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Effective Complexity

Murray Gell-Mann
Seth Lloyd

It would take a great many different concepts—or quantities—to capture all of
our notions of what is meant by complexity (or its opposite, simplicity). However,
the notion that corresponds most closely to what we mean by complexity in
ordinary conversation and in most scientific discourse is “effective complexity.”
In nontechnical language, we can define the effective complexity (EC) of an entity
as the length of a highly compressed description of its regularities [6, 7, 8].

For a more technical definition, we need a formal approach both to the notion
of minimum description length and to the distinction between regularities and
those features that are treated as random or incidental.

We can illustrate with a number of examples how EC corresponds to our
intuitive notion of complexity. We may call a novel complex if it has a great
many different characters, scenes, subplots, and so on, so that the regularities
of the novel require a long description. The United States tax code is complex,
since it is very long and each rule in it is a regularity. Neckties may be simple,
like those with regimental stripes, or complex, like some of those designed by
Jerry Garcia.
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From time to time, an author presents a supposedly new measure of com-
plexity (such as the “self-dissimilarity” of Wolpert and Macready [17]) with-
out recognizing that when carefully defined it is just a special case of effective
complexity.

Like some other concepts sometimes identified with complexity, the EC of an
entity is context-dependent, even subjective to a considerable extent. It depends
on the coarse graining (level of detail) at which the entity is described, the
language used to describe it, the previous knowledge and understanding that are
assumed, and, of course, the nature of the distinction made between regularity
and randomness.

Like other proposed “measures of complexity,” EC is most useful when com-
paring two entities, at least one of which has a large value of the quantity in
question.

Now, how do we distinguish regular features of an entity from ones treated as
random or incidental? There is, as we shall see, a way to make a nearly absolute
distinction between the two kinds of features, but that approach is of limited
usefulness because it always assigns very low values of EC, attributing almost
all information content to the random category rather than the regular one.

In most practical cases, the distinction between regularity and randomness—
or between regular and random information content—depends on some judgment
of what is important and what is unimportant, even though the judge need not
be human or even alive.

Take the case of neckties, as discussed above. We tacitly assumed that ef-
fective complexity would refer to the pattern of the tie, while wine stains, coffee
stains, and so on, would be relegated to the domain of the random or incidental.
But suppose we are dry cleaners. Then the characteristics of the stains might be
the relevant regularities, while the pattern is treated as incidental.

Often, regularity and randomness are envisaged as corresponding to signal
and noise, respectively, for example in the case of music and static on the radio.
But, as is well known, an investigation of sources of radio static by Karl Jansky
et al. (at Bell Telephone Laboratories in the 1930s) revealed that one of those
sources lies in the direction of the center of our galaxy, thus preparing the way
for radio astronomy. Part of what had been treated as random turned into a very
important set of regularities.

It is useful to encode the description of the entity into a bit string, even
though the choice of coding scheme introduces another element of context depen-
dence. For such strings we can make use of the well-known concept of algorithmic
information content (AIC), which is a kind of minimum description length.

The AIC of a bit string (and, hence, of the entity it describes) is the length
of the shortest program that will cause a given universal computer U to print
out the string and then halt [3, 4, 11]. Of course, the choice of U introduces yet
another form of context dependence.

For strings of a particular length, the ones with the highest AIC are those
with the fewest regularities. Ideally they have no regularities at all except the
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length. Such strings are sometimes called “random” strings, although the termi-
nology does not agree precisely with the usual meaning of random (stochastic,
especially with equal probabilities for all alternatives). Some authors call AIC
“algorithmic complexity,” but it is not properly a measure of complexity, since
randomness is not what we usually mean when we speak of complexity. Another
name for AIC, “algorithmic randomness,” is somewhat more apt.

Now we can begin to construct a technical definition of effective complexity,
using AIC (or something very like it) as a minimum description length. We split
the AIC of the string representing the entity into two terms, one for regularities
and the other for features treated as random or incidental. The first term is then
the effective complexity, the minimum description length of the regularities of
the entity [8].

It is not enough to define EC as the AIC of the regularities of an entity.
We must still examine how the regularities are described and distinguished from
features treated as random, using the judgment of what is important. One of
the best ways to exhibit regularities is the method used in statistical mechanics,
say, for a classical sample of a pure gas. The detailed description of the positions
and momenta of all the molecules is obviously too much information to gather,
store, retrieve, or interpret. Instead, certain regularities are picked out. The
entity considered—the real sample of gas—is embedded conceptually in a set
of comparable samples, where the others are all imagined rather than real. The
members of the set are assigned probabilities, so that we have an ensemble. The
entity itself must be a typical member of the ensemble (in other words, not one
with abnormally low probability). The set and its probability distribution will
then reflect the regularities.

For extensive systems, the statistical-mechanical methods of Boltzmann and
Gibbs, when described in modern language, amount to using the principle of max-
imum ignorance, as emphasized by Jaynes [9]. The ignorance measure or Shannon
information I is introduced. (With a multiplicative constant, I is the entropy.)
Then the probabilities in the ensemble are varied and I is maximized subject to
keeping fixed certain average quantities over the ensemble. For example, if the
average energy is kept fixed—and nothing else—the Maxwell-Boltzmann distri-
bution of probabilities results.

We have, of course,

I = −
∑
r

Pr logPr , (1)

where log means logarithm to the base 2 and the P ’s are the (coarse-grained)
probabilities for the individual members r of the ensemble. The multiplicative
constant that yields entropy is k ln 2, where k is Boltzmann’s constant.

In this situation, with one real member of the ensemble and the rest imag-
ined, the fine-grained probabilities are all zero for the members of the ensemble
other than e, the entity under consideration (or the bit string describing it).
Of course, the fine-grained probability of e is unity. The typicality condition
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previously mentioned is just
− logPe∼<I . (2)

Here the symbol “∼< ” means “less than or equal” to within a few bits.
We can regard the quantities kept fixed (while I is maximized) as the things

judged to be important. In most problems of statistical mechanics, these are, of
course, the averages of familiar extensive quantities such as the energy. The choice
of quantities controls the regularities expressed by the probability distribution.

In some problems, the quantities being averaged have to do with membership
in a set. (For example, in Gibbs’s microcanonical ensemble, we deal with the set of
states having energies in a narrow interval.) In such a case, we would make use of
the membership function, which is one for members of the set and zero otherwise.
When the average of that function over all the members of the ensemble is one,
every member with nonzero probability is in the set.

In discussing an ensemble E of bit strings used to represent the regularities of
an entity, we shall apply a method that incorporates the maximizing of ignorance
subject to constraints. We introduce the AIC of the ensemble and call it Y. We
then have our technical definition of effective complexity: it is the value of Y for
the ensemble that is finally employed. In general, then, Y is a kind of candidate
for the role of effective complexity.

Besides Y = K(E), the AIC of the ensemble E (for a given universal com-
puter U), we can also consider K(r|E), the contingent AIC of each member r
given the ensemble. The weighted average, with probabilities Pr, of this contin-
gent AIC can be related to I in the following way.

We note that Rüdiger Schack [15] has discussed converting any universal
computer U into a corresponding U ′ that incorporates an efficient recoding
scheme (Shannon-Fano coding). Such a scheme associates longer bit strings with
less probable members of the ensemble and shorter ones with more probable
members. Schack has then shown that if K is defined using U ′, then the average
contingent AIC of the members lies between I and I + 1. We shall adopt his
procedure and thus have ∑

r

PrK(r|E) ≈ I , (3)

where ≈ means equal to within a few bits (here actually one bit).
Let us define the total information Σ as the sum of Y and I. The first term

is, of course, the AIC of the ensemble and we have seen that the second is, to
within a bit, the average contingent AIC of the members given the ensemble.

To throw some light on the role of the total information, consider the situa-
tion of a theoretical scientist trying to construct a theory to account for a large
body of data. Suppose the theory can be represented as a probability distribu-
tion over a set of bodies of data, one of which consists of the real data and the
rest of which are imagined. Then Y corresponds to the complexity of the theory
and I measures the extent to which the predictions of the theory are distributed
widely over different possible bodies of data. Ideally, the theorist would like both
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quantities to be small, the first so as to make the theory simple and the second so
as to make it focus narrowly on the real data. However, there may be trade-offs.
By adding bells and whistles to the theory, along with a number of arbitrary
parameters, one may be able to focus on the real data, but at the expense of
complicating the theory. Similarly, by allowing appreciable probabilities for very
many possible bodies of data, one may be able to get away with a simple the-
ory. (Occasionally, of course, a theorist is fortunate enough to be able to make
both Y and I small, as James Clerk Maxwell did in the case of the equations
for electromagnetism.) In any case, the first desideratum is to minimize the sum
of the two terms, the total information Σ. Then one can deal with the possible
trade-offs.

We shall show that to within a few bits the smallest possible value of Σ is
K ≡ K(e), the AIC of the string representing the entity itself. Here we make use
of the typicality condition (2) that the log of the (coarse-grained) probability for
the entity is less than or equal to I to within a few bits. We also make use of
certain abstract properties of the AIC:

K(A)∼<K(A,B) (4)

and
K(A,B)∼<K(B) +K(A|B) , (5)

where again the symbol ∼< means “less than or equal to” up to a few bits. A
true information measure would, of course, obey the first relation without the
caveat “up to a few bits” and would obey the second relation as an equality.

Because of efficient recoding, we have

K(e|E)∼< − logPe . (6)

We can now prove that K = K(e) is an approximate lower bound for the total
information Σ = K(E) + I:

K = K(e)∼<K(e, E) ,
K(e, E) ∼< K(E) +K(e|E) ,
K(e|E) ∼< − logPe ,
− logPe ∼< I .

(7a)
(7b)
(7c)
(7d)

We see, too, that when the approximate lower bound is achieved, all these
approximate inequalities become approximate equalities:

K ≈ K(e, E) ,
K(e, E) ≈ Y +K(e|E) ,
K(e|E) ≈ − logPe ,
− logPe ≈ I .

(8a)
(8b)
(8c)
(8d)

The treatment of this in Gell-Mann and Lloyd [8] is slightly flawed. The
approximate inequality (7b), although given correctly, was accidentally replaced
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later on by an approximate equality, so that condition (8b) came out as a truism.
Thus (8b) was omitted from the list of new conditions that hold when the total
information achieves its approximate lower bound. As a result, we gave only three
conditions of approximate equality instead of the four quoted here in (8a)–(8d).

Also, in the discussion at the end of the paragraph preceding eq. (2) of Gell-
Mann and Lloyd [8], we wrote logKU (a) by mistake in place of logKU (b) +
2 log logKU (b), but that does not affect any of our results.

Clearly the total information Σ achieves its approximate minimum value K
for the singleton distribution, which assigns probability one to the bit string
representing our entity and zero probabilities to all other strings. For that dis-
tribution, Y is about equal to K and the measure of ignorance I equals zero.

There are many other distributions for which Σ ≈ K. If we plot Y against
I, the line along which Y + I = K is a straight line with slope minus one, with
the singleton at the top of the line. We are imposing on the ensemble—the one
that we actually use to define the effective complexity—the condition that the
total information approximately achieve its minimum. In other words, we want
to stay on the straight line or within a few bits of it.

All ensembles of which e is a typical member lie, to within a few bits, above
and to the right of a boundary. That boundary coincides with our straight line
all the way from the top down to a certain point, where we run out of ensembles
that have Y + I ≈ K. Below that point the actual boundary for ensembles in the
Y − I plane no longer follows the straight line but veers off to the right.

Now, as we discussed, we maximize the measure of ignorance I subject to
staying on that straight line. If we do that and impose no other conditions, we end
up at the point where the boundary in the I−Y plane departs from the straight
line. As described in the paper of Gell-Mann and Lloyd (who are indebted to
Charles H. Bennett for many useful discussions of this manner), that point always
corresponds to an effective complexity Y that is very small. If we imposed no
other conditions, every entity would come out simple! In certain circumstances,
that is all right, but for most problems it is an absurd result. What went wrong?
The answer is that, as in statistical mechanics, we must usually impose some more
conditions, fixing the values of certain average quantities treated as important
by a judge. If we maximize I subject to staying (approximately) on the straight
line and to keeping those values fixed, we end up with a meaningful effective
complexity, which can be large in appropriate circumstances.

The situation is made easier to discuss if we narrow the universe of possible
ensembles in a drastic manner suggested by Kolmogorov, one of the inventors
(or discoverers?) of AIC, in work reviewed in the books by Cover and Thomas [4]
and by Li and Vitányi [11]. Instead of using arbitrary probability distributions
over the space of all bit strings, one restricts the ensembles to those obeying two
conditions. The set must contain only strings of the same length as the original
bit string and all the nonzero probabilities must be equal. In this simplified
situation, every allowable ensemble can be fully characterized as a subset of the
set of all bit strings that have the same length as the original one. Here I is
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just the logarithm of the number of members of the subset. Also, being a typical
member of the ensemble simply means belonging to the subset.

Vitányi and Li describe how, for this model problem, Kolmogorov suggested
maximizing I subject only to staying on the straight line. In that case, as pointed
out above, one is led immediately to the point in the I − Y plane where the
boundary departs from the straight line. Kolmogorov called the value of Y at
that point the “minimum sufficient statistic.” His student L. A. Levin (now a
professor at Boston University) kept pointing out to him that this “statistic” was
always small and therefore of limited utility, but the great man paid insufficient
attention [10].

In the model problem, the boundary curve comes near the I axis at the point
where I achieves its maximum, the string length l. At that point the subset is
the entire set of strings of the same length as the one describing the entity e.
Clearly, that set has a very short description and thus a very small value of Y.

What should be done, whether in this model problem or in the more general
case that we discussed earlier, is to utilize the lowest point on the straight line
such that the average quantities judged to be important still have their fixed
values. Then Y no longer has to be tiny and the measure of ignorance I can be
much less than it was for the case of no further constraints.

We have succeeded, then, in splitting K into two terms, the effective com-
plexity and the measure of random information content, and they are equal to
the values of Y and I, respectively, for the chosen ensemble. We can think of the
separation of K into Y and I in terms of a distinction between a basic program
(for printing out the string representing our entity) and data fed into that basic
program.

We can also treat as a kind of coarse graining the passage from the original
singlet distribution (in which the bit string representing the entity is the only
member with nonzero probability) to an ensemble of which that bit string is a
typical member. In fact, we have been labeling the probabilities in each ensemble
as coarse-grained probabilities Pr. Now it often happens that one ensemble can
be regarded as a coarse graining of another, as was discussed in Gell-Mann and
Lloyd [8]. We can explore that situation here as it applies to ensembles that lie
on or very close to the straight line Y + I = K.

We start from the approximate equalities (8a)–(8d) (accurate to within a
few bits) that characterize an ensemble on or near the straight line. There the
coarse-graining acts on initial “singleton” probabilities that are just one for the
original string and zero for all others. We want to generalize the above formulae
to the case of an ensemble with any initial fine-grained probability distribution
p ≡ {pr}, which gets coarse grained to yield another ensemble with probability
distribution P ≡ {Pr} and approximately the same value of Σ. We propose the
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following formulae as the appropriate generalizations:

K(p) ≈ K(p, P ) ,
K(p, P ) ≈ K(P ) +K(p|P ) ,
K(p|P ) ≈ −Σrpr logPr + Σrpr log pr ,

−Σrpr logPr ≈ −ΣrPr logPr .

(9a)
(9b)
(9c)
(9d)

These equations reduce to (8a) through (8d) respectively for the case in which
the fine-grained distribution is the “singleton” distribution. Also, it is easy to see
that Σ is approximately conserved by these approximate equalities, as a result
of our including the last term in eq. (9c).

Equation (9a) tells us that, to within a few bits, the coarse-grained prob-
ability distribution P contains only algorithmic information that is in the fine-
grained distribution p. Equation (9b) tells us that the ordinary relation between
joint and conditional mutual information holds here to within a few bits even
though that relation does not always hold for joint and conditional algorithmic
information.

We can compare this discussion of coarse graining to the treatment in Gell-
Mann and Lloyd [8]. There we required three properties of a coarse-graining
transformation from p to P : that the transformation actually yield a probability
distribution, that if iterated it produce the same set of P ’s, and that it obey
eq. (9d) above. We attained these objectives by maximizing the ignorance asso-
ciated with the P ’s while keeping some averages involving the P ’s equal to the
corresponding averages involving the p’s (linear constraint conditions).

Here we emphasize that we are generalizing that work to the case where Y is
introduced and the sum of Y and I is kept approximately fixed at its minimum
value while we maximize I subject to some constraint conditions linear in the
probabilities.

Say we start with the singleton ensemble in which only the original string has
a nonzero probability and move down the straight line in a succession of coarse
grainings until we reach the ensemble for which Y is the effective complexity.
The above equations are then applied over and over again for the successive
coarse grainings, and they apply also between the original (singleton) probability
distribution and the final one.

Alternatively, we can, if we like, regard the transition from P to p as a fine
graining, using the same formulae. We can start at the point where the boundary
curve departs from the straight line and move up the line in a sequence of fine
grainings. In fact, we can utilize the linear constraints successively. We apply
first one of them, then that one and another, then those two and a third, and
so forth, until all the constraints have been applied to the maximization of I
subject to staying on the straight line. Each additional constraint yields a fine
graining.

There are at least four issues that we feel require discussion at this point,
even though many questions about them remain. Two of these issues relate to
certain generalizations of the notion of algorithmic information content.
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AIC as it stands is technically uncomputable, as shown long ago by Chaitin [3].
That is not so if we modify the definition by introducing a finite maximum
execution time T within which the program must cause the modified univer-
sal computer U ′ to print out the bit string. Such a modification has another,
more important advantage. We can vary T and, thus, explore certain situations
where apparent complexity is large but effective complexity as defined above (for
T →∞) is small.

Take the example [6] of energy levels of heavy nuclei. Fifty years ago, it
seemed that any detailed explanation of the pattern involved would be extremely
long and complicated. Today, however, we believe that an accurate calculation
of the positions of all the levels is possible, in principle, using a simple theory:
QCD, the quantum field theory of quarks and gluons, combined with QED,
the quantum field theory of photons and electromagnetic interactions, including
those of quarks. Thus, for T very large or infinite, the modified AIC of the levels
is small—they are simple. But the computation time required is too long to
permit the calculations to be performed using existing hardware and software.
Thus, for moderate values of T the levels appear complex.

In such a case, the time around which the modified AIC declines from a large
value to a small one (as T increases) is related to “logical depth” as defined by
Charles H. Bennett [2]. Roughly, logical depth is the time (or number of steps)
necessary for a program to cause U to print out the coded description of an entity
and then halt, averaged over programs in such a way as to emphasize short ones.

There are cases where the modified AIC declines, as T increases, in a se-
quence of steps or plateaus. In that case we can say that certain kinds of regu-
larities are buried more deeply than others.

While it is very instructive to vary T in connnection with generalizing K—
the AIC of the bit string describing our entity—we encounter problems if we
try to utilize a finite value of T in our whole discussion of breaking up K into
effective complexity and random information. Not all the theorems that allow us
to treat AIC as an approximate information measure apply to the generalization
with variable T.

In addition to logical depth, we can utilize a quantity that is, in a sense,
inverse to it, namely Bennett’s “crypticity,” [2] which is, in rough terms, the time
necessary to go from the description of an entity to a short program that yields
that description. As an example of a situation where crypticity is important,
consider a discussion of pseudorandomness. These days, when random numbers
are called for in a calculation, one often uses instead a random-looking sequence
of numbers produced by a deterministic process. Such a pseudorandom sequence
typically has a great deal of crypticity. A lengthy investigation of the sequence
could reveal its deterministic nature and, if it is generated by a short program,
could correctly assign to it a very low AIC. Given only a modest time, however,
we could fail to identify the sequence as one generated by a simple deterministic
process and mistake it for a truly random sequence with a high value of AIC.
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The concept of crypticity can also be usefully applied to situations where a
bit string of modest AIC appears to exhibit large AIC in the form of effective
complexity rather than random information. We might call such a string “pseu-
docomplex.” An example of a pseudocomplex string would be one recording an
image, at a certain scale, of the Mandelbrot set. Another would be an apparently
complex pattern generated by a simple cellular automaton from a simple initial
condition. Note that a pseudorandom string, which has passed many of the usual
statistical tests for randomness, is not appreciably compressed by conventional
data compression algorithms, such as the one known as LZW [4]. By contrast,
a pseudocomplex string typically possesses a large number of obvious statistical
regularities and is, therefore, readily compressible to some extent by LZW, but
not all the way to the very short program that actually generated the string.

We should mention that a number of authors have considered mutual infor-
mation as a measure of complexity in the context of dynamical systems [1, 5, 12].
Without modification, that idea presents a conflict with our intuitive notion of
complexity. Consider two identical very long bit strings consisting entirely of
ones. The mutual information between them is very large, yet each is obviously
very simple. Moreover, the statement that they are the same is also very simple.
The pair of strings is not at all complex in any usual sense of the word.

Typically, the authors in question have recognized that a more acceptable
quantity in a discussion of complexity is mutual algorithmic information, defined
for two strings as the sum of their AIC values minus the AIC of the two taken
together. If two strings are simple and identical, though very long, their mutual
AIC is small.

Of course, identical long strings could be “random,” in which case their very
large mutual algorithmic information does not correspond to what we usually
mean by complexity. EC is still the best measure of complexity.

We can easily generalize the definition of mutual information to the case of
any number of strings (or entities described by them). For example, for three
strings we have

Kmut = K(1) +K(2) +K(3)−K(1, 2)−K(2, 3)−K(1, 3) +K(1, 2, 3) . (10)

Under certain conditions we can see a connection between mutual algorithmic
information and effective complexity. For example, suppose we are presented
not with a single entity but with N entities that are selected at random from
among the typical members of a particular ensemble. The mutual algorithmic
information content among these entities is then a good estimate of the AIC of
the ensemble from which they are selected, and that quantity is, under suitable
conditions, equal to the effective complexity candidate Y attributed to each of
the entities.

The way the calculation goes is roughly the following. On average the K
value for m arguments is approximately Y + mI, and the sum in eq. (10) then
comes out equal to Y. It is easily shown that such an equality yielding Y holds not
just for three entities but for any number N, with the appropriate generalization
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of eq. (10). The elimination of the I term produces the connection of Kmut with
the effective complexity candidate.

At last we arrive at the questions relevant to a nontraditional measure of
ignorance. Suppose that for some reason we are dealing, in the definition of I,
not with the usual measure given in eq. (1), but rather with the generalization
discussed in this volume, namely

Iq = − [Σr(Pr)q − 1]
(q − 1)

, (11)

which reduces to eq. (1) in the limit where q approaches 1. Should we be maximiz-
ing this measure of ignorance—while keeping certain average quantities fixed—in
order to arrive at a suitable ensemble? (Presumably we average using not the
probabilities Pr but their qth powers normalized so as to sum to unity—the so-
called Escort probabilities.) Do we, while maximizing I, keep a measure of total
information at its minimum value? Is a nonlinear term added to I + Y ? What
happens to the lower bound on I + Y ? Can we make appropriate changes in
the definition of AIC that will preserve or suitably generalize the relations we
discuss here? What happens to the approximate equality of I and the average
contingent AIC (given the ensemble)? What becomes of the four conditions in
eqs. (8a) to (8d)? What happens to the corresponding conditions (9a) to (9d)
for the case where we are coarse graining one probability distribution and thus
obtaining another one?

As is well known, a kind of entropy based on the generalized information or
ignorance of eq. (11) has been suggested [16] as the basis for a full-blown alter-
native, valid for certain situations, to the “thermostatistics” (thermodynamics
and statistical mechanics) of Boltzmann and Gibbs. (The latter is, of course,
founded on eq. (1) as the formula for information or ignorance.) Such a basic
interpretation of eq. (11) has been criticized by authors such as Luzzi et al. [13]
and Nauenberg [14]. We do not address those criticisms here, but should they
prove justified—in whole or in part—they need not rule out, at a practical level,
the applicability of eq. (11) to a variety of cases, such as systems of particles
attracted by 1/r2 forces or systems at the so-called “edge of chaos.”
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