A Fast Adaptive Layout Algorithm for Undirected
Graphs
(Extended Abstract and System Demonstr ation)

Arne Frick*, Andreas Ludwig, Heilko Mehldau

Universitat Karlsruhe, Fakultat fir Informatik, D-76128 Karlsruhe, Germany

Abstract. We present arandomized adaptivelayout algorithm for nicely drawing
undirected graphs that is based on the spring-embedder paradigm and contains
several new heuristicsto improve the convergence, including local temperatures,
gravitational forces and the detection of rotations and oscillations. The proposed
algorithm achieves drawings of high quality on a wide range of graphs with
standard settings. Moreover, thealgorithm isfast, being thus applicableon general
undirected graphs of substantially larger size and complexity than before [9, 6, 3].
Aesthetically pleasing solutions are found in most cases. We give empirical data
for the running time of the algorithm and the quality of the computed layouts.

1 Introduction

The problem of obtainingan aesthetically pleasing drawing of agivengraph G = (V, E)
is receiving increasing attention in the literature [2, 1]. One way of dealing with this
problem is the construction of straight-line drawings, in which each edge is mapped
into a straight-line segment in the plane. The problem then reduces to the problem of
positioning the vertices v € V' by determiningamapping ¢ : V' — IR2.

Therearemany criteriafor judging theaestheticsof agraph drawing [12]. Amongthe
most influentia arethe display of symmetriesexistingin the graph and the minimization
of edge crossings. Furthermore, edges should have as few bends as possible, and the
deviation on their lengths should be small. The area used for drawing should be as
small as possible, while the vertices and edges should be evenly distributed in the area.
Connected vertices should be close to each other.

Straight-line drawings avoid bends in edges by definition. The remaining criteria,
however, cannot be matched optimally in polynomial timeunless P = AP. Therefore,
only good approximationsto an optimal solution appear to be feasible given the current
state of the art. Even more so, simultaneous optimization for several criteriacan involve
quality tradeoffs as there exist incompati bl e combi nations. Examples and references are
given in the full paper. After introducing some notation in Sect. 2, we briefly describe
heuristics to obtain good approximationsto the simultaneous optimization problem in
Sect. 3.

We continue with a detailed discussion of the proposed algorithm called GEM in
Sect. 4. Empirical data on the convergence and the time complexity of the proposed

*EMail: fri ck@ nf or mati k. uni - karl sruhe. de

algorithm on different types of graphsis presented in Sect. 5. The results are compared
to thosefor publicly availableimplementationsof other force-directed agorithms [9, 6].

We conclude with some suggestionsfor further investigation before we complement
thenumerica datawith graphical output fromthe Gem a gorithm. Appendix A describes
GEMDRAW, the algorithm development environment, while App. B contains drawings
for several types of graphs, including well-known ones from the literature.

2 Notation

Throughout this paper, we use the following notation for graph sizes and density. We
shall use the following conventions to classify graphs into different groups. Graphs
of size |[V| < 16,32,64,128 and V' > 128 are caled tiny, small, medium, large,
huge, respectively. We acknowledge that thispartitionis somewhat arbitrary, but it does
reflect the fact that almost all methods discussed bel ow focus on tiny and small graphs,
while few handle medium-sized sparse graphs, not to mention large or huge ones. We
further distinguish between sparse, normal and dense graphs (| E| < |V, |V] < |E]| <
3|1V, |E| > 3|V]). Thisis motivated by the fact that trees should be considered sparse,
while meshes, tori and hypercubes of small dimension represent the normal case.

3 Previous Approaches

The known heuristics for constructing a straight-line drawing of an undirected graph
can be classified into three groups according to the computational model employed.

The spring embedder model for drawing undirected graphs is due to Eades [4]. It
generalizes previoudy known algorithmsfor the layout of PCB’s [5, 8]. Using an anal -
ogy to physics, vertices are treated as mutually repulsive charges and edges as springs
connecting and attracting the charges. Starting with an arbitrary initial placement of
vertices, the algorithm iterates the system in discrete time steps by computing the forces
between vertices and updating their position accordingly. The algorithm stops after a
fixed number of time steps. An obvious drawback with this approach isthat the mass-
spring system may not have converged after the fixed number of steps while on the
other hand, time is wasted unnecessarily if this number is chosen too large. Although
the algorithm does not explicitly support the detection and display of symmetries, it
turned out to display symmetriesif any exist. Kamada and Kawai [9] refined the model
subsequently. They introduce a optimal edge length k. Vertices are updated sequentially
by moving only one vertex at each time step. The agorithm performs a gradient de-
scent and converges deterministically to alocal minimum. The time complexity of the
approach cannot be expressed intermsof |V| and | E|.

In optimization theory, researchers have introduced randomness to overcome the
problem of ending up inlocal minima. They use atechnique from statistical mechanics
called simulated annealing [13, 10] allowing for changesinto states with higher energy.
An arbitrary state change is computed. Any downhill move is accepted, while “uphill
moves’ are accepted with a probability depending on a current temperature. Initially
the system has the ability to perform arbitrary moves because the temperature is till

high. Later, the probability of choosing a next state with more energy approaches zero
as the temperature is lowered. Davidson and Harel [3] employ simulated annealing to
achieve aesthetically pleasing results on small and medium-sized graphs. The approach
isflexibleinthat it can easily be adapted toincorporate other quality measures or weights
in the cost function, but unfortunately it is very slow. Independently, Fruchterman and
Reingold [6] modified Eades’ algorithmby introducingasimplecooling schedule. Their
algorithmis deterministic in that it only performs loca optimizations. The distance a
vertex can travel at agiven timeislimited depending on the current temperature.

The third group of heuristics is based on preprocessing of the graph to get a good
initial placement [15, 14]. The full paper containsreviews of these.

4 TheGeM algorithm

The agorithm proposed in this paper is called GEM (short for graph embedder). It con-
tains several novel algorithmicideas. These include the concept of aloca temperature,
the attraction of vertices towards their barycenter and the detection of oscillations and
rotations.

The major design goal was that interactive speed should be achieved even for
medium-sized graphs. We consider adrawing to beinteractiveif it takes lessthan 2 s to
compute. To thisend, we designed GEM to rely on fast integer arithmetic.

We hypothesized that randomization works in the domain of force-directed graph
drawing. Therefore, randomization plays an important role in several places of the
algorithm.

The discussion of the GEM agorithm starts with the observation that cooling sched-
ules appear to give better results than methods relying solely on a gradient descent, but
their running timeisunsatisfactory. Temperatures asused in GEM indicate the maximum
distance a vertex can travel when being updated. The temperature scale has adirect in-
fluence on a suitable choice of other parameters, i.e. the constants used in the formulae
for the attractive and repulsive forces.

Fruchterman and Reingold [6] conjectured that better cooling schedules should
allow much more efficient algorithmsthan theirs. Davidson and Harel [3] first suggested
an adaptive cooling schedul e but did not explore on theideafurther. Asto our knowledge,
thealgorithm proposed in thispaper isthefirst approach using thisidea, althoughwe do
not employ acooling schedulein the strict sense. Rather, the algorithmadaptsto thedata
locally and does not require global cooling as assumed by a schedule. For each vertex,
alocal temperature is defined that depends on its old temperature and the likelihood
that the vertex oscillates or is part of a rotating subgraph. Local temperatures raise if
the agorithm determines that a vertex is probably not closeto itsfina destination. The
global temperature is defined as the average of the local temperatures over all vertices.
Thus, it indicates how stable the drawing of the graphiis.

The proposed algorithm consists of two stages, aninitiaization stageand aniteration
stage. The initiadization consists of the assignment of an initial position, impulse and
temperature to each vertex. The main loop updates vertex positionsuntil the globa tem-
peratureislower than a desired minimal temperature or the time allowance has expired.
An abstract algorithm for GEM isdepicted in Fig. 1. Althoughwe found in practice that

most graphs would easily cool down to 71, we cannot exclude the possibility of a
graph moving chaotically between rounds. This can be solved by choosing 71, 1arger.

procedureGEM is 1
-- Input: 2
- G = (V,E) graphwhere 3
-V =setof record 4
- & -- current position 5
-- p -- lastimpulse 6
- t -- local temperature 7
- d -- skew gauge 8
- Rmax maxima number of rounds[4|V]] 9
- Tmax upperbound on local temperature [256] 10
-~ Twmin desired minimal temperature [3] 11
-- Output: for each v € V, apositionis computed 12

13

forall v € V do 14
initialize v 15
while Tg1oba1 > Tmin @nd #rounds < Rpax dO 16
choose a vertex v to update; 17
compute v’simpulse; 18
update »'s position and temperature; 19
end; -- GEM 20

Fig. 1. Main loop of the GEM algorithm

Vertices are moved sequentially according to a choice function. Assuming that
vertex v was chosen to be updated, the attractive and repulsive forces acting on v are
computed. In addition, agravitational force pulling the vertex towardsthe barycenter of
thevertex cluster isassumed. The use of gravitationaccel erates the convergence of GEM.
In addition, it helps to keep disconnected graphs and loosely connected components
together.

The resulting force is scaled with v’s current temperature to form the impulse of
v such as to reflect the algorithm’'s “knowledge” of the state of computation. A low
temperatureindicates either that the layout isalmost stable (at least locally) or that there
exist oscillations or rotations. In each case, movements should be short. GEM has the
ability to leave wells containing local energy minima, since local temperature increases
change the globa energy distribution. Relative to the old distribution, uphill moves
become possible. Unfortunately, this feature makes proofs of convergence hard, if not
impossible.

We now discuss in turn the initialization stage (Sect. 4.1), the choice mechanism
(Sect. 4.2), theimpul se computation (Sect. 4.3) and the adjustment of the local temper-
ature (Sect. 4.4).

4.1 Initialization

Every vertex is initialized with a zero impulse vector p = 0, a direction skew gauge
d = 0 and an initial temperature 7in;;. In general, we can confirm the claim of Ka
mada/Kawai [9] that initial positionsdo not have great influence on the resulting pi ctures
but on the number of rounds to be performed to reach equilibrium. A random initia
placement usually suffices for convergence, but we observed that certain structureslike
binary trees and meshes may gain from the computation of an initial placement by
inserting the vertices one-by-onein an initia round.

4.2 Choiceof avertex to update

GEM uses a sequential update strategy, i.e. a single vertex is updated in each iteration.
Our hypothesis suggests a random choice. We found indeed that GEM converges faster
with a random choi ce mechanism than with a deterministic schedule.

To achieve a random selection, we proceed as follows. Iterations are grouped into
rounds. At the beginning of each round, arandom permutation is determined according
to which the vertices are chosen. The complexity of choosing a permutation can be
amortized to O(1) per iteration as there is an O(n) algorithm to compute a random
permutation on n elements[11].

4.3 Impulse Computation

GEM memorizes the last movement for each vertex. In analogy to physics, we refer to
thisinformationastheimpul se of thevertex. The computation of theimpul seisgoverned
by several global constants, a desired edge length? and a gravitational constant factor
~v determining how strongly a vertex is driven towards the barycenter® of the current
layout. This additional attractive force has two important effects: unconnected and
loosely connected components are not separated too far, and it may lead to a 30%
increase in convergence speed.

The agorithm for computing the new impulse of asinglevertex v isgiveninFig. 2.
The function ¢ mentioned therein is a scaling factor giving vertices with many edges
moreinertia Thisimproves the layout quality in some cases, eg. Fig. 18.

4.4 Temperature adjustment

After computing the current impulsefor vertex v, itspositionis updated. If v’simpulse
was non-negligible, we update v's internal data structures (see Fig. 3).

A new local temperaturefor v iscomputed based on thelast temperature, thelast and
current movement and the skew gauge v.d indicating the likeliness of v oscillating or
being part of arotation. The detection of rotations and oscillations requires knowledge
of sin(5) and cos(3) where 3 = /p, v.p.

2 Thisisthe same as the “ optimal” edge length of [6].

2 1t is important to use the barycenter as opposed to the center of the layout area, as the latter
would force afinished graph to move until its barycenter coincideswith the center of thelayout
area.

-- Input: 1
- v vertex to be updated 2
- ¢ >, u.£; the barycenter of G is computed asc /| V| 3
- @ function growing with deg(v)[1 + deg(v)/2] 4
-- Output: 5
- p current impulse of v 6
-- Constants and Functions: 7
- FE4es desired edgelength [128] 8
-y gravitational constant[1/16] 9

10
-- attraction to center of gravity 11

p:=(c/|V| —v.pos) - v - ®(v); 12
-- random disturbance 13
é:=small randomvector; -- default range: [—32, 32] x [—32, 32] 14
pP:=p + 6; 15
forall w € V'\ {v} do 16
-- repulsive forces 17
A=v.§£ —u.k 18
if A+#O0thenp:=p+ A E5../|A|%; 19
forall (v,v) € E do 20
-- attractive forces 21
A=v.§£ —u.k 22
pi=p — A - |AP/(Ei.. - &(v)); 23

Fig. 2. Impulse computation

Vertex rotations occur for example if the final layout has been found, but the tem-
perature is still too high. Under rare circumstances, agraph in rotation never converges,
so cooling down is an appropriate thing to do whenever non-negligible rotations are
detected.

A rotationisassumed when repeatedly 4 had the same sign and waswithinarotation
sensitiverange as depicted in Fig. 4, inwhich v.p isthelast impulse of v, whileps, p2
and p; are possible directions for v's current movement. py, p2 and ps are examples
of amovement intheright direction, arotation and an oscillation, respectively.

This situation triggers the skew gauge v.d. The more |v.d| approaches 1, the more
unbalanced it is. v.t isscaled down by v's unbaancedness as this is a measure of how
likely v ispart of arotation. The choiceof ascalefactor o, alowsfor necessary rotations.

A vertex is subject to an oscillationiif its last and current impulse point in opposite
directions, which is detected by testing whether cos(3) < 0. If thisis the case, GEM
assumes that the vertex has just passed its right position and lowers the temperature
according to a sensitivity factor o, assuming that it had passed its optimal position and
will turn around again in the next round. Subsequent oscillations will therefore finaly
freeze the vertex.

To the opposite, if v's current impul se has approximately the same direction as the

-- Input:
- vertex to be updated
- p current impulse of v
-- Output:
- with updated &, t,d, p
-- Constants:
- Twmax Mmaximal temperature[256]
- opening angle for oscillation detection; a, € [0, 7/2] [x]
- o opening anglefor rotation detection; o, € [0, 7] [x/3]
- 0 sensitivity towards oscillation; 5, > 1 [1/3]
- o sensitivity towards rotation; o € (0,1] [1/2|V]]
if p # 0 then
p:=v.t - p/|p|; -- scalewith current temperature
v.£:=v.€ + p;
c:=c + p; -- savethedivision at this point
if v.p # 0 then
B=Lp,v.p;
if sin 8 > sin(7/2 + a;/2) then

-- rotation

v.d:=v.d + oy - sgn(sin 8);
if | cos 8| > cos(a,/2) then

-- oscillation

v.t:=v.t - 0, - cos 3;
vit=vt- (1 —|ud]);
v.t:=min(v.t, Trax);
v.p=Dp;

Fig. 3. Temperature update algorithm

Rotation | o, a, | Rotation

Oscillation

Fig. 4. Detection of rotations and oscillations

QWO ~NOOUITA,WNPE

NNNNNNNNNRPRPRPRERPRRRRR R
NOUORWNRPOOONOUODNWNIER

last one(cos 5 =~ 1), GEM interpretsthisasamoveinthe“right” direction and raisesthe
temperature somewhat to accelerate v's next movement. An opening angle «,, controls
the sensitivity towardsthis situation.

Of course, the opening angles «,, and «,. have to be chosen carefully. Otherwise,
they might not be sensitive enough or cause overreactions.

After computing the new local temperature and perhaps adjusting the skew gauge,
some housekeeping is done in order to update the barycenter. Having done so, the
iteration isfinished.

5 Measurements

In this section, we compare the runtimes of the GEM algorithm with those of publicly
available implementations of the Kamada/Kawai and Fruchterman/Reingold algorithms
contained inthe GraphEdtool [7] subsequently called KK and FR, respectively. Our test
suite consists of 30 graphs of different types, sizes and densities. All measurements have
been conducted on a SparcStation 10 using the GraphEd test suite procedure. Dueto the
unavoidable overhead incurred by the UNIX operating system, these timings should be
interpreted as a rel ative comparison and not as a performance benchmark.

An important determining factor are the parameters to the algorithms. In each case,
we used thedefault values. As mentioned in the source code for FR, the implementation
is heavily optimized. GEM was run in single-insertion mode for the initial placement.
Hard-coded animation output inthe KK code was commented out to achieve competitive
test conditions.

A priori, we expected GEM to outperform KK and FR in terms of runtime as we
rely on integer arithmetic only, but it was unclear how randomization and the inherent
imprecision would influence the quality of the drawings. The resulting runtime and
quality measurements are given in Fig. 1. The quality data measured for each drawing
includes the number of edge crossings x, the mean edge length E (used for scaling
of the results), the edge length deviation £/, the minimal vertex distance Dy,i, and the
maximal vertex distance Dyy.x. The values for £, Dyin and Dyy.yx are scled by E as
to ensure comparability of the results.

6 Resaults

Asall compared d gorithmsstriveto satisfy the same aesthetic criteria, itisnot surprising
to find that the quality measurements yield similar results. On the average, we observed
that GEM performs dlightly better than FR. On small sparse graphs KK gives dightly
better results but becomes considerably worse on large graphs.

The quality of GEM drawings is good. Considering that the heuristics used in the
quality function have no notion of a crossing-free drawing, the algorithm surprisingly
often results in planar embeddings. In comparison to FR and KK, GEM can resolve
cycles and foldingsin parts of the graph easily (see Fig. 11) as indicated by the low
number of edge crossings.

In our experience, GEM can cool every graph downto 5°. In most cases, thedrawings
are not significantly worse than those for the default 7.,;, = 3°.

graph

GEM

KK

FR

|Name [V| |E| Density(time[s] ¥ £ Dmin Dmax| timels] X £ Dmin Dmax|timels] x £ Dmin Dmax
1 [Binary Tree 15 14sparse || 013 001450851 6.117] 075 00.0300952 5550 054 00.2160.771 6.353
2 |Path 16 15sparse | 019 00.0820.82110.961| 097 00.0480.90313.057| 095 00.1300.73512.148
3 |Cycle 16 16normal || 019 00.0180.955 5361 099 00.0370949 5483 070 00.0030.995 5.171
4 |Square Grid 16 24normal || 017 00.0480.943 4300, 115 00.0190962 4231 059 00.0630.935 4.184
5 |Wheel 13 24normal || 012 00.3190643 2.681] 062 402530522 2647| 010 00.3180.675 2.643
6 |Hypercube4D 16 32normal | 015 2404130337 2004 108 220.1810.323 2.738| 0.06 24 0.064 0.478 2.685
7 |Kss 16 64 dense 023 5960.2570.298 1911 157 6860.2360.214 1.670| 1.75 6240.6910.782 4.235
8 |Kiz 12 66 dense 0.15 4060.3710431 1619 0.73 4020.3710.427 1577 1.05 407 0.3710.443 1.608
9 [Star 24 23sparse | 028 00.1320.326 2213 288 001870139 2346/ 1.83 00.1850412 2263
10 |Binary Tree 31 30sparse | 052 002050611 8677 644 101310510 7.947| 292 00.3150535 9554
11 |Dodecahedron 20 30normal | 022 60.1490.403 3603 1.84 100.1300.452 3539 0.69 100.137 0567 3511
12 |Hypercube5D 32 80normal | 0.42 1770.0490.221 3.189 7.42 1680.1190.237 3.215| 1.43 177 0.0620.000 3.150
13 |Triangular Grid 28 63normal || 037 00.0990.809 6.109] 514 00.0400.902 6.079] 131 00.1440.659 6.419
14 | K4 24 276 dense 0.59 81290417 0.305 1.761| 6.15 8347 0.4160.266 1.75| 4.47 7962 0.418 0.344 1.765
15 |Path 48 47sparse | 163 00.0540.803 17.83] 2448 3003013513276/ 651 2 0.180 0.423 14.964
16 |Binary Tree 63 62sparse || 1.90 00.2610.437 12.00| 4923 101150286 9.960| 1058 1 0.418 0.302 14.142
17 |Fibonacci Tree 54 53sparse || 177 002670543 13.84| 3190 30.1310.28310.657| 812 10.407 0.352 15.365
18 |Cycle 48 48normal | 173 000340911 1528/ 2254 10.1160.36414.408| 649 0 0.107 0.666 16.667
19 |Square Grid 49 84normal | 111 000950832 8257| 2688 00056088 8705 621 00.1260.808 8.326
20 |Torus 64128 normal || 1.98 46 0.311 0473 7.894| 6367 5403260220 7.880| 11.7 44 0.454 0481 8341
21 |Triangular Grid 55135 normal || 155 00.1150.718 9.227| 3532 30.094 0552 9.645| 918 00.1730.547 9.654
22 |Hypercube6D 64 192 dense 1.20 1004 0.062 0.211 3.871| 55.86 977 0.2010.119 3.777| 12.27 1000 0.069 0.216 3.806
23 |Binary Tree 127 126 sparse || 919 00.3110.29816.125] 1.26 2044 0.497 0.000 2.324] 4128 2 0.521 0.228 20.311
24 |Hexagonal Grid 96 132 normal || 4.65 00.149 0.764 11.784| 192.75 30.2740.28812.585| 2426 00.189 0.715 11.830
25 |Triangular Grid 120 315 normal | 599 00.124 0.618 14.314| 388.00 0 0.156 0.588 16.028| 4217 0 0.199 0.426 15.072
26 |Path 128127 sparse | 954 00.0530.704 30.189| 432.73 21 0.212 0.034 20.030| 44.14 5 0.265 0.148 26.017
27 |Binary Tree 255254 sparse || 4504 00.367 0.257 21.62[> 1000 186.21 37 0.635 0.000 20.751
28 |Path 256 255 sparse || 37.93 20.086 0.572 41.61|> 1000 181.65 32 0.519 0.000 27.785
29 |Triangular Grid 210 570 normal || 30.88 ~ 00.127 0.563 19.57|2110.06 435 0.266 0.045 19.162|131.63 4 0.219 0.196 20.465
30 |SquareGrid 256480 normal || 71.78 00.118 0.701 20.79|> 1000 197.41 89 0.250 0.000 18.421

'abny 0g—/¢ ‘abre| 9z—€z ‘winipew gz—ST ‘|lews 16 ‘Aunafe g-T sydess 81ns 1s8] ‘T o|qel

The overdl result is that GEM is consistently faster than the other methods. FR is
about four times slower, and KK deteriorates rapidly as the graph sizes incresse. It
remains unclear if thisisafeature of the implementation or inherent to the al gorithm.

Oneiteration of the GEM a gorithm takestime O(|V/|) since the forces exerted on v
by theremaining |V/| — 1 vertices have to be recomputed.

The PC version of GEM runs as fast as the GraphEd version. This was achieved
by optimizations at the data structure level and may aso be attributed to the fact that
the environment has no GUI and multi-user overhead. On an amd486DX40 PC we
measured a speed of approximately 120, 000 iterations per second. A heuristic wefound
by experimenting says that we need approximately || rounds. Since a round consists
of | V| iterationsand each iteration considers | V| vertices, thisimpliesan estimated time
complexity of O(|V|?), where the constant is small and depends on G

7 Conclusions

Inthispaper, we have presented an adaptive al gorithmto computealayout for undirected
graphs based on local temperatures. We introduced several algorithmic improvements
to previous approaches, including local temperatures, attraction towards the barycenter
and the detection of rotations and oscillations. This represents a departure from the
conventional gradient descent methods narrowing into the nearest [ocal minimum of the
quality function.

We were able to match or improve the quality of the results obtained by widely used
implementations of the Fruchterman/Reingold and Kamada/lKawai a gorithms while
running consistently faster than these. The results also confirmed the hypothesis that
randomization can be successfully used for the force-directed layout of undirected
graphs.

While other published work presents mainly small-sized graphs and occasionally
medium-sized graphs, GEM can easily handle large and complex graphs. As graphs get
larger and larger, the drawing area becomes too small very quickly. Also, the human
eye will have difficulty comprehending larger graphs as a whole, so graph partitioning
schemes should be taken into consideration.

Although we chose not to explicitly minimize edge crossings, GEM can often avoid
crossings (see Fig. 18).

8 Open Questions

Several problemsremain to be solved. First of all, nothingisknown about the theoretical
behavior of the proposed a gorithm. Although we were able to experimentally confirm a
time complexity of O(]V/|?) with small constants, we cannot give aformal proof. Even
worse, athough the GEM agorithm almost aways terminates with satisfactory results,
no proof of convergence is apparent.

Further research is necessary to determine the importance of each single factor in
the GEM agorithmand their interplay. Experimentsin thisdirection could investigatein
leaving out single or several factors contributing to the success of GEM (randomization,
oscillation, rotation, gravitation).

There exist two interesting connections between the GEM algorithm and artificia
neural network theory. Having seen animations of GEM runs on mesh-like structures,
similaritiesto Kohonen feature maps are apparent. The question comes to mind whether
the connections between these domains are deeper. A second, even more intriguing
connection can be made to improved backpropagation learning agorithms (Rprop,
QuickProp) which have a notion of local learning rates, which is very similar to the
GEM idea of having local temperatures. An interesting experiment would therefore be
to devise aneural network for graph drawing.

Unfortunately, these connections do not help at present to settle the complexity and
stability questions raised above as researchers in these areas are themselves actively
investigating these questions.

A magjor problem in the area of graph drawing is the non-existence of a standard set
of graphs by which to judge on the quality of drawings. A first step in this direction
would be the definition of such a set for the restricted domain of straight-line drawings.
We hope to have contributed by the distinction between graphs of severa sizes and
densitiesfor our test suite.

9 Acknowledgements

W. Zimmermann gave val uable comments on the presentation of our results. We would
like to thank the anonymous referees who pointed out earlier work in force-directed
placement.

References

1. G. Di Battista, P. Eades, H. de Fraysseix, P. Rosenstiehl, and R. Tamassia, editors. Proceed-
ings of the ALCOM International Workshop on Graph Drawing 1993. ALCOM, 1993.

2. G. Di Battista, P. Eades, R. Tamassia, and |.G. Tollis. Algorithms for drawing graphs: an
annotated bibliography. Report, Brown University, June 1994.

3. R. Davidson and David Harel. Drawing graphs nicely using simulated annealing. Technical
Report CS89-13, Department of Applied Mathematics and Computer Science, The Weizmann
Institute of Science, Rehovot, Israel, 1989. revised July 1993, to appear in Communications
of the ACM.

4. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-160, 1984.

5. C. J. Fisk, D. L. Caskey, and L. E. West. ACCEL: Automated circuit card etching layout.
Proceedings of the |EEE, 55(11):1971-1982, November 1967.

6. T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement.
Software—Practiceand Experience, 21, 1991.

7. M. Himsolt. Graphed: A graphical platform for the implementation of graph algorithms.
In Proceedings of Graph Drawing ' 94, LNCS, Princeton, New Jersey, October 10-12 1994.
DIMACS Workshop on Graph Drawing, Springer. this volume.

8. N. R. Quinn Jr. and M. A. Breuer. A forced directed component placement procedure for
printed circuit boards. |EEE Transactions on Circuits and Systems, CAS-26(6):377—-388,
1979.

9. T. Kamadaand S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31, 1989.

10. Scott Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, 1983.

11. Donald E. Knuth. Seminumerical Algorithms, volume2. Addison-Wesley, 2nd edition, 1981.

12. J.B. Manning. Geometric symmetry in graphs. PhD thesis, Purdue University, December
1990.

13. N. Metropolis, W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller. Equation of state calcu-
lations by fast computer machines. J. Chem. Phys., 21:1087, 1953.

14. D. Tunkelang. A layout algorithm for undirected graphs. In Graph Drawing '93, ALCOM
International Workshop PARIS 1993 on Graph Drawing and Topological Graph Algorithms,
September 1993.

15. H. Watanabe. Heuristic graph displayer for G-Base. International Journal of Man-Machine
Studies, 30:287—-302, 1989.

A GemDraw

This appendix describes GEMDRAw, the environment in which we developed GEM.
GeEMDRAwW iswrittenfor aPC in Borland C using the Borland Graphics|nterface (BGI).
It turned out early in the design stage that we needed a specidized tool for visualizing
vertex temperatures and for quickly producing large test graphs. We decided to select
and implement mechanisms for extending small graphs in a regular way, which are
to be described. In addition, GEMDRAW knows severa types of parameterized graphs
(mesh-structures, trees, hypercubes, completeley connected) and allows for interactive
creation and modification of graphs.

Using the concepts of iteration and duplication, complex structures can be created
easily. For each graph G = (V, F), an iterated graph can be defined by cloning the
origina graph | V| times and connecting each vertex of the original graph to al vertices
of itsassigned clone. Aniterated Ko isshownin Fig. 5. Theduplication of (¢ isdefined
by cloning GG once and adding edges between each original vertex and itsclone. Figure 6
shows a duplicated K15. As an example of the usefulness of the concept, Fig. 7 shows
a torus defined by duplicating a cycle several times. A hypercube of dimension n can
quickly be produced as follows. Create a vertex and repeat » times: duplicatethe graph
produced so far.

B Visual examples

In this appendix we present severa examples for the quality of the graphs drawn by
GEM, including well-known examples from the literature.

We first turn our attention to sparse structures and give a sequence of drawings for
cycles in Fig. 8. Thisis a good example of the adaptive nature of the GEm algorithm
as afolding causes local temperatures to remain high. In Fig. 9 the heuristics of evenly
spacing verticesisillustrated using paths as an example.

A sequence of intermediate steps in the drawing of a triangular mesh (see Fig. 11)
shows that GEM can handle foldingswell, as opposed to [6]. Observe that the neighbor-
hood of afolded arearemains hot.

Drawings of square (Fig. 12) and hexagonal (Fig. 13) meshes of different sizes are
further examples demonstrating that GEM is not focused towards certain structures as

N
2
L5

4{{%‘_

Fig. 6. Duplicated K5; the evenvertex distance
Fig.5. Iterated K10 heuristic forces vertices to be placed inside the
hull

5

Fig. 7. Torus defined by duplicating a cycle

al runtimes are a function of |V|. It can be observed that some huge graphs become
distorted. This is not a consegquence of the gravitational force used to compute vertex
impul ses, but merely of therandom vectorsadded to theimpul se: Once perfect symmetry
isdisturbed, perturbationsof this kind will occur.

Since GEM doesnot optimizefor the number of edge crossings, theresulting drawing
will often be a projection of a 3D-picture. This can be exemplified with Fig. 14— 16. In
Fig. 16, theleft layout is produced much more often than the middlie one, which inturn
is computed more often than the right one.

We finish with GEM output for several examples from the papers of Fruchter-
man/Reingold and Davidson/Harel and compare the results. While GEM manages to
draw the graph in Fig. 18 planar as do Davidson/Harel, the drawing of the graph in
Fig. 19 isbasicaly the Fruchterman/Reingold version.

This article was processed using the IATEX macro packagewith LLNCS style

\ /

S
|

Q O Fig. 9. Pathsof size|V| = 30, 300 after
3000, 20700 iterations

Fig. 8. Cyclewith |V| = 30 verticesin differ-
ent stages of development

hls SR

Fig. 10. Binary trees of size |V| = 31, 63,127, 255 after 1178, 3276, 9906, 34935 iterations

D"

S

Fig. 13. Hexagonal grids of size |V | = 24, 96, 216, 294 after 720, 5184, 15120, 29106 iterations

Lt B

Fig. 14. Two different layouts of an icosahe- Fig. 15. Two different layouts of an dodecahe-
dron (|V| = 12, | E| = 30) after = 220 itera- dron (|V| = 20, | E| = 30) after ~ 700 itera-
tions (seealso figure 29 from Fruchterman and tions (seeasofigure 57 from Fruchtermanand
Reingold) Reingold)

A o

Fig. 16. Three different layouts of an octahedron (|V| = 6, | E| = 12) after < 200 iterations

ik

Fig.18. GEM drawing of the Fig.19. GEM drawing of the
graphin [6,fig. 24]; thisdraw- graphin [3,fig. 12]; thisdraw-
ingissimilar to [3, fig. 1] ing issimilar to [6, fig. 26]

Fig.17. Drawing of a soc-
cer ball (also known in chem-
istry as the Cso molecule
or Buckminster Fulleren) with
V] = 60,|F|] = 90 after
< 5000 iterations at 3°

