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Prediction of protein sorting signals from the sequence of
amino acids has great importance in the field of proteomics
today. Recently, the growth of protein databases, combined
with machine learning approaches, such as neural networks
and hidden Markov models, have made it possible to
achieve a level of reliability where practical use in, for
example automatic database annotation is feasible. In this
review, we concentrate on the present status and future
perspectives of SignalP, our neural network-based method
for prediction of the most well-known sorting signal: the
secretory signal peptide. We discuss the problems associated
with the use of SignalP on genomic sequences, showing
that signal peptide prediction will improve further if integ-
rated with predictions of start codons and transmembrane
helices. As a step towards this goal, a hidden Markov
model version of SignalP has been developed, making it
possible to discriminate between cleaved signal peptides
and uncleaved signal anchors. Furthermore, we show how
SignalP can be used to characterize putative signal peptides
from an archaeon, Methanococcus jannaschii. Finally, we
briefly review a few methods for predicting other protein
sorting signals and discuss the future of protein sorting
prediction in general.

Introduction
Subcellular protein sorting, i.e. the processes through which
proteins are routed to their proper final destination within a
cell, is a fundamental aspect of cellular life. In many cases,
sorting depends on ‘signals’ that can already be identified by
looking at the primary structure of a protein. Thus, targeting
to the secretory pathway, to mitochondria and to chloroplasts
normally depends on an N-terminal presequence or targeting
peptide that can be recognized by receptors on the surface of
the appropriate organelle. After targeting, membrane-embedded
translocation machineries ensure the delivery of the protein to
the interior of the organelle.

By definition, the cell can recognize all kinds of protein
sorting signals with almost 100% selectivity and specificity—
the level of mis-sortingin vivoappears to be very low, although
this aspect of the problem has not been studied in detail. Given
that the sorting signals mentioned above seem to be, at least
to a good approximation, defined by a linear, N-terminal
stretch of the polypeptide, it would appear that we should be
able to devise sequence-based methods that can recognize
these signals with an efficiency approaching that of the cell
itself. If such methods can be developed, they will clearly be
of major use for genome analysis and automatic database
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annotation; at the same time, these massive data analysis tasks
necessitate very accurate prediction methods.

While prediction of sorting signals has a long history, started
by the early work on secretory signal peptides (von Heijne,
1983; McGeoch, 1985; von Heijne, 1986b), it is only with the
application of modern machine learning techniques, such as
neural networks (NNs) and hidden Markov models (HMMs),
that we seem to be approaching the necessary levels of
accuracy (Baldi and Brunak, 1998; Durbinet al., 1998).
Machine-learning techniques are ideally suited for pattern
recognition tasks where relatively large amounts of data are
present and where the patterns are ‘noisy’ and not easily
described by a compact set of rules. The fundamental idea
behind these approaches is to learn to discriminate automatic-
ally from the data, using experimentally verified examples,
which most often are extracted from large public sequence
and structure databases. While HMMs are best at recognizing,
in an ‘elastic’ fashion, the sequential pattern in the amino
acids or nucleotides, the NN algorithms are better at handling
sequence features correlated over a longer range, especially if
there is some degree of conservation in the positioning of the
relevant features. Together, the NN and HMM methods can
therefore handle a very substantial part of the sequence
diversity created by evolution that is characteristic for many
complex biological mechanisms. Thus, there now exist quite
reliable machine learning-based methods for the identification
of both secretory signal peptides (SPs), mitochondrial targeting
peptides (mTPs) and chloroplast transit peptides (cTPs).

In this review, we will concentrate on the present status
and future perspectives of SP prediction—in particular the
developments and applications of our own method, SignalP,
since it was published in Protein Engineering two years
ago (Nielsenet al., 1997a). Several NN-based methods for
prediction of SPs have been developed (Ladungaet al., 1991;
Schneider and Wrede, 1993), but only SignalP is publicly
available. SignalP has been used extensively since it was made
available over the internet, but the first version has some
important shortcomings that necessitate further development
and integration with other prediction methods. In addition, we
will review a couple of methods for predicting other protein
sorting signals, and discuss some general aspects of sorting
signal prediction.

Constructing the training set for machine learning methods

While different algorithms within the broad range of machine
learning methods available will have different advantages in
terms of their pattern recognition abilities, they are all driven
by the data used to train them. The selection of the training
set is arguably the most important part in the construction of
a prediction method. No matter how sophisticated the
algorithm, with poor training data one will get poor results.
In the cases discussed here, SWISS-PROT (Bairoch and
Apweiler, 1997) is the natural primary source of sequence
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data, but even in a well-curated database such as this, one
cannot take all the sequence annotations at face value.

Another problem is that a sequence database always contains
numerous examples of genes belonging to gene families and
homologous genes from various organisms. This can lead to
statistical results that are biased for the over-represented
sequences, and the performance of prediction methods will be
overestimated if the test set contains sequences closely related
to those used in the training. Thus, after selecting an initial
set of sequences from SWISS-PROT, one has to remove
homologous sequences (unless the training algorithm can deal
with redundant data sets) using, for example, the Hobohm
redundancy reduction method (Hobohmet al., 1992). The
question of when two sequences are ‘too closely related’ to
be kept within the reduced data set is far from trivial. For the
SignalP data set, the similarity threshold is found from the
principle that if it is possible to infer the position of the
cleavage site in one SP by alignment to another SP, the
sequences are too similar. Another approach, which uses the
statistical theory of local alignments (Altschul and Gish, 1996),
is to fit the alignment scores to an extreme value distribution
and choose a threshold value above which there are more
observations than expected from the distribution (Pedersen
and Nielsen, 1997).

Unless the remaining set at this point is prohibitively large,
it should be checked by hand against the primary publications.
In our experience, features like cleavage sites for sorting
signals are not always correctly annotated: sites not listed as
‘putative’ may in fact be based only on an informed guess
(or even an existing prediction method), and experimentally
verified sites are sometimes incorrectly entered into the data-
base (database ‘typos’). In a recent study of chloroplast
transit peptides (O.Emanuelsson, H.Nielsen and G.von Heijne,
manuscript submitted), we had to remove around 10% of the
sequences in our homology-reduced data set for such reasons.
Even experimentally verified data may be wrong if the inter-
pretation of the results has been faulty. The most relevant
example in this context is that an N-terminus of a mature
protein, confirmed by amino acid sequencing, might derive
not from cleavage by the signal peptidase but from a subsequent
cleavage by another protease in the secretory pathway.

If the data set is too large to allow for manual inspection
of all entries, some suspicious looking examples may be
identified by automated methods. One possibility is to use
alignments of the unreduced set to single out pairs of sequences
that show a very high similarity but discrepancies in assignment
of subcellular location or cleavage site position (Nielsenet al.,
1996). Another method is to use the training algorithm itself
to pick out cases which are more difficult to learn than others
(Brunak, 1993). Both these approaches are necessarily biased;
the first will never be able to pick up errors in sequences with
no matching homologues, and both can fail to recognize
systematic errors that occur in several entries. Still, experience
has shown that machine learning methods can serve as
extremely useful tools for data set validation; in several cases,
NNs have been able to detect errors caused both by simple
misprints and by incorrect interpretation of experiments
(Brunaket al., 1990a,b).

Another aspect of the choice of training set is whether
sequences from all, some subset of, or only a single organism
should be included. If there is enough data, organism-specific
methods should be expected to perform better than more
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general ones, but in most cases it is not possible to be this
restrictive.

In the SignalP work, we trained two species-specific versions
on human andEscherichia coliSPs, and concluded that there
was no significant gain in performance when testing with
networks trained on a single-species data set relative to
networks trained on larger groups (Nielsenet al., 1997a). This
result is not definitive, however. The reason why theE.coli-
specific network did not show an improvement compared with
one trained on a larger set of Gram-negative SPs might simply
be that theE.coli set at that time was too small to achieve
the same relative performance. Regarding the human-specific
network, one should note that the eukaryotic set is dominated
by mammals, i.e. rather close relatives to humans; and we
cannot exclude the possibility that signal peptides from, for
example, yeast (which are relatively underrepresented in the
data set), are significantly different from those of mammals.
Nevertheless, genomic sequencing opens up the possibility of
constructing species-specific versions of the basic algorithm,
perhaps by a bootstrapping procedure where a more general
version trained on, for example, all eukaryotic sequences, is
used to extract an initial set of reliably predicted sequences
from, for example, yeast, which is then used to iteratively
train a species-specific version.

Current status of the SignalP method

SignalP is a typical example of a NN-based method, and three
versions trained on different data sets (eukaryotes, Gram-
negative and Gram-positive bacteria) are available. These three
versions reflect significant differences in the characteristics of
signal peptides from these groups of organisms, and each gives
a better performance than a method trained on all groups
together. They also provide the opportunity to test the efficiency
of a given signal peptide sequence in a non-native host. For
example, a human sequence can be analysed by the Gram-
positive version of the method and thus give an indication of
how effective the sequence will appear in a production organ-
ism, say,Bacillus subtilis. If it appears to have a low degree
of ‘signal peptide-ness’ in the new host, it can subsequently
be engineered such that the SP sequence will optimally match
the N-terminus of the mature protein.

SignalP combines two different NNs, one that has been
trained to classify each residue in the sequence as either
belonging or not belonging to a SP (S-score), and one that has
been trained only to recognize the site at the C-terminal end
of the SP that is cleaved by the signal peptidase enzyme after
targeting (C-score). Cleavage-site prediction performance is
significantly enhanced by penalizing C-score peaks that are
far away from the transition region between the SP and the
mature polypeptide identified by the S-score. This is formalized
by using the ‘Y-score’, a geometric average of the C-score
and a numerical derivative of the S-score. In the example
shown in Figure 1, the C-score has two peaks, where the
upstream one is slightly higher but the downstream one occurs
in the transition zone of the S-score and therefore has a higher
Y-score.

A prediction for the existence of a SP can be made by the
maximal value of the C-, S- and Y-scores, or the mean S-score
between the N-terminus and the predicted cleavage site. Of
these, the maximal Y-score or the mean S-score give the best
discrimination performance, but all four values are reported
in the output. A more thorough description of the SignalP
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Table I. Performances of SignalP in the neural network (NN) and hidden Markov model (HMM) versions

Task
Cleavage site location Discrimination

Data SP/non-sec SP/SA
Method (release) Euk Gneg Gpos Euk Gneg Gpos Euk

NN 29 70.2% 79.3% 67.9% 0.97 0.88 0.96 (0.39)
NN 35 72.4% 83.4% 67.5% 0.97 0.89 0.96 (0.39)
HMM 35 69.5% 81.4% 64.5% 0.94 0.93 0.96 0.74

The column labeled ‘Data’ refers to the SWISS-PROT release number, so that the first line (NN, 29) show the performance of the original SignalP (Nielsen
et al., 1997a). Data sets are divided into eukaryotes (Euk), Gram-negative bacteria (Gneg) and Gram-positive bacteria (Gpos). Cleavage site location is given as
percentage of signal peptide sequences where the cleavage site was placed correctly, and discrimination values between sequence types are given as
correlation coefficients (Mathews, 1975). The sequence types are signal peptides (SP), soluble non-secretory—i.e. cytoplasmic or nuclear—proteins (non-sec),
and signal anchors (SA). For SignalP-NN, cleavage site location is predicted by maximal Y-score, and discrimination performed using mean S-score;
discrimination values for signal anchors are in parentheses because signal anchors were not included as negative examples in the NN training set. All values
are averages over five cross-validation sets.

Fig. 1. An example of a prediction for a protein with a known signal
peptide, human cystatin C precursor. The values of the C-score
(output from cleavage site networks), S-score (output from signal
peptide networks) and Y-score (combined cleavage site score,Yi 5 √Ci∆dSi)
are shown for each position in the sequence, and the true cleavage site is
marked with an arrow. In this example with two C-score peaks, the
cleavage site would be incorrectly predicted when relying on the C-score
alone, but the combined Y-score is able to predict it correctly. (Note: the
C-score is defined to be high for the position immediatelyafter the cleavage
site, i.e. the first position in the mature protein.)

architecture and the definition of the various measures can be
found elsewhere (Nielsenet al., 1997b).

The performance values of SignalP are shown in Table I,
both for the original version and for a version retrained on a
new data set, based on SWISS-PROT release 35 instead of
29. Note that the performance for cleavage site location has
improved. Since the old and new data sets are extracted by
the same method, and the sizes have changed only slightly,
the most probable explanation for the improvement is that the
quality of SWISS-PROT annotations concerning SPs are better
in the newer version.

There are two important points to be made about the
performance values. One the one hand, they should be regarded
as minimal, because they are test set performances (averaged
over five cross-validation sets), where the homology reduction
of the data has assured that the similarity between training
and test sets is so low that the correct cleavage sites cannot be
found by alignment (Nielsenet al., 1996). These performance
values should therefore be expected for a protein unrelated to
anything in the data sets, while prediction accuracy on
sequences with some similarity to the sequences in the data
sets will in general be much higher. For example, the accuracy
of cleavage site location (original release 29 version) goes up
to 76.8, 85.0 and 76.6% (for eukaryotes, Gram-positive and
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Gram-negative bacteria, respectively) when the data sets are
tested on the full ensemble.

On the other hand, the performance values given in Table I
are calculated under two limiting assumptions: that the correct
N-terminus of the protein in question is known, and that the
sequence does not contain an N-terminal transmembrane helix.
The data sets on which SignalP is trained and tested contain
only the N-terminal part (up to 70 amino acids) of each protein,
and transmembrane proteins were not included in the negative
set. The decision to use only the N-terminal part of each
protein was based on the idea that SignalP should reproduce
the recognition task met by the cellin vivo, where SP cleavage
takes place only within a certain range from the N-terminus.
The reason for the lack of transmembrane helices in the
negative set is more practical: it is very hard to ensure that
there is experimental evidence for absence of cleavage of a
transmembrane protein. For a subset of transmembrane pro-
teins, however, we have a reliable set: eukaryotic signal
anchors (see below).

These two points constitute a problem for the application
of SignalP to genome and EST data. As an illustration of this,
the scanning of theHaemophilus influenzaegenome which we
reported in the SignalP paper (Nielsenet al., 1997a) produced
a remarkably large variation in the estimate of the proportion
of proteins with SPs: from 14% if using the maximal Y-score
as discriminator, to 28% when using the maximal S-score,
even though all these measures give high discrimination
performances when used on the SignalP data set. This means
that the performance of (at least) one of these measures is
considerably lower when applied to genome data; and that
SignalP, when used for this purpose, should ideally be combined
with a transmembrane helix prediction and a start codon
prediction.

SignalP-HMM: distinguishing signal peptides from signal
anchors
Some proteins have sequences that initiate translocation in the
same way as SPs do, but are not cleaved by signal peptidase
(von Heijne, 1988). As the rest of the polypeptide chain is
translocated through the membrane, the resulting protein
remains anchored to the membrane by the hydrophobic region,
with a short N-terminal cytoplasmic domain. The uncleaved
signal peptide is known as a signal anchor (SA), and the
resulting protein is known as a type II membrane protein. SAs
differ from SPs in other respects than the cleavage sites: they
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Fig. 2. The architecture of the hidden Markov model for signal peptide and
signal anchor prediction (SignalP-HMM). (Top) The diagram shows how
the combined model is put together from a signal peptide model, an anchor
model and a null model representing non-secretory proteins. The model of
signal anchors (Center) has only two types of states (n- and h-region),
while the signal peptide model (Bottom) additionally contains a model of
the c-region and the cleavage site. The states in a shaded box are tied to
each other, i.e. are forced to have the same amino acid distribution.

have longer hydrophobic stretches—the length is typically the
same as that of a transmembraneα-helix—and the region N-
terminal of the hydrophobic stretch can also be much longer.
Interestingly, experiments have shown that it is possible to
convert a cleaved SP into an uncleaved SA merely by
lengthening the hydrophobic region (Chou and Kendall, 1990;
Nilssonet al., 1994).

The discrimination between SAs and SPs has proved to be
very difficult for the neural network: approximately 50% of
the SAs are predicted as SPs according to the mean S-score.
Since both the C-score and the S-score are calculated from
sequence windows of a limited width, a feature such as region
length is difficult to represent in the input. To solve this
problem, we have developed SignalP-HMM, a HMM architec-
ture for SPs and SAs (Figure 2).

The advantage of the HMM method in this context is that
it does not use windows of a fixed width, but threads an entire
sequence through a trained model. An HMM is a chain of
‘states’, each with a characteristic amino acid distribution,
with transitions that specify possible orders of states. Thus, a
HMM can model sequences of varying length by transitions
that skip or repeat states. By assigning states to known regions
of the signal to be modeled, biological knowledge can be built
into the HMM.
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Secretory signal peptides have three distinct regions—an N-
terminal positively charged n-region, a central hydrophobic h-
region, and a C-terminal c-region encompassing the signal
peptidase cleavage site (von Heijne, 1985). Each of these is
represented by a separate part of the model: the n- and h-
regions are modeled in a simple way, with all states having
the same amino acid frequencies, while the region around the
cleavage sites is modeled in more detail (essentially like a
weight matrix). Signal anchors have both an n- and an h-
region, and no cleavage site. By having two parallel submodels
of the HMM, it is possible to represent differences in both
length distribution and amino acid frequencies between the n-
and h-regions of SPs and SAs. A third branch (actually, just
a shortcut) is added to represent those sequences that are
neither SPs nor SAs. When threading a sequence through this
model, one of the three branches is chosen, and this serves as
the prediction of protein type. Additionally, this method
provides an objective way to delineate the n-, h- and c-regions
in a SP, and it may thus be used to compare the overall design
of SPs from different organisms.

SignalP-HMM is able to discriminate between SPs and SAs
with a correlation coefficient of 0.74 (see Table I)—far from
perfect, but much better than with the NNs. In a sense, this
comparison is not quite fair, because the SAs were not used
explicitly as negative examples during training of the NN, but
this would have been problematic given the small size of the
SA set. With the HMM, it is easy to take this limitation into
account by using a simpler submodel (with a smaller number
of free parameters) in the SA branch than in the SP branch.
Regarding the identification of SPs versus soluble non-secretory
proteins, the HMMs perform on a par with the NNs—and for
Gram-negative bacteria even better—but they are less accurate
for cleavage site prediction, see Table I.

Type II membrane proteins constitute only a minor fraction
of transmembrane proteins. When scanning genome data, it is
desirable to distinguish SPs not only from SAs, but also from
other types of transmembrane helices. It is advisable to combine
SignalP with one of the available prediction methods for
transmembrane helices, e.g. PHDhtm (Rostet al., 1996) or
TopPred (von Heijne, 1992). Of course, it would be preferable,
both for usage on large data sets and from a theoretical point
of view, to obtain one prediction of the presence and location
of both SPs and transmembrane helices in the sequence. To
this end, we plan to build an integrated HMM architecture
based on SignalP-HMM and an HMM-based transmembrane
helix prediction method, TMHMM (Sonnhammeret al., 1998).

Start codon prediction
A difficulty for prediction of SPs—or any other N-terminal
sorting signals—is that the position of the N-terminus in the
preprotein is rarely known experimentally. This is particularly
troublesome when using genomic data, where protein coding
regions are predicted by gene finding algorithms containing
numerous potential sources of error. Wrong start codon assign-
ments can produce false negatives, since the resulting sequence
may either contain only a partial SP sequence, or a SP plus a
stretch of irrelevant amino acid sequence (derived from DNA
which is untranslatedin vivo) without SP characteristics.

For expressed sequence tags (ESTs) the problem can be
even worse, since it is very difficult to decide whether a given
sequence includes the start codon at all—it might be entirely
untranslated, or correspond to an internal stretch of a protein.
The last case can also produce false positive predictions, since



Machine learning approaches for the prediction of signal peptides

non-cytoplasmic ends of transmembrane helices are often
rather similar to SP cleavage sites, and the SignalP networks
have never been trained to avoid SPs here.

Therefore, it would be desirable to have a method which,
given a nucleotide sequence, would provide a prediction of
both ends of a SP, i.e. the start codon and the cleavage site.
Such a method does not exist yet, but a partial solution would
be a score describing the probability that any given triplet is
the start codon. To this end, we have developed a NN-based
method for start codon prediction in eukaryotes, NetStart
(Pedersen and Nielsen, 1997). It is trained to recognize the
start codon AUG against all other AUG triplets in the mRNA
sequence. It performs this task by using both local context—
the Kozak box (Kozak, 1984)—and long-range context in the
form of implicit reading frame detection. NetStart is designed
to work with EST or cDNA data; for use with genomic DNA,
the possible occurrence of introns shortly downstream of the
start codon could be detrimental to the prediction.

Statistical analyses (A.G.Pedersenet al., manuscript in
preparation) have shown that the local start codon context varies
widely between different systematic groups of eukaryotes.
The current NetStart 1.0 contains only two organism-specific
versions, for vertebrates andArabidopsis thaliana, but more
will be added in future releases. Although NetStart 1.0 should
be regarded as a ‘first attempt’ at this problem, it does show
test set performances, measured by correlation coefficient, of
0.62 for vertebrates and 0.71 forA.thaliana.

Signal peptides of Archaea
Secretory SPs from eukaryotes and bacteria are well described,
but only very few experimental examples are known from
the third domain of life, the archaea (formerly known as
archaebacteria). Although being prokaryotic, they show greater
similarity in many respects to eukaryotes than to bacteria,
especially concerning informational cellular processes such as
replication and translation (Olsen and Woese, 1997). Further-
more, their membranes exhibit very specialized properties not
found in other organisms. It is therefore not clear which, if
any, of the three current organism-specific SignalP versions is
valid for identification of archaeal SPs.

We used a ‘consensus’ between the three SignalP versions
in a first attempt at characterizing the SPs ofMethanococcus
jannaschii, the first archaeon to be completely sequenced (Bult
et al., 1996). SPs should indeed be expected in this organism:
a signal peptidase has been identified by homology in the
genome, and it shows greater homology to its eukaryotic than
to its bacterial counterpart. The underlying idea is that if we
are able to find sequences in the genome which could function
as SPs in all other domains of life (i.e. in eukaryotes and both
groups of bacteria), they would presumably function as signal
peptides inM.jannaschiias well.

Methanococcus jannaschiiSPs might have been predicted
by alignment to known SPs from other organisms, if significant
matches to experimentally verified secretory proteins including
the SP region could be found. We made local pairwise
alignments between all the predictedM.jannaschii protein
sequences and all sequences in the SignalP data set, but found
only insignificant matches. Even the best pairwise alignment
scores were considerably lower than the threshold required for
using a local alignment of two SP sequences to predict the
location of the cleavage site (Nielsenet al., 1996). This shows
that we cannot expect to findM.jannaschiiSPs by alignment—
a prediction method is indeed necessary for this task.
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Fig. 3. A sequence logo of 34 predicted signal peptides from
Methanococcus jannaschii, aligned by their cleavage sites (no gaps).
Positively and negatively charged residues are shown in blue and red
respectively, while uncharged polar residues are green and hydrophobic
residues are black.

We selected sequences where both the maximal Y-score and
the mean S-score were above their cut-off values for all
three SignalP versions (eukaryotic, Gram-positive and Gram-
negative). This is a very conservative criterion: when tested
on the SignalP data sets, it accepts 75% Gram-negative, 66%
Gram-positive and only 39% of the eukaryotic SPs. Used on
the M.jannaschiigenome, it yielded 34 putative SPs, none of
which had a known subcellular location. This number is too
small to train a species-specific neural network (it might be
used for an HMM but this has not yet been implemented), but
it is enough to draw a few tentative conclusions about
M.jannaschiiSPs.

The 34 sequences were divided into n-, h- and c-regions,
and the amino acid content compared with that of eukaryotes
and bacteria. TheH.influenzaegenome (Fleischmannet al.,
1995) served as a reference example of a Gram-negative
bacterium. In Figure 3, the 34 putativeM.jannaschiiSPs are
represented as a sequence logo, i.e. a sequence of stacked
letters, where the total height of the stack at each position
shows the amount of information (conservation), while the
relative height of each letter shows the relative abundance of
the corresponding amino acid (Schneider and Stephens, 1990).
When compared with logos of eukaryotic or bacterial SPs
(Nielsen et al., 1997a), the following characteristics are
observed.

In the n-region, the content of Lys is very high, while Arg
is relatively rare. A positively charged n-region is also found
in bacterial SPs, but in these Arg and Lys are present in more
equal proportions. The Lys content ofM.jannaschiin-regions
is approximately 30% compared with 20% inH.influenzae. A
very characteristic feature is the high content of Ile in the h-
region. This is not limited to signal peptides, as Ile is
strongly over-represented inM.jannaschiias compared with
H.influenzaealso in transmembrane regions (16 versus 12%)
and in the genome as a whole (10.5 versus 7.1%). However,
the difference is more drastic for the h-regions (22 versus 11%).

In the c-region, the dominance of Ala at position –1 is
typical for both bacterial and eukaryotic signal peptide cleavage
sites, whereas the tolerance of other uncharged residues, such
as Val, Leu and Ile, at –3 and the short length of the c-region
clearly suggest a eukaryotic type of cleavage site. Around the
cleavage site, a unique feature is also found: a high occurrence
of Tyr (8% of the c-regions as opposed to 2% inH.influenzae),
particularly visible at positions11 and –2. This seems to be
specific for SPs, since the general Tyr content is only slightly
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higher inM.jannaschiithan inH.influenzae(4.3 versus 3.3%).
Finally, the occurrence of negatively charged residues in the
first few positions of the mature protein has previously been
noted for bacterial but not for eukaryotic signal peptides (von
Heijne, 1986a).

In conclusion, our analysis suggests that SPs from an
archaeon have a eukaryotic-looking cleavage site, a bacterial-
looking charge distribution and a unique composition of the
hydrophobic region. The statistical description is of course to
some extent affected by the fact that we use a consensus
method, which only finds signal peptides and cleavage sites
that would be acceptable in both eukaryotes and bacteria;
chances are that signal peptides peculiar to archaea have
gone undiscovered. In other words, we have if anything
underestimated the unique characteristics of theM.jannaschii
signal peptides.

Other protein sorting prediction methods
ChloroP is the equivalent of SignalP for predicting chloroplast
transit peptides (cTPs), and has been constructed in much the
same way (O.Emanuelsson, H.Nielsen and G.von Heijne,
manuscript submitted). Two novel aspects are that the yes/no
cTP prediction is based on a NN trained on the S-score outputs
from the basic NN, and that the cleavage site prediction is not
done using a NN but by a simple weight matrix. The weight
matrix approach was chosen since a recent experimental study
of the cTP processing enzyme stromal processing peptidase
(SPP) suggested that the mature N-terminus of chloroplast
proteins is often generated by an ill-defined proteolytic removal
of one or a few extra residues after the initial SPP cleavage
(Richter and Lamppa, 1998). Since the cleavage sites given in
SWISS-PROT are based on amino acid sequencing of mature
chloroplast proteins, they will, in general, not correspond to
the SPP cleavage sites. To get around this problem, we used
MEME (Bailey and Elkan, 1994), an automatic motif-finding
algorithm that does not require pre-aligned sequences, to
construct a weight matrix for the SPP cleavage site. ChloroP
can distinguish between cTPs and other proteins with a
correlation of 0.76, and it can locate the cleavage site within
three residues from the annotated position in about 60% of
the cTPs.

The currently most developed method to predict mTPs is
based on a linear combination of a number of sequence
characteristics such as amino acid abundance, maximum hydro-
phobicity and maximum hydrophobic moment that are com-
bined into an overall score (Claros and Vincens, 1996).
Preliminary work using the same NN approach as for ChloroP
suggests that similar performance levels can be reached using
machine learning (our unpublished data).

In addition to the recognition of the sorting signals, predic-
tion of protein sorting can exploit the fact that proteins of
different subcellular compartments differ in global properties
such as amino acid composition and residue-pair frequencies.
While the signal prediction methods are probably closer to
mimicking the information processing in the cell, methods
based on global properties can complement imperfect signal-
based methods, especially on incomplete sequences. Specific-
ally, a composition-based method for recognizing extracellular
proteins can be used without knowledge of the N-terminus,
and could, for example, give correct predictions for EST-
derived protein fragments where the signal peptide has not
even been sequenced. The drawback is that such methods will
not be able to distinguish between very closely related proteins
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that differ in the presence or absence of a SP. Most of the
work on such methods has been based on traditional statistics
(Nakashima and Nishikawa, 1994; Cedanoet al., 1997), but
machine learning has been employed in the NNPSL method,
which uses NNs trained on overall amino acid composition to
predict location to three (bacteria) or four (eukaryotes) possible
subcellular compartments (Reinhardt and Hubbard, 1998).

The PSORT program (Nakai and Kanehisa, 1992; Horton
and Nakai, 1997) is an integrated system of several prediction
methods, using both sorting signals and global properties.
Some of the components are developed within the PSORT
group, others are implementations of methods published else-
where. PSORT is the only publicly available system that shows
this degree of integration, and it includes sorting predictions
that are not found elsewhere (e.g. nuclear or peroxisomal
targeting). However, it does not include the newest machine-
learning methods, which means that PSORT prediction of the
more extensively studied protein sorting problems, e.g. SPs or
transmembrane helices, is in many cases not the best available.

The future
With the recent advances in prediction methods for protein
sorting, the vision of a computer program that is able to predict
the subcellular location of almost any given protein with high
confidence seems not entirely unrealistic. This would be an
integrated system of sorting signal predictors and methods
based on overall amino acid composition, and as described
above, start codon prediction and transmembrane helix predic-
tion should be included. A major use of such a program would
be automatic annotation of sequence databases, including
complete genomes.

On the other hand, one big integrated system of all methods
may not be the most desirable solution for all users. For
automated annotation of very large data sets, integrated predic-
tion systems are of course preferable, but the biologist working
on one specific gene might be better off considering compre-
hensive graphical output from several prediction methods
separately, and then deciding which conclusion should be
drawn from the possibly conflicting predictions. In some cases
(rare but interesting), the biologically correct answer will be
something not anticipated by the method builders (e.g. dual
targeting, double cleavage, non-standard use of sorting
machineries), and uncritical use of a totally integrated predic-
tion system could actually block new discoveries instead of
promoting them.

Finally, any given application will require careful considera-
tion of how to strike the best balance between sensitivity and
specificity. For gene hunting, one may want high sensitivity
(i.e. few false negatives) in order not to miss interesting
candidate genes, whereas for database annotation it may be
more prudent to ask for high specificity (i.e. few false positives)
even if this will leave many sequences unannotated.

The trade-off between sensitivity and specificity illustrates
a common aspect in the evaluation of prediction methods.
Performances are given as percent correct, correlation coeffi-
cients etc., but these depend on the choice of cut-off and the
definition of positive and negative data sets. In the signal
peptide case, it is quite clear what the positive data sets should
be, although it may be argued whether, for example, bacterial
lipoproteins should be considered as positive examples. On
the other hand, there are many questions to be asked about
negative examples: should they comprise only soluble cyto-
plasmic and nuclear proteins, or include transmembrane and
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membrane-associated proteins? Should they be limited to N-
terminal parts or include entire protein chains? There is no
single correct answer to questions like these, which makes
comparison of performances of different methods a very tricky
business.

Since numerical performance measures are mandatory for
deciding whether methods have improved, the task of defining
such measures is very important, and much more work is
needed within the bioinformatics field in order to arrive at
common testing standards for method comparison (Nielsen
et al., 1996). However, we feel that the most informative test
of the performance and applicability of a sequence-based
prediction method is carried out by making it available to the
biological community, both in academia and in industry, e.g.
by implementing it as a server or a portable program. The
feedback from users, either directly, or implicitly via usage
and citation statistics, can tell us more about the quality of
our bioinformatics work than percentages and correlation
coefficients will ever be able to.

Availability of methods
SignalP, TMHMM, NetStart and ChloroP are all available
under the prediction server page of Center for Biological
Sequence Analysis (http://www.cbs.dtu.dk/services/). For
transmembrane helix prediction, two possibilities in addition
to TMHMM (our apologies to several others not mentioned
here) are PHDhtm (http://www.embl-heidelberg.de/predict-
protein/) and TopPred (http://www.biokemi.su.se/server/
toppred2/). PSORT is found at http://psort.nibb.ac.jp/, and
NNPSL at http://predict.sanger.ac.uk/nnpsl/.
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