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Abstract

We consider how to discern whether or not evolution is taking

place in an observed system. Evolution will be characterized in terms

of a particular macroscopic behavior that emerges from microscopic

organismic interaction. We de�ne evolutionary activity as the rate

at which useful genetic innovations are absorbed into the population.

After measuring evolutionary activity in a simple model biosphere,

we discuss applications to other systems. We argue that evolutionary

activity provides an objective, quantitative interpretation of the intu-

itive idea of biological teleology. We also propose using evolutionary

activity in a test for life.
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1 What is Evolution?

Our paradigm of an evolving system is the biosphere. Emerging somehow

from inorganic origins, it has produced a myriad succession of marvelously

adapted organisms, from the very simple to the quite complex. And the

process is ongoing still.

Although we all have some common-sense grasp of the process, it is di�-

cult to say precisely what evolution is. Evolution is change, but not all change

is evolution. What distinguishes evolution from other kinds of change? Some

despair of the prospect for answering this question. Consider Dobzhansky

[?]:

There is no satisfactory general de�nition of evolution. \Sus-

tained change" comes probably as close as possible at present. In

the special case of biological evolution this may be amended to

become \sustained change over a succession of generations," to

di�erentiate the evolutionary development (phylogeny) from the

development of an individual (ontogeny).

Evolution is clearly more than sustained change, more even than sustained

complex change. A turbulent 
uid is continually undergoing complex changes

but it is evidently not evolving in anything like the way that the biosphere is.

Biological evolution is also not just complex change that propagates through

successive generations. Large amounts of complex genetic deadwood|junk

DNA|can accumulate in a gene pool with no real evolutionary e�ect.

Intuitively, the distinctive mark of evolution is the spontaneous genera-

tion of innovative functional structures. Implicitly designed and continually

modi�ed by the evolutionary process (on an evolutionary time scale), the

structures persist because they prove su�ciently adaptive. The growth of

adaptations causes the biosphere to increase in complexity, thus providing

an arrow of time not implied by mere complex change, even if sustained

through many generations. But how can the idea of a system continuously

and spontaneously generating adaptations be expressed quantitatively? How

can it be measured in a model or in the real world?
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Our approach to answering these questions is to quantify the degree to

which a system exhibits the continual spontaneous generation of adaptive

forms. Speci�cally, we measure the degree to which new genetic combinations

are persistently used in a population. This quantity is an objective, empirical

measure of the level of evolutionary activity in an arti�cial or natural system,

but it has important broader implications, as well. For one thing, it provides

a natural, quantitative interpretation for the controversial but intuitively

compelling view that a biosphere inevitably exhibits teleology (purposive

or goal-directed behavior). In addition, it suggests a new approach to an

empirical, quantitative understanding of life.

The evolving biosphere is a complex web of organisms interacting with

each other and with their environment. Following the tradition of statistical

mechanics, we regard each organism as a microscopic element of the bio-

sphere, and we regard evolution as a macroscopic property that emerges as a

consequence of the interactions among all organisms and their environment.

Evolution is a macroscopic, long-term property of a population of interacting

organisms.

The macroscopic state of a thermodynamic system is characterized by

thermodynamic variables such as temperature, pressure, and speci�c heat.

We would like to de�ne analogous variables that characterize the macrostates

of an evolving biosphere. Thermodynamic macroscopic variables are typi-

cally static quantities that characterize a time-independent equilibrium. By

contrast, an evolving biosphere changes constantly, so its macroscopic char-

acterization must inevitably include dynamic properties, especially in the

long run. Evolutionary dynamics seem to possess metastable states, which

leads us to de�ne macroscopic quantities that are averaged over a short time

scale (and possibly averaged over all or part of the population), and examine

how they change over a longer time scale.

Evolution is driven by genetic changes. We will adopt the simplifying

assumption that genetic changes are random changes in a genome. Each

organism interacts with other organisms and its environment by means of an

information processing mechanism that takes sensory data as input and yields

an action as output. The organism's genome encodes the mechanism that

causes the behavior, though often behavior is not encoded directly but arises

through the complex interaction of other directly encoded mechanisms. Se-

lection occurs as a result of the behavior; more e�cacious behavior increases

an organism's probability of survival, on average. Typically selection takes
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Figure 1: The part of the �gure enclosed in the ellipses represents how in-

dividual genomes change through a lineage as a result of changes in the

genomes gt (taken to be random events), which cause a change in the re-

sulting phenotypes �t. Selection acts on the phenotypes in the context of

an environment consisting partly of a population of competing phenotypes

(the series of ellipses). If an individual phenotype �t survives the selection

process, its genotype gt (possibly mutated) is transmitted in reproduction.

The gray arrows represent how the evolving distribution of di�erent genomes

in the population, Pt(g), emerges out of the combined e�ects of selection of

individuals and genetic alterations.

place over a longer time scale than reproduction. The indirect nature of the

e�ect of genetic change on the dynamics of the population is illustrated in

�gure 1.

We have described the process of genetic change, and the resulting selec-

tion, on an organismic level. The macroscopic state, however, is a function of

the distribution of the entire population over the space of possible genomes.

The net result of the genetic change and selection for the entire population

is an evolution of the population distribution over the space of genomes, as

illustrated in the lower right of �gure 1. The statistical characterization of

evolution concerns the dynamics of this population distribution.

In the �nal analysis, the classical adaptationist perspective embodied in

�gure 1 must be quali�ed to allow for neutral evolution [?]. It must also

be modi�ed due to the presence of nonadaptive evolutionary forces, such as

those due to developmental constraints [?]. We will concentrate, however,

on the adaptive forces of evolution precisely because it is this aspect that we

seek to quantify.

Spontaneous generation of innovative change epitomizes the dynamical

nature of adaptive evolution. Thus, evolutionary change gives the appear-

ance of having a direction as successful lineages become progressively better

adapted to their environments. In the long run, however, evolution has no

speci�c predetermined global goal. Evolutionary change might show over-

all statistical tendencies, such as those captured by the statistical measures

de�ned below, but the details of a biosphere's global state are in constant


ux. No Master Plan explicitly speci�es the biosphere's form. At any given

instant in a given local biological context for a given species, some speci�c
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evolutionary changes would be better and others worse. So, each species

has certain temporary local optimization criteria, which generally di�er for

di�erent species. These local optimization problems generally admit many

possible approximate solutions. The particular evolutionary path a lineage

follows results from many random genetic changes that survive as solutions

or partial solutions to the local optimization problems.

The process of selection acting on the products of these genetic changes

causes complex functional changes in the organisms in the long run. These

changes emerge a posteriori out of the contingencies of the evolutionary dy-

namics. Evolutionary learning apparently takes place, but without an a pri-

ori speci�cation of what needs to be learned. A feature that is good in one

context might be bad in another; it depends on the surrounding population,

which constantly shifts as the population evolves. In e�ect, the population is

adapting to itself and to the environment, so the speci�c optimization criteria

change implicitly during evolution. Whereas extrinsic adaptation, typical of

arti�cial learning systems, has an explicitly speci�ed goal, adaptation with-

out an explicitly de�ned goal is intrinsic adaptation. Intrinsic adaptation is

exhibited by a variety of models [?, ?, ?, ?, ?, ?, ?, ?], perhaps the simplest

of which is [?].

A fundamental question in the general science of evolution is to determine

what macroscopic variables characterize the behavior of an evolving system.

Below we de�ne a variable that re
ects the degree to which new genetic com-

binations are continually produced and persistently used in the population.

Initially sacri�cing some amount of generality in favor of the clarity provided

by an explicit example, we �rst explain this statistic in the context of a sim-

ple model biosphere. After describing the model, we measure this quantity

in the model. Then we discuss how to make analogous measurements in a

variety of other systems.

We then argue that evolutionary activity may re
ect the occurrence of

teleological or goal-directed activity. Though teleological behavior has often

been identi�ed on strong intuitive grounds as a hallmark of living, evolving

systems, the concept has not been formalized in scienti�c theory. Much of

the scienti�c literature is inimical to the idea that teleology is even compati-

ble with formal scienti�c theory. Below, we argue the opposite|the intuitive

notion of teleology is indeed quanti�able, by means our measure of evolution-

ary activity. Just as recent studies of chaos have shown that deterministic

systems could be unpredictable, we claim that deterministic systems may be
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teleological. Similarly, just as a central question in the study of chaos has

been how to quantify unpredictability, in our study of teleological systems

we must face the analogous question of how to quantify teleological behavior.

In the �nal section, we propose using evolutionary activity as a test for

life. Where the necessary experimental measurements can be made, the test

should be applicable to evolving systems in the real world. In the realm

of arti�cial life models, the experimental measurements are nearly always

possible, at least in principle. Thus, the test is a quanti�able analog to

Turing's test in arti�cial intelligence.

2 A Model Biosphere

Every model of living processes must model phenomena on some speci�c

level. A model of a chemical soup might attempt to show how life could

originate. Here, we model a population of organisms in an environment to

show how evolution emerges. Following the tradition of statistical mechanics,

the organisms and the environment in our model are highly idealized. Just as

the Ising model from statistical mechanics represents a magnetic solid merely

as a lattice �lled with zeros and ones, the model presented here abstracts from

a host of details about organisms and their environments.

2.1 Tropic Bugs

The model used here is a modi�cation of an earlier model designed to be

simple yet able to capture the essential features of an evolutionary process

[?]. The earlier model consisted of organisms in a two dimensional world. The

only thing that exists in the world besides the organisms is food. Represented

as a �eld of values, food is put into the world in heaps that are concentrated

at particular locations, approximating a continuum �eld with a gradient away

from a central location. Food is refreshed periodically in time and randomly

in space. The frequency and size of the heaps are variable parameters in the

simulation.

The food represents energy for the organisms. They interact with the

food �eld by eating it, decrementing the food value at their location, and

incrementing their internal food supply. The organisms in this earlier model

are endowed with enough innate intelligence to follow the gradient; they
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survey their local neighborhood and move in the direction of most food.

Since the behavior of these organisms is simply the tropism of ineluctably

climbing the food gradient, we call them tropic bugs. Movement expends

energy, so each step taken exacts a tax on the internal food supply. If this

internal food supply drops to zero, the organism dies and disappears from

the world. On the other hand, an organism can remain alive inde�nitely if

it can continue to �nd enough food.

When an organism accumulates enough food, it produces some number

of o�spring. Reproduction by tropic bugs is controlled by two quantities

regarded as \genes" for the organisms: the number of o�spring, go� , and the

threshold for reproduction, gth. These genes are changed during reproduction

by random amounts, analogous to point mutations.

Evolution will occur in a population only if the environment stresses the

population, so that some of its members can be better adapted to coping

with the stress than others. The only stress faced by the tropic bugs is to

�nd enough food to remain alive. Any evolution that occurs in the model is

the e�ect of this one environmental imperative.

2.2 Strategic Bugs

The model biosphere used here di�ers from the tropic bug model in two re-

spects. The primary modi�cation is to allow organisms to follow individually

di�erent strategies for �nding food, so we call these organisms strategic bugs.

The other modi�cation provides a second source of genetic novelty.

The behavioral disposition of both tropic and strategic bugs is genetically

hardwired. But whereas every tropic bug follows the same rule for climbing

the food gradient, each strategic bug follows its own individual food-�nding

strategy. A behavioral strategy is simply a map taking sensory data from

a local neighborhood (the �ve member von Neumann neighborhood) to a

vector indicating a magnitude and direction for movement:

S : (s1; :::; s5)! ~v = (r; �): (1)

A strategic bug's sensory data has two bits of resolution for each site (least

food, somewhat more food, much more food, most food). Its behavioral

repertoire is also �nite, with four bits of resolution for magnitude r (zero,

one, ..., �fteen steps), and four bits of resolution for direction � (north, north-

northeast, northeast, east-northeast, ...). As with tropic bugs, strategic bugs
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pay a movement tax proportional to the distance traveled. A tax is also

levied just for living, so strategic bugs must continue �nding food to survive.

The graph of the strategy map S may be thought of as a look-up table

with 210 entries, each entry taking one of 28 possible values. This look-up

table represents an organism's overall behavioral strategy. The entries are

input-output pairs that link a speci�c behavior (output) with each sensory

state (input) that an organism could possibly encounter. Whereas tropic

bugs have only the two genes go� and gth, strategic bugs have 2
10 additional

genes, one for each entry in their strategy look-up table. Although still �nite,

the space of genes in the strategic bug model is greater than in the tropic

bug model by three orders of magnitude. This allows evolution in a much

larger space of genetic possibilities, which better approximates a biological

world with an in�nite number of possibilities.

Evolution requires a source of random variation. Just as the two genes

carried over from the tropic bug model can change during reproduction by

random amounts, analogous point mutations of the strategy genes can change

the output values of entries in the strategy look-up table. A parameter

regulating the mutation rate, i.e., the \strength" of mutations, determines

what fraction of the table mutates during reproduction.

The genome in the strategic bug model is large enough that it becomes

reasonable to allow sexual reproduction, or at least a simple version with

haploid crossover. The second respect in which strategic bugs di�er from

tropic bugs is that, whereas both tropic and strategic bugs reproduce asex-

ually, strategic bugs can also reproduce sexually. A strategic bug can tell

when it is next to another bug. If two healthy bugs (i.e., bugs with su�cient

internal food) are adjacent, they 
ip a coin to decide whether to produce

o�spring. Analogous to the exchange of genetic material during crossover,

each child contains a mix of genetic material randomly chosen from the two

parents. There is no distinction between \female" and \male," so sexual re-

production here simply means o�spring produced with a mixture of parental

genetic material.

The strategic bug model illustrates a novel form of evolving dynamical

system that has recently been developed for models of immune networks and

autocatalytic networks [?, ?, ?, ?, ?, ?] as well as for models of parallel com-

putation in machine learning [?, ?, ?, ?]. These systems consist of a state

space that changes with time, with a meta-dynamic specifying the state-

space evolution. In the strategic bug model, the momentary dynamical rule
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includes all the individual strategies for each organism present in the popu-

lation, as well as the rule that governs the input of new food. The strategic

bug metadynamic speci�es how new elements come into the population and

what rules govern them. Since new genes interact with the world and with

each other just as old genes do, the metadynamical element in the strategic

bug model is simply the generation of new genes by mutation and crossover,

which creates new elements of the population. More complex forms of inter-

action between organisms (besides simply reproducing) would necessitate a

more complex metadynamic.

There many free parameters in the strategic bug world which must be set

at the beginning of a simulation; we now describe them all. The parameters

are named as variables that might appear in a computer program; the values

listed in square brackets are those we actually used for the measurements

presented in the following section. To interpret the parameters it is useful to

realize that the time scale is basically set by the amount the organisms are

taxed for their activity, and the rate that food is coming into the world. The

world was a 128 � 128 lattice, with an integer food value between zero and

255 at each site.

Bug initialization: The world begins with an initial population of size

initial population size [50]. Some of the parameters that spec-

ify the bugs are the same for all bugs. One of these is mouthful [50],

the maximum amount of food a bug can eat in one gulp (if there is less

than this amount at the bug's current location, all food is eaten). Other

parameters that are the same for all bugs are the taxes, which subtract

food from the internal food supply each elementary time step. One

is move tax [10], the amount of food used per unit distance moved.

Another is reproduction tax [0]. A third is overall tax [10], a

metabolic tax for survival every time step.

Another group of parameters are needed to specify the initial values

of genes that may be changed during reproduction. Each bug has a

reproduction thresh [1000] for the amount of food needed to repro-

duce, and a sex threshold [800] for the amount of food needed to

have sex (provided another healthy bug is in the neighborhood). Asex-

ual reproduction yields offspring num [2] children. The strategy

look up table is initialized with a fraction strategy density [.25]
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of the entries set to random output actions, with all other entries set

to the output action \do nothing."

World initialization: The environment is speci�ed by parameters that gov-

ern the input of food. The �rst such parameter is food time [2], the

number of elementary time steps between each food input. Each food

input consists of a lump of food placed at a random location. The

lump has a maximum food value food max [250] at the center of the

lump, and extends spatially, diminishing linearly to zero at a radius

food width [0.2], given in units of the size of the entire world.

Evolution: Parameters that specify the evolution are primarily the muta-

tion levels. First there is the mutation level tropic mut [0] of the

tropic genes, reproduction threshold and offspring num. Then

there is also the mutation level strategy mut [0.1] of the strategy

table, given in terms of the fraction of total number of entries. The �nal

evolutionary parameter is crossover fraction [0.4], the fraction of

strategy table entries that are exchanged during sexual reproduction.

3 Evolutionary Activity for Strategic Bugs

An actively evolving system is continuously and spontaneously generating

adaptive change. Its gene pool is continually shifting, absorbing new genes

and rearranging existing ones, but genetic changes can persist in the long run

only if the organisms with the new genes thrive. Any change that lessens an

organism's ability to survive will, on average, be unlikely to appear in later

generations. In other words, those changes that do get absorbed into the

gene pool must, on average, either enhance survival or, at worst, be neutral.

Thus, the continual retention of new useful genetic material indicates that

the population is continually enhancing its gene pool.

The rate at which new genes are introduced does not re
ect genuine evo-

lutionary activity, for the new genes may well be useless. Likewise, the mere

persistence of genetic innovation alone is insigni�cant, because a persistent

gene may well be unused and irrelevant. Persistent usage of new genes is

what signals genuine evolutionary activity. In the context of the strategic

bug model it is simple to defend the appropriateness of measuring persis-

tent usage. Since \using" a gene amounts to moving and movements exact a
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tax, persistent usage of a gene necessarily indicates that the bene�ts brought

about by the movement result in enough of a gain to o�set the tax; otherwise

the gene would have disappeared from the population.

In this section we de�ne a statistic designed to measure the rate at which

new useful genetic material is being incorporated into the gene pool. We

initially implement this measure in the model for strategic bugs. In a later

section we discuss how to apply this measure to a wide variety of other

arti�cial and natural systems.

3.1 Usage Statistics

If we de�ne evolutionary activity as the population's continual absorption

of new genetic combinations that come to be persistently used, we must

have a way to measure how persistently genes are used. To do this for

the strategic bugs, we �rst de�ne quantities that measure the usage of the

genes in a bug's strategy look-up table. (For simplicity's sake, we refrain

from measuring the usage of the two genes, carried over from the tropic bug

model, that govern reproductive threshold and number of o�spring.) Letting

i label the bug and j label the gene within the bug, consider every gene gij of

every bug as having a \usage counter" uij attached to it, initialized to zero.

Recall that each entry in a look-up table is an input-output pair. Every time

a particular input situation is encountered and its paired output entry in

the table is used, the corresponding usage counter is incremented. During

asexual reproduction, the usage is reset to zero if the corresponding gene

mutates, and otherwise the usage is carried with the gene to the o�spring.

O�spring produced by sexual reproduction inherit their parents genes with

their corresponding usages intact. In this way, a given gene's usage preserves

information accumulated over many generations along the lineage through

which the gene is inherited.

To record what percentage of the genes in the entire gene pool for the

strategic bugs have given usage values at a given time, we de�ne a usage

distribution function, N(t; u), by apportioning all of the genes in all of the

bugs into \bins" for given usage values u at given times t, as follows:

N(t; u) =
1

Ng

X
i;j

�(u� ut
ij): (2)

Here, ut
ij is the usage that gene gij (the jth gene of the ith organism) has
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Figure 2: A view of the usage distribution function N(t; u) for three par-

ticular values of t. At a given time t, N(t; u) is a usage histogram, with

usage increasing to the right and the proportion of genes with a given usage

increasing vertically. Initially, at t = 0, all genes have zero usage, so a usage

histogram has a single peak at zero usage. Then some genes get used and

acquire positive usage, so a usage histogram for t = t1 shows a tail sliding

o� the peak at zero usage. Later, at t2, a gene or group of genes has been

used repeatedly, so a usage histogram shows a clump of genes with positive

usage. Later still, at t3, after those genes have seen even more use, the bump

has moved toward higher usage values. In this way, activity waves propagate

through the usage distribution N(t; u).

accumulated by time t, and �(u � ut
ij) is the Dirac delta function, equal to

one if u = ut
ij, and zero otherwise. So,

P
i;j �(u � ut

ij) simply counts the

number of genes that have usage u. This sum is then normalized by dividing

by the number of genes in the population, Ng. Thus, N(t; u) is the total

fraction of genes in the entire population having usage u at time t.

One can visualize a usage distribution function N(t; u) as a three di-

mensional surface (landscape) over a two dimensional time/usage grid. The

value (height) of any given location (t; u) on this surface simply re
ects the

proportion of genes that have usage u at time t. A signi�cant peak in the sur-

face around a location (t; u) would indicate that at times near t a signi�cant

proportion of genes had been used about u times.

3.2 Activity Waves

The usage distribution function for the strategic bug model turns out to

have a complex and interesting structure. Initially, at t = 0, all genes have

zero usage, so N(0; u) has just one peak at u = 0. As time progresses and

genes are used, the usage distribution function becomes positive for other

values of u. If a bene�cial gene or gene-cluster enters the population, it will

come to be used persistently, and the time/usage surface N(t; u) will show a

certain structure. Speci�cally, at a certain time after the introduction of the

bene�cial genes, N(t; u) will have a bump due to the genes' persistent usage.

(See �gure ??.) As long as the genes remain bene�cial, they will persist and

their usage will increase. As their usage increases, the bump will move in
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Figure 3: Above: A diagram of N(t; u) for the strategic bug model. Time

increases to the right, and usage increases up. Darker shades of gray indicate

higher values in the usage \bins." The value at a given point (t; u) on the

surface indicates what proportion of the genes in the gene pool have usage u

at time t. Swaths of higher values (darker shades) moving up and to the right

are activity waves. New activity waves start when genetic novelties prove to

have some utility for the organisms. The slope of an activity wave re
ects

the frequency with which the genes contributing to it are used. Below: The

corresponding graph of evolutionary activity A(t), with the reference point

u0 chosen to be 75. Glancing at the distributionN(t; u) shows that in general

usage exceeds u0 only for those genes that are in activity waves. Peaks in

A(t) correspond to an activity wave bursting past u0 = 75.

time with a velocity proportional to the frequency with which the relevant

situation is encountered.

Such moving features appear as waves over the time/usage plane. We

call them waves of evolutionary activity, or simply activity waves. The upper

parts of �gures ?? and ?? illustrate the waves in a time/usage diagram for

the strategic bug model. Each of the graphs in �gure ?? corresponds to a

vertical column in the time/usage diagram, with higher values in the usage

\bins" indicated by darker shades of gray.

If the genes in a wave continue to be used by all organisms with roughly

the same frequency, the wave propagates at a constant velocity and appears

as a relatively straight line over the time/usage surface. The slope of a wave

re
ects the frequency with which the genes in it are used. If this frequency is

changing, the wave curves. If usage of a group of genes stops, then the slope

of the wave levels to zero for as long as the genes persist in the gene pool. As

the genes in this 
at wave are pushed out of the gene pool by mutations, the

wave's height drops to zero. If the genes start to be used again, the wave's

slope (but not its height) will increase.

A gene will continue to contribute to just one wave during its time in

a lineage in the gene pool. New activity waves are created only when a

newly created gene is �rst used in its \life" in the gene pool. Mutations can

converge, creating a new gene that accidently \copies" an existing gene; use

of the accidental copy gene will initiate a new activity wave.

Activity waves emerge out of the local interactions between \microscopic"
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Figure 4: N(t; u) for the same simulation as �gure 3, but for a longer time.

New bursts of evolutionary activity continue to emerge.

organisms. The medium of the activity waves is actually the genetic material

of the entire population. All genetic changes are perturbations that can

potentially initiate a new activity wave. Waves will actually start when the

new genes are bene�cial in the local biological context. \High" activity waves

re
ect \large" clusters of useful genes.

An activity wave in a biological system re
ects the persistence of a use-

ful piece of information about the world (coded by a gene or gene cluster)

within the information processing machinery of an organism. New genes

are like guesses about what might be good to do in the world. When a

guess is more or less correct, the information persists because it promotes

the organism's survival. In this way, the continual emergence of new activ-

ity waves indicates that (on average) the organisms are e�ectively improving

their internal models for what the world is like and what behaviors are most

e�cacious within it.

3.3 Evolutionary Activity

The existence of activity waves suggests a method for measuring a system's

evolutionary activity. As long as activity waves continue to occur, the popu-

lation is continually incorporating and repeatedly using new genetic material;

in short, the system is evolving. Our measure of activity, then, is based on

measuring the 
ow of usage into the gene pool, with a new burst of usage

corresponding to a burst of evolutionary activity.

Before assigning any evolutionary signi�cance to a gene's usage, we must

distinguish short-term usage from long-term usage. Glancing at N(t; u)

shows that a large fraction of the genes have usage slightly greater than

zero, but this short-term usage means little. Eventually, after further use,

unhelpful genes are weeded out of the population. The only genes that accu-

mulate usage above a certain value u0 are those that end up contributing to

activity waves; these are the genes that have proven their usefulness through

acquiring long-term usage. Thus, we will call a gene persistent at a given

time if its usage at that time exceeds a certain reference point u0.

The parameter u0 is determined by the time scale on which useless genes



15

are replaced, which in turn is determined by the details of the organisms and

how they interact with each other and the environment. In the case of the

strategic bugs, u0 is determined by a combination of the taxation rates and

the rate and pattern by which food appears in the world. In any case, u0
is to be set high enough so that most of the useless genes disappear before

their usage reaches the value u0. In practice, it is easy enough to identify a

plausible reference point u0 by glancing at N(t; u) and picking a usage value

above the initial large fall-o� in usage (clearly evident in �gures 3 and 4)

as useless genes are weeded out. It is evident that a gene's usage exceeds

u0 in general only if it ends up contributing to an activity wave. The exact

value of u0 is not crucial. As long as u0 is large enough, patterns formed by

activity waves passing u0 will be similar for a wide range of u0 values.

As a preliminary to quantifying activity waves, we want a measure of

\bulk" usage over time in the gene pool that allows short-term usage to be

distinguished from long-term usage. The net persistence P (t; u) of a gene

pool at time t relative to a given usage u is de�ned as the proportion of

genes at t that have at least usage u:

P (t; u) =
1X

u0=u

N(t; u0): (3)

Long-term and short-term usage may be separated because the net persis-

tence P (t; u) explicitly depends on u. One can think of the net persistence

P (t; u) for given t and u as the \bulk" of the column of usage values stacked

above (t; u). Since the bulk of these usage columns decreases as u increases,

P (t; u) decreases monotonically with u.

If an activity wave passes a certain point in the N(t; u) plane, the net

persistence function P (t; u) will be changing in the neighborhood around

(t; u). As time approaches t there will be a signi�cant increase in P (t; u),

and as usage exceeds u there will be a signi�cant decrease in P (t; u). Thus,

a passing activity wave can be quanti�ed by the rate of change of P (t; u)

with respect to either t or u. To avoid noise introduced by 
uctuations in

the population, we focus on the rate of change with respect to u. Waves in

N(t; u) correspond to \cli�s" in P (t; u). The height of an activity wave at a

point (t; u) in N(t; u) is re
ected by the steepness with which P (t; u) falls o�

at that point.

Thus, to quantify the passage of activity waves, we can simply measure

the steepness of P (t; u) at our reference point u0. That is, we de�ne the
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evolutionary activity A(t) of a system as the rate at which net persistence is

dropping at u0:

A(t) = �

"
@P (t; u)

@u

#
u=u0

: (4)

If new activity waves continue to be produced, then the population is con-

tinually acquiring new genetic material that is proving its usefulness through

a signi�cant amount of repeated use. In this case, the system is exhibiting

signi�cant evolutionary activity, and the measure of evolutionary activity

A(t) will be positive. If evolutionary activity is zero, then the gene pool is

incorporating no new persistent genes, and the system is exhibiting no sig-

ni�cant evolution whatsoever. Since P (t; u) decreases monotonically with u,

the activity A(t) is never negative.

The usage distribution function N(t; u) contains a wealth of informa-

tion about the evolutionary process. Evolutionary activity A(t)|the rate at

which innovative genetic novelty is 
owing into the system|is one especially

fundamental aspect of N(t; u), but A(t) does not re
ect all signi�cant evolu-

tionary events. Two examples can illustrate how other kinds of evolutionary

events could be quanti�ed from N(t; u).

One kind of event with evolutionary signi�cance is extinctions. The ex-

tinction of a species of organisms would appear in N(t; u) as the diminution

and eventual disappearance of an activity wave; a massive dying o� such as

the Cretacious extinction would be an abrupt termination of a mass of waves.

But since these waves would terminate above the reference point u0, extinc-

tions would not be registered in evolutionary activity A(t). To quantify the

net change in a system's innovative genetic novelty, subtracting that portion

lost from extinctions, one could simply take the time derivative of P (t; u) at

the reference point u = u0.

Changes in genes' usage patterns are another signi�cant kind of evolu-

tionary event. These would be re
ected in N(t; u) as changes in the slope of

activity waves. For example, a wave's slope will increase if a group of little-

used genes starts to be used more frequently. Evolutionary activity A(t) does

not quantify changes in the complexity of the dynamics of the activity waves;

if waves continue to be produced at a steady rate, then A(t) remains constant

even if the pattern of activity between the waves becomes dramatically more

complex. However, if the usage distribution function N(t; u) were separated

into components consisting of waves travelling at given velocities, then the
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complexity of the activity wave patterns could be quanti�ed by correlating

the strengths of the di�erent components.

Our measure of evolutionary activity A(t) is averaged over all individu-

als in the population. In addition, since usage is always passed to o�spring

except after a mutation, evolutionary activity is also averaged over genera-

tions. Thus, waves in a system's evolutionary activity truly characterize the

system's global, long-term dynamics.

4 Evolutionary Activity in Other Systems

The measurements of evolutionary activity A(t) reported above were all made

in the strategic bug model. But evolutionary activity can be measured in

a wide variety of other arti�cial and natural systems, as long as the system

consists of a \macroscopic" population of \microscopic" entities for which

usage can be de�ned clearly and appropriately. If usage at the system's

micro-level can be measured, then all the global macro-level quantities|the

usage distribution function N(t; u), net persistence P (t), and evolutionary

activity A(t)|become well de�ned, just as before.

The key to applying our measure of evolutionary activity is a good de�ni-

tion of usage. In some evolving systems it is di�cult to measure gene usage

directly; in others, there are no genes per se. Nevertheless, it is often possible

to develop other ways to measure usage. One of the merits of our approach

to measuring evolutionary activity is this 
exibility in the de�nition of usage.

In this section, after indicating what constitutes an appropriate measure of

usage, we illustrate how to measure evolutionary activity in a wide variety

of other systems.

In the strategic bug model we counted the usage of genes in a gene pool,

but it is possible to measure usage of other kinds of entities. Instead of genes,

the micro-level entities could be groups of genes; they could even be the broad

collection of genes and gene variations shared throughout a species. Since

our aim is to measure the rate at which a system incorporates new functional

units, the micro-entities can be any functional units, any units with adaptive

signi�cance. Our measure applies to any level at which natural selection

operates. (Cf. the \units of selection" debate [?, ?, ?, ?].)

If usage counters are attached to inappropriate micro-level entities, our

measure of evolutionary activity can register false positives and false neg-
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atives. If the micro-level units fail to re
ect some aspect of functionality,

then some genuine evolutionary activity might be missed (a false negative).

For example, assume that there is a genetic system in which combinations

of genes can have adaptive signi�cance over and above the adaptive signif-

icance of their individual component genes. In this case, crossovers could

spark the spread of many quite bene�cial new combinations of pre-existing

genes, which would constitute signi�cant evolutionary activity. But the pro-

liferation of these adaptive genetic combinations would not generate activity

waves if usage were counted only for single genes; the frequency of groups of

genes could alter while the frequency of individual genes remained the same.

To capture the occurrence of this sort of evolutionary activity, some way must

be found to add usage counters to potentially functional gene combinations.

False positive readings of evolutionary activity can also occur if usage

counters are attached to non-functional micro-level units. For example, only

a small fraction of the eukaryotic chromosome has potential adaptive signi�-

cance. Relatively short segments, exons, code for amino acids; these are the

genes. The intervening segments, introns, are without adaptive signi�cance.

So, consider a genetic system that is undergoing no change in exons but rapid

change in introns. In this case, the system would not be signi�cantly evolv-

ing. However, if usage were counted at the level of individual base pairs in

the nuclear DNA or at the level of the codon (triplets of DNA base pairs that

code for individual amino acids), then our measure of activity A(t) for this

system could be positive. To prevent such false positives, one must count

usage only at levels on which units have adaptive signi�cance.

To some extent it is an open question exactly which changes occurring

in an evolving biosphere are adaptive; some are the e�ect merely of ran-

dom genetic drift or other non-adaptive processes [?, ?] Still, there is no

real doubt that a signi�cant proportion of the change is adaptive. And even

though selection might be taking place on a variety of levels, there is no real

doubt that a signi�cant proportion of adaptive change is genetic. Further-

more, the degree of evolutionary activity measured at di�erent levels should

correspond at least roughly. Thus, a genetically grounded implementation of

our statistical measure of evolutionary activity A(t) should give a good �rst

approximation of a system's overall evolutionary activity.
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4.1 Arti�cial Biospheres

In the strategic bug model the usage of a bug's genes increases every time

the bug \uses" the gene, by instinctively following an entry in a strategy

look-up table. Genes coding for any type of activity could be subject to the

same kind of usage bookkeeping This makes it straightforward to measure

evolutionary activity in many other model biospheres.

For example, consider the tropic bug model outlined in section ??. Tropic

bugs have only two genes, one controlling the number of o�spring produced

during reproduction, go� , the other controlling the food threshold required

for reproduction, gth. Whereas a gene in a strategic bug's strategy look-up

table is used only if and when the bug detects that gene's input condition,

a tropic bug uses both of its genes each time it reproduces. Thus, if tropic

gene usage is counted as for strategic genes, the \usage" of a tropic bug's

gene would re
ect simply the longevity of that bug's lineage. Thus, activity

waves would correspond to the persistence of bug species, and the slope of a

wave would re
ect the average rate at which bugs in those species reproduce.

Evolution among tropic bugs is re
ected by changes in the time-dependent

population distribution function over the two-dimensional space of genes,

P t(go� ; gth), which can be identi�ed as an a posteriori �tness function. Sim-

ulations of this model show that the size of 
uctuations of available food

strongly determines the system's evolutionary dynamics [?], with the dy-

namics of P t(go� ; gth) re
ecting the evolutionary development of the system.

If there is a low level of evolutionary activity then P t(go� ; gth) goes in time

to a �xed distribution showing that the bugs all fall into one broad cluster of

species. This occurs typically when 
uctuations in the food supply are small.

In this case, the usage distribution function N(t; u) would be dominated by

one long-lived cluster of activity waves, overshadowing a carpet of short-

lived waves re
ecting new mutations that all quickly become extinct. On

the other hand, if there is a high level of evolutionary activity, P t(go� ; gth)

in time develops disjoint peaks that move about and eventually collapse.

This phenomenon occurs typically when large quantities of food are put into

the environment relatively infrequently. Plentiful food apparently causes a

rapid proliferation and variation of organisms near a particular genome, fol-

lowed by dying out of large fractions of the population, followed by another

rapid proliferation, and so on. In this case, when distinct subsidiary species

continually split o� from the main population, N(t; u) would show the back-
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ground cluster of waves overlying a continual stream of relatively long-lasting

secondary waves.

In general, usage statistics can be gathered for any computationally imple-

mented model that contains explicit micro-level rules governing the behavior

and structure of organisms in the population. This is true even when the

micro-level rules are computationally more complex than the look up tables

of the strategic bugs. Thus, the style of usage bookkeeping implemented for

the strategic bugs can quantify evolutionary activity in virtually any arti�cial

life model biosphere.

4.2 Natural Biospheres

If gene usage is de�ned as for strategic bugs, our measure of evolutionary

activity A(t) is well de�ned for actual biological populations, at least in prin-

ciple. In practice, however, it is virtually impossible to get data about per-

sistent gene usage from actual biological organisms. This makes it virtually

impossible even to count gene usage in natural biospheres. Furthermore, in

many actual biological populations it is di�cult to tell exactly which strands

of DNA have adaptive signi�cance.

However, there are other levels at which one could count usage in actual

biological populations. For example, one could choose species as the micro-

scopic functional units. Then, general patterns in the evolutionary activity of

actual biological populations could be rendered quanti�able using data from

the fossil record or from living populations in the �eld or the laboratory.

When we counted usage for the strategic bugs, usage of a bug's gene

was incremented every time the bug encountered a strategy gene's input

condition and acted as prescribed in its output condition. A species does

not correspond to any single given behavioral input-output rule; it is a rough

\clump" of roughly \similar" complete strategies (with rules covering all

possible input conditions). So, a new de�nition of the \usage" of a species is

needed. The simplest approach would be to increment the \usage" of a given

species for as long as it persists in the ecosystem, weighted by the proportion

of individuals in the ecosystem that belong to that species. If si(t) were the

proportion of the organisms that were members of the ith species at time

t, the usage ui(t) of that species at that time would be the accumulated
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proportion of the population constituted by the species:

ui(t) =

Z t

0

si(t)dt:

A quite long-lived species, like the shark, would show up as a long activity

wave. The birth of a new species would generate a new activity wave which

would terminate with the species' eventual extinction. The continual pro-

duction of new activity waves would signal the continual generation of new

species.

With usage de�ned at the level of species, it should be possible to obtain

at least a qualitative picture of evolutionary activity from the fossil record.

The evolutionary activity based on this measure of usage should swing dra-

matically at pivotal points in the evolution of the biosphere. The Cambrian

explosion, for example, during which nearly all major groups of invertebrates

with hard parts originated, would be seen as a period with large positive evo-

lutionary activity.

It is instructive to compare our usage statistics with the gene frequency

statistics standardly gathered by molecular geneticists [?]. There are simi-

larities but also important di�erences; for the moment, focus on the usage

of genes. A gene's frequency is de�ned as that proportion of the population

that possesses the gene; if the whole population has a gene, it is said to be

\�xed." If gene usage is incremented each time a gene is used (as in the

strategic bugs), then usage re
ects more than the mere existence re
ected by

a gene's frequency. Even if usage is de�ned by reference to a gene's persis-

tence (as with species above), a gene's usage di�ers from its frequency; for in

this case usage is a gene's integrated frequency. Thus, the molecular geneti-

cists' data showing the route to �xation of one or two genes is qualitatively

di�erent from our data showing large clusters of persistent genes emerging

out of the sea of all possible genes.

4.3 Chemical Systems

In some evolutionary models, the microscopic constituents are so simple that

there is no genetic code, for example chemical soups [?, ?, ?] (and perhaps

also populations of complex clay crystallites [?, ?]). Our measure of evolu-

tionary activity could still be applied in these models, if \usage" were taken
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to be simply the integrated concentration of the chemical species, on anal-

ogy with the equation above for biological species. The de�nition of usage

could also include a weighting for the number of reactions in which a given

chemical species participates; thus, if Ri(t) were the number of reactions for

the ith chemical species at time t, and ci(t) were the concentration of the ith

chemical species at time t, then the usage ui(t) of that species would be:

ui(t) =

Z t

0

Ri(t)ci(t)dt:

In the autocatalytic soup, positive evolutionary activity would correspond to

the ongoing production and persistence of novel forms of chemicals. Again,

as in the genetic case, the intricate nature of the interactions are not com-

pletely captured by our measure of activity, but could be re
ected in activity

patterns.

Chemical soups can represent not only interactions between polypeptide

strings and RNA strands; they can also model interactions between antibod-

ies and antigens in an immune system. Di�erent kinds of antibodies may

be regarded as di�erent chemical species, with their usage calculated in the

same way. The evolutionary time scale of immune systems is short enough to

be readily observable. Thus, there is reasonable hope of actually measuring

this type of evolutionary activity in real immune systems.

4.4 Computational Systems

Populations of information processing units are an especially interesting and

powerful setting for evolution, one with extensive practical implications, in

fact. The strategic bugs are one example of a population of simple compu-

tational units. Other types of computational populations, however, need not

be embedded in a biologically motivated setting.

One computational model within which evolutionary activity can be eas-

ily measured is Fontana's Turing gas [?]. This is a model of interacting

strings, similar to the interacting chemical strings mentioned above, except

that here the strings are information processing elements, functions in a lisp

dialect called AlChemy (for Algorithmic Chemistry). The Turing Gas model

is extremely active because the micro-units interact in a way that is essen-

tially computational. Interaction happens repeatedly between pairs of lisp

functions chosen at random. It occurs as one function is evaluated with
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another as its argument. Interactions can produce null programs (in which

case the interaction is termed \elastic") or a new program (in which case the

interaction is termed \reactive"). Usage counters are attached to each func-

tion present in the population, and incremented with each reactive collision.

These measurements will be reported in future work.

Another kind of computational evolution is produced by genetic learning

algorithms [?], which operate on a population of \hypotheses" described by a

set of genes. These hypotheses are assigned a �tness, which is typically their

suitability for solving some problem. The genetic algorithm changes the pop-

ulation of hypotheses through a process of survival and genetically modi�ed

reproduction of the �ttest. Usage bookkeeping can be easily implemented

in this setting, often with usage counters for each genetic unit, just as for

the strategic bug model. For learning algorithms with more machinery, it

may be necessary to include other aspects in usage count. For example, Hol-

land's classi�er system [?] associates with each classi�er a strength variable,

analogous to the concentration of a species or chemical. A classi�er's usage

could be de�ned as its integrated strength, on analogy with the equations

above for biological and chemical species. In this setting, one would expect

to observe a 
urry of evolutionary activity initially, as a variety of new hy-

potheses are tested, with activity dying down once optimal hypotheses have

been identi�ed.

A more abstract illustration of evolutionary activity is found in the com-

plex patterns produced by the temporal evolution of cellular automata. A

cellular automaton is a population of automata �lling the sites in a lattice.

The dynamics of the automaton maps a con�guration of symbols over the

lattice to another con�guration, using a local rule applied simultaneously at

all sites. The local rule followed by a cellular automaton site is analogous

to a strategic bug's behavioral strategy but, whereas the bugs' strategies

vary between individuals and change over generations, the rule in a cellular

automaton is the same for all sites and never changes. If the number of

symbols is �nite, and the local neighborhood is �nite, a cellular automaton's

local map may be thought of as a look-up table whose inputs are site values

over a neighborhood, and whose outputs are the value of a particular site at

the following time step. Usage counters can be attached to each entry in this

look-up table.

Langton has seen that for certain classes of cellular automata with com-

plex dynamics, the number of neighborhood con�gurations visited slowly
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grows with time [?]. As new local con�gurations are encountered, new usage

activity would be stimulated and activity waves would form. If the set of

local con�gurations visited stabilized to a �xed set, no new waves would be

produced. Although this must eventually happen for any cellular automaton

rule, it might take a very long time compared to the iteration of the rule.

Langton's result thus indicates that cellular automata with complex dynam-

ics might exhibit a primitive form of evolutionary activity that occurs in the

absence of any \genetic" variability.

4.5 Mental Systems

Generating and repeatedly entertaining new ideas seems to be one of the hall-

marks of an active mind. One can view an individual mind, whether real or

simulated, as a macroscopic system, with individual ideas as its microscopic

elements. Evolutionary activity could be measured by attaching usage coun-

ters to ideas. Although di�cult for a real mind, in simulated minds it is

usually quite easy to keep track of \ideas." Even the activity of real minds

might even be able to be inferred from their products, at least in narrow

realms. For instance, in the realm of mathematics, a crude measurement of

evolutionary activity could be implemented by assigning usage counters to

theorems, incrementing them each time a theorem is used to prove another

theorem.

Moving beyond individual minds, evolutionary activity could occur in a

communicating community of mental agents, such as the modern scienti�c

community. Again, the pattern of mental activity could be inferred from pat-

terns in its products. For example, evolutionary activity could be calculated

from the Science Citation Index, with usage straightforwardly de�ned as the

number of citations accumulated by a given article. An interesting feature of

the population of \interacting" articles is that no member of the population

ever \dies." The bulk of published articles would generate activity waves

that move only a very short time; articles referred to quite often would gen-

erate high velocity activity waves, and articles referred to infrequently but

over a long time period would generate low velocity activity waves. Concen-

trated periods of fruitful scienti�c activity would initiate many long activity

waves. The 
attening of most existing waves coinciding with the beginning

of a welter of new waves would signal a scienti�c \revolution" [?].

Evolutionary activity could be applied on social and cultural levels, as
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well, if only one could identify the elementary units of cultural transmission

that Dawkins referred to as memes, on analogy to the genes that encode

our physiological structure [?]. If memes could be identi�ed, evolutionary

activity in a whole culture could be measured with the same bookkeeping

that we have used for genes.

5 Teleology in Evolving Systems

In this section we argue that evolutionary activity may be interpreted as a

measure of the extent to which an evolving system's behavior is teleological,

i.e., goal-directed or purposeful. After brie
y describing what teleology is,

we argue that it is related to evolutionary activity in the strategic bug model.

Any attempt to revive teleology in biology runs the risk of provoking contro-

versy and criticism. As J. B. S. Haldane once quipped, \Teleology is like a

mistress to a biologist: he cannot live without her but he is unwilling to be

seen with her in public." Thus, we make sure to explain why the teleology

in activity waves is perfectly respectable.

5.1 The Nature of Teleology

Behavior that can be explained by reference to the utility of its e�ects we

will call teleological (telic, goal-directed, purposive, for the sake of some end),

and a telic explanation will explain something by reference to its bene�cial

e�ects [?, ?, ?]. Our's is not the only approach to teleology; comparisons

with the three most attractive alternatives are detailed elsewhere [?, ?].

In ordinary parlance, telic explanations are o�ered for a wide variety

of things, such as the behavior and structure of biological organisms and

their parts, the actions of conscious human agents, and the structure and

behavior of artifacts designed and used by people. All of these can be given

some variation of telic explanation [?]. In each case, an essential part of the

explanation is a bene�cial e�ect brought about by the thing being explained.

The bene�t promoted by any form of telic activity can be identi�ed with

the activity's purpose or goal. In the case of a human being consciously

trying to produce some speci�c bene�cial e�ect, the telic agent is consciously

and explicitly aware of the goal. But some goal-directed activity is directed

to goals that are not entertained consciously or explicitly; in these cases, the
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\goal" is simply a bene�cial e�ect that explains the activity [?].

Functionality is sometimes confused with teleology; the two are related,

but they must be distinguished. Functional behavior is merely any behavior

that is bene�cial, that \serves a purpose," regardless of its cause. Telic or

goal-directed behavior, on the other hand, is not merely functional or bene�-

cial; it does not merely serve a purpose. It must occur speci�cally because it

is bene�cial, because it serves a purpose. Telic behavior cannot occur merely

accidently or for some reason wholly unconnected with its utility.

For a given organism at a given time in a given local environment, there

is a range of possible behaviors that would be more or less functional (ben-

e�cial). The \temporary local optimization criteria" set for a species by the

evolutionary dynamics (recall the discussion in section ??) are the criteria

for its maximal local functionality. If an organism contains a favorable new

mutation, the new behavior caused by the mutation might immediately be

functional. But that behavior will not be telic until its utility becomes a

causal factor in its continual production. This can happen if the behavior

persists through a lineage because of its utility.

5.2 Telic Activity Waves

The presence of activity waves in the strategic bug model re
ects the occur-

rence of this sort of telic behavior. The usefulness of a gene is tested when

and only when it is used. Unused genes exact no tax, so their \persistence"

means little. But a well-tested gene persists in the gene pool only if the gene

makes a signi�cant contribution to the welfare of those organisms containing

it. So, the presence of an activity wave shows not only that a signi�cant

number of genes are useful; it shows that a signi�cant number of genes are

present in the gene pool because they are continually verifying their useful-

ness. That is, these genes, and the behaviors they encode, persist because

the behaviors are continually performed and continually bene�t the organ-

isms exhibiting them. Thus, activity waves re
ect teleological behavior, and

the continual production of new activity waves re
ects the continual emer-

gence of new teleological behavior. In this context, then, it is appropriate to

speak of telic activity waves.

It might seem that not all genes that contribute to a telic activity wave

need be bene�cial. After all, an organism might use a harmful gene a num-

ber of times and still pass it on to o�spring, provided the organism possessed
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enough other genuinely bene�cial genes to outweigh the harm produced by

the use of the harmful gene. Thus, a harmful gene could acquire some positive

usage. However, harmful genes make no signi�cant contribution to telic ac-

tivity waves. For one thing, a harmful gene is unlikely to persist long enough

to contribute to net persistence P (t). But more importantly, since activ-

ity waves occur on much longer time scales than generations, the continual

persistence of well-tested genes cannot be attributed to happenstance. Telic

activity waves re
ect genes that persist because they contribute to strategies

of proven usefulness. They are not merely useful; they persist because they

are useful. Thus, the behaviors in these well-tested strategies are teleological

(goal-directed), not merely functional.

The behavior of a strategic bug is genetically hardwired, \instinctive."

Its strategy allows for no 
exibility of response; unable to deliberate con-

sciously about what course of action to take, the bug cannot \freely choose"

its actions. In a given local environment it has one and only one \option"

for what to do: the behavioral output coded by the gene with that local

environment as input condition. Nevertheless, its behavior can still be gen-

uinely telic, goal-directed, or purposive, because it can be persisting due to

its usefulness. Not every action produced by every gene in a bug's behav-

ioral strategy is telic; it depends on why the bug has the gene. If a particular

gene is present in the bug's genome because that gene has produced behav-

ior that was bene�cial for the bug's ancestors, then the (instinctive) behavior

produced by that gene will be telic. Instinctive behavior of this sort is the

simplest kind of genuinely telic behavior. More than merely functional, it is

a limiting case of teleology, located on the telic spectrum at the opposite end

from behavior produced by open-ended conscious deliberation.

Are all evolutionary activity waves telic? Our argument that activity

waves in the strategic bug model are telic depends on the premise that a

persistent gene is valuable, in the sense that it bene�ts the organism by

enabling it to gather more food. The activity waves that might occur in other

systems discussed above do not necessarily have a similarly unambiguous

value-based interpretation. An evolutionary activity wave is telic only if

there is a value in the persistence re
ected in the activity wave. At this point,

there is no theory of value comprehensive enough to include all the systems

discussed above, though for many of the systems a value-based interpretation

is intuitively clear. For such systems, the activity waves are telic; for others,

the question remains open.
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5.3 Worries about Biological Teleology

Today, any form of teleology in biology tends to be viewed with suspicion

and dismissed. The controversy stems partly from the di�erences among the

many kinds of teleology. Technical terms like \teleonomic" have been intro-

duced in the attempt to evade the controversy [?, ?]; ironically, these neolo-

gisms are used so divergently that they just add to the confusion. Whether it

is fair to criticize biological teleology depends on the speci�c kind of teleology

involved. We believe that the teleology re
ected by telic activity waves is

no cause for embarrassment; at least, it does not revive any of a quartet of

familiar objections.

Anthropomorphism. One complaint is that teleology in biology anthro-

pomorphizes nature (e.g., [?, ?]). This complaint takes two forms: Teleol-

ogy might require either that each biological creature possesses sophisticated

mental capacities analogous to those possessed by a person (mentalism), or

that the diversity of well-adapted creatures is the result of the activities

of a mental deity (the Designer supported by the notorious argument from

design).

Worries about the argument from design would clearly be misdirected

at telic activity waves. The teleology in telic activity waves presupposes no

deity directing things behind the scenes. The more general worry that all

teleology at bottom is mentalistic can also be de
ected once it is realized that

biological goals can be non-conscious. In the strategic bug model whether an

organism remains alive is determined by whether it continues to �nd food,

but the organisms are not \aware" that �nding food bene�ts them. Thus,

�nding food should not be considered to be an organism's conscious goal.

Nevertheless, since �nding food is what in fact determines whether an organ-

ism survives, it can be considered to be an organism's non-conscious goal.

As explained above, there is no requirement that all teleology be mentalistic

and involve conscious goals; a non-conscious goal can be su�cient for tele-

ology provided that it causes behavior that realizes the goal. In particular,

the teleology in telic activity waves involves no mentalism. The behavior en-

coded by well-tested genes is teleological because it can be explained by its

good consequences, but those good consequences are merely non-conscious

goals.

The model could be enhanced in such a way that it could give rise to men-

tal teleology. Organisms would need a more complex information processing
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mechanism with the capacity to have explicit goals for which sub-goals can

be formed in response to environmental contingencies, and with the capacity

to gather information about what sub-goals are feasible in the current local

environment. Whereas survival is measured on a time scale spanning gen-

erations, psychological value would be measured on the time scale within a

single lifetime. So, whereas biological teleology takes place through a lineage

existing over many generations, mental teleology would take place within one

lifetime.

Predetermined Goals. Another reason for the jaundiced attitude towards

teleology in biology is that teleology is thought to require that the evolution-

ary process itself has a predetermined goal (e.g., [?, ?]). Speci�cally, even

if there is no Master Designer, teleology still must involve a Master Plan,

a speci�c set of predetermined speci�cations for each species. The worry is

not that the development of our model of biological teleology would show

an average statistical trend (e.g., continual evolutionary activity); on the

contrary, this would be desired in a model, since the actual biological world

apparently exhibits the same statistical trends. The worry is that the geno-

type and phenotype of the organisms produced by the evolutionary process

are determined a priori, independently of local environmental and ecological

contingencies.

However, the sort of teleology signaled by telic activity waves involves

no predetermined goals. Rather, the form to which organisms will evolve

is determined by whatever happens to be su�ciently bene�cial in the con-

tinually changing local biological context. (Recall the discussion of intrinsic

adaptation in section ??.) Rather than being speci�ed in advance, the or-

ganisms' forms depend on random, non-teleological genetic changes and the

contingencies of the struggle for survival. So, the teleology in telic activity

waves emerges a posteriori.

Future Causation. Teleology in biology is sometimes thought to require

that events in the future (the realization of goals) have causal e�cacy over

present behaviors, a sort of \future causation" that seems patently absurd

(e.g., [?]). Indeed, our view of teleology might appear to involve future

causation, but this appearance evaporates under scrutiny.

Biological events can be viewed on either a micro or a macro level. The

micro perspective involves events on a time scale within a generation. >From

this perspective, an individual organism's behavior has a telic explanation

when it occurs because in the past the same kind of behavior helped the
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organism or the organism's ancestors to 
ourish. A behavior's past bene�cial

e�ects cause the same kind of behavior in the present, which might well

cause further manifestations of the same kind of behavior. The causation in

this explanation is of the ordinary kind|past events causing present events.

By contrast, the macro perspective involves a time scale spanning many

generations. From a vantage abstracted from individual generations, one can

say simply that a teleological behavior occurs because on average that kind

of behavior promotes (in a tenseless sense) the survival of those organisms

that exhibit the behavior. This kind of merely apparent future causation at

the macro level is harmless because it is underwritten by ordinary causation

at the micro level.

Value and Subjectivity. Our interpretation of teleology requires that good

e�ects are causally e�cacious. Some might judge that this reference to an

e�ect's goodness or value is inescapably subjective, possibly on the grounds

that all value judgments are inherently subjective. However, we believe that

an objective criterion of an organism's welfare is its ability to survive and

reproduce. In the strategic bug model, an organism's welfare consists of no

more and no less than this.

We ignore other possible components of an organism's welfare, not be-

cause we believe that there could be none, but merely to simplify our model.

A more complicated model could incorporate bene�ts that are unconnected

with a creature's survival, such as pleasures, the satisfaction of desires, and

other \psychological" goods. In the strategic bug model, however, all telic

phenomena are shaped by their value simply for survival and reproduction.

6 Vitality as a Test for Life

What is life? How can it be recognized? In an everyday context these

questions seem tantalizingly clear|a cat is alive and a rock is not. But

formalizing this distinction is di�cult, especially if the formalization is to be

used in empirical measurements.

Life is usually thought of as a property of individual organisms. We pro-

pose to make a gestalt switch and view life from a more global, statistical

perspective. No single molecule of gas has a macroscopic property like tem-

perature; temperature is meaningful only for large populations of molecules.

Similarly, no single organism exhibits inde�nitely ongoing life; in the long run
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not even a lineage remains alive. Individual life is \here today, gone tomor-

row" and, in fact, intuitively this transitory nature is one of its characteristic

features. >From a global perspective, only the complex web of interacting

organisms|the entire biosphere|remains \alive" in the long run, through

the continual cycle of birth and death of individual organisms. So, rather

than try to de�ne what it is for an individual \microscopic" organism to be

alive, our concern is with what it is for a \macroscopic" system (population

of organisms) to exhibit the property of inde�nitely ongoing life.

Evolutionary activity is an especially salient global property of popula-

tions of living organisms; it seems that they cannot help but evolve, at least

in the long run. In addition, minds and other non-biological systems with

lots of evolutionary activity exhibit a kind of \liveliness." Thus, we will say

that a system is vital if and only if it has positive evolutionary activity.

We believe it is fruitful, theoretically and experimentally, to link the no-

tions of an individual's life to the vitality of the global system in which the

individual lives. In fact, this link is already suggested by the common claim

that an organism is alive only if it is a member of an actively evolving bio-

sphere [?, ?]. Our measure of evolutionary activity sharpens this claim into

the following life-vitality hypothesis: Vitality|positive evolutionary activity

A(t)|is a necessary condition of systems containing living individuals, and

the measure of the vitality of a system of living individuals is the rate at

which new telic activity waves are generated. Note that in the hypothesis

vitality is only necessary for a system to contain living elements; it is not

su�cient since the ideas entertained by a vital mind, for example, are not

alive.

It is important to recognize what the life-vitality hypothesis is not. It is

a contingent fact that the biosphere is the product of evolution; life might

not have been linked to evolution in the way that it is. Organisms could have

been designed and created by an omnipotent deity, and there could have

been eternal, non-evolving forms of life, such as angels. Similarly, medical

technology could improve to the point that individual organisms remain alive

inde�nitely and thus never evolve. These fanciful possibilities show that the

life-vitality hypothesis is not a conceptual necessity; rather, it is the sort of

contingent empirical claim that is characteristic of hypotheses in the natural

sciences.

Certain facts about the biosphere might seem to contradict the life-vitality

hypothesis. Infertile individual organisms live and die without a�ecting the
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evolutionary activity of their population. Furthermore, the individuals in

a lineage or a sub-population are all alive, but certain lineages such as the

shark have persisted without evolving appreciably for a quite long time, and

certain sub-population of infertile organisms such as mules are simply inca-

pable of evolving. But these admissions do not contravene the vital systems

hypothesis, for infertile individuals and infertile sub-populations are always

transitory members of a global biosphere which is certainly evolving in the

long run. You can't get a mule or a shark except from a vital biosphere.

The possibility of an ecology that has reached a stable \climax" state

and stopped evolving challenges the life-vitality hypothesis more directly.

Although the existing genetic combinations in a climax biosphere would cre-

ate continually propagating activity waves, the gene pool would no longer be

absorbing new genetic variations. Thus, a climax biosphere would produce

no new activity waves and its evolutionary activity A(t) would consequently

drop to zero. In this straightforward sense a static climax biosphere is \less

vital" than one that is continuously evolving. Yet the organisms in the bio-

sphere would still be merrily living. Thus, for climax biospheres the vital

systems hypothesis breaks down. However, the extent of this breakdown

vanishes in the long run, it seems, for real biospheres apparently do not

remain inde�nitely in a state of climax. On the contrary, in the long run

biospheres seem to continue to evolve.

The �eld of arti�cial life is searching for a de�nition of life; even better

would be a criterion of life|a public, empirical, repeatable, quanti�able test

for whether a system (possibly arti�cial) is alive. The analogous situation in

arti�cial intelligence is how to tell whether a system is thinking. Forty years

ago Alan Turing proposed a criterion for thinking|the famous Turing test

[?]. What the �eld of arti�cial life needs is an analogue of the Turing test.

Although public, empirical, repeatable, and quanti�able, the Turing test

has two limitations: it detects thinking only indirectly, through its e�ects on

overt behavior, and it evaluates this behavior through the subjective opinions

of a panel of human jurors. It would be preferable to have tests that directly

and objectively measure whether (and to what extent) a machine, or a model

being implemented on a machine, exhibits intelligence or life.

Our quantity A(t) is a direct and objective measure of a system's vitality

or evolutionary activity. Thus, by invoking the life-vitality hypothesis, A(t)

provides a direct and objective measure of the degree to which a system

exhibits life, yielding a Turing test for life.
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As we noted in section ??, a biosphere's vitality also is a measure of its

teleology. This leads to another link between vitality and life. Purposeful

behavior has often been cited as an especially characteristic sign of individual

life [?, ?, ?, ?, ?]. But this proposal has been unhelpful until now, since no

way to quantify and measure purposefulness was known. If this teleology-

life relationship is recast at a global level, as we have done for the link

between evolution and life, then telic activity waves allow teleology to be

quanti�ed. Purposeful behavior is signaled by telic activity waves, and the

level of vitality measures the degree to which new purposeful behavior is

continually emerging. Thus, vitality at one fell-swoop quanti�es two intuitive

signs of life: evolutionary activity and purposeful behavior.

Measuring vitality in models that include psychological factors could also

provide a direct and objective substitute for the original Turing test itself.

If the mind is viewed as a global, statistical system, positive activity would

indicate a mind's continual incorporation of new behavioral or psychological

patterns of activity (cf section ??). Statistics such as our measure of evolu-

tionary activity might provide a method for quantifying the purposefulness

common to both life and mind.
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