3 classifiers, which is suggested by Proposition 5

leads to a worst case error4f/3 since we will get the clas-
sifier right with probability 1/3 and incur thn loss with
probability 2/3.

3.2 The Decision-Maker inS2

Next we consider the setuf2, with the more powerful move-

w(A(R', ")), i.e., the worst-case values fiofa (h', ")) for
veo.

The worst case over depends on the worst case over
h € H. Thatis, ifh; is the true classifier, then the worst-case
values forv(a (R, k")) may be different from the worst-case
value if hq is the true classifier.

wrong
The worst-case values are computed ugind a (7', "))
correct

and i, (A(R/,Rh"”)). The idea is as follows: if somé is

and-flip adversary. Again, the goal of the decision-maker is the true classifier, then any measure in the regiohl, h")

to pick a mixed strategy € Ay, that minimizes the error
given in (3.5). The sef of ambiguous classifiers is as de-
fined in (3.4). In this case, however, in addition to not know-

that is incorrectly labelled with respect tomay have also
been moved from some other region. Therefore in the case
thath = hiue, the weight of any particular region(h’, h)

ing hirue, the decision-maker also does not know the under- could be as large as the weight of the correctly labeled point

lying measure:, and hence the valugga (h', b)), exactly.

As introduced in Section 2.3, we uge= (1), (A, jiy, fi_))
to denote the set of measures consistent Withi, ji—).

correct
underg, [y (A(R',R")), plus the weight (again und@) of
the mislabelled points with respectain all other regions,
plus the additional weight that could be moveda@', h)

Thus the decision-maker seeks to minimize the worst-caseUsing any ‘unused’ power of the adversary. The weight of

error, now ovefH{ and®.
Any points that have the wrong label w.rlt.could have

been both moved and flipped. Therefore, to compute the

worst case possible values pfa(h’,h”)), for each clas-

sifier h the decision-maker considers, he must consider the

observed measure of the points that havedbeect label,
and thewronglabel, with respect té. Thus we define:

wrong
fin (A(R', 1)) £

Miy (AP ") OVR(=)) + (3.7)

(1= A (4(W, W) N ()

F(A(H B = i (AR, D)),

correct

:&h (A(hlv h”))

1>

In Proposition 6 below, the decision-maker uses these

guantities to compute his optimal strategy that protechsresy
the worst-case consistent classiftere F, and underlying
measurer € ®. The worst-case classifiér and measure

v may depend on the actianthe decision-maker chooses.
Thus, the decision-maker must solvenén max linear pro-
gram. In doing so, he implicitly computes the worst-case
measures as well, by computing a saddle point.

Proposition 6 (a) The decision-maker’s optimal policy, is
to compute the sef, and then compute the optimal
weight-vector that is the minimizer of

min max &,(hgue; @) = min max (3.8)
« ved « ved
hitrue €H htrue €H
Z ahV(A(hahtrue))a
h#htrue

where the max is ovelif and®. Themin and themax
are both attained.

(b) Moreover, the optimal strategy of the decision-maker is
obtained as the solution to a robust linear optimization
problem, which we reformulate as a single linear opti-
mization.

Recall that inS2, in addition to the labels, the underlying

the mislabelled points is

i (h(=)) + (1= X)ji— (h(+)).
The unused power is

1= Mie(h(=)) + (1= M- (h(+)).

Therefore the weight (undg) of the mislabelled points with
respect to any, plus the unused power, must be exagtly

If h = hirue, COnsider some regiak(h’, h). The reason-
ing above tells us that the worst-case measure of this region

correct

is fin, (A(R',R)) +n. The following lemma makes this intu-
ition precise, and shows that this is indeed the case.

Lemma 7 Assume thak (h, k') # () for anyh # h'. Then,
if h = hirue, We have

H(A(h, 1)) <o (A(R W) + .

This bound is tight in the sense thatthere is a mea@rﬁ+, i)
with total variation at most) from the observations, that at-
tains the upper bound.

PROOF We exhibitthe following triple{;\, fiy, fi—) that sat-
isfies||(A, jit, fi—) — (A, fiy, fin)||7v < 1 Assume, with-
out loss of generality, thak(h,”') C h(+). Letd be any
probability measure ovet’, supported ora(h, ). Then,
define:

A= A+ (1 =N (h(+),
poo= he—he|
Gl )
S N VR ES

wherek — ((1 — Vi (h(+)) +5\/l+(h(—))). For the
triple (;\, [t fi—), there exists a move-and-flip poli@ywith

measurg. is also corrupted. Therefore the decision-maker ||T|| < #, such thafl'(X, fit, i) = (A, fit, i), hence the

must compute the strategywith respect to the worst-case
feasible classifier, and the worst-case consistent values f

scalar upper bound is attainable. O



For the vector case, &(h,hi) N --- N a(h, hy) # 0, for someS C {1,...,k}. We usea(h;, h;)¢ to denote the

there exists a triplé), /i, i_ ) that satisfies complement of the set. We define a variafyg to represent
correct the amount of mass that can be added (in the worst case) to
(u(A(hyhy))y .. u(A(h b)) = (o (A(RyhY)), ..., the region(,cs A(hi, 7)) N (N5 Alhi, hj)°) inthe case
correct whereh; is the true classifier. We can consider these as com-
fv (A(h,he))) +n(L,...,1). ponents of a vector ilk2 ~?, indexed by nonempty subsets

This follows by replacing (h, k') by A (h, hi)N- - -OA(h, hy) S C {1,...,k}. Any such vector corresponds to an equiv-
in the proof above. In general, however, the tightness resul alence class of measurese @, that are indistinguishable
does not hold simultaneously for many classifiers. That is to the decision-maker, in the sense that they induce pigcise
to say, given classifier§h,, ..., h;} different from some the same error. Given such a vector, the weight of the region
H FP correct N
o A ) 0 (A ) = D (@ s Ingenera) fhe . 1y) is then o, ((hi, b)) + Saciy o 55,3’] e
case), then, while the lemma tells us théi (h, h;)) < [ s
(A(h, h;)) + n for eachi, there will be no measure € @
which realizes these upper bounds simultaneously. More-
over, the worst-case values then will depend on the decision

thus for a giverw, the error would be

maker’s particular choice af. Thea-dependent worst-case correct R

consistent values fou(a(h/,h’")) are computed implicitly Zai fun; (A(hi, b)) + Z s,

in the robust LP below. i3] SC{1,...k}
With this intuition, and the result of the lemma, we can s

now prove the proposition, and explicitly give the LP that
yields the optimal strategy of the decision-maker.

For any fixedj, the collection of variableéés,j) . ,
) STl k
must satisfy four properties in order to correspond to some

measure € ®. The variables must be nonnegative, and the

(i) First we show that the error, and hence the optimal strat- sum overS of ésd» must be at mosy. This follows since
egy of the decision-maker, depends only on a finite di- the total amount of mass moved or flipped must be at most
mensional equivalence class of measures ®. The 7, by definition of the power of the adversary. Third, if the
first part of the proof is to characterize this finite di- set(ﬂies A(h, hl,-)) N (ﬂi¢5 A(h;, hj)c) is empty, then the

PrRoOF (of Proposition 6) The proof proceeds in three main
steps:

mensional set. corresponding variablg; ; must be zero. Finally, the weight
(i) Next, we establish the connection to robust optimization, Cé:uesa:%f;\rlzglom(hi, h;) can be at most00%, and thus we

and write a robust optimization problem that we claim
yields the decision-maker’s optimal strategy. Proving
this claim is the second part of the proof.

correct

(iii) Finally, we show that the robust optimization problem fin, (A(hi, b)) + Z €| < 100%.
may in fact be rewritten as a single LP, using duality ! sciim
theory of linear programming. T i€s

For F the set of ambiguous classifiers, the decision-maker’s

policy is given by Therefore, ifh; = hirue, the possible values éf,j e R2" 1

min max &, (htrue; @) = min max are given by:
¢ hc:uiqé]: “ hc:uiqé]:
h% ‘ahV(A(ha htruC))7 ZS 6573_ <,
" §S,JZO7VS§{1,ak}7 S#@a
wherea is supported orF. While the worst case is over , . €5, =0,V8 : (Nics Alhi, hy)) N
classifiersh € F and all measures € ®, the worst-case ~ =(j) = (5,3‘) Do (N, Al(ehs h-)‘;) i
error incurred for any particular strategyin fact can only . s corrert ’
depend on the values of A(h/, 1)) for everyh’,h" € F. > g5i 65,5 <100 — fip; (A(hi, Ry))
Therefore we can consider equivalence classes of measures Vi # j.

in @ that have the same valuega (h’, h"’)). This reduces

the inner maximization to a finite dimensional one. Enumer-

ate the sef as{h1, ..., hi}. Then for any fixedv; € F, if For everyj, the set=(5) is a polytope. The decision-maker
htrue = hj, then the regions whose measure is important for must choose some that minimizes the worst-case error,

the error computation, are those that can be written as where the worst case is over possiblg,. € F = {h1, ..., hi},
and then once thdt; is fixed, the worst case over all possi-

ﬂ A(hi,hj) | N ﬂ A(hi, hj)e |, ble (£. ;) € E(j). Therefore the optimal strategy of the
ics i¢s decision-maker is the solution to the following robust epti



mization problem:

min :

s.t.: u >

max o

.....

correct

ﬂ’b(‘(hlahﬂ))—’— Z éSJ ajzla"'ak
SCH{1,....k}
€S
Zal =1, «a; >0,
Yoésg <m,
is,j >0,vS C{1,...,k}, S#0,
= B s . €S,j =0,VS : (miES A(hi,hj))ﬂ
H(]) = (50) : (ﬂigs‘(higrﬁﬂc’?c) =0,
> 55i s, <100 — fin; (A(hs, hy))

First we prove that this robust optimization indeed yields
the strategy of the decision-maker that minimizes the worst
case effort. The proof of this follows by a combination of the
methods used to prove Proposition 5 in the body of the paper,
and Lemma 7 at the beginning of this appendix. Certainly,
foranyh; € Fandv € @, there exists avectc@fﬁ_’j) € =Z(j)
such that

correct ~
fin, (A(hi, )+ > syl Vi# S

k}

v(A(hi, hj) =

,,,,,

The technique of Lemma 7 establishes the converse, namel
for any feasible vectof¢. ;) € Z(j) there exists a measure

Thus, we must have

correct

Z pi | in, (A(hi b)) +

iET

Z és,r >

correct ~
D (AR B+ D sy

max E o

But then there must exist a measwe= ® consistent with
the observed measure, for which

correct

v(A(hi h;)) =fin, (A(hi k) + > s,

SC{1,...,k}
€S
and thus we have:
meag( g,u(htruc; P) Z gl/(h’T; P)
htf/quH
> max &, (hirue; ).

ved
htrue €H

Therefore, ifv is indeed the true probability measure gener-

yating the location of the points, andif is the true classifier,

then the error incurred by using strategys strictly greater

v € ® thatis consistent with the observed measure, and suchypan the error incurred using strategy. Since boths and

that foranyi € {1,...,k},

correct

v(A(hi, hy)) =jin; (A(hi, b)) +

> s

..... Kk}

Thus we have shown that the s&lg/) are indeed the sets we
should be considering. Next we show that the optimization
we write down is the correct one. The proof of this follows
that of Propositiors. Leta* be the minimizer of the expres-
sion above, and lei* be the optimal value of the optimiza-
tion. If the decision-maker chooses some mixed strajegy
that is not a minimizer of the above, then there must exist
somer € {1,...,k}, corresponding to somk,,. € F,

and also a vectaft. ,.) € E(r) feasible for the above linear
optimization, for which

correct

/lh,‘ (A(hi, hr)) +

Zpi

iET

Z és,r > u*.

1, Kk}

h,- are consistent with the observed probability measure and
labels, respectively, the mixed strateggoes not minimize
the worst-case error.

On the other hand, by similar reasoningy i not an op-
timal strategy, i.e., if it is does not minimize the worstea
error as given in3.8), then it is a strictly suboptimal solu-
tion to the linear optimization. This completes the proaitth
the robust optimization above indeed yields the strategy of
the adversary which minimizes the worst-case error, where
the worst case is ovér € F and alsas € ®. This concludes
the proofs of part¢i) and(ii).

We have left to prove the second part of the proposition,
and part(iii) in the outline, namely, that we can rewrite the
robust optimization problem as a single LP. First, we remark
that for eacly, the se€(5) is a polytope. The problem then,
is a robust linear optimization problem. Using standard re-
sults from duality theory, this can be reformulated as an or-
dinary linear optimization problem.



We have the robust linear optimization problem:

min : U
s.t. : u > (67}
581)5 ..... JEE LA
correct N
fin, (A(hi, )+ > &sn
SC{1,...,k}
i€s
> @
{(ES'Z)SCU ..... c= (2)} i#2
correct ~
fin, (A(hi, o)) + Z €s,2
SC{1,...,k}
1€S
u > max o

{(és,k)sg{l k}eE(k)}i;ék

correct

ﬂhk (A(hiv hk)) +

aiZO.

ZO@ = 1,

Note that the robustification here has a so-called rectangul
nature, since the robustness sets in each constraint ave-unc
related, that is, the full robustness set has the form

= E(1) x -+ x Z(k).

Therefore, we can consider each one individually. Indeed,

each inequality can be rewritten as

COH’ECI

w—Y_ i fin,(A(hi,hj)) >

i#]
max (67 Z 55’,7 )
{(Esﬂ)scu ..... k}GE(j)} i#] Sc{1,...,
165

and thus we can consider the linear optimization:

max : Zai Z 55,3 (3.9)
i#£j sc{llélév.,
s.t.: (és.,j)sg{l vvvvv 5 € E(J).

The objective function is bilinear in both; and¢s ;. We
have

e

i#]

Z §s,7 = €55 [Z 0411 ;
K}

€S

and hence defining the vectetby cs = >, g a; We can
write the objective function as’éj The polytope=(j) is

defined by equalities and inequalities among the variables.
Writing these in vector form, we have:

QUE, = o,
(1’ 17 ) 1)/6'7‘] S 777 Correc
[RDIE; < (100 — i, (A(h1, hy)), ...

COH’ECI

) 100 — ,u'hj (A(hlﬁ h])))

(3.10)
Here, I is the identity matrix,Q() is a subset of the iden-
tity matrix corresponding to the sefs for which we have
(Nics Ahi, hj)) N (ﬂlgs (hi,h;)¢) =0, and the generic
row of R() contains a 1 in every index containing a particu-
lari. Writing the equality agQ)]¢. ; < 0, and—[QWIE. ; <
0, we can express the constraints defini(g) more com-
pactly as

E() = {(és'j)sc{l vvvv k)

The matricesA(?), and the vectob, are given by the vector
inequalities in (3.10) above:

. A(j)é.yj S b} .

0
0
_J :
. — QU 0
j _ ﬁ?ﬁ — C?”BCt
A _QFh b 100 — fu, (A(h1,hy))
R J
correct
100 — fi; (A(hg, hy))

n

Note that while the vector?) is a linear function ofy, the
matricesAY) and the vectob are constant. We can then
rewrite the linear optimization (3.9) as

max : c'é._,j
s.t.: A(j)é._,j <b.
The linear programming dual to this program is then
min : (b)' p¥)
s.t.: (p(j))/A(j) =c
pd >0,  vVSC{l,... Kk}

Recalling thats = >, _ ¢ a4, the robust linear optimization
problem determining the optimal strategy of the decision-
maker can now be rewritten:
min: u
cgrrect
(1= Sy (A1) ) = 0 59,
i=1,...,k
[(p@))’A(j)}S =Y ies s VS, j=1,....k
pd >0, VS, j=1,... .k
D=1

OZZZO

s.t.:



The variables of optimization afe:, ai,p?}. The matrices  of overlapr for 0 < r < pis 2/q. Computing the expec-
AU and the vectob are constants, determined by (3.10). tation, we havéError' = (2p(q — p))/¢*> = (1 — n)2n, as
Therefore this is indeed a linear optimization. Thus thepro claimed. For irrational, we can approximate it arbitrarily
of parts(i), (i) and(iii) is complete, as is the proof of the closely with a rational number. In this case we can approach
proposition. O the lower bound arbitrarily closely.

We note the from a complexity perspective the linear pro- ~ Next we show that even the more powerful move-and-
gram is exponential in the size #fsince all subsets are con- flip adversary can never exceed the upper bound. Observe
sidered. Still, in spite of this exponential nature the éine  that if the power of the adversaryig then for any two clas-
program can consider several approximation schemes suctsifiersh; andh;, we must have:(a(h;, h;)) < 2n. Then, if
as constraint sampling?]). Moreover, pruning can be used the decision-maker uses the possibly sub-optimal straiegy

for the classifiers it . choosinga = (1/n,1/n,...,1/n) (wheren = |F]), then

We have thus derived the optimal policy of the decision- since by definitiona (2, h) = @ for all , from expression
maker for bothS1 andS2. We denote these d3; and D3, (3.5) above, it follows that the expected error will never ex
respectively. ceed(l — 1/n)2n.

hy

3.3 Bounding the Decision-Maker’s Error

hy
As defined above, the decision-maker’s policy is a mixed /\
strategy — a randomized policy. In the setting of the worst-
case analysis which we consider, the decision-maker stands " T "
to benefit from the randomization. For example, suppose —
H = {h1,h2}, andpu(a(h1, h2)) = 2n, where the adver-
sary’s power is). We consider the general optimal strategy
for the adversary in the next section. In this case, however, h s

it is clear that the optimal strategy for both the flip-onlydan
the move-and-flip adversary, is to flip half of the ‘points’, o
measure, irk (h1, he). Then the decision-maker cannot dis- Figure 1: Here we have; = 2/5, sop = 2 andg = 5. The
tinguish betwee, andh, and the optimal policy i%hl + figure on the left shows the correct labels. The adversary élp
+hy The expected worst-case errorjg(a(hi, hs)) = n. +-labels to—. In the figure on the right, all classifiers are indis-
If not for randomization, the worst-case error would have tinguishable to the decision-maker. The decision-makergefore,
been2n. Thus there is a concrete benefit to randomization. outputs a randomized strategy that is uniform ovenatlassifiers
The next proposition quantifies this benefit (this is simitar ~ (heren = 5).
Proposition 4.1 from [CBDF99], but has a slightly tighter
lower bound), and obtains bounds on the error an adversary
with powerr can obtain in any possible setup. 3.4 The Adversary

First we considef'1 and the flip-only adversary. From Propo-
Proposition 8 In both S1 and 52, for an adversary with  sition 5, the optimal strategy of the decision-maker is spec

R h.

&y

powerrn < 1/2, there is a setup whemrror’ > (1 —1n)2n ified by the subset of ambiguous classifiefs, We call
fori = 1,2. Onthe other hand, we always haveror’ < 27 this «(F). Therefore the true error is also a function of
fori = 1,2and if 7 is finite we havérror’ < (1-1/|F))2n 7. By an abuse of notation, we can denote thisi§) =
fori=1,2. D hthine O (F) (A (R, hirue)). Then the optimal strategy

of the adversary is to create an ambiguousBetith as
large an error as possible. Given any legal strafEgyf the
adversary, we denote b the resulting set of ambiguous
classifiers. Therefore we have:

PROOF  We need to show that the lower bound can be
approached arbitrarily closely in the case of the weaker ad-
versary (flip-only), and the upper bound can never be ex-
ceeded by the more powerful adversary (move-and-flip). Let

X be the unit circle inR?, with 12 the uniform measure on prgposition 9 In S1, the adversary’s optimal strategy is to

the disk. Ifn = p/q is rational, divide the disk intg equal, maximize€ (F):

numbered wedges, and defipelassifiers, so that classifier

1 assigns positive labels to wedggsi + 1,...,i +p— 1} Ty = arg max E(Fr). (3.11)
mod ¢, and negative labels to the remaining- p wedges. Hipony

As in Figure 1 suppose the true classifiekis The optimal ) ) . o

action of the adversary with poweris to flip all positive ~ Themax here is attained since there are only finitely many
labels. Now all classifiers are indistinguishable, and thus different sets7. If there are more than one (as in general
the decision-maker’s optimal strategy is the uniform mea- there will be) maps” corresponding to the optimaf, we
sure over all{h;}. The probability of full overlap withhue arbitrarily choose one. Therefof& is well-defined, and is

is 1/q, the probability of no overlap i& — 2p + 1)/q, and the optimal strategy for the adversarySi, and the propo-
sition follows.

3The lower bound of Proposition 4.1 from [CBDB9] trans- Next we conside52, and the case of the move-and-flip

lates toError’ > 1/(2 — 1) which is smaller than the bound of  adversary. From Proposition 6, the decision-maker’s ogitim
Proposition 8. action is given by an LP that is a function of the ambiguity



t
setF, and the vaIues{c/%r;r;C (AR, 1))} for B/,B" € F.

correct

As above, we denote this optimal solution b’yé B( fin

4 Error and the Power of the Adversary

While we treat the noise as generated by an adversary, we

(a(h”,1))), and the associated true generalization error is may also consider it to be a design parameter chosen ac-

then&,, (hirue; B). For a given triplgA, iy, —), and power
n of the adversary, not all ambiguity set§ and values for

correct
{fwn (A(R”,1))} are attainable. We define the set of such
attainable values.

correct

Definition 10 Let.A be the set of valueSii, (a(R”,h'))},
for h',h" € F for someXF, such that there exists a triple

(A, fis, i) that meets three conditions:

(a) F must be the ambiguity set correspondingoji, fi—),
asin (3.4).

(b) The triple must satisfy

wrong

fin (AR, B")) = My (A(R,B") O h(=)) +
(1= N (A(W,B") O h(+)
T (AR = (AR BY)— i (AW BT,

(C) We must haVﬁ()\, /L+7M—) - (;\a :&-ﬁ-a ,&—)HTV < UE

Lemma 11 (a) The setA is a finite union of polyhedral
sets, and it is compact.

correct
(b) The functionf,, (htrue; B( fin, (A(R',R"))) is piecewise
continuous, with finitely many discontinuities.

We defer the proof of this lemma to Appendix A. The next
proposition gives the optimal policy of the adversary $@r

Proposition 12 The adversary’s optimal stratedd; maps
(A, pg, u—) to atriple (A, a4, i—) that matches the values

correct

in (a(R,R)) from the solution to the (nonlinear) pro-
gram:

correct

max : & (hirue; B( fin (A(R', 1)) (3.12)

correct

sto: { fn (A, B")} € A,

PrRoOF By Lemma 11,4 is compact, and,,(hirue; 8)
is piecewise continuous. Therefore, the optimal value-is at
tained for some ambiguity séi, and corresponding element

correct
{ iin. (A(R', "))} of A. By the definition ofA4, there exists
at least one such mag;, with ||T5|| < 7, that attains this
value. O

cording to how we care to trade off optimality for robust-

ness. Indeed, upon seeing some realize(tﬁqur, i-), the
decision-maker may have partial knowledge of the levad
noise. Equally, the decision-maker may specifically berinte
ested in choosing a solution appropriate for some particula
level 7 of noise. For any fixed leve}, from the results in
Section 3, the decision-maker obtains the resulting optima
policy. Whens = 0, the optimal strategy of the decision-
maker is to deterministically choose the single classifiat t
minimizes the empirical error. If indeeg = 0, then this

is the optimal strategy. A8 grows, the optimal strategy of
the decision-maker becomes increasingly random, and in the
limit as7 — 100%, the optimal policy approaches the uni-
form distribution over all classifiers.

For a fixed measurg, H, andh.w. € H we consider
the error as a function af. Graphing this function allows
the decision-maker, in the scenario described above, to con
sider the tradeoff of robustness and optimality, and thug ma
choose the desirable design paramgtevrith respect to which
the optimal mixed strategy is obtained. In addition, thegar
provides other information that is of interest. The graph of
the error is not continuous. Rather, it is piecewise cortirsu
(not necessarily linear), with certain break points. Tteato
tion of these break points is important, and it is a functibn o
the structure of{. A particular solutionn of the decision-
maker might be optimal for any in some intervaln;, 72),
but not optimal forj > 75,.

We consider the example from the end of Section 2.3
whereh; is the true classifier. There, the move-and-flip ad-
versary is strictly more powerful than the flip-only adveysa
whenn > 5, and hence the setupd andS2 are not equiva-
lent. The graphsin Figure 2 shd@ror’ (u, hrue, 0, T;, D)
for fixed « andhy,e, and varying values of. In the left side
of Figure 2 we have the superimposed graphs for this exam-
ple, for S1 and S2 for 0 < n < 11. In the right side of
Figure 2 we show the full graph of the true erfaror?, for
0 <n < 100.

The graph foiS2 is obtained by using the results of Propo-
sitions 6 and 12. The optimal policy of the move-and-flip
adversary differs for the three regiofis< n < 5,5 <
n < 10, 10 < n < 100. In the first region, the adver-
sary is powerless regardless of his action. In the second
region, the optimal strategy is to flip% of the labels in
A(hi,he). For10 < n < 100, the adversary’s optimal strat-
egy is to flip all the points in(h1, h2), and also move and
label ‘—" a (n — 10) fraction of the mass inta (h1, h2), SO
thatfi( (ha, h2)) = 1.

The decision-maker’s policy, as given by Proposition 6,
protects the decision-maker against the worst possible- (co

Thus the optimal policies for the decision-maker and ad- sistent) triple(\, ji4, fi— ). Solving the robust LP from the
versary are each given by respective optimization problems proposition reveals both the true error, and the worst-ease

In summary, we have:

Theorem 13 The pair of strategie$D;, ;") (: = 1,2) for

(R 2

the decision-maker and the adversary, gives optimal solu-

tions toS1 and S2, respectively.

ror. Both of these quantities may be of interest. In Appendix
B we show, for this example, both the true error, and the
worst-case error, for all values gf The true error exhibits
numerous interesting properties. For instance, as shown in
the figure, the true error isot monotonién the power of the



adversary (the worst-case error over measures and clessifie

is, of course, monotonic). This is a direct consequence of

Proposition 6. In Appendix B we pay particular attention to
this, and other properties of the graph. Also, we give the
details of the computations.

Error in G1 vs G2
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Figure 2:The graph on the left shows the error incurredih on
the same axes as the error incurredSiy for 0 < n < 11. As
soon as) > 5, we see that the move-and-flip adversary is more
powerful. Note thatError? grows sublinearly fom > 5. In the
graph on the right we show the error graph for the more powerfu
adversary fo0 < n < 100. The true error is not monotonic, as it
decreases (non-linearly) fgr> 50%.

5 Discussion

This work takes a learning in the information theoretic timi
view of learning with adversarial disturbance. Our main-con
tribution is the introduction of an optimization-theoreil-
gorithmic framework for finding a classifier in the presence
of such disturbance. We characterized the optimal policy of
the decision-maker (as a function of the data) in terms of
a tractable and easily solved optimization problem. This
is a first step in developing the theory for a range of se-

tups. For example, the Bayesian setup may be of interest.[Ser03]
Here, the decision-maker has a prior over the possible clas-

sifiers, and instead of minimizing generalization errorhwit
respect to the worst-case consistent classifier ansliJjrun-
derlying measurg, he considers minimizing expected (un-
der the Bayesian posterior) error. Extending this algarith

structures.

Considering the noise level as a design parameter and
viewing the resulting error as a function of it yielded sur-
prising results that show how counterintuitive the minixma
formulation of learning with adversarial noise could be. We
showed for a simple example that while the worst-case error
is monotone in the power of the adversary, the actual error
(which depends on the particular underlying true probabil-
ity measure) may not be monotone in the power of the ad-
versary! This is because even though the adversary is more
powerful, the decision maker is also better prepared.

There are three natural extensions to our work that we did
not pursue here mostly due to space limits. First, while we
considered the proper learning setup, the non-proper setup
(as in [KSS92]) seems to naturally follow our framework.
Second, the case of infinite set of classiftércould be re-
solved by eliminating classifiers that are “close” accogdin
to the observed measure. This is particularly useful for the
flip-only setup where the adversary cannot make two clas-
sifiers substantially different. Finally, while we do noteo
sider sample complexity, such results should not be too dif-
ficult to derive by imitating the arguments in [CBDB9].
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The appendix will be an online one and is provided
here to assist the reviewers.
A Proof of Lemma 11

In this section we prove Lemma 11, which we restate here.

Lemma 11.

(&) The setA is a finite union of polyhedral sets, and it is
compact.

t
(b) The functions,, (herue: B( fin (A(K,1"))) is piecewise
continuous, with finitely many discontinuities.

PrOOFE Recall that the set is defined as the set of values
correct

{fn (AR, R))}, for W, h” € F for someF, such that
there exists a tnplé/\ [+, [i—) that meets three conditions:

),

(&) F mustbe the ambiguity set correspondingjtoﬂ+, [
asin (3.4).

(b) The triple must satisfy

wrong

fin (AW, B)) = Ay (A(R, W) O R(=)) +
(1= N (A0, B") O h(+)
T (WL RTY) = (AR R~ i (A BT)).
(c) We must havé|(\, i, 1) — (A, iy, 1) |lrv < .

We define the set of possible values fgr, (4 (h, hj)),
and (1 — A\)ji_ (A (hi, hj)) for all hy,h; € H. Then from
this set we can obtain the sgt by a linear mapping that
preserves the polyhedral nature, and in particular, réspec
compactness.

Let the true triple(\, py, p—
set of classifiersi{ = {h1, ..., hx}, and assume that,,. =
hy1. The only values that matter for the optimization, and
hence the calculation of the error and the decision-maker’s
optimal policy, are the weights of positively and negatyel
measure in each of the distinguishable regions. That is, the
actual distribution of measure within each region is imma-
terial. The distinguishable regions are defined by the Elass
fiers. Fory € {+, -}, define the regions

N
A
Ry = () hi(y),
i=1

so that, for example, the regiai(h;, h;) where classifiers;
andh; differ, is equal to( A (h;, hj) N hi(+)) U (A (hi, hy) N
h1(—)), and can be written as

) be given. Enumerate the

A(hi hy) = U =&
{v:ivi#v}
= | UR|v|l URB
v1=+ 1=-
ViFEYj Vi AV

As we did in the proof of Proposition 6, we define variables
to represent the possible actions of the adversary. We de-
fine: 5* to be the weight added to regidi,, and¢; the
we|ght taken away from regioR,. Since we conS|der only
worst-case policies for the adversary, we can assume that if
any weight is added to a region, it is added with the incor-
rect label. Additionally, we assume that the adversary does
not move mass to a region, and also move mass away. Fi-
nally, we definef., to be the weight of points in regioR,,
whose labels are flipped. Next, we constrain the variables
{(&F,€5, fy)} to insure that they correspond to some triple

valid (A, fig, i) ith ||\, i, ) = (A, i, i) llrw < .
The set of possible values is

fvagryagry >0 V’}/E{-i-,—}N
(cannot move/flip negative weight.)
£r<sy  Vye{+ -}V
g;gl_sv V/YE{—F?_}N
(cannot add and subtract weight.)
peE et

(total added: total subtracted.)
ot SuRy) Yy e{+ Y
(can flip and subtract at mo&t, .)
(total moved and flipped is at moss)
=& =f=0 Vy:R, =0
(cannot flip, add, subtract &, = 0.)

1>

Using similar reasoning as in the proof of Proposition 5, we
see that the set is indeed the correct set to consider. That
is, given any magl’ with ||T'|| < n, the resulting values
for {(57 &, fy)} are inA; conversely, given any element
{(&5,€5, fy)} € A, there exists a mafy’ with ||T|| < 7
that ex |b|ts behaviour described by the particular eldmen
{(&F, &, f1)}. Now we can characterize the set of possible

Yalues foriu(a(hs, h;)), and also\jiy (A (hs, ;) and(1 —
A)fi—(A(hi, hy)).
f(A(his hy)) = (A(hi, hy) + ; & -
Moy (A(his hy)) = A (A(Ri, hy))—

Z (& +f)+ g (& + 1)

Vi

> &

ViFEYi

)

fo(A(hi, ) — Mg (A(hi, hy))
= > (f»Jyr‘Ff'v)

Vi FEVj
Y1=—

(1= N)ji—(A(hi, b)) Nha(+) = X (&5 + 1)

ViFEVj
Y=+

{(é'j;,g,?,f»y)} € A

Using these definitions, we can define the.4etsing the set

A
Tin (A(H',B")) = Aji (A (W, W) V(=) +
atl (1= Nt (A (R 1) (T B(4+))
o (AR 1)) = (A (A 7)) i (A (1 1)
(&6 f)) e A



The setA is compact, and furthermore, a finite union of

(a(h1, hs)) are not binding, since we ha¥gs 1,130 <

bounded polyhedra, because it is a linear (and hence con+ < 10. Then the robust linear program takes the form:

tinuous) mapping of the set, which is also compact and a
finite union of bounded polyhedra. This concludes the proof
of the first assertion of the lemma.

We have left to prove the second statement, namely, that

correct
the function&, (herue; B( ftn (A(R', 1)) is piecewise con-
tinuous, with finitely many discontinuities. The function
Eu(hirue; @) is a linear and hence continuous function of

correct
a. Now, the vector3( i, (A(R/,R"))) is given as the so-
lution to a linear optimization problem, as demonstrated in
the proof of Proposition 6. By standard results in sensjtivi
analysis in linear optimization, the optimal solution toldh

is piecewise continuous in the value of the parameters, with

finitely many breakpoints. For a reference see, e.g., tie tex
book by Bertsimas and Tsitsiklis, [BT97]. This concludes
the proof of the lemma.

B A Worked Out Example

In this section we work out explicitly and in detail the com-
putations involved in the example presented in Figure 2 in
Section 4. The worst-case noise, i.e., the optimal policy of
the adversary is given here in Figure 3.

}1,1 ]lg
(5<n<10) ‘(1U—n)+‘

y I
-+ -+

hrl

R |

(n=10) \ \

Figure 3:There are two classifiera; andhs, that label the space
as indicated by the-/— at the bottom of each classifier. The true
classifier ish¢rue = hi. Inthe ranged < n < 5, both the flip-
only and move-and-flip adversaries are powerless. For thgera
5 < n < 10, the optimal policy of the adversary, as shown in
the top of the figure on the right, is to fligh of the ‘+'—labelled
measure. Fot0 < n < 100, the optimal policy is as shown in the
bottom of the figure on the right. There, the adversary flip$@k

of the positive measure, and additionally moves$rjn- 10)%, for
atotal ofn% of measure labelled-" in A(h1, h2).

Consider first the range < n < 10. In this case we have
correct
ﬂhl (A(h27 hl))
CE)I’I'ECI
fin, (A (1, ha)) n.
The variableég_,j for S C {1,2} are particularly simple
in the two classifier example. The variabfq@,g andé{g}J
both correspondto the sethq, hs), sinceé{l}g = A(h1, ho)N
A(ha, ho)¢, andé oy 1 = A(h1, ha) N A(h1, hi). The con-
straint set&(1) and=(2), in this case, have the forrg(1) =
{5{2}_’{ : 0 S 5{2}71 S ’I]}, and Slmllal’lyE(Q) = {5{1}_’2 :
0 < &uy2 < np. This follows because the constraints

correct correct

5{2},1 < 100 — fin, (A(h2,h1)) andé{l},z < 100 — fip,

10 —n

min : u
cg)rrect ~
stz max[aaliin (b)) + )|
0<€(2y,1<7n
correct R
wz oG he) + )|
0<&(13,2<n
a1+ as =1
aq,az > 0.

By inspection, the inner maximizations ovgs; ; andé ;-
are maximized for the valueS,y 1 = &1y = 7. There-

correct

fore, using this result and also from above the valueg;gf

correct
(A(h2,h1)) and fip, (A(hy, he)), the decision-maker must
solve the LP

min: u

st.: u>ax(10—n+n)
u=o1(n+n)
a1 +as =1
aq,az > 0.

We can solve this LP analytically by, e.g., appending La-
grange multipliers. We then see that at optimality we must
have

az - (10) = a1 - (2n).
Solving fora, and then using the equation + a2 = 1, we
find
2 109

_ 5 o
- n+5’ 45
For the ranga0 < n < 50, we have

Error

(8% .
! 5+n

Q2

correct
Hhy (A(hQa hl))

correct

fin, (A (1, h2)) n

The sets=(1) and =Z(2) are the same, and so are the in-
ner maximizations, and thus the resulting LP that yields the
decision-maker’s optimal strategy is

0

min: u

st.: u>a2047n)
u>ao1(n+n)
a1+ g = 1
ay,az > 0.

Again solving this analytically, we find now that; (2n) =
asn, and again using the equation + a2 = 1, we find

1 2 20

3 ag = 3’ Error? = —

Now consider the rangs) < n < 100. Here we have again

a1 =

C?rrect
fin, (A(h2, b))

correct

fin, (A(h1, h2))

0

7,

“ correct
however the constrairfysy 1 < 100 — fip, (A(h2, h1)) is
now binding. Therefore the constraint s€f2) becomes



2(2) = {€y2 : 0 < €y0 < 100 — n}. The setE(1)

remains unchanged. Thus the LP that yields the decision-

maker’s optimal strategy is:

min :
s.t.:

u
u> as(0 + )

u > ay(n+ 100 —n)
Oél—|—0é2:1
aq,az > 0.

In this case then, we hau®0a; = nas, and thus we find:

n 100 9 1000
alzm, agzm, Error® = T 100°
In summary, the error as a functionpfs given by

S
n
Error = %—;n ?Oi”f;go
o045 90 <7 < 100.

This gives the graph in the right side of Figure 2.

Next, we give a somewhat more complicated example to
further illustrate Proposition 6. We consider an examptéwi
three classifiersH = {hi, ha, hs}, with hpye = hi. The
true triple(\, ., p— ) isillustrated in left of Figure 4. In this
example, the set&(h1, ha), A(h1, h3), anda(he, hs) are all
nonempty. The true underlying measyiehowever, assigns
zero mass to the regiom(hz, hs). The flip-only adversary,
therefore, cannot coerce the decision-maker to choose a pol
icy oo with as + 3 > 1/2, since the decision-maker knows
from his observations, and therefore knows that the twe clas
sifiers ho, hs are indistinguishable with respect to the mea-
sureyu, and hence with respect to their possible generaliza-
tion errors. In the move-and-flip case, however, the adver-
sary’s strategy involves moving mass into this region. We
see that this allows the adversary to force the decisionemak
to incur more error.

Here our focus is on obtaining the decision-maker’s op-
timal response, so we consider a particular (perhaps subopt
mal) policyT" for the move-and-flip adversary. For the range
0 < n < 8, the action of the adversary is given in Figure 4.
To compute the optimal response of the decision-maker (with

h,»)

F 19

hs ha hs hy

o 45

Figure 4: There are three linear classifiefs,, hz, k3, that label
the space as indicated by the/— at the bottom of each classifier.
The true classifier ig1, and the true measure is as shown in
the figure on the left. The strategy for the adversary with grow
n=(4+n")%, for0 <n' <4,is as depicted here.

T

respect to the worst-case possible scenario) we need t® solv
the robust linear optimization problem from Proposition 6.

We consider four different ranges of the powet < n < 4,
4 <n<8,8<n<200/3, and200/3 < n < 100. We
discuss the significance of these breakpoints.

For0 < n < 4, the error incurred is zero. Thus the
first interesting case we considerds< n < 8. Writing
17 =4+ 7', as in Figure 4, this corresponds@c< n’ < 4.
Here, we have

correct

ﬂhl (A(h37 hl)) =4- 77/7
correct

ﬂhs (A(hlv h3)) =4,
correct

fins (A(h2, h3)) =1n'.

correct
ﬂhl (A(h27 hl))
correct
ﬂh2 (A(hlv hQ))
correct

fin, (A(hs3, h2))

Next we consider the variablés ; for S C {1,2,3}, and
j 1,2, 3. Variableé{w}_yl corresponds to the possible
probability mass that might be added to regiothz, h1) N
A(hs, h1), in the case wherg; is the true classifier. Vari-
ableé{g}_g, analogously, corresponds to the mass possibly
added to regiom (hs, ha) N A(h1, h2)® whenhs is the true
classifier.

In order to compute the optimal strategy= (a1, as, as)
of the decision-maker, we must solve:

min : u

correct ~ ~
u > 1&1603 (o2 (i, (A(h2,h1)) + &2.30.1 + &g2y31)
S, 1

s.t.:

correct . .
+az(fin, (A(hs, h1)) + Era831 + E31.1)]
correct

u = ](“}303 [a1 (fin, (A(h1, ha)) + 5{1,3},2 + 5{1},2)

[
correct . .
+az(fin, (A(hs, h2)) + Ef13y.2 + E431.2)]
correct

u = l(fﬂa>§ a1 (fins (A (B, hs)) + €2y s + §(1y,a)

€.
correct . N
+aa(fin, (A(h2, h3)) + Eq121,3 + Eq2y.3)]
ar+as+as3 =1,
aq, 0, a3 > 0.

Solving each of the three inner maximizations as a func-
tion of « is straightforward. Consider the first optimization.

correct correct
Pulling out the constant$os(fin, (A(ha,h1))) + as(fin,
(A(hs3,h1)))), and collecting terms, the remaining maximiza-
tion is

max : 5{2,3},1(042 +az) + 5{2},1042 + 5{3},10437

5{2,3},1 + 5{2},1 + 5{3},1 <n
~ ~ correct
§r2,3y0 + &2y <100 — fip, (A(h2, he))

correct

5{2,3},1 +§:{3},1 <100 — fip, (A(hs3, h1))
5{2,3},175{2},175{3},1 > 0.

s.t.:

Sinceas, az > 0, the optimal solution to the maximization
is (n,0,0), for all values of. This holds even for large
values ofy, because under the particular strategy illustrated

correct correct

in Figure 4, for largen, we haveji,, (A(h2, h1)) =jn,



(A(h3, h1)) = 0. The other two maximizations are similar,
with the exception that the behavior changes whénvery
large. In the second maximization, for instance,for 8,
we have

correct ct

fins (A(R1,h2)) =fin, (A(hs, h2)) = n/2,
and thus the constraints

correct
100 — /Lh2(A(h1, h,Q))

correct

100 — fin, (A(hs, h2)),

become binding when + /2 > 100, i.e., forn > 200/3.
Thus, the optimal solution to the second maximization can
be seen to bé0, min{n; 100 — n/2},0), and for the third
maximization,(0, 0, min{»; 100 — /2}). Thus we see how
we obtain the breakpoints for the four regions given above.
Using the solutions to these maximizations, and the val-

correct

ues for i, (a(he, k1)) and the others given above, we see
that the robust linear optimization is equivalent to sodvan
linear optimization problem. We have three different LPs,
depending on the powex

For4 <n <8, i.e., for0 <7’ <4, we have the LP

5{1,3},2 + é{l},2 <

<

5{1,3},2 +é{3},2

min : u
u>az((4—n)+n) +as((4-n)+n)
u>ay(4+n)+as(n+1n)
u>or(44n) 4+ aa(n+1')

a1+a2+a3:1,

s.t.:

aq,az, a3 > 0.

Solving this LP for values off for 0 < n’ < 4 using an LP
solver, we obtain the linearly increasing portion of thepdra

in Figure 5(b). For8 < n < 200/3 and200/3 < n <

100, we have different LPs. Following essentially the same
procedure, we find that the LP that gives the optimal strategy
for the decision-maker fa < n < 200/3 is

min :
s.t.:
1(n+n/2) + as(n+n/2)
1(n+n/2) + az2(n +n/2)
ay +ag +az =1,

a1, o, a3 > 0.

For anyn in this range, the optimal strategy for the adversary,
and hence the error incurred, is constant:

o = (0.1429, 0.4286, 0.4286),

with error6.8571 as in Figure 5. Fo200/3 < n < 100, the
resulting LP is

min : U

s.t. u > as(n) + as(n)
u > @1(100 — n/2 +n/2) + a3(100 — /2 +n/2)
u > @1(100 — /2 +n/2) + a2(100 — n/2 +n/2)

a1 —|—042 —|—Oég = 1,
ay, oz, a3 > 0.

In Figure 5(b) we show the graphs of the true error for the
full range,0 < n < 100. In part(a) of the same figure,
we have on the same graph, the true error and the worst-case
error, where the worst-case is over classifiers and measures
We note that fol) < n < 8, the two graphs coincide, but
after that they exhibit markedly different behavior. Note,
in particular, that the worst-case error graph is monotoni-
cally increasing, where as the true error in fact decreases f
200/3 < n < 100. Next, in Figure 6, we show a closer view

Figure (a)

True Error vs Worst Case Error

Figure (b)
The Full Error Graph

Error Incurred
True Error Incurred

" “Power of the Adversary “ ‘Power of the Adversary
Figure 5:In part(a) we compare the true error graph to the graph
of the worst-case error, that the decision-maker defendmsigin
choosinga as the solution to the robust LP of Proposition 6. Note
that the worst-case error is monotonicrinwhile the true error is
not. In part(b) we have the graph of the true error over the full
range ofy. Here we see the different behavior of the error graph in
the four regionsp < n < 4,4 <n < 8,8 <n < 200/3, and
200/3 < n < 100.

of the two regions of particular interest in the error graph:
the region of the weak adversary,< 8, and the region of
the strong adversary, > 200/3, where the error begins to
decrease

Figure (b)
True Error: Strong Adversary

Figure (a)
True Error: Weak Adversary

True Error Incurred
True Error Incurred

T 3 4 s & 7 W0 ™A 77 W0 m3 w7 w0 93 %7 i
Power of the Adversary Power of the Adversary

Figure 6:1n part (a) we have the graph of the true error for<

n < 9. In part(b) we have the error ove200/3 < n < 100. We
have added the dashed line to underscore the fact that theirrr
this region does not decrease linearly. Note also that thlesof
the two graphs are different.



