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Abstract

We study distribution-dependent, data-dependent,
learning in the limit with adversarial disturbance.
We consider an optimization-based approach to learn-
ing binary classifiers from data under worst-case
assumptions on the disturbance. The learning pro-
cess is modeled as a decision-maker who seeks to
minimize generalization error, given access only to
possibly maliciously corrupted data. Two models
for the nature of the disturbance are considered:
disturbance in the labels of a certain fraction of
the data, and disturbance that also affects the po-
sition of the data points. We provide distribution-
dependent bounds on the amount of error as a func-
tion of the noise level for the two models, and de-
scribe the optimal strategy of the decision-maker,
as well as the worst-case disturbance.

1 Introduction

Most of the work on learning in the presence of malicious
noise has been within the PAC framework, focusing ona pri-
ori, distribution independent bounds on generalization error
and sample complexity. This work has not fully addressed
the question of what a decision-maker must do when faced
with a particular realization of the data, and perhaps some
knowledge of the underlying distribution and the corrupting
disturbance. The main contribution of this paper is the de-
velopment of a robust optimization-based, algorithmic data-
dependent, distribution-dependent approach to minimizing
error of learning subject to adversarial disturbance.

In the adversarial PAC setup, a decision-maker has ac-
cess to IID samples from some source, only that a fraction
of these points are altered by an adversary. There are several
models for the noise which we discuss below. The decision-
maker is givenǫ > 0 andδ > 0 and attempts to learn an
ǫ-optimal classifier with probability of at least1 − δ. The
emphasis in [KL93], as well as in several follow-up works
(e.g., [BEK02, ACB98, CBDF+99, Ser03]) is on the sample
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complexity of learning in such setups and on particularly bad
data sources.

The algorithmic issue of the decision-maker’s optimal
strategy when faced with a certain disturbance level, i.e.,a
certain amount of possible data corruption, and a realization
of the data has not been adequately explored; see [Lai88]
for an initial discussion. While there are quite a few possi-
ble disturbance models that differ on the precise setup (what
the adversary know, what the adversary can do and in which
order), we focus on the strongest disturbance model where
the adversary has access to the actual distribution and can
modify it adversarialy within a constraint on the disturbance
level. This “learning in the information limit” model is used
to abstract other issues such as finite sample or limited ad-
versary (see [CBDF+99] for a discussion on some relevant
models). In this paper we consider two different noise mod-
els, with the intention of addressing the algorithmic aspects
and the effect of the disturbance level. We note that we use
the term disturbance rather than noise because in our model
data are corrupted in a possibly adversarial way and the prob-
abilistic aspect is essentially not relevant.

We deviate from the traditional learning setup in three
major assumptions. First, we focus on the question of how
the decision-maker should minimize error, rather than fol-
lowing PAC-style results of computinga priori bounds on
that error. Moreover, our analysis is distribution specificand
we do not focus on particularly bad data sources. Second, the
noise level is not assumed small and the decision-maker has
to incur error in all but trivial problems (this has been stud-
ied in the malicious noise setup; see [CBDF+99]). Third,
we do not ask how many samples are needed to obtain low
generalization error, instead we assume that the distribution
of the samples is provided to the decision-maker (equiva-
lently, one may think of this as considering the large sample
or “information theoretic” limit). However, this distribution
is corrupted by potentially persistent noise; we may consider
it as first tampered with by an adversary. After observing
the modified distribution, the decision-maker has to commit
to a single classifier from some predefined setH. The per-
formance of the classifier chosen by the decision-maker is
measured on the original, true distribution (this is similar to
the agnostic setup of [KSS92]). The question is what should
the decision-maker do? And how much error will he incur in
the worst case?

In order to answer these questions we adopt a robust
optimization-theoretic perspective, where we regard our decision-



maker as trying to make optimal decisions while facing an
adversary. Our aim is to provide an analysis by identifying
optimal strategies, and quantify the error as a function of the
adversary’s strategy, i.e., the nature of the corrupting distur-
bance. We refer to the disturbance as selected by an adver-
sary merely as a conceptual device, and not in strict analogy
to game theory. In particular, the decision-maker does not
assume that the corrupting noise is chosen with any specific
aim; rather, the decision-maker selects a strategy to protect
himself in the worst-case scenario.

The true probability distribution is defined over the input
space and on the labels. We focus on the case of proper learn-
ing, where this amounts to a distribution and the true classi-
fier. Then the adversary modifies the distribution of the input
points and the labels. The decision-maker observes the mod-
ified distribution and chooses a classifier inH to minimize
theworst-caseerror. We note the relationship with [KSS92]
who use a slightly different model. In their model, the de-
cision maker chooses a classifier inH knowing that the true
classifier is in some “touchstone” classT ⊆ H. They say
that an algorithm facilitates learning (with respect to a loss
function) if it learns a function fromH that is close to a func-
tion fromT in the usual PAC sense (i.e., with high probabil-
ity and small error after observing a number of samples poly-
nomial in one over the error, and one over the confidence).
As opposed to [KSS92] and most subsequent works, we do
not focus on small noise and we ignore the sample complex-
ity aspect altogether. Instead, we focus on the policy chosen
by the decision maker and on the informational limits. In that
respect, our work is most related to [CBDF+99] who consid-
ered the case of substantial noise. Their proposed strategy
that deals with noise, however, is based on randomizing two
strategies or using majority vote (phase 2 of the randomized
Algorithm SIH in [CBDF+99]). We propose a more princi-
pled approach to handling adversarial noise, leading to im-
proved results.

If the noise level and characteristics are unlimited, the
decision-maker cannot hope to do better than randomly guess-
ing. We therefore limit the noise, and allow the adversary to
change only a given fraction of the distribution, which we
refer to as “the power of the adversary”. An alternative view,
which is common in robust optimization [BTN99], is to con-
sider the power of the adversary as adesign parameter. Ac-
cording to this view, the decision-maker tries to be resilient
to a specified amount of uncertainty in the parameters of the
problem.

The paper is structured as follows. In Section 2 we de-
scribe the setup. We define two types of adversaries: one that
can only flip a fraction of the points, and one that can also
move the points to another location. In Section 3 we con-
sider the optimal solution pairs for the two different set-ups.
We characterize the strategy of both the decision-maker and
the adversary as a function of the level of noise (the power of
the adversary) and the specific distribution that generatesthe
data. Taking such a distribution-dependent perspective al-
lows us to characterize the decision-maker’s optimal strategy
as the solution to a linear program if the adversary can only
flip labels, or a robust optimization problem in the case of the
more powerful adversary that can also modify the measure.
We further bound the error that may be incurred and show

that in the worst case, both adversaries can cause an error
twice their power. In Section 4 we show how performance
degrades with the increase of this power. A technical proof
along with a somewhat surprising worked out example are
deferred to the appendix which is provided here to assist the
reviewers and will not be a part of the final submission.

2 Setup and Definitions

In this section we give the basic definitions of the noisy learn-
ing setup. Also, we formulate the optimization problem which
characterizes the optimal policy of the decision-maker, and
the worst-case noise. The decision-maker, after observing
the noisy data, and knowing the power of the adversary, out-
puts a decision in the classifier space. The disagreement with
the true classifier, is the generalization error. The decision-
maker’s goal is to minimize this, in the worst case. We allow
our decision-maker to output a so-called mixed strategy.1

Throughout this paper we focus on proper learning. We
let H denote a predefined set of classifiers from which the
true classifier is drawn, and from which the decision-maker
must choose. Moreover, we assume thatH is finite for the
sake of simplicity and to avoid some (involved but straight-
forward) technicalities. Indeed, there are three natural exten-
sions to our work that we postpone, primarily due to space
limitations. First, while we focus on the proper learning
setup, the non-proper setup (as in [KSS92]) seems to nat-
urally follow our framework. Second, the case of an infinite
set of classifiersH could be resolved by eliminating clas-
sifiers that are “close” according to the observed measure.
This is particularly useful for the flip-only setup where the
adversary cannot make two classifiers substantially differ-
ent. Finally, while we do not consider sample complexity,
such results should not be too difficult to derive by imitating
the arguments in [CBDF+99].

2.1 The Learning Model

In this paper, we deviate from the PAC learning setup, and
consider ana priori fixed underlying distributionµ, that gen-
erates the location (not the labels) of the training data. Thus
the error calculations we make are a function of the power
of the adversary and also of the fixed probability measure
µ. We use the symbolµ throughout this paper, exclusively
in reference to the true probability distribution which gener-
ates the location (not the label) of the points, and hence, is
used to determine the generalization error. Given a partic-
ular classifier̂h, a true classifierhtrue, and the underlying
probability measureµ, the generalization error is given by
the error function

Eµ(htrue; ĥ)
△
= µ{x : htrue(x) 6= ĥ(x)}.

We can extend this definition to a probability measure over
H, or, in the game-theory terminology, a mixed strategy over
H, given by a weighting vectorα = (α1, α2, . . . ) where
∑

i αi = 1 andαi ≥ 0. In that case, denoting the space of
mixed strategies by∆H, and a particular mixed strategy by

1That is, rather than commit to a single classifier, our decision-
maker can commit to a randomized strategy, involving possibly
multiple classifiers.



α ∈ ∆H, we have

Eµ(htrue; α)
△
=
∑

i

αiEµ(htrue; hi).

We note that the mixing is often referred to as “proba-
bilistic concepts” or “probabilistic hypotheses” in machine
learning. In the context of learning with adversarial noise
see [CBDF+99].

2.2 The Noise Model and The Decision-Maker

We next define the possible actions of the adversary and of
the decision-maker. As discussed above, in this paper we do
not consider sample complexity, and effectively consider the
situation where the training sample is infinite in size (the in-
formation theoretic limit). We model this situation by assum-
ing that rather than training samples, the decision-maker re-
ceives a distribution for each of the two labels. Since the ad-
versary modifies this object in various ways (noise is added
to the observations) we make some formal definitions which
facilitate discussion of this in the sequel.

Let X denote the space in which the training data exist.
In the typical, finite training data model, the decision-maker
has access to a collection of labelled points,{(xi, li)}, where
xi ∈ X , andli ∈ {+,−}. In our case then, the decision-
maker receives a probability measure over this spaceσ ∈
M(X × {+,−}) (M denotes the space of probability mea-
sures). We can represent such a measureσ by a triple(λ, µ+, µ−),
whereµ+, µ− are probability measures onX , and represent
the distribution of the positive and negative-labelled points
respectively, andλ ∈ [0, 1] is the weight (or probability) of
the positively labelled region, and(1 − λ) that of the nega-
tively labelled region. The interpretation is that a point-label
pair is generated by first choosing a label ‘+’ or ‘−’ with
probabilityλ or 1−λ, respectively, and then a point is gener-
ated according to the corresponding distribution,µ+ or µ−.
Thus, the underlying distributionµ generating the location
of the points (not the labels) is given by(λµ+ +(1−λ)µ−).
Thus, if htrue is the true classifier, then in the absence of
any noise, we would observeσ = (λ, µ+, µ−), whereµ+

is the scaled restriction ofµ to the regionhtrue(+)
△
= {x :

htrue(x) = +}, and similarly forµ−:

λ = µ(htrue(+)); µ+ =
µ · χ{htrue(+)}

λ
;

µ− =
µ · χ{htrue(−)}

1 − λ
,

where if λ = 0 there is noµ+, and if λ = 1 there is no
µ−. Indeed, the triple(λ, µ+, µ−) is completely defined by
µ and the true classifierhtrue. Sinceµ is fixed, we write
(λ, µ+, µ−)htrue

to denote the triple determined byµ and
htrue.

Using this terminology, the adversary’s action is a map

T : M(X × {+,−}) −→ M(X × {+,−})

(λ, µ+, µ−) 7−→ (λ̂, µ̂+, µ̂−).

We use the hat symbol, ‘̂ ’ throughout, to denote the
observation of the decision-maker. Therefore, while the true
probability measure generating the point location is given,
as above, byµ = λµ+ + (1 − λ)µ−, the decision-maker

observes an underlying probability measure of the formµ̂ =

λ̂µ̂+ + (1 − λ̂)µ̂−.
The restrictions on this map determine the nature and

level of noise. We consider two models for the noise, i.e.,
two adversaries. First, we have a ‘flip-only’ adversary, cor-
responding to the noise model where the adversary can flip
some fixed fraction of the labels. We also consider a stronger
‘move-and-flip’ adversary who can not only flip a constant
fraction of the points, but may also change their location. For
the flip-only adversary the underlying measureµ is the same
as the observed measureµ̂. Therefore the decision-maker
minimizes the worst-case error where the worst case is over
all possibleh ∈ H. This need not be true for the move-and-
flip adversary. In this case, the decision-maker has only par-
tial information of the measureµ against which generaliza-
tion error is computed, and hence the decision-maker must
protect himself against the worst-case error, consideringall
possible classifiersh ∈ H, as well as all possible underlying
measures̃µ consistent with the observations(λ̂, µ̂+, µ̂−).

We do not intend measurability questions to be an issue
in this paper. Therefore we assume throughout that all mea-
sures (and images under the adversary’s action) are measur-
able with respect to some naturalσ-field G.

In each of the two cases above, the level of noise is de-
termined by how different the output probability measure
T (λ, µ+, µ−) = (λ̂, µ̂+, µ̂−) can be from the true proba-
bility measure(λ, µ+, µ−). A natural measure for this is the
notion of total variation. The distance, in total variation, be-
tween measuresν1, ν2 is defined as

||ν1 − ν2||TV =
1

2
sup

k, A1, . . . , Ak ∈ G
s.t.Ai ∩ Aj = ∅ for i 6= j

k
∑

i=1

|ν1(Ai) − ν2(Ai)|.

This definition also holds for unnormalized measures. We
extend this definition to triples(λ, µ+, µ−) by

||(λ, µ+, µ−) − (λ̂, µ̂+, µ̂−)||TV
△
= ||λµ+ − λ̂µ̂+||TV +

||(1 − λ)µ− − (1 − λ̂)µ̂−||TV .

Therefore, we have:

Definition 1 An adversary using policyT (either flip-only,
or move-and-flip)has powerη if given any triple(λ, µ+, µ−),
his policyT satisfies||T (λ, µ+, µ−)−(λ, µ+, µ−)||TV ≤ η.
We abbreviate this, and simply write||T || ≤ η.

We can now define the two notions of adversary introduced
above.

Definition 2 A flip-only adversary of powerη can choose
any policyT such that||T || ≤ η, and(λ̂, µ̂+, µ̂−) = T (λ, µ+, µ−)
satisfies

µ = λµ+ + (1 − λ)µ− = λ̂µ̂+ + (1 − λ̂)µ̂− = µ̂.

Definition 3 A move-and-flip adversary of powerη can choose
any policyT such that||T || ≤ η.



The decision-maker must base his decision on the ‘noisy ob-
servations’ he receives, in other words, on the triple(λ̂, µ̂+, µ̂−) =
T (λ, µ+, µ−) which he sees. His goal is to minimize the
worst-case generalization error, where the worst case is taken
over consistenth ∈ H, and also over consistent measures
µ̃. We allow our decision-maker to play a so-called mixed
strategy, and rather than output a single classifierh ∈ H,
to output a randomized strategy,α, interpreted to mean that
classifierhi is chosen with probabilityαi. We denote the
set of these mixed strategies by∆H, and a particular mixed
strategy byα ∈ ∆H. Then, the decision-maker’s strategy is
a map:

Dη,H : M(X × {+,−}) −→ ∆H

(λ̂, µ̂+, µ̂−) 7−→ α.

The idea is that if the decision-maker can eliminate some el-
ements ofH, but cannot identify a unique optimal choice,
then the resulting strategyDη,H will output some measure
supported over the ambiguous elements ofH. We explic-
itly assume that the decision-maker’s policy is a function
of η, the power of the adversary. In a worst-case formula-
tion, a decision-maker without knowledge ofη is necessarily
powerless. We also assume that the decision-maker knows
whether the adversary has flip-only, or move-and-flip power.
We do not assume that the decision-maker has any knowl-
edge of the underlying distributionµ that generates the loca-
tion of the points. For the flip-only adversary, the decision-
maker receives exact knowledge ‘for free’ since by ignoring
the {+,−}-labels, he obtains the true underlying distribu-
tion µ. Therefore in this case there is only a single consis-
tent underlying measure, namely, the correct measureµ, and
the decision-maker need only protect against the worst-case
h ∈ H. In the case of the move-and-flip adversary, however,
the decision-maker receives only partial knowledge of the
probability measure that generates the location of the points.

Given a strategyD of the decision maker and a ruleT
for the adversary, we define the error for a given measureµ
and a true classifierhtrue as:

Error(µ, htrue, η, D, T )
△
= [Eµ(htrue; D(T ((λ, µ+, µ−)htrue

)))] .
(2.1)

2.3 An Optimization-Based Characterization

In this section we characterize the optimal policy of the decision-
maker, and also the worst-case policy of the adversary, i.e.,
the worst-case noise, given the policy of the decision-maker.
The noise-selecting adversary has access to the true triple
(λ, µ+, µ−), and seeks to maximize the true error incurred.
The decision-maker sees only the corrupted version(λ̂, µ̂+, µ̂−),
and minimizes the worst-case error, where the worst case is
taken over all possible, or consistent triples(λ̃, µ̃+, µ̃−) that
the particular adversary with powerη (flip-only, or move-
and-flip) could, under any policy, map to the observed triple
(λ̂, µ̂+, µ̂−).2

For the flip-only adversary, any consistent triple(λ̃, µ̃+, µ̃−)

the decision-maker considers must satisfyλ̃µ̃++(1−λ̃)µ̃− =

2We remark again that unlike the game-theoretic setup, the
decision-maker does not assume a rational adversary. We consider
this case elsewhere.

µ. Therefore the worst case over all consistent triples be-
comes a worst case over all consistent classifiers.

When facing the move-and-flip adversary, it may no longer
be true that̃λµ̃+ + (1 − λ̃)µ̃− = µ. Therefore the decision-
maker must consider the worst case over all consistent classi-
fiers, and also over all consistent underlying measuresν such
thatν = λ̃µ̃+ + (1 − λ̃)µ̃− for some possible(λ̃, µ̃+, µ̃−)

with total variation at mostη from (λ̂, µ̂+, µ̂−). We refer to
this set of consistent underlying measures as

Φ
△
= Φ(η, (λ̂, µ̂+, µ̂−)).

We define the following two setups for a fixed measureµ
onX , htrue ∈ H, and a valueη for the power of the adver-
sary.

(S1) The flip-only setup:

D1
△
= argmin

Dη,H

[

max
T :||T ||≤η

T flip-only

[

max
h∈H

(2.2)

Error(µ, h, η, D, T )
]

]

T1
△
= argmax

T :||T ||≤η

T flip-only

[Error(µ, htrue, η, D1, T )] .

The decision-maker knowsη andH, and can inferµ
since the adversary is flip-only. Thus he choosesD1 to
minimize the worst-case error, where the worst case is
over classifiersh ∈ H. The adversary has prior knowl-
edge ofµ, htrue andH, and of courseη, and chooses his
strategy to maximize thetrue error, i.e., the error with
respect tohtrue andµ.

(S2) The move-and-flip setup:

D2
△
= argmin

Dη,H

[

max
T :||T ||≤η

[

max
ν∈Φ

h∈H

(2.3)

Error(ν, h, η, D, T )
]

]

T2
△
= argmax

T :||T ||≤η

[Error(µ, htrue, η, D2, T )] .

Here the adversary is no longer constrained to pickT so
thatµ̂ = µ. In this case the decision-maker must choose
a policyD2 to minimize the worst-case generalization
error, with respect toh ∈ H and also measuresν ∈
Φ. The adversary again tries to maximize the true error
w.r.t. htrue andµ.

We useErrori (i = 1, 2) to denote the error inS1 and
S2 when µ, htrue, and η are clear from the context, i.e.,
Errori = Error(η, htrue, η, Di, Ti). We show below that the
max and min in both (2.2) and (2.3) are attained, and can be
computed by solving appropriate optimization problems. We
interpret the argmin/argmax as selecting an arbitrary optimal
solution if there are more than one.

The fact that the max and min in both (2.2) and (2.3) are
attained by some rule requires a proof. We show below that
this is indeed the case for both setups since the respective
rules can be computed by solving appropriate optimization
problems.



S1 and S2 are not equivalent.
We first show by example that the “flip only” setup and the
“move and flip” setup are not equivalent. This is the case
even for two classifiers. Indeed, consider the caseX =
[−5, 5] ⊆ R, with threshold classifiersH = {h1, h2} with
h1(+) = [0, 5] andh2(+) = [1, 5]. Then the disagreement
region is [0, 1). Supposeh1 is the true classifier, and that
the true underlying measureµ is uniform on[−5, 5], so that
µ([0, 1)) = 10%. For η < 5%, Error1 = Error2 = 0.
For η ≥ 5%, however, both the flip-only and move-and-
flip adversaries can cause error. Supposeη = 10%. In
S1, the decision-maker knows the trueµ, and hence knows
that µ([0, 1)) = η = 10%. Thus regardless of the action
of the adversary, the decision-maker’s optimal strategy is
(α1, α2) = (1/2, 1/2), and the error is thereforeError1 =
10/2 = 5%. In S2, however, the optimal strategy of the ad-
versary is unique: flip the labels of all the points in[0, 1).
The decision-maker seeŝµ([0, 1)) = 10%, but because the
adversary has move-power, the decision-maker does not know
µ exactly. His goal is to minimize the error in the worst
case, where now the worst case is over classifiers, and also
over possible underlying measures. From his observations,
the decision-maker can only conclude that ifhtrue = h1

then 0% ≤ µ([0, 1)) ≤ 10%, and if htrue = h2, then
0% ≤ µ([0, 1)) ≤ 20%. The worst-case error corresponding
to a strategy(α1, α2) is thereforemax{10α1; 20α2}. Min-
imizing this objective function subject toα1 + α2 = 1,
and α1, α2 ≥ 0, we find (α1, α2) = (1/3, 2/3), and the
true error (as opposed to the worst-case error) isError2 =
(1/3) · 0 + (2/3) · 10 = 20/3, which is greater thanError1.

3 Optimal Strategy and Worst-Case Noise

In this section we consider S1 and S2, and determine optimal
strategies for the decision-maker, and the optimal strategy for
the adversary, i.e., the worst-case noise.

3.1 The Decision-Maker inS1

First we consider the decision-maker’s optimal strategy for
S1, i.e., in the face of the flip-only adversary. The decision-
maker outputs a mixed strategyα ∈ ∆H. The support of the
weight vectorα is the subsetF of ‘feasible’ classifiers inH,
which incur at most errorη. This set is often referred to as
the “version space”.

Definition 4 Given the output(λ̂, µ̂+, µ̂−) = T (λ, µ+, µ−)
of a flip-only adversary with powerη, the set offeasible, and

henceambiguousclassifiers,F
△
= Fη(λ̂, µ̂+, µ̂−) ⊆ H, is

given by

F
△
= {h ∈ H : λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)) ≤ η}.

(3.4)

Here we defineh(+) to be the positively labelled region,
andh(−) the negatively labelled region, so thatλ̂µ̂+(h(−))
is the measure of the positive labels observed in the region
h(−). The measure of the region where the true classifier
disagrees with the observed measure can be at mostη. That
is,

λ̂µ̂+(htrue(−)) + (1 − λ̂)µ̂−(htrue(+)) ≤ η.

This follows by our assumption that the adversary has power
η, and becauseλµ+(htrue(−))+ (1−λ)µ−(htrue(+)) = 0.
Therefore,F is the set of classifiers inH that could possibly
be equal tohtrue and thus Definition 4 above indeed gives
the set of feasible, and therefore ambiguous, classifiers. In
particular, under the assumption of proper learning,htrue ∈
F .

Next, the decision-maker must compute the value ofαh

for everyh ∈ F , the feasible subset of classifiers. For any
mixed strategy (this is sometimes referred to as a “proba-
bilistic hypothesis”)α ∈ ∆H that the decision-maker might
choose, the error incurred is

Eµ(htrue; α) =
∑

h 6=htrue

αhµ(N(h, htrue)), (3.5)

where for any two classifiersh′, h′′, we defineN(h′, h′′)
△
=

{x : h′(x) 6= h′′(x)} to be the region where they differ.
The decision-maker, however, does not knowhtrue, and

hence his optimal strategy is the one that minimizes the worst-
case error,maxhtrue∈H Eµ(htrue; α). In the case of the flip-
only adversary, the decision-maker sees the probability mea-
sure(λ̂, µ̂+, µ̂−), and since he knows thatµ = µ̂, he can
correctly compute the valueµ(N(h′, h′′)) for any two clas-
sifiersh′, h′′. In other words, the decision-maker knows the
true weight of any region where two classifiers disagree, and
therefore we can state the following result which is a restate-
ment of the above.

Proposition 5 The optimal policy of the decision-maker in
S1 is given by computing the minimizer of:

min
α

max
htrue∈F

∑

h 6=htrue

αhµ(N(h, htrue)). (3.6)

Enumerating the setF as {h1, . . . , hk}, the optimalα is
computed by solving the following linear optimization prob-
lem:

min : u
s.t. : u ≥

∑

i6=j αiµ(N(hi, hj)) j = 1, . . . , k
∑

i αi = 1
αi ≥ 0 i = 1, . . . , k.

PROOF. The proof follows directly from the definition of
the error associated to any mixed strategyα, given in (3.5).
�

We note that in [CBDF+99] the question of how to choose
the best probabilistic hypothesis was considered. The solu-
tion there was to randomize between two (maximally apart)
classifiers or to choose a majority vote. We now explain why
this is suboptimal. Consider three linear classifiers in general
position in the planeH = {h1, h2, h3} and let’s suppose that
there are 7 regions in the plane according to the agreement
of the classifiers (assume thath1(+)∩h2(+)∩h3(+) 6= ∅).
Suppose that the decision maker observes thatµ̂+ has sup-
port only onh1(+) ∩ h2(+) ∩ h3(+) (assume that̂λ =
1 − 3η and thatη < 1/4) and thatµ̂− has equal support of
η onh1(−) ∩ h2(−) ∩ h3(+), h1(−) ∩ h2(+) ∩ h3(−) and
h1(+)∩h2(−)∩ h3(−). The example is constructed so that
choosing any one classifier, in the worst case can lead to an
error of2η. It is easy to see that a majority vote would lead to



a worst case error of2η. Mixing between any two classifiers
would lead to a worst case error of2η as well. Mixing be-
tween the 3 classifiers, which is suggested by Proposition 5
leads to a worst case error of4η/3 since we will get the clas-
sifier right with probability 1/3 and incur the2η loss with
probability 2/3.

3.2 The Decision-Maker inS2

Next we consider the setupS2, with the more powerful move-
and-flip adversary. Again, the goal of the decision-maker is
to pick a mixed strategyα ∈ ∆H, that minimizes the error
given in (3.5). The setF of ambiguous classifiers is as de-
fined in (3.4). In this case, however, in addition to not know-
ing htrue, the decision-maker also does not know the under-
lying measureµ, and hence the valuesµ(N(h′, h′′)), exactly.

As introduced in Section 2.3, we useΦ
△
= Φ(η, (λ̂, µ̂+, µ̂−))

to denote the set of measures consistent with(λ̂, µ̂+, µ̂−).
Thus the decision-maker seeks to minimize the worst-case
error, now overH andΦ.

Any points that have the wrong label w.r.t.h could have
been both moved and flipped. Therefore, to compute the
worst case possible values ofµ(N(h′, h′′)), for each clas-
sifier h the decision-maker considers, he must consider the
observed measure of the points that have thecorrect label,
and thewrong label, with respect toh. Thus we define:

wrong

µ̂h (N(h′, h′′))
△
= λ̂µ̂+(N(h′, h′′) ∩ h(−)) + (3.7)

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′))
△
= µ̂(N(h′, h′′))−

wrong

µ̂h (N(h′, h′′)).

In Proposition 6 below, the decision-maker uses these
quantities to compute his optimal strategy that protects against
the worst-case consistent classifierh ∈ F , and underlying
measureν ∈ Φ. The worst-case classifierh and measure
ν may depend on the actionα the decision-maker chooses.
Thus, the decision-maker must solve amin max linear pro-
gram. In doing so, he implicitly computes the worst-case
measureν as well, by computing a saddle point.

Proposition 6 (a) The decision-maker’s optimal policy, is
to compute the setF , and then compute the optimal
weight-vectorα that is the minimizer of

min
α

max
ν∈Φ

htrue∈H

Eν(htrue; α) = min
α

max
ν∈Φ

htrue∈H

(3.8)

∑

h 6=htrue

αhν(N(h, htrue)),

where the max is overH andΦ. Themin and themax
are both attained.

(b) Moreover, the optimal strategy of the decision-maker is
obtained as the solution to a robust linear optimization
problem, which we reformulate as a single linear opti-
mization.

Recall that inS2, in addition to the labels, the underlying
measureµ is also corrupted. Therefore the decision-maker
must compute the strategyα with respect to the worst-case
feasible classifier, and the worst-case consistent values for

µ(N(h′, h′′)), i.e., the worst-case values forν(N(h′, h′′)) for
ν ∈ Φ.

The worst case overν depends on the worst case over
h ∈ H. That is, ifh1 is the true classifier, then the worst-case
values forν(N(h′, h′′)) may be different from the worst-case
value ifh2 is the true classifier.

The worst-case values are computed using
wrong

µ̂h (N(h′, h′′))

and
correct

µ̂h (N(h′, h′′)). The idea is as follows: if someh is
the true classifier, then any measure in the regionN(h′, h′′)
that is incorrectly labelled with respect toh may have also
been moved from some other region. Therefore in the case
thath = htrue, the weight of any particular regionN(h′, h)
could be as large as the weight of the correctly labeled points

underµ̂,
correct

µ̂h (N(h′, h′′)), plus the weight (again under̂µ) of
the mislabelled points with respect toh in all other regions,
plus the additional weight that could be moved toN(h′, h)
using any ‘unused’ power of the adversary. The weight of
the mislabelled points is

λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)).

The unused power is

η − λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)).

Therefore the weight (under̂µ) of the mislabelled points with
respect to anyh, plus the unused power, must be exactlyη.

If h = htrue, consider some regionN(h′, h). The reason-
ing above tells us that the worst-case measure of this region

is
correct

µ̂h (N(h′, h)) + η. The following lemma makes this intu-
ition precise, and shows that this is indeed the case.

Lemma 7 Assume thatN(h, h′) 6= ∅ for anyh 6= h′. Then,
if h = htrue, we have

µ(N(h, h′)) ≤
correct

µ̂h (N(h, h′)) + η.

This bound is tight in the sense that there is a measure(λ̃, µ̃+, µ̃−)
with total variation at mostη from the observations, that at-
tains the upper bound.

PROOF. We exhibit the following triple(λ̃, µ̃+, µ̃−) that sat-
isfies||(λ̃, µ̃+, µ̃−) − (λ̂, µ̂+, µ̂−)||TV ≤ η: Assume, with-
out loss of generality, thatN(h, h′) ⊆ h(+). Let θ be any
probability measure overX , supported onN(h, h′). Then,
define:

λ̃ = λ̂ + (1 − λ̂)µ̂−(h(+)),

µ̃− = µ̂− − µ̂−

∣

∣

∣

h(+)
,

µ̃+ =

(

λ̂

(

µ̂+ − µ̂+

∣

∣

∣

h(−)

)

+ κθ

)

λ̂ + (1 − λ̂)µ̂−(h(+))
,

whereκ =
(

(1 − λ̂)µ̂−(h(+)) + λ̂µ̂+(h(−))
)

. For the

triple (λ̃, µ̃+, µ̃−), there exists a move-and-flip policyT with
||T || ≤ η, such thatT (λ̃, µ̃+, µ̃−) = (λ̂, µ̂+, µ̂−), hence the
scalar upper bound is attainable. �



For the vector case, ifN(h, h1) ∩ · · · ∩ N(h, hk) 6= ∅,
there exists a triple(λ̃, µ̃+, µ̃−) that satisfies

(µ(N(h, h1)), . . . , µ(N(h, hk))) = (
correct

µ̂ (N(h, h1)), . . . ,
correct

µ̂ (N(h, hk))) + η(1, . . . , 1).

This follows by replacingN(h, h′) byN(h, h1)∩· · ·∩N(h, hk)
in the proof above. In general, however, the tightness result
does not hold simultaneously for many classifiers. That is
to say, given classifiers{h1, . . . , hk} different from some
h, if N(h, h1) ∩ · · · ∩ N(h, hk) = ∅ (as is in general the

case), then, while the lemma tells us thatµ(N(h, hi)) ≤
correct

µ̂
(N(h, hi)) + η for eachi, there will be no measureν ∈ Φ
which realizes these upper bounds simultaneously. More-
over, the worst-case values then will depend on the decision-
maker’s particular choice ofα. Theα-dependent worst-case
consistent values forµ(N(h′, h′′)) are computed implicitly
in the robust LP below.

With this intuition, and the result of the lemma, we can
now prove the proposition, and explicitly give the LP that
yields the optimal strategy of the decision-maker.

PROOF. (of Proposition 6) The proof proceeds in three main
steps:

(i) First we show that the error, and hence the optimal strat-
egy of the decision-maker, depends only on a finite di-
mensional equivalence class of measuresν ∈ Φ. The
first part of the proof is to characterize this finite di-
mensional set.

(ii) Next, we establish the connection to robust optimization,
and write a robust optimization problem that we claim
yields the decision-maker’s optimal strategy. Proving
this claim is the second part of the proof.

(iii) Finally, we show that the robust optimization problem
may in fact be rewritten as a single LP, using duality
theory of linear programming.

ForF the set of ambiguous classifiers, the decision-maker’s
policy is given by

min
α

max
ν∈Φ

htrue∈F

Eν(htrue; α) = min
α

max
ν∈Φ

htrue∈F
∑

h 6=htrue

αhν(N(h, htrue)),

whereα is supported onF . While the worst case is over
classifiersh ∈ F and all measuresν ∈ Φ, the worst-case
error incurred for any particular strategyα in fact can only
depend on the values ofν(N(h′, h′′)) for everyh′, h′′ ∈ F .
Therefore we can consider equivalence classes of measures
in Φ that have the same valuesν(N(h′, h′′)). This reduces
the inner maximization to a finite dimensional one. Enumer-
ate the setF as{h1, . . . , hk}. Then for any fixedhj ∈ F , if
htrue = hj , then the regions whose measure is important for
the error computation, are those that can be written as

(

⋂

i∈S

N(hi, hj)

)

∩

(

⋂

i/∈S

N(hi, hj)
c

)

,

for someS ⊆ {1, . . . , k}. We useN(hi, hj)
c to denote the

complement of the set. We define a variableξ̂S,j to represent
the amount of mass that can be added (in the worst case) to
the region

(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

in the case
wherehj is the true classifier. We can consider these as com-

ponents of a vector inR2k−1, indexed by nonempty subsets
S ⊆ {1, . . . , k}. Any such vector corresponds to an equiv-
alence class of measuresν ∈ Φ, that are indistinguishable
to the decision-maker, in the sense that they induce precisely
the same error. Given such a vector, the weight of the region

N(hi, hj) is then

[

correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S
ξ̂S,j

]

and

thus for a givenα, the error would be

∑

i6=j

αi







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






.

For any fixedj, the collection of variables
(

ξ̂S,j

)

S⊆{1,...,k}

must satisfy four properties in order to correspond to some
measureν ∈ Φ. The variables must be nonnegative, and the
sum overS of ξ̂S,j must be at mostη. This follows since
the total amount of mass moved or flipped must be at most
η, by definition of the power of the adversary. Third, if the
set
(⋂

i∈S N(hi, hj)
)

∩
(⋂

i/∈S N(hi, hj)
c
)

is empty, then the

corresponding variablêξS,j must be zero. Finally, the weight
of each regionN(hi, hj) can be at most100%, and thus we
must have







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






≤ 100%.

Therefore, ifhj = htrue, the possible values of̂ξ·,j ∈ R
2k−1

are given by:

Ξ(j) =



































(

ξ̂·,j

)

:

∑

S ξ̂S,j ≤ η,

ξ̂S,j ≥ 0, ∀S ⊆ {1, . . . , k}, S 6= ∅,

ξ̂S,j = 0, ∀S :
(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅,
∑

S∋i ξ̂S,j ≤ 100 −
correct

µ̂hj
(N(hi, hj))

∀i 6= j.



































For everyj, the setΞ(j) is a polytope. The decision-maker
must choose someα that minimizes the worst-case error,
where the worst case is over possiblehtrue ∈ F = {h1, . . . , hk},
and then once thathj is fixed, the worst case over all possi-
ble (ξ̂·,j) ∈ Ξ(j). Therefore the optimal strategyα of the
decision-maker is the solution to the following robust opti-



mization problem:

min : u

s.t. : u ≥ maxn
(ξ̂S,j)

S⊆{1,...,k}
∈Ξ(j)

o∑
i6=j

αi







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






, j = 1, . . . , k

∑

i

αi = 1, αi ≥ 0,

Ξ(j) =



































(

ξ̂·,j

)

:

∑

S ξ̂S,j ≤ η,

ξ̂S,j ≥ 0, ∀S ⊆ {1, . . . , k}, S 6= ∅,

ξ̂S,j = 0, ∀S :
(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅,
∑

S∋i ξ̂S,j ≤ 100 −
correct

µ̂hj
(N(hi, hj))

∀i 6= j.



































First we prove that this robust optimization indeed yields
the strategy of the decision-maker that minimizes the worst-
case effort. The proof of this follows by a combination of the
methods used to prove Proposition 5 in the body of the paper,
and Lemma 7 at the beginning of this appendix. Certainly,
for anyhj ∈ F andν ∈ Φ, there exists a vector(ξ̂·,j) ∈ Ξ(j)
such that

ν(N(hi, hj) =







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






, ∀i 6= j.

The technique of Lemma 7 establishes the converse, namely,
for any feasible vector(ξ̂·,j) ∈ Ξ(j) there exists a measure
ν ∈ Φ that is consistent with the observed measure, and such
that for anyi ∈ {1, . . . , k},

ν(N(hi, hj)) =
correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j.

Thus we have shown that the setsΞ(j) are indeed the sets we
should be considering. Next we show that the optimization
we write down is the correct one. The proof of this follows
that of Proposition5. Let α∗ be the minimizer of the expres-
sion above, and letu∗ be the optimal value of the optimiza-
tion. If the decision-maker chooses some mixed strategyρ
that is not a minimizer of the above, then there must exist
somer ∈ {1, . . . , k}, corresponding to somehtrue ∈ F ,
and also a vector(ξ̂·,r) ∈ Ξ(r) feasible for the above linear
optimization, for which

∑

i6=r

ρi







correct

µ̂hr
(N(hi, hr)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,r






> u∗.

Thus, we must have

∑

i6=r

ρi







correct

µ̂hr
(N(hi, hr)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,r






>

max
j∈{1,...,k}

ξ̂S,j∈Ξ(j)

∑

i6=j

α∗
i







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






.

But then there must exist a measureν ∈ Φ consistent with
the observed measure, for which

ν(N(hi, hj)) =
correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j,

and thus we have:

max
µ∈Φ

htrue∈H

Eµ(htrue; ρ) ≥ Eν(hr; ρ)

> max
ν∈Φ

htrue∈H

Eν(htrue; α
∗).

Therefore, ifν is indeed the true probability measure gener-
ating the location of the points, and ifhr is the true classifier,
then the error incurred by using strategyρ is strictly greater
than the error incurred using strategyα∗. Since bothν and
hr are consistent with the observed probability measure and
labels, respectively, the mixed strategyρ does not minimize
the worst-case error.

On the other hand, by similar reasoning, ifρ is not an op-
timal strategy, i.e., if it is does not minimize the worst-case
error as given in(3.8), then it is a strictly suboptimal solu-
tion to the linear optimization. This completes the proof that
the robust optimization above indeed yields the strategy of
the adversary which minimizes the worst-case error, where
the worst case is overh ∈ F and alsoν ∈ Φ. This concludes
the proofs of parts(i) and(ii) .

We have left to prove the second part of the proposition,
and part(iii) in the outline, namely, that we can rewrite the
robust optimization problem as a single LP. First, we remark
that for eachj, the setΞ(j) is a polytope. The problem then,
is a robust linear optimization problem. Using standard re-
sults from duality theory, this can be reformulated as an or-
dinary linear optimization problem.



We have the robust linear optimization problem:

min : u

s.t. : u ≥ maxn
(ξ̂S,1)

S⊆{1,...,k}
∈Ξ(1)

o∑
i6=1

αi







correct

µ̂h1
(N(hi, h1)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,1







u ≥ maxn
(ξ̂S,2)

S⊆{1,...,k}
∈Ξ(2)

o∑
i6=2

αi







correct

µ̂h2
(N(hi, h2)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,2







...

u ≥ maxn
(ξ̂S,k)

S⊆{1,...,k}
∈Ξ(k)

o∑
i6=k

αi







correct

µ̂hk
(N(hi, hk)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,k







∑

i

αi = 1, αi ≥ 0.

Note that the robustification here has a so-called rectangular
nature, since the robustness sets in each constraint are uncor-
related, that is, the full robustness set has the form

Ξ = Ξ(1) × · · · × Ξ(k).

Therefore, we can consider each one individually. Indeed,
each inequality can be rewritten as

u −
∑

i6=j

αi

correct

µ̂hj
(N(hi, hj)) ≥

maxn
(ξ̂S,j)

S⊆{1,...,k}
∈Ξ(j)

o∑
i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






,

and thus we can consider the linear optimization:

max :
∑

i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






(3.9)

s.t. :
(

ξ̂S,j

)

S⊆{1,...,k}
∈ Ξ(j).

The objective function is bilinear in bothαi and ξ̂S,j. We
have

∑

i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






=

∑

S⊆{1,...,k}

ξ̂S,j

[

∑

i∈S

αi

]

,

and hence defining the vectorc by cS =
∑

i∈S αi we can

write the objective function asc′ξ̂·,j . The polytopeΞ(j) is

defined by equalities and inequalities among the variables.
Writing these in vector form, we have:

−[I]ξ̂·,j ≤ 0,

[Q(j)]ξ̂·,j = 0,

(1, 1, . . . , 1)′ξ̂·,j ≤ η,

[R(j)]ξ̂·,j ≤ (100 −
correct

µ̂hj
(N(h1, hj)), . . .

, 100 −
correct

µ̂hj
(N(hk, hj))).

(3.10)
Here,I is the identity matrix,Q(j) is a subset of the iden-
tity matrix corresponding to the setsS for which we have
(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅, and the generic
row of R(j) contains a 1 in every index containing a particu-
lar i. Writing the equality as[Q(j)]ξ̂·,j ≤ 0, and−[Q(j)]ξ̂·,j ≤
0, we can express the constraints definingΞ(j) more com-
pactly as

Ξ(j) =

{

(

ξ̂S,j

)

S⊆{1,...,k}
: A(j)ξ̂·,j ≤ b

}

.

The matricesA(j), and the vectorb, are given by the vector
inequalities in (3.10) above:

A(j) =













−I

Q(j)

−Q(j)

R(j)

1 1 · · · 1 1













b =































0
0
...
0

100 −
correct

µ̂hj
(N(h1, hj))
...

100 −
correct

µ̂hj
(N(hk, hj))
η































.

Note that while the vectorc(j) is a linear function ofα, the
matricesA(j) and the vectorb are constant. We can then
rewrite the linear optimization (3.9) as

max : c′ξ̂·,j

s.t. : A(j)ξ̂·,j ≤ b.

The linear programming dual to this program is then

min : (b)
′
p(j)

s.t. :
(

p(j)
)′

A(j) = c

p
(j)
S ≥ 0, ∀S ⊆ {1, . . . , k}.

Recalling thatcS =
∑

i∈S αi, the robust linear optimization
problem determining the optimal strategy of the decision-
maker can now be rewritten:

min : u

s.t. :

(

u −
∑

i6=j αi

correct

µ̂hj
(N(hi, hj))

)

≥ (b)
′
p(j),

j = 1, . . . , k
[

(

p(j)
)′

A(j)
]

S
=
∑

i∈S αi , ∀S, j = 1, . . . , k

p
(j)
S ≥ 0, ∀S, j = 1, . . . , k
∑

i αi = 1
αi ≥ 0.



The variables of optimization are{u, αi, p
(j)
S }. The matrices

A(j) and the vectorb are constants, determined by (3.10).
Therefore this is indeed a linear optimization. Thus the proof
of parts(i), (ii) and (iii) is complete, as is the proof of the
proposition. �

We note the from a complexity perspective the linear pro-
gram is exponential in the size ofF since all subsets are con-
sidered. Still, in spite of this exponential nature the linear
program can consider several approximation schemes such
as constraint sampling ([?]). Moreover, pruning can be used
for the classifiers inF .

We have thus derived the optimal policy of the decision-
maker for bothS1 andS2. We denote these asD∗

1 andD∗
2 ,

respectively.

3.3 Bounding the Decision-Maker’s Error

As defined above, the decision-maker’s policy is a mixed
strategy – a randomized policy. In the setting of the worst-
case analysis which we consider, the decision-maker stands
to benefit from the randomization. For example, suppose
H = {h1, h2}, andµ(N(h1, h2)) = 2η, where the adver-
sary’s power isη. We consider the general optimal strategy
for the adversary in the next section. In this case, however,
it is clear that the optimal strategy for both the flip-only and
the move-and-flip adversary, is to flip half of the ‘points’, or
measure, inN(h1, h2). Then the decision-maker cannot dis-
tinguish betweenh1 andh2, and the optimal policy is12h1 +
1
2h2 The expected worst-case error is1

2µ(N(h1, h2)) = η.
If not for randomization, the worst-case error would have
been2η. Thus there is a concrete benefit to randomization.
The next proposition quantifies this benefit (this is similarto
Proposition 4.1 from [CBDF+99], but has a slightly tighter
lower bound3), and obtains bounds on the error an adversary
with powerη can obtain in any possible setup.

Proposition 8 In both S1 and S2, for an adversary with
powerη ≤ 1/2, there is a setup whereErrori ≥ (1 − η)2η

for i = 1, 2. On the other hand, we always haveErrori ≤ 2η
for i = 1, 2 and ifF is finite we haveErrori ≤ (1−1/|F|)2η
for i = 1, 2.

PROOF. We need to show that the lower bound can be
approached arbitrarily closely in the case of the weaker ad-
versary (flip-only), and the upper bound can never be ex-
ceeded by the more powerful adversary (move-and-flip). Let
X be the unit circle inR2, with µ the uniform measure on
the disk. Ifη = p/q is rational, divide the disk intoq equal,
numbered wedges, and defineq classifiers, so that classifier
i assigns positive labels to wedges{i, i + 1, . . . , i + p − 1}
mod q, and negative labels to the remainingq − p wedges.
As in Figure 1 suppose the true classifier ish1. The optimal
action of the adversary with powerη is to flip all positive
labels. Now all classifiers are indistinguishable, and thus
the decision-maker’s optimal strategy is the uniform mea-
sure over all{hi}. The probability of full overlap withhtrue

is 1/q, the probability of no overlap is(q − 2p + 1)/q, and

3The lower bound of Proposition 4.1 from [CBDF+99] trans-
lates toErrori ≥ η/(2 − η) which is smaller than the bound of
Proposition 8.

of overlapr for 0 < r < p is 2/q. Computing the expec-
tation, we haveError1 = (2p(q − p))/q2 = (1 − η)2η, as
claimed. Forη irrational, we can approximate it arbitrarily
closely with a rational number. In this case we can approach
the lower bound arbitrarily closely.

Next we show that even the more powerful move-and-
flip adversary can never exceed the upper bound. Observe
that if the power of the adversary isη, then for any two clas-
sifiershi andhj , we must haveµ(N(hi, hj)) ≤ 2η. Then, if
the decision-maker uses the possibly sub-optimal strategyof
choosingα = (1/n, 1/n, . . . , 1/n) (wheren = |F|), then
since by definitionN(h, h) = ∅ for all h, from expression
(3.5) above, it follows that the expected error will never ex-
ceed(1 − 1/n)2η.

h1
h2

h3 h4

h1
h2

h3 h4
T

Figure 1: Here we haveη = 2/5, so p = 2 andq = 5. The
figure on the left shows the correct labels. The adversary flips all
+-labels to−. In the figure on the right, all classifiers are indis-
tinguishable to the decision-maker. The decision-maker, therefore,
outputs a randomized strategy that is uniform over alln classifiers
(heren = 5).

3.4 The Adversary

First we considerS1 and the flip-only adversary. From Propo-
sition 5, the optimal strategy of the decision-maker is spec-
ified by the subset of ambiguous classifiers,F . We call
this α(F). Therefore the true error is also a function of

F . By an abuse of notation, we can denote this byE(F)
△
=

∑

h 6=htrue
αh(F)µ(N(h, htrue)). Then the optimal strategy

of the adversary is to create an ambiguous setF with as
large an error as possible. Given any legal strategyT of the
adversary, we denote byFT the resulting set of ambiguous
classifiers. Therefore we have:

Proposition 9 In S1, the adversary’s optimal strategy is to
maximizeE(F):

T ∗
1 = arg max

T:||T||≤η

T flip-only

E(FT). (3.11)

Themax here is attained since there are only finitely many
different setsF . If there are more than one (as in general
there will be) mapsT corresponding to the optimalF , we
arbitrarily choose one. ThereforeT ∗

1 is well-defined, and is
the optimal strategy for the adversary inS1, and the propo-
sition follows.

Next we considerS2, and the case of the move-and-flip
adversary. From Proposition 6, the decision-maker’s optimal
action is given by an LP that is a function of the ambiguity



setF , and the values{
correct

µ̂h′ (N(h′′, h′))} for h′, h′′ ∈ F .

As above, we denote this optimal solution byβ
△
= β(

correct

µ̂h′

(N(h′′, h′))), and the associated true generalization error is
thenEµ(htrue; β). For a given triple(λ, µ+, µ−), and power
η of the adversary, not all ambiguity setsF , and values for

{
correct

µ̂h′ (N(h′′, h′))} are attainable. We define the set of such
attainable values.

Definition 10 LetA be the set of values{
correct

µ̂h′ (N(h′′, h′))},
for h′, h′′ ∈ F for someF , such that there exists a triple
(λ̂, µ̂+, µ̂−) that meets three conditions:

(a) F must be the ambiguity set corresponding to(λ̂, µ̂+, µ̂−),
as in (3.4).

(b) The triple must satisfy

wrong

µ̂h (N(h′, h′′)) = λ̂µ̂+(N(h′, h′′) ∩ h(−)) +

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′)) = µ̂(N(h′, h′′))−
wrong

µ̂h (N(h′, h′′)).

(c) We must have||(λ, µ+, µ−) − (λ̂, µ̂+, µ̂−)||TV ≤ η.

Lemma 11 (a) The setA is a finite union of polyhedral
sets, and it is compact.

(b) The functionEµ(htrue; β(
correct

µ̂h (N(h′, h′′))) is piecewise
continuous, with finitely many discontinuities.

We defer the proof of this lemma to Appendix A. The next
proposition gives the optimal policy of the adversary forS2:

Proposition 12 The adversary’s optimal strategyT ∗
2 maps

(λ, µ+, µ−) to a triple (λ̂, µ̂+, µ̂−) that matches the values
correct

µ̂h (N(h′, h′′)) from the solution to the (nonlinear) pro-
gram:

max : Eµ(htrue; β(
correct

µ̂h (N(h′, h′′)))

s.t. : {
correct

µ̂h (N(h′, h′′))} ∈ A.
(3.12)

PROOF. By Lemma 11,A is compact, andEµ(htrue; β)
is piecewise continuous. Therefore, the optimal value is at-
tained for some ambiguity setF , and corresponding element

{
correct

µ̂h (N(h′, h′′))} of A. By the definition ofA, there exists
at least one such mapT ∗

2 , with ||T ∗
2 || ≤ η, that attains this

value. �

Thus the optimal policies for the decision-maker and ad-
versary are each given by respective optimization problems.
In summary, we have:

Theorem 13 The pair of strategies(D∗
i , T ∗

i ) (i = 1, 2) for
the decision-maker and the adversary, gives optimal solu-
tions toS1 andS2, respectively.

4 Error and the Power of the Adversary

While we treat the noise as generated by an adversary, we
may also consider it to be a design parameter chosen ac-
cording to how we care to trade off optimality for robust-
ness. Indeed, upon seeing some realization(λ̂, µ̂+, µ̂−), the
decision-maker may have partial knowledge of the levelη of
noise. Equally, the decision-maker may specifically be inter-
ested in choosing a solution appropriate for some particular
level η̃ of noise. For any fixed level̃η, from the results in
Section 3, the decision-maker obtains the resulting optimal
policy. Whenη̃ = 0, the optimal strategy of the decision-
maker is to deterministically choose the single classifier that
minimizes the empirical error. If indeedη = 0, then this
is the optimal strategy. As̃η grows, the optimal strategy of
the decision-maker becomes increasingly random, and in the
limit as η̃ → 100%, the optimal policy approaches the uni-
form distribution over all classifiers.

For a fixed measureµ, H, andhtrue ∈ H we consider
the error as a function ofη. Graphing this function allows
the decision-maker, in the scenario described above, to con-
sider the tradeoff of robustness and optimality, and thus may
choose the desirable design parameterη̃, with respect to which
the optimal mixed strategy is obtained. In addition, this graph
provides other information that is of interest. The graph of
the error is not continuous. Rather, it is piecewise continuous
(not necessarily linear), with certain break points. The loca-
tion of these break points is important, and it is a function of
the structure ofH. A particular solutionα of the decision-
maker might be optimal for anỹη in some interval[η1, η2),
but not optimal for̃η ≥ η2.

We consider the example from the end of Section 2.3
whereh1 is the true classifier. There, the move-and-flip ad-
versary is strictly more powerful than the flip-only adversary
whenη > 5, and hence the setupsS1 andS2 are not equiva-
lent. The graphs in Figure 2 showErrori(µ, htrue, η, T ∗

i , D∗
i )

for fixedµ andhtrue, and varying values ofη. In the left side
of Figure 2 we have the superimposed graphs for this exam-
ple, for S1 andS2 for 0 ≤ η ≤ 11. In the right side of
Figure 2 we show the full graph of the true errorError2, for
0 ≤ η ≤ 100.

The graph forS2 is obtained by using the results of Propo-
sitions 6 and 12. The optimal policy of the move-and-flip
adversary differs for the three regions0 ≤ η < 5, 5 ≤
η ≤ 10, 10 ≤ η ≤ 100. In the first region, the adver-
sary is powerless regardless of his action. In the second
region, the optimal strategy is to flipη% of the labels in
N(h1, h2). For10 ≤ η ≤ 100, the adversary’s optimal strat-
egy is to flip all the points inN(h1, h2), and also move and
label ‘−’ a (η − 10) fraction of the mass intoN(h1, h2), so
thatµ̂(N(h1, h2)) = η.

The decision-maker’s policy, as given by Proposition 6,
protects the decision-maker against the worst possible (con-
sistent) triple(λ̃, µ̃+, µ̃−). Solving the robust LP from the
proposition reveals both the true error, and the worst-caseer-
ror. Both of these quantities may be of interest. In Appendix
B we show, for this example, both the true error, and the
worst-case error, for all values ofη. The true error exhibits
numerous interesting properties. For instance, as shown in
the figure, the true error isnot monotonicin the power of the



adversary (the worst-case error over measures and classifiers
is, of course, monotonic). This is a direct consequence of
Proposition 6. In Appendix B we pay particular attention to
this, and other properties of the graph. Also, we give the
details of the computations.
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Figure 2:The graph on the left shows the error incurred inG1 on
the same axes as the error incurred inS2, for 0 ≤ η ≤ 11. As
soon asη > 5, we see that the move-and-flip adversary is more
powerful. Note thatError2 grows sublinearly forη ≥ 5. In the
graph on the right we show the error graph for the more powerful
adversary for0 ≤ η ≤ 100. The true error is not monotonic, as it
decreases (non-linearly) forη ≥ 50%.

5 Discussion

This work takes a learning in the information theoretic limit
view of learning with adversarial disturbance. Our main con-
tribution is the introduction of an optimization-theoretic al-
gorithmic framework for finding a classifier in the presence
of such disturbance. We characterized the optimal policy of
the decision-maker (as a function of the data) in terms of
a tractable and easily solved optimization problem. This
is a first step in developing the theory for a range of se-
tups. For example, the Bayesian setup may be of interest.
Here, the decision-maker has a prior over the possible clas-
sifiers, and instead of minimizing generalization error with
respect to the worst-case consistent classifier and (inS2) un-
derlying measurẽµ, he considers minimizing expected (un-
der the Bayesian posterior) error. Extending this algorithmic
approach to the game-theoretic setup, where the decision-
maker plays against a rational adversary, is also of inter-
est, and allows the possibility of more complex information

structures.
Considering the noise level as a design parameter and

viewing the resulting error as a function of it yielded sur-
prising results that show how counterintuitive the mini-max
formulation of learning with adversarial noise could be. We
showed for a simple example that while the worst-case error
is monotone in the power of the adversary, the actual error
(which depends on the particular underlying true probabil-
ity measure) may not be monotone in the power of the ad-
versary! This is because even though the adversary is more
powerful, the decision maker is also better prepared.

There are three natural extensions to our work that we did
not pursue here mostly due to space limits. First, while we
considered the proper learning setup, the non-proper setup
(as in [KSS92]) seems to naturally follow our framework.
Second, the case of infinite set of classifierH could be re-
solved by eliminating classifiers that are “close” according
to the observed measure. This is particularly useful for the
flip-only setup where the adversary cannot make two clas-
sifiers substantially different. Finally, while we do not con-
sider sample complexity, such results should not be too dif-
ficult to derive by imitating the arguments in [CBDF+99].
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The appendix will be an online one and is provided
here to assist the reviewers.

A Proof of Lemma 11

In this section we prove Lemma 11, which we restate here.

Lemma 11.

(a) The setA is a finite union of polyhedral sets, and it is
compact.

(b) The functionEµ(htrue; β(
correct

µ̂h (N(h′, h′′))) is piecewise
continuous, with finitely many discontinuities.

PROOF. Recall that the setA is defined as the set of values

{
correct

µ̂h′ (N(h′′, h′))}, for h′, h′′ ∈ F for someF , such that
there exists a triple(λ̂, µ̂+, µ̂−) that meets three conditions:

(a) F must be the ambiguity set corresponding to(λ̂, µ̂+, µ̂−),
as in (3.4).

(b) The triple must satisfy

wrong

µ̂h (N(h′, h′′)) = λ̂µ̂+(N(h′, h′′) ∩ h(−)) +

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′)) = µ̂(N(h′, h′′))−
wrong

µ̂h (N(h′, h′′)).

(c) We must have||(λ, µ+, µ−) − (λ̂, µ̂+, µ̂−)||TV ≤ η.

We define the set of possible values forλ̂µ̂+(N(hi, hj)),
and (1 − λ̂)µ̂−(N(hi, hj)) for all hi, hj ∈ H. Then from
this set we can obtain the setA by a linear mapping that
preserves the polyhedral nature, and in particular, respects
compactness.

Let the true triple(λ, µ+, µ−) be given. Enumerate the
set of classifiers,H = {h1, . . . , hN}, and assume thathtrue =
h1. The only values that matter for the optimization, and
hence the calculation of the error and the decision-maker’s
optimal policy, are the weights of positively and negatively
measure in each of the distinguishable regions. That is, the
actual distribution of measure within each region is imma-
terial. The distinguishable regions are defined by the classi-
fiers. Forγ ∈ {+,−}N , define the regions

Rγ
△
=

N
⋂

i=1

hi(γi),

so that, for example, the regionN(hi, hj) where classifiershi

andhj differ, is equal to(N(hi, hj)∩h1(+))∪ (N(hi, hj)∩
h1(−)), and can be written as

N(hi, hj) =
⋃

{γ : γi 6=γj}

Rγ

=









⋃

γ1=+

γi 6=γj

Rγ









∪









⋃

γ1=−

γi 6=γj

Rγ









.

As we did in the proof of Proposition 6, we define variables
to represent the possible actions of the adversary. We de-
fine: ξ+

γ to be the weight added to regionRγ , andξ−γ the
weight taken away from regionRγ . Since we consider only
worst-case policies for the adversary, we can assume that if
any weight is added to a region, it is added with the incor-
rect label. Additionally, we assume that the adversary does
not move mass to a region, and also move mass away. Fi-
nally, we definefγ to be the weight of points in regionRγ

whose labels are flipped. Next, we constrain the variables
{(ξ+

γ , ξ−γ , fγ)} to insure that they correspond to some triple

valid (λ̂, µ̂+, µ̂−) with ||(λ, µ+, µ−)−(λ̂, µ̂+, µ̂−)||TV ≤ η.
The set of possible values is

Λ
△
=































































































fγ , ξ+
γ , ξ−γ ≥ 0 ∀γ ∈ {+,−}N

(cannot move/flip negative weight.)
ξ+
γ ≤ sγ ∀γ ∈ {+,−}N

ξ−γ ≤ 1 − sγ ∀γ ∈ {+,−}N

(cannot add and subtract weight.)
sγ ∈ {0, 1} ∀γ ∈ {+,−}N
∑

γ ξ+
γ =

∑

γ ξ−γ
(total added= total subtracted.)

fγ + ξ−γ ≤ µ(Rγ) ∀γ ∈ {+,−}N

(can flip and subtract at mostRγ .)
∑

γ(fγ + ξ+
γ ) ≤ η.

(total moved and flipped is at mostη.)
ξ+
γ = ξ−γ = fγ = 0, ∀γ : Rγ = ∅

(cannot flip, add, subtract ifRγ = ∅.)































































































.

Using similar reasoning as in the proof of Proposition 5, we
see that the setΛ is indeed the correct set to consider. That
is, given any mapT with ||T || ≤ η, the resulting values
for {(ξ+

γ , ξ−γ , fγ)} are inΛ; conversely, given any element
{(ξ+

γ , ξ−γ , fγ)} ∈ Λ, there exists a mapT with ||T || ≤ η
that exhibits behaviour described by the particular element
{(ξ+

γ , ξ−γ , fγ)}. Now we can characterize the set of possible

values forµ̂(N(hi, hj)), and alsôλµ̂+(N(hi, hj)) and(1 −

λ̂)µ̂−(N(hi, hj)).














































































µ̂(N(hi, hj)) = µ(N(hi, hj) +
∑

γi 6=γj

ξ+
γ −

∑

γi 6=γj

ξ−γ

λ̂µ̂+(N(hi, hj)) = λµ+(N(hi, hj))−
∑

γi 6=γj

γ1=+

(ξ−γ + fγ) +
∑

γi 6=γj

γ1=−

(ξ+
γ + fγ)

(1 − λ̂)µ̂−(N(hi, hj)) = µ̂(N(hi, hj)) − λ̂µ̂+(N(hi, hj))

λ̂µ̂+(N(hi, hj) ∩ h1(−)) =
∑

γi 6=γj

γ1=−

(ξ+
γ + fγ)

(1 − λ̂)µ̂−(N(hi, hj) ∩ h1(+)) =
∑

γi 6=γj

γ1=+

(ξ+
γ + fγ)

{(ξ+
γ , ξ−γ , fγ)} ∈ Λ















































































.

Using these definitions, we can define the setA using the set
Λ:

A
△
=



















wrong

µ̂h (N(h′, h′′)) = λ̂µ̂+(N(h′, h′′) ∩ h(−))+

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′)) = µ̂(N(h′, h′′))−
wrong

µ̂h (N(h′, h′′))
{(ξ+

γ , ξ−γ , fγ)} ∈ Λ



















.



The setA is compact, and furthermore, a finite union of
bounded polyhedra, because it is a linear (and hence con-
tinuous) mapping of the setΛ, which is also compact and a
finite union of bounded polyhedra. This concludes the proof
of the first assertion of the lemma.

We have left to prove the second statement, namely, that

the functionEµ(htrue; β(
correct

µ̂h (N(h′, h′′))) is piecewise con-
tinuous, with finitely many discontinuities. The function
Eµ(htrue; α) is a linear and hence continuous function of

α. Now, the vectorβ(
correct

µ̂h (N(h′, h′′))) is given as the so-
lution to a linear optimization problem, as demonstrated in
the proof of Proposition 6. By standard results in sensitivity
analysis in linear optimization, the optimal solution to anLP
is piecewise continuous in the value of the parameters, with
finitely many breakpoints. For a reference see, e.g., the text-
book by Bertsimas and Tsitsiklis, [BT97]. This concludes
the proof of the lemma. �

B A Worked Out Example

In this section we work out explicitly and in detail the com-
putations involved in the example presented in Figure 2 in
Section 4. The worst-case noise, i.e., the optimal policy of
the adversary is given here in Figure 3.

T
T

(� � 10)
(5 � � � 10)10 �

h1 h2 h1 h2
h1 h2

�(10� �)

Figure 3:There are two classifiers,h1 andh2, that label the space
as indicated by the+/− at the bottom of each classifier. The true
classifier ishtrue = h1. In the range0 ≤ η < 5, both the flip-
only and move-and-flip adversaries are powerless. For the range
5 ≤ η ≤ 10, the optimal policy of the adversary, as shown in
the top of the figure on the right, is to flipη% of the ‘+’–labelled
measure. For10 ≤ η ≤ 100, the optimal policy is as shown in the
bottom of the figure on the right. There, the adversary flips all 10%
of the positive measure, and additionally moves in(η − 10)%, for
a total ofη% of measure labelled ‘−’ in N(h1, h2).

Consider first the range5 ≤ η ≤ 10. In this case we have
correct

µ̂h1
(N(h2, h1)) = 10 − η

correct

µ̂h2
(N(h1, h2)) = η.

The variableŝξS,j for S ⊆ {1, 2} are particularly simple
in the two classifier example. The variablesξ̂{1},2 andξ̂{2},1

both correspond to the setN(h1, h2), sinceξ̂{1},2 = N(h1, h2)∩

N(h2, h2)
c, andξ̂{2},1 = N(h1, h2) ∩ N(h1, h1)

c. The con-
straint setsΞ(1) andΞ(2), in this case, have the form:Ξ(1) =

{ξ̂{2},1 : 0 ≤ ξ̂{2},1 ≤ η}, and similarlyΞ(2) = {ξ̂{1},2 :

0 ≤ ξ̂{1},2 ≤ η}. This follows because the constraints

ξ̂{2},1 ≤ 100 −
correct

µ̂h1
(N(h2, h1)) and ξ̂{1},2 ≤ 100 −

correct

µ̂h2

(N(h1, h2)) are not binding, since we havêξ{2},1, ξ̂{1},2 ≤
η ≤ 10. Then the robust linear program takes the form:

min : u

s.t. : u ≥ max
0≤ξ̂{2},1≤η

[

α2(
correct

µ̂h1
(N(h2, h1)) + ξ̂{2},1)

]

u ≥ max
0≤ξ̂{1},2≤η

[

α1(
correct

µ̂h2
(N(h1, h2)) + ξ̂{1},2)

]

α1 + α2 = 1

α1, α2 ≥ 0.

By inspection, the inner maximizations overξ̂{2},1 andξ̂{1},2

are maximized for the valueŝξ{2},1 = ξ̂{1},2 = η. There-

fore, using this result and also from above the values of
correct

µ̂h1

(N(h2, h1)) and
correct

µ̂h2
(N(h1, h2)), the decision-maker must

solve the LP

min : u
s.t. : u ≥ α2(10 − η + η)

u ≥ α1(η + η)
α1 + α2 = 1
α1, α2 ≥ 0.

We can solve this LP analytically by, e.g., appending La-
grange multipliers. We then see that at optimality we must
have

α2 · (10) = α1 · (2η).

Solving forα2 and then using the equationα1 + α2 = 1, we
find

α1 =
5

η + 5
, α2 =

η

η + 5
, Error2 =

10η

5 + η
.

For the range10 ≤ η ≤ 50, we have
correct

µ̂h1
(N(h2, h1)) = 0

correct

µ̂h2
(N(h1, h2)) = η

The setsΞ(1) and Ξ(2) are the same, and so are the in-
ner maximizations, and thus the resulting LP that yields the
decision-maker’s optimal strategy is

min : u
s.t. : u ≥ α2(0 + η)

u ≥ α1(η + η)
α1 + α2 = 1
α1, α2 ≥ 0.

Again solving this analytically, we find now thatα1(2η) =
α2η, and again using the equationα1 + α2 = 1, we find

α1 =
1

3
, α2 =

2

3
, Error2 =

20

3
.

Now consider the range50 ≤ η ≤ 100. Here we have again
correct

µ̂h1
(N(h2, h1)) = 0

correct

µ̂h2
(N(h1, h2)) = η,

however the constraint̂ξ{2},1 ≤ 100 −
correct

µ̂h1
(N(h2, h1)) is

now binding. Therefore the constraint setΞ(2) becomes



Ξ(2) = {ξ̂{1},2 : 0 ≤ ξ̂{1},2 ≤ 100 − η}. The setΞ(1)
remains unchanged. Thus the LP that yields the decision-
maker’s optimal strategy is:

min : u
s.t. : u ≥ α2(0 + η)

u ≥ α1(η + 100 − η)
α1 + α2 = 1
α1, α2 ≥ 0.

In this case then, we have100α1 = ηα2, and thus we find:

α1 =
η

η + 100
, α2 =

100

η + 100
, Error2 =

1000

η + 100
.

In summary, the error as a function ofη is given by

Error2 =















0 η < 5
10η
5+η 5 ≤ η ≤ 10
20
3 10 ≤ η ≤ 50
1000

100+η 50 ≤ η ≤ 100.

This gives the graph in the right side of Figure 2.

Next, we give a somewhat more complicated example to
further illustrate Proposition 6. We consider an example with
three classifiers,H = {h1, h2, h3}, with htrue = h1. The
true triple(λ, µ+, µ−) is illustrated in left of Figure 4. In this
example, the setsN(h1, h2), N(h1, h3), andN(h2, h3) are all
nonempty. The true underlying measure,µ, however, assigns
zero mass to the regionN(h2, h3). The flip-only adversary,
therefore, cannot coerce the decision-maker to choose a pol-
icy α with α2+α3 ≥ 1/2, since the decision-maker knowsµ
from his observations, and therefore knows that the two clas-
sifiersh2, h3 are indistinguishable with respect to the mea-
sureµ, and hence with respect to their possible generaliza-
tion errors. In the move-and-flip case, however, the adver-
sary’s strategy involves moving mass into this region. We
see that this allows the adversary to force the decision-maker
to incur more error.

Here our focus is on obtaining the decision-maker’s op-
timal response, so we consider a particular (perhaps subopti-
mal) policyT for the move-and-flip adversary. For the range
0 ≤ η ≤ 8, the action of the adversary is given in Figure 4.
To compute the optimal response of the decision-maker (withh1h2

8+0
0

h3 T h1h2h3 �02��02�(4� �0)+(4� �0)�
Figure 4: There are three linear classifiers,h1, h2, h3, that label
the space as indicated by the+/− at the bottom of each classifier.
The true classifier ish1, and the true measureµ is as shown in
the figure on the left. The strategy for the adversary with power
η = (4 + η′)%, for 0 ≤ η′ ≤ 4, is as depicted here.

respect to the worst-case possible scenario) we need to solve
the robust linear optimization problem from Proposition 6.

We consider four different ranges of the powerη: 0 ≤ η < 4,
4 ≤ η ≤ 8, 8 ≤ η ≤ 200/3, and200/3 ≤ η ≤ 100. We
discuss the significance of these breakpoints.

For 0 ≤ η < 4, the error incurred is zero. Thus the
first interesting case we consider is4 ≤ η ≤ 8. Writing
η = 4 + η′, as in Figure 4, this corresponds to0 ≤ η′ ≤ 4.
Here, we have

correct

µ̂h1
(N(h2, h1)) =

correct

µ̂h1
(N(h3, h1)) = 4 − η′,

correct

µ̂h2
(N(h1, h2)) =

correct

µ̂h3
(N(h1, h3)) = 4,

correct

µ̂h2
(N(h3, h2)) =

correct

µ̂h3
(N(h2, h3)) = η′.

Next we consider the variableŝξS,j for S ⊆ {1, 2, 3}, and
j = 1, 2, 3. Variable ξ̂{2,3},1 corresponds to the possible
probability mass that might be added to regionN(h2, h1) ∩
N(h3, h1), in the case whereh1 is the true classifier. Vari-
able ξ̂{3},2, analogously, corresponds to the mass possibly
added to regionN(h3, h2) ∩ N(h1, h2)

c whenh2 is the true
classifier.

In order to compute the optimal strategyα = (α1, α2, α3)
of the decision-maker, we must solve:

min : u

s.t. : u ≥ max
(ξ̂·,1)

[

α2(
correct

µ̂h1
(N(h2, h1)) + ξ̂{2,3},1 + ξ̂{2},1)

+α3(
correct

µ̂h1
(N(h3, h1)) + ξ̂{2,3},1 + ξ̂{3},1)

]

u ≥ max
(ξ̂·,2)

[

α1(
correct

µ̂h2
(N(h1, h2)) + ξ̂{1,3},2 + ξ̂{1},2)

+α3(
correct

µ̂h1
(N(h3, h2)) + ξ̂{1,3},2 + ξ̂{3},2)

]

u ≥ max
(ξ̂·,3)

[

α1(
correct

µ̂h3
(N(h1, h3)) + ξ̂{1,2},3 + ξ̂{1},3)

+α2(
correct

µ̂h3
(N(h2, h3)) + ξ̂{1,2},3 + ξ̂{2},3)

]

α1 + α2 + α3 = 1,

α1, α2, α3 ≥ 0.

Solving each of the three inner maximizations as a func-
tion of α is straightforward. Consider the first optimization.

Pulling out the constants,(α2(
correct

µ̂h1
(N(h2, h1))) + α3(

correct

µ̂h1

(N(h3, h1)))), and collecting terms, the remaining maximiza-
tion is

max : ξ̂{2,3},1(α2 + α2) + ξ̂{2},1α2 + ξ̂{3},1α3,

s.t. : ξ̂{2,3},1 + ξ̂{2},1 + ξ̂{3},1 ≤ η

ξ̂{2,3},1 + ξ̂{2},1 ≤ 100 −
correct

µ̂h1
(N(h2, h1))

ξ̂{2,3},1 + ξ̂{3},1 ≤ 100 −
correct

µ̂h1
(N(h3, h1))

ξ̂{2,3},1, ξ̂{2},1, ξ̂{3},1 ≥ 0.

Sinceα2, α3 ≥ 0, the optimal solution to the maximization
is (η, 0, 0), for all values ofη. This holds even for large
values ofη, because under the particular strategy illustrated

in Figure 4, for largeη, we have
correct

µ̂h1
(N(h2, h1)) =

correct

µ̂h1



(N(h3, h1)) = 0. The other two maximizations are similar,
with the exception that the behavior changes whenη is very
large. In the second maximization, for instance, forη ≥ 8,
we have

correct

µ̂h2
(N(h1, h2)) =

correct

µ̂h2
(N(h3, h2)) = η/2,

and thus the constraints

ξ̂{1,3},2 + ξ̂{1},2 ≤ 100 −
correct

µ̂h2
(N(h1, h2))

ξ̂{1,3},2 + ξ̂{3},2 ≤ 100 −
correct

µ̂h1
(N(h3, h2)),

become binding whenη + η/2 ≥ 100, i.e., forη ≥ 200/3.
Thus, the optimal solution to the second maximization can
be seen to be(0, min{η; 100 − η/2}, 0), and for the third
maximization,(0, 0, min{η; 100 − η/2}). Thus we see how
we obtain the breakpoints for the four regions given above.

Using the solutions to these maximizations, and the val-

ues for
correct

µ̂h1
(N(h2, h1)) and the others given above, we see

that the robust linear optimization is equivalent to solving a
linear optimization problem. We have three different LPs,
depending on the powerη.

For4 ≤ η ≤ 8, i.e., for0 ≤ η′ ≤ 4, we have the LP

min : u

s.t. : u ≥ α2((4 − η′) + η) + α3((4 − η′) + η)

u ≥ α1(4 + η) + α3(η + η′)

u ≥ α1(4 + η) + α2(η + η′)

α1 + α2 + α3 = 1,

α1, α2, α3 ≥ 0.

Solving this LP for values ofη′ for 0 ≤ η′ ≤ 4 using an LP
solver, we obtain the linearly increasing portion of the graph
in Figure 5(b). For 8 < η ≤ 200/3 and200/3 ≤ η ≤
100, we have different LPs. Following essentially the same
procedure, we find that the LP that gives the optimal strategy
for the decision-maker for8 ≤ η ≤ 200/3 is

min : u

s.t. : u ≥ α2(η) + α3(η)

u ≥ α1(η + η/2) + α3(η + η/2)

u ≥ α1(η + η/2) + α2(η + η/2)

α1 + α2 + α3 = 1,

α1, α2, α3 ≥ 0.

For anyη in this range, the optimal strategy for the adversary,
and hence the error incurred, is constant:

α∗ = (0.1429, 0.4286, 0.4286),

with error6.8571 as in Figure 5. For200/3 ≤ η ≤ 100, the
resulting LP is

min : u

s.t. : u ≥ α2(η) + α3(η)

u ≥ α1(100 − η/2 + η/2) + α3(100 − η/2 + η/2)

u ≥ α1(100 − η/2 + η/2) + α2(100 − η/2 + η/2)

α1 + α2 + α3 = 1,

α1, α2, α3 ≥ 0.

In Figure 5(b) we show the graphs of the true error for the
full range,0 ≤ η ≤ 100. In part (a) of the same figure,
we have on the same graph, the true error and the worst-case
error, where the worst-case is over classifiers and measures.
We note that for0 ≤ η ≤ 8, the two graphs coincide, but
after that they exhibit markedly different behavior. Note,
in particular, that the worst-case error graph is monotoni-
cally increasing, where as the true error in fact decreases for
200/3 ≤ η ≤ 100. Next, in Figure 6, we show a closer view
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Figure 5:In part(a) we compare the true error graph to the graph
of the worst-case error, that the decision-maker defends against in
choosingα as the solution to the robust LP of Proposition 6. Note
that the worst-case error is monotonic inη, while the true error is
not. In part(b) we have the graph of the true error over the full
range ofη. Here we see the different behavior of the error graph in
the four regions,0 ≤ η < 4, 4 ≤ η ≤ 8, 8 ≤ η ≤ 200/3, and
200/3 ≤ η ≤ 100.

of the two regions of particular interest in the error graph:
the region of the weak adversary,η ≤ 8, and the region of
the strong adversary,η ≥ 200/3, where the error begins to
decrease.
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Figure 6: In part (a) we have the graph of the true error for0 ≤
η ≤ 9. In part(b) we have the error over200/3 ≤ η ≤ 100. We
have added the dashed line to underscore the fact that the error in
this region does not decrease linearly. Note also that the scales of
the two graphs are different.


