
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 0, no. 0, pp. 1–21 (2007)

Line Crossing Minimization on Metro Maps

Michael A. Bekos

School of Applied Mathematics & Physical Sciences
National Technical University of Athens, Greece

mikebekos@math.ntua.gr

Michael Kaufmann

Institute for Informatics, University of Tübingen, Germany
mk@informatik.uni-tuebingen.de

Katerina Potika

School of Electrical & Computer Engineering
National Technical University of Athens, Greece

epotik@cs.ntua.gr

Antonios Symvonis

School of Applied Mathematics & Physical Sciences
National Technical University of Athens, Greece

symvonis@math.ntua.gr

Abstract

We consider the problem of drawing a set of simple paths along the
edges of an embedded underlying graph G = (V, E), so that the total
number of crossings among pairs of paths is minimized. This problem
arises when drawing metro maps, where the embedding of G depicts the
structure of the underlying network, the nodes of G correspond to train
stations, an edge connecting two nodes implies that there exists a railway
track connecting them, whereas the paths illustrate the lines connecting
terminal stations. We call this the metro-line crossing minimization prob-
lem (MLCM). As a first step towards solving MLCM in arbitrary graphs,
we study path and tree networks. We examine several variations of the
problem for which we develop algorithms for obtaining optimal solutions.

Article Type Communicated by Submitted Revised
.

This work is partially funded by the project PENED 2003. The project is co - funded

by the European Social Fund (75%) and National Resources (25%).

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)2

1 Motivation

We consider a relatively new problem that arises when drawing metro maps
or, in general, public transportation networks. In such drawings, we are given
an undirected embedded graph G = (V, E), which depicts the structure of the
underlying network. In the case of metro maps, the nodes of G correspond to
train stations whereas an edge connecting two nodes implies that there exists
a railway track which connects them. The problem we consider is motivated
by the fact that an edge within the underlying network may be used by several
metro lines. Since crossings are often considered as the main source of confusion
in a visualization, we want to draw the lines along the edges of G so that they
cross each other as few times as possible.

In the graph drawing literature, the focus has been so far exclusively on
drawing the underlying graph nicely and not on how to embed the bus or the
metro lines along the underlying network. The latter problem was recently
introduced by Benkert et. al in [4]. Following their approach, we assume that
the underlying network has already received an embedding. The problem of
determining a solution of the general metro-line routing problem, in which the
graph drawing and line routing are solved simultaneously would be of particular
interest as a second step in the process of automated metro map drawing.

2 Problem Definition

We are given an undirected embedded graph G = (V, E). We will refer to G as
the underlying network. We are also given a set L = {l1, l2, . . . , lk} of simple
paths of G (in the following, referred to as lines). Each line li consists of a
sequence of edges e1 = (v0, v1), e2 = (v1, v2), . . . , ed = (vd−1, vd) of G. The
nodes v0 and vd are referred to as the terminals of line li. Equivalently, we
say that the line terminates at or has terminals at nodes v0 and vd. By |li| we
denote the length of line li. The main task is to draw the lines along the edges
of G, so that the number of crossings among pairs of lines is minimized. We
call this the metro-line crossing minimization problem (MLCM). Formally, the
MLCM problem is defined as a tuple (G,L), where G is the underlying network
and L is the set of lines.

One can define several variations of the MLCM problem based on the type
of the underlying network, the location of the crossings and/or the location
of the terminals (refer to Figure 1). In general, the underlying network is an
undirected graph. In this paper, as a first step towards the study of the MLCM
problem in arbitrary graphs, we focus on path and tree networks.

For aesthetic reasons, we insist that the crossings between lines that traverse
a node of the underlying network should not be hidden under the area occupied
by that node. This implies that the relative order of the lines should not change
within the nodes and therefore, all possible crossings have to take place along
the edges of the underlying network.

In our approach, we assume that the nodes which correspond to stations are

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)3

Figure 1: A map illustrating Munich’s S-Bahn and U-Bahn networks obtained from
http://www.mvv-muenchen.de.

drawn as rectangles, which is a quite usual convention in metro maps. Each line
that traverses a node u has to touch two of the sides of u at some points (one
when it “enters” u and one when it “exits” u). These points are referred to as
tracks. In general, we may permit tracks to all four sides of a node, i.e. a line
that traverses a node may use any side of it to either “enter” or “exit”. This
model is referred to as 4-side model (see Figure 2a). A more restricted model,
referred to as 2-side model, is the one where all lines that traverse a node may
use only its left and right side (see Figure 2b). In the latter case, we only allow
tracks at the left and right side of the node.

(a) The 4-side model (b) The 2-side model

Figure 2: Illustration of different models defined based on the location of the tracks.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)4

Note that a solution for the MLCM problem should first specify the number
of tracks that enter each side of each station and, for each track, the line of L
that uses it.

Top station ends

Bottom station ends

Middle tracks

Figure 3: Station ends and middle tracks.

A further refinement of the MLCM problem concerns the location of the line
terminals at the nodes. A particularly interesting case - that arises under the
2-side model - is the one where the lines that terminate at a station occupy its
topmost and bottommost tracks, in the following referred to as top and bottom
station ends, respectively. The remaining tracks on the left and right side of
the station are referred to as middle tracks and are occupied by the lines that
pass through the station. Figure 3 illustrates the notions of top and bottom
station ends and middle tracks on the left and right side of a station (solid lines
correspond to lines that terminate, whereas the dashed lines correspond to lines
that go through the station). Based on the above, we introduce the following
two variants of the MLCM problem:

(a) The MLCM problem with terminals at station ends (MLCM-SE), where we
ask for a drawing of the lines along the edges of G so that (i) all lines
terminate at station ends and (ii) the number of crossings among pairs of
lines is minimized.

(b) The MLCM problem with terminals at fixed station ends (MLCM-FixedSE),
where all lines terminate at station ends and the information whether a line
terminates at a top or at a bottom station end in its terminal stations is
specified as part of the input. We ask for a drawing of the lines along the
edges of G so that the number of crossings among pairs of lines is minimized.

2.1 Related Literature

The problem of drawing a graph with a minimum number of crossings has been
extensively studied in the graph drawing literature. For a quick survey refer to
[2] and [10]. However, in the problems we study in this paper we assume that
the underlying graph has already received an embedding and we seek to draw
the lines along the graph’s edges, so that the number of crossings among pairs
of lines is minimized.

This problem was recently introduced by Benkert et. al in [4]. In their work,
they proposed a dynamic-programming based algorithm that runs in O(n2) time

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)5

for the one-edge layout problem, which is defined as follows: Given a graph
G = (V, E) and an edge e = (u, v) ∈ E, let Le be the set of lines that traverse
e. Le is divided into three subsets Lu, Lv and Luv. Set Lu (Lv) consists of the
lines that traverse u (v) and terminate at v (u). Set Luv consists of the lines
that traverse both u and v and do not terminate either at u or at v. The lines for
which u is an intermediate station, i.e., Luv ∪ Lu, enter u in a predefined order
Su. Analogously, the lines for which v is an intermediate station, i.e., Luv ∪Lv,
enter v in a predefined order Sv. The number of pairs of crossing lines is then
determined by inserting the lines of Lu into the order Sv and by inserting the
lines of Lv into the order Su. The task is to determine appropriate insertion
orders so that the number of pairs of crossing lines is minimized. However, in
their work Benkert et. al [4] do not address the case of larger graphs and they
leave as an open problem the case where the lines that terminate at a station
occupy its station ends.

For the latter problem, Asquith et al. [1] proposed an integer linear pro-
gram, which always determines an optimal solution regardless of the type of the
underlying network. They mention that their approach can be generalized to
support the case where the set of lines consists of subgraphs of the underlying
network of maximum degree 3.

A closely related problem to the one we consider is the problem of draw-
ing a metro map nicely, widely known as metro map layout problem. Hong et
al. [8] implemented five methods for drawing metro maps using modifications of
spring-based graph drawing algorithms. Stott and Rodgers [13] have approached
the problem by using a hill climbing multi-criteria optimization technique. The
quality of a layout is a weighted sum over five metrics that were defined for eval-
uating the niceness of the resulting drawing. Nöllenburg and Wolff [12] specified
the niceness of a metro map by listing a number of hard and soft constraints
and they proposed a mixed-integer program which always determines a drawing
that fulfills all hard constraints (if such exists) and optimizes a weighted sum
of costs corresponding to the soft constraints.

Relevant to the problem we study is also the problem of computing a con-
fluent drawing of a given non-planar graph (see [6], [9]). Confluent drawings
capture the connection properties of train tracks as follows: Edge crossings are
allowed, however they are hidden in the drawing. This is accomplished by al-
lowing group of edges to merge together and drawn as“tracks”, so that edge
crossings are turned into overlapping paths, like merging train tracks into a
single track.

2.2 Outline

In Section 3, we consider the MLCM problem on a path. We show that the
MLCM-SE problem is NP-Hard and we also present a polynomial time algorithm
for the MLCM-FixedSE problem. In Section 4, we consider the MLCM problem
on a tree and we present polynomial time algorithms for two variations of it.
We conclude in Section 5 with open problems and future work. A preliminary
version of this paper appeared in Graph Drawing 2007 [3].

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)6

3 The Metro-Line Crossing Minimization Prob-
lem on a Path

We first consider the case where the underlying network G is a path and its
nodes are restricted to lie on a horizontal line. We adopt the 2-side model
where each line uses the left side of a node to “enter” it and the right one to
“exit” it. Then, assuming that there exist no restrictions on the location of the
line terminals at the nodes, it is easy to see that there exist solutions without
any crossing among lines. In fact, using a simple reduction from the interval
graph coloring problem [7], we can determine a solution, which also minimizes
the number of tracks used at each individual node. So, in the remaining of this
section, we further assume that the lines that terminate at a station occupy its
top and bottom station ends. In particular, we consider the MLCM-SE problem
on a path. Since the order of the stations is fixed as part of the input of the
problem, the only remaining choice is whether each line terminates at the top
or at the bottom station end in its terminal stations. In the following we show
that under this assumption, the problem of determining a solution so that the
total number of crossings among pairs of lines is minimized is NP-Hard. Our
proof is based on a reduction from the fixed linear crossing number problem [11].

Definition 1 Given a simple graph G = (V, E), a linear embedding of G is a
special type of embedding in which the nodes of V are placed on a horizontal line
L and the edges are drawn as semicircles either above or below L.

Definition 2 A node ordering (or a node permutation) of a graph G is a
bijection δ : V → {1, 2, . . . , n}, where n = |V |. For each pair of nodes u and v,
with δ(u) < δ(v) we shortly write u < v.

Masuda et al. [11] proved that it is NP-Hard to determine a linear embedding
of a given graph with minimum number of crossings, even if the ordering of the
nodes on L is fixed. The latter problem is referred to as fixed linear crossing
number problem.

Theorem 1 The MLCM-SE problem on a path is NP -Hard.

Proof: Let I be an instance of the fixed linear crossing number problem,
consisting of a graph G = (V, E) and a horizontal input line L, where V =
{u1, u2, . . . , un} and E = {e1, e2, . . . , em}. Without loss of generality, we as-
sume that u1 < u2 < · · · < un. We construct an instance I ′ of the MLCM-SE
problem on a path as follows: The underlying network G′ = (V ′, E′) is a path
consisting of n + 2 nodes and n + 1 edges, where V ′ = V ∪ {u0, un+1} and
E′ = {(ui−1, ui); 1 ≤ i ≤ n + 1}. The set of lines L is partitioned into two sets
LA and LB :

• LA consists of a sufficiently large number of lines (e.g. 2nm2 lines) con-
necting u0 with un+1.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)7

• LB contains m lines l1, l2, . . . , lm one for each edge of G. Line li which
corresponds to edge ei of G, has terminals at the end points of ei.

Figure 4 illustrates the construction. First observe that all lines of LA can
be routed “in parallel” without any crossing among them (see Figure 4b). Also
observe that in an optimal solution none of the lines l1, l2, . . . , lm crosses the
lines of LA, since that would contribute a very large number of crossings. Thus,
in an optimal solution each line of LB has both of its terminals either at top
or at bottom station ends. So, in a sense, we exclude the case where a line
li ∈ LB has one of its terminals at a top station end, whereas the second one at
a bottom station end.

u1 u2 u3 u4 u5 u6
L

(a)

u1 u2 u3 u4 u5 u6u0 u7

(b)

Figure 4: (a) A linear embedding, (b) An instance of the MLCM-SE problem.

Assume now that there exists an optimal linear embedding of I, where the
number of crossings is k. We will construct a solution for I ′ with k crossings
among pairs of lines. We first route the lines of LA without introducing any
crossing among them. The remaining lines l1, l2, . . . , lm will be routed either
above or below the lines of LA (refer to Figure 4b). We choose to route line li
above (below) the lines of the set LA, if in the embedding of I edge ei is placed
above (below) the input line L. Additionally, if in the embedding of I, two edges
ei and ej are placed above (below) L so that they do not cross each other and
the semicircle of ei contains the one of ej (refer to the edges (u1, u6) and (u2, u5)
in Figure 4), then we route line li below (above) line lj . This implies that these
lines will not cross each other. If two edges cross each other in the embedding
of I (refer to edges (u1, u4) and (u3, u6) in Figure 4), then their corresponding
lines will also cross in I ′. This implies an one-to-one correspondence between
the crossings among the edges of I and the crossings among pairs of lines in I ′,
as desired.

Consider now the case where we have determined an optimal solution of I ′

with k pairs of crossing lines. As already mentioned, lines l1, l2, . . . , lm do not
cross the lines of the set LA, since a solution including such a crossing is not
optimal. Therefore, each line of LB either lies entirely above the lines of LA or
below them. In the case where a line li ∈ LB lies above them, we draw edge
ei of graph G above the horizontal line L, otherwise below that. Again, it is
easy to see that there exists an one-to-one correspondence between the crossings
among the edges of I and the crossings among pairs of lines in I ′. Therefore,
instance I has a linear embedding with k crossings among its edges. 2

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)8

3.1 The Metro-Line Crossing Minimization Problem with
fixed positioned terminals

Theorem 1 implies that, unless P = NP, we can not efficiently determine an
optimal solution of MLCM-SE problem on a path. The main reason for this is
that the information whether each line terminates at the top or at the bottom
station end in its terminal stations is not known in advance. In the following,
we assume that this information is part of the input, which is a reasonable
assumption, since terminals may represent physical locations within a station.
In particular, we show that the MLCM-FixedSE problem on a path can be
solved in polynomial time.

To simplify the description of our algorithm, we assume that each node ui

of the path G is adjacent to two nodes ut
i and ub

i , each of which will be the
terminal of the lines that terminated at the top and bottom station ends of
node ui, respectively1. In the drawing of G, ut

i is placed directly on top of ui

(we refer to it as the top leg of ui), whereas ub
i directly below it (bottom leg of

ui). So, instead of restricting each line to have the terminals at a top or at a
bottom station end in its terminal stations, we will equivalently consider that
the line terminals are located at two leg nodes. We refer to this special type of
graph which is implied by the addition of the leg nodes as caterpillar with at
most two legs per node (see an example in Figure 5).

Figure 5: A caterpillar with at most 2 legs per node.

A caterpillar with at most two legs per node consists of two sets of nodes. The
first set, denoted by Vb, contains n nodes u1, u2, . . . , un (referred to as backbone
nodes), which form a path. In the embedding of G, these nodes are collinear and
more precisely they are located on a horizontal line so that u1 < u2 < · · · < un.
The second set of nodes, denoted by Vl, contains n′ nodes v1, v2, . . . vn′ of degree
1 (referred to as leg nodes or simply as legs) each of which is connected to one
backbone node. In the embedding of G, we assume that for each backbone u
one of its legs is placed directly on top of it, whereas the second one directly
below it. Since each backbone node is adjacent to at most two legs, n′ ≤ 2n.

If v is a leg node, we will refer to its neighbor backbone node as bn(v). Edges
that connect backbone nodes are called backbone edges. Edges that connect
backbone nodes with legs are called leg edges.

1In the degenerated case, where there exists no lines terminating either at the top or bottom
terminal tracks of node ui, we assume that either ut

i or ub
i does not exist, respectively.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)9

Definition 3 Let l ∈ L be a line that connects two terminals v and v′. If v is
located to the left of v′ in the embedding of the underlying network, i.e. v < v′,
then we consider v to be the origin of line l, whereas v′ to be its destination.
We also denote by Lt

i (Lb
i) the lines that have as origin the top (bottom) leg

node adjacent to backbone node ui.

Definition 4 Let l and l′ be a pair of lines that have the same origin w and
destination nodes v and v′, respectively. We say that l precedes l′, if when we
start moving from w along the external face of G in counterclockwise direction
we meet v before v′. The notion of precedence defines an order ¹ among the
lines that have the same origin, namely l ¹ l′, if and only if l precedes l′.

Lemma 1 The number of tracks in the left and right side of each backbone node
that are needed in order to route all lines in L can be computed in O(n + |L|)
time.

Proof: The number of tracks in the right side of the leftmost backbone node
u1 is |Lt

1| + |Lb
1|. Due to the fact that no lines have as terminal a backbone

node, the same number of tracks are needed in the left side of node u2. We
index the needed tracks from top to bottom (refer to Figure 6a). We compute
the number of tracks in the left side of any backbone node ui as the number
of lines originating at nodes < ui and destined for nodes ≥ ui. Similarly, we
compute the number of tracks in the right side of any backbone node ui as the
number of lines originating at nodes ≤ ui and destined for nodes > ui.

By performing a left to right pass over the set of backbone nodes, we can
compute the number of tracks in the left and right side of each backbone node
in O(n+ |L|) total time, assuming that each backbone node u keeps appropriate
references to the number of lines originating at and destined for u. 2

The basic steps of our algorithm that solves the MLCM-FixedSE problem are
outlined in Algorithm-1. The lines of L are drawn incrementally by performing
a left to right pass over the set of backbone nodes and by extending them from
station to station with small horizontal or diagonal line segments. Therefore,
each line l ∈ L is drawn as a polygonal line.

We now proceed in detail to explain the routing in Step C of Algorithm-1.
Let Lv the be set of the lines that either originate at or are destined for leg
node v. In each leg edge, that connects leg node v to bn(v), we use |Lv| tracks
indexed from right to left (refer to Figure 6a). These tracks will be used in order
to route the lines that either originate at or are destined for leg node v.

In each backbone node ui, we have to route the newly “introduced” lines, i.e.
the ones that originate either at the top or at bottom leg of ui. This procedure is
illustrated in Figure 6a. We first consider the top leg node ut

i of ui. We sort the
set Lt

i of the lines that originate at ut
i in increasing order ¹ of their destinations

and store them in ascending order, in Sort(Lt
i). Based on this sorting we route

the j-th line l in Sort(Lt
i) through the j-th rightmost track at the top of ui.

l is then routed to the j-th top track in the right side of ui. We proceed by
considering the bottom leg node ub

i of ui. Again, we sort the set Lb
i of the lines

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)10

Algorithm 1: MLCM-FixedSE on Paths

Input : A path G = (V, E) and a set of lines L = {l1, . . . , lk}.
Output: A routing of the lines along the edges of G, so that they cross

each other as few times as possible.

Step A: Based on G build caterpillar Gc = (Vb ∪ Vl, Ec), where:
Vb = {u1, . . . , un} and Vl = {v1, . . . , vn′}, as described above.

Step B: For each backbone node, determine the number of tracks that are
used by the lines along its left and right sides;

Step C: Route the lines as follows:

foreach backbone node ui, where i = 1 to n− 1 do

1. “Introduce” the new lines that originate at the top and bottom legs
of ui to node ui;

2. Route the lines from the left side of ui to the right side of ui;

3. Route the lines from the right side of ui to the left side of ui+1;

Step D: Remove all leg nodes.

that originate at ub
i in decreasing order ¹ of their destinations and store them

in descending order, in Sort(Lb
i). Based on the sorting, we route the j-th line l

in Sort(Lb
i) through the j-th rightmost track at the the bottom of ui and then

to the j-th bottom track in the right side of ui. We then route the lines that go
from the tracks of the left side to the tracks of the right side of ui, by preserving
their relative order.

The next step is to route the lines from the right side of ui to the left side
of ui+1. This is done by performing three passes over the set of tracks of the
right side of ui.

In the first pass, we consider the tracks of the right side of ui from top to
bottom and we check whether the line l that occupies the j-th track is destined
for the leg node ut

i+1. In this case, we route l to the topmost available track of
the right side of ui+1 and then to the leftmost available track in the leg edge
which connects ui+1 with ut

i+1 (see the dotted lines of Figure 6b).
In the second pass, we consider the remaining tracks of the right side of ui

from bottom to top and we check whether the line l that occupies the j-th track
is destined for the leg node ub

i+1. In this case, we route l to the bottommost
available track of the right side of ui+1 and then to the leftmost available track
in the leg edge which connects ui+1 with ub

i+1 (see the dash dotted lines of
Figure 6b).

The remaining tracks of the right side of ui are obviously occupied by the
lines that are not destined for either ut

i+1 or for ub
i+1. We consider these tracks

from top to bottom and we route the line l that occupies the j-th track to the

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)11

2nd track from top

1st track from top

1st track from right

ui 2nd track from bottom

1st track from bottom

(a)

ui ui+1

right side of ui

left side of ui+1

(b)

Figure 6: (a) Introduction of the new lines to a station, (b) Routing lines along a
backbone edge.

topmost available track of the left side of ui+1 (see the dashed lines of Figure 6b).
The construction of Algorithm-1 guarantees the following two properties:

Property of common destinations: Lines that are destined for the same
top (bottom) leg node ut

i (ub
i) do not cross each other along the backbone

edge which connects ui−1 with ui.

Property of parallel routing: Two lines that both traverse a backbone node
ui (i.e. none of them are destined either for ut

i or for ub
i) do not cross each

other along the backbone edge which connects ui−1 with ui.

By combining the property of common destinations and the property of
parallel routing, we easily obtain the following lemma.

Lemma 2 In a solution produced by Algorithm-1, the following statements hold:

(i) Two lines l and l′ cross each other at most once.

(ii) Two lines l and l′ with the same origin do not cross each other.

(iii) Two lines l and l′ with the same destination do not cross each
other.

(iv) Let l and l′ be two lines that cross each other, destined for leg
nodes v and v′, respectively, where v is to the left of v′ in the
embedding of G. Then, l and l′ will cross along the backbone
edge which connects uk−1 and uk, where uk = bn(v).

2

Consider an instance I = (G,L) of the problem we study consisting of a
caterpillar graph G with at most 2 legs per node and a set of lines L termi-
nating at leg nodes only. To prove the optimality of the solution produced by
Algorithm-1, we transform I to a circle graph (RG, C) [7], consisting of a set of
nodes RG and a set of chords C, so that:

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)12

• Each leg node in G corresponds to a node of RG.

• The order of the leg nodes in G when moving clockwise in the external
face of G and the order of the nodes of RG when moving in clockwise
direction along its boundary is identical.

• Each line in L which connects two leg nodes corresponds to a chord in C
connecting the corresponding nodes.

Let RG = {w1, w2, . . . , wn′}, where n′ is the number of leg nodes of G.
W.l.o.g. we further assume that the nodes of RG are indexed so that wi+1

immediately follows wi in the clockwise direction for i = 1, 2, . . . n′−1. Figure 7
illustrates such a transformation. We denote by f the function which given a
leg node in G returns the corresponding node in RG.

The transformation described above implies a lower bound on the number of
crossings among the lines in an optimal solution. More precisely, the number of
chords crossing in circle RG is a lower bound for the number of crossings in an
optimal solution of I. To see this, consider two crossing chords chi = (wsi , wdi)
and chj = (wsj , wdj) in the circle graph, where si < di and sj < dj . One can
see that chi and chj cross, if and only if

si < sj < di < dj or sj < si < dj < di.

v1 v2

v3v4v5

v6

w1

w2

w3

w4

w5

w6

w1 = f(v6)

w4 = f(v3)
w5 = f(v4)

w2 = f(v1)
w3 = f(v2)

w6 = f(v5)

Figure 7: An instance I = (G,L) is transformed to a circle graph.

Translating these inequalities back to our problem, we observe that there
exists crossings which can not be avoided. More precisely, consider the lines li
and lj , which fulfill the following: (i) li originates at f−1(wsi) and is destined
for f−1(wdi) and (ii) lj originates at f−1(wsj) and is destined for f−1(wdj). It
is easy to see that li and lj form a “cross” within the underlying network and
they inevitably intersect (see the lines that correspond to the crossing chords of
Figure 7).

Lemma 3 The number of crossings produced by Algorithm-1 for instance I is
the same as the number of chords crossing in circle RG.

Proof: Assume to the contrary that there exists two lines l and l′ which, when
routed by Algorithm-1, cross each other in G and their associated chords do not

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)13

cross in RG. By Lemma 2.ii and Lemma 2.iii, l and l′ do not share a terminal
at a common leg node, which also holds in the circle and thus in RG (i.e. chords
that share a common end point do not cross each other).

Without loss of generality, we assume that l (l′) is destined for leg node v
(v′), where v is to the left of v′ in the embedding of G. Algorithm-1 ensures that
l and l′ will cross along the backbone edge which connects uk−1 and uk, where
uk = bn(v) and that l′ is not destined for v, i.e. v 6= v′. The contradiction is
implied by the fact that such a pair of lines corresponds to two crossing chords
in RG. 2

Lemma 4 Assume a caterpillar with at most two legs per node and let the lines
terminate at leg nodes only. Then, the problem of drawing a set of lines L in an
n-node caterpillar with two legs per node so that the number of crossings among
pairs of lines is minimized can be solved in O(n +

∑|L|
i=1 |li|) time.

Proof: By Lemma 1, Step B of Algorithm-1 needs O(n + |L|) time. Using
bucket sort [5], we can sort all lines at each individual leg node v in O(|Lv|)
time, where Lv is the set of lines that originate at v. Therefore, Step C.1 needs
a total of O(|L|) time. Steps C.2 and C.3 need O(

∑|L|
i=1 |li|) time in total. 2

Theorem 2 An instance (P,L) of the MLCM-FixedSE problem on an n-node
path P can be solved in O(n +

∑|L|
i=1 |li|) time.

4 The Metro-Line Crossing Minimization Prob-
lem on a Tree

In this Section, we consider the MLCM problem on a tree T = (V, E), where
V = {u1, . . . , un} and E = {e1, . . . , en−1}. In the embedding of T , we assume
that the neighbors of each node u of T are located either to the left or to the right
of u (refer to Figure 8). In particular, we consider a “left-to-right tree structured
network” to represent the underlying network. In such a network, we do not
allow lines which make “right-to-right” or “left-to-left” turns, which implies that
all lines should be x-monotone. For instance, in Figure 8, we would not permit
a line connecting the two leftmost leaves. This assumption is motivated by the
fact that a train can not make a 180◦ turn within a station. We seek to route
all lines along the edges of T , so that the total number of crossings among pairs
of lines is minimum.

We adopt the 2-side model, where each line uses the left side of a node to
“enter” it and the right side to “exit” it. We refer to the edges that are adjacent
to the left (right) side of node u in the embedding of T as incoming (outgoing)
edges of u (see Figure 9). Since we assume that the lines are x-monotone, the
notions of the origin and the destination of a line, as defined in Section 3.1, also
apply in the case of line crossing minimization on “left-to-right tree structured
network”.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)14

Figure 8: A “left-to-right tree structured network”. Nodes containing diamonds or
cycles correspond to terminal stations. Diamonds correspond to potential
origins. Cycles correspond to potential destinations.

We consider the case where all line terminals are located only at nodes of
degree 1 (see Figure 8) and the lines can terminate at any track of their terminal
stations2. Since the number of lines that “enter” an internal node is equal to
the number of lines that “exit” it, we simply have to specify either the order
of the lines that enter the node or the corresponding order when they leave it.
Recall that we do not permit crossings inside the nodes.

Incoming edges of u

Outgoing edges of u

u

Figure 9: Incoming and outgoing edges of a node u.

Assuming that the edges of T are directed from left to right in the embedding
of T , we first perform a topological sorting over the nodes of T . As in the
preceding section, we route the lines along the edges of T incrementally. We
consider the nodes of T in their topological order. This ensures that whenever
we consider the next node u all of its incoming lines have already been routed
up to its left neighbor nodes.

A key component of our algorithm is a numbering of the nodes of the un-
derlying network T based on the node u, that we are currently processing,
e.g. a function ETNu : V → {0, 1, . . . , |V | − 1} . More precisely, given a node

2Recall that, in the case of a path network, this problem was quite easy due to the structure
of the path.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)15

21

3

4 5

6

7

8

9

10

12 13

14

15

16 18

11

17

19

202122

23

2425

0

Start of

Euler tour

Figure 10: A sample Euler-tour-numbering of a “left-to-right tree structured net-
work” starting from the leftmost node

u of T , we number all nodes of T according to the order of first appearance
when moving clockwise along the external face of T starting from node u. Note
that such a numbering is unique with respect to the node u and we refer to
it as the Euler tour numbering starting from node u or simply as ETNu. Also,
note that the computation of only one numbering is enough (say a numbering
from the node with the smallest topological order number) in order to com-
pute the corresponding Euler tour numberings from any other node of T , since
ETNv(w) = (ETNu(w)− ETNu(v)) mod |V |. Figure 10 illustrates such a number-
ing.

The basic steps of our algorithm are outlined in Algorithm-2. As already
mentioned, we consider the nodes of T in their topological order. Each time we
consider a new node u, we distinguish the following cases:

Case 1: indegree(u) = 0
If node u is of indegree zero (i.e. u is a leaf containing the origins of some
lines), we simply sort the lines that originate from u based on the Euler
tour numbering ETNu (starting from u) of their destinations in ascending
order. They are assigned tracks based on their sorted order from top to
bottom.

Case 2: indegree(u) = 1
We simply pass the lines from the left neighbor node of u to u without
introducing any crossing (i.e. by keeping the order of the lines unchanged).

Case 3: indegree(u) > 1
In the case where node u is of indegree greater than one, we have to
“merge” its incoming lines and thus, we may introduce crossings. We
“stably merge”3 the incoming lines based on the Euler tour numbering

3Given two sorted lists A and B of n and m elements, respectively, a stable merging of A
and B is a sequence S of n + m elements, consisting of the elements of A and B, such that i)
S is sorted and ii) the internal ordering of A and B is maintained in the resulting sequence
S, i.e. elements with the same value appear in sequence S in the same order in which they
appear in sequences A and B before the merging [5, pp 170], [14].

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)16

Algorithm 2: MLCM on Trees

Input : A set of lines L = {l1, . . . , lk} and an embedded tree T = {V,E}.
Output: A routing of the lines along the edges of T , so that they cross

each other as few times as possible.
Require: In the embedding of T , we assume that the neighbors of each
node u of T are located either to the left or to the right of u. The terminals
are located only at leaf nodes.

{Step A: Topological Sorting}
Perform a topological sorting over the nodes of T , assuming that the edges
of T are directed from left to right in the embedding of T ;

{Step B: Compute an Euler Tour Numbering}
Compute an Euler tour numbering of the nodes of T starting from the node
with the smallest topological order number;

{Step C: Line Routing}
foreach node u in topological order do

if (inDegree(u) == 0) then
Sort the lines that originate at u based on the Euler tour numbering
ETNu (starting from u) of their destination nodes in ascending order
and draw their tracks in this order;

else
if (inDegree(u) == 1) then

Pass the lines from the left neighbor node of u to u without
introducing any crossing;

else
{inDegree(u) > 1}
“Stably merge” the incoming lines of u based on the Euler tour
numbering ETNu (starting from u) of their destination nodes in
ascending order;
Connect the lines to their corresponding tracks in the left side of u,
introducing the necessary crossings;

(obtained from u) of their destinations so that: i) Lines coming along
the same edge do not change order, and ii) if two lines with the same
destination come along different edges, the one coming from the topmost
edge is considered to be smaller.

Figure 11 illustrates a sample routing produced by Algorithm-2. We use
different types of lines to denote lines that originate at a common leaf node.
The construction of Algorithm-2 supports the following Lemma:

Lemma 5 In a solution produced by Algorithm-2 the following statements hold:

(i) Two lines l and l′ cross each other at most once.
(ii) Two lines l and l′ with the same origin/destination do not cross

each other.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)17

Figure 11: A sample routing obtained from Algorithm-2.

(iii) Let l and l′ be two lines that cross each other. Then, l and l′

will cross just before entering their leftmost common node.

Proof: The first property is implied by the fact that the underlying network
is a tree. The second property is due to the sorting of the lines taking place at
nodes of indegree zero and the stable merging taking place at nodes of indegree
greater than one. Finally, the latter property holds because of the numbering of
the nodes. To see this consider two lines l and l′ that cross each other and let u
be their leftmost common node. Without loss of generality, we further assume
that l enters u from edge el, l′ enters u from edge el′ and el is located to the
top of el′ . Since l and l′ cross each other, ETNu(l) < ETNv(l′)4. Therefore, the
merging step of the Algorithm-2 will imply a crossing among these lines before
entering u. 2

By using Lemma 5 and by following a similar approach as in the proof of
Theorem 4, we can show that Algorithm-2 produces an optimal solution, in
terms of line crossings.

Theorem 3 Assuming that each line terminates at leaf nodes, an instance
(T,L) of the MLCM problem on a “left-to-right” n-node tree T of maximum
indegree d can be solved in O(n + log d

∑|L|
i=1 |li|) time.

Proof: Steps A and B of Algorithm-2 need O(n) total time. Using bucket sort
[5], we can sort all lines at each individual leaf node v in O(|Lv|) time, where
Lv is the set of lines that originate at v. Therefore, the sorting of the lines in
Step C (taking place at nodes of indegree zero) needs a total of O(|L|) time.
The stable merging of the incoming lines of a node can be accomplished by
successively merging (in a bottom up fashion, and in an order similar to that
employed by a traditional non-recursive implementation of merge-sort) pairs of
arrays built by concatenating the destinations of the lines that enter the node

4We denote by ETNu(l) the euler tour numbering (obtained from u) of the destination of l.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)18

from top to bottom. If the merging of two arrays is performed by employing
the “counting sort” stable sorting method [5] and since each line will participate
in at most log d mergings, the merging of all incoming lines will be completed
in O(log d

∑|L|
i=1 |li|) time, where d is the maximum indegree of T . Thus, the

algorithm terminates after O(n + log d
∑|L|

i=1 |li|) time. 2

Corollary 1 Assuming that each line terminates at leaf nodes, an instance
(T,L) of the MLCM problem on a “left-to-right” n-node tree T with bounded
degree can be solved in O(n +

∑|L|
i=1 |li|) time.

4.1 The MLCM-SE and MLCM-FixedSE problems on a
Tree

Since a path can be viewed as a degenerated case of a tree, Theorem 1 im-
plies that MLCM-SE problem on a tree is NP-Hard. However, for the MLCM-
FixedSE problem we can obtain a polynomial time algorithm adopting a similar
approach as the one of Section 3.1. For each node u of T we introduce at most
four new nodes ut

L, ub
L, ut

R and ub
R adjacent to u. Node ut

L (ub
L) is placed on top

(below) and to the left of u in the embedding of T and contains all lines that
originate at u’s top (bottom) station end. Similarly, node ut

R (ub
R) is placed on

top (below) and to the right of u in the embedding of T and contains all lines
that are destined for u’s top (bottom) station end. In the case where any of
the ut

L, ub
L, ut

R or ub
R does not contain any lines we ignore its existence. So,

instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we equivalently consider that it terminates to some of
the newly introduced nodes. Note that the underlying network remains a tree
after the introduction of the new nodes, so our algorithm can be applied in this
case, too. The following Theorem summarizes our result.

Theorem 4 An instance (T,L) of the MLCM-FixedSE problem on a “left-to-
right” n-node tree T of maximum indegree d can be solved in O(n+log d

∑|L|
i=1 |li|)

time.

Corollary 2 An instance (T,L) of the MLCM-FixedSE problem on a “left-to-
right” n-node tree T with bounded degree can be solved in O(n+

∑|L|
i=1 |li|) time.

5 Conclusions

Clearly, our work is a first step towards solving the MLCM problem and its
variants in arbitrary graphs. Extending the work of Benkert et al. [4] we
studied path and tree networks. However, we did not consider the case where
the underlying network is an arbitrary graph. Additionally, for the case where
the underlying network is a tree we only considered the case, where the terminals
are located at nodes of degree 1. No results are known regarding the case where
we permit terminals at internal nodes of the tree.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)19

Another line of research would be to develop approximation algorithms for
the MLCM-SE problem on paths and trees. The problem of determining a
solution of the general metro-line routing problem, in which the graph drawing
and line routing are solved simultaneously is also of particular interest as a
second step in the process of automated metro map drawing.

References

[1] M. Asquith, J. Gudmundsson, and D. Merrick. An ILP for the line ordering
problem. Technical Report PA006288, National ICT Australia, 2007.

[2] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[3] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Line crossing
minimization on metro maps. In S.-H. Hong and T. Nishizeki, editors, Proc.
15th International Symposium on Graph Drawing (GD2007), LNCS 4875,
pages 231–242, 2007.

[4] M. Benkert, M. Nöllenburg, T. Uno, and A. Wolff. Minimizing intra-edge
crossings in wiring diagrams and public transport maps. In M. Kaufmann
and D. Wagner, editors, Proc. 14th Int. Symposium on Graph Drawing
(GD’06), volume 4372 of Lecture Notes in Computer Science, pages 270–
281. Springer-Verlag, 2007.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press, 2001.

[6] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent
drawings: Visualizing non-planar diagrams in a planar way. Journal of
Graph Algorithms Applications, 9(1):31–52, 2005.

[7] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[8] S.-H. Hong, D. Merrick, and H. A. D. d. Nascimento. The metro map layout
problem. In N. Churcher and C. Churcher, editors, Australasian Symposium
on Information Visualisation, (invis.au’04), volume 35 of CRPIT, pages
91–100. ACS, 2004.

[9] P. Hui, M. J. Pelsmajer, M. Schaefer, and D. Stefankovic. Train tracks and
confluent drawings. Algorithmica, 47(15):465–479, 2007.

[10] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models, volume 2025 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

Bekos et al., Line crossing minimization on metro maps, JGAA, 0(0) 1–21 (2007)20

[11] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing mini-
mization in linear embeddings of graphs. IEEE Trans. Comput., 39(1):124–
127, 1990.

[12] M. Nöllenburg and A. Wolff. A mixed-integer program for drawing high-
quality metro maps. In P. Healy and N. S. Nikolov, editors, Proc. 13th Int.
Symposium on Graph Drawing (GD’05), volume 3843 of Lecture Notes in
Computer Science, pages 321–333. Springer-Verlag, 2006.

[13] J. M. Stott and P. Rodgers. Metro map layout using multicriteria optimiza-
tion. In Proc. 8th International Conference on Information Visualisation,
pages 355–362. IEEE Computer Society, 2004.

[14] A. Symvonis. Optimal stable merging. The Computer Journal, 38(8):681–
690, 1995.

