COMPUTING PRACTICES

An Empirical Comparison of
even Programming Languages

Often heated, debates about different
programming languages remain incon-
clusive. The author takes a first step
toward providing bard data about the

relative effectiveness of C, C++, Java,
Perl, Python, Rexx, and Tcl.

Lutz Prechelt

University of
Karlsruhe

hen it comes to the pros and cons
of various programming languages,
programmers and computer scien-
tists alike usually hold strong opin-
ions. By comparing several lan-
guages, I seek to provide some objective information
about C, C++, Java, Perl, Python, Rexx, and Tcl.

For the comparison, I used the same program, which
implements the same set of requirements for each lan-
guage. Doing so makes the comparison narrow but
homogeneous. Further, for each language, I analyze
several separate implementations by different pro-
grammers. Such a groupwise comparison offers two
advantages. First, it smoothes out the differences
among individual programmers, which could threaten
the validity of any comparison based on a single imple-
mentation per language. Second, it allows us to assess
and compare the variability of the program properties
the different languages induce.

The comparison investigates several aspects of each
language, including program length, programming
effort, runtime efficiency, memory consumption, and
reliability. I also consider the languages both individ-
ually and combined into groups. Scripting languages
such as Perl, Python, Rexx, and Tcl tend more toward
being interpreted than compiled, at least during the
program development phase, and they typically do not
require variable declarations.

The more conventional programming languages—C,
C++, and Java—are compiled rather than interpreted,
and they require typed variable declarations. Since Java
is often believed to be very inefficient, I also sometimes
consider C and C++ as one group and Java as another.

0018-9162/00/$10.00 © 2000 IEEE

PLOTS AND STATISTICAL METHODS

My study used the multiple boxplot display shown in
Figure 1 for its main evaluation tool. Each of the lines
represents one subset of data, with its name appearing
to the left. Each small circle stands for an individual
data value. The rest of the plot provides visual aids for
the comparison of two or more such data subsets. The
shaded box indicates the range of the middle half of the
data, that is, from the first (25 percent) quartile to the
third (75 percent) quartile. The “whiskers” to the left
and right of the box indicate the data’s bottom and top
10 percent, respectively. The fat dot within the box is the
median (50 percent) quartile. The “M” and the dashed
line around it indicate the arithmetic mean and the
mean’s plus-and-minus-one standard error.

For quantitatively describing the variability within
one group of values, I use the bad-to-good ratio:
Imagine the data split into an upper and lower half,
with the bad-to-good ratio being the median of the
upper half divided by the median of the lower half. In
the boxplot, the median is the value at the right edge
of the box divided by the value at the left edge. In con-
trast to a variability measure such as the standard devi-
ation, the bad-to-good ratio is robust against outliers.

Most significant observations can easily be made
directly from the plots. To be sure, however, I also per-
formed statistical tests. Medians are compared using
the one-sided Mann-Whitney U-test (also known as
theWilcoxon rank sum test). The result of each test is
a p-the value, that is, a probability that the observed
differences between the samples are only accidental
and that either no difference or a difference in the
opposite direction between the underlying populations

October 2000

- . | OI Moo .
Rexx J'!> & J'L
Python o
Perl 4
Java
[]
o —|) s ...;)t....M....! .
] M
€ I—ﬂ—f—i .
4 16 64 256 1,024 4,096
Runtime for 21000 in seconds
o Individual data value
® Median
[0 Range for data’s middle half
H Bounds for the data’s bottom and top 10 percent
=M-- Artithmetic mean and plus/minus one standard error

Figure 1. Program runtime on the 21000 data set. Three programs timed out with no
output after about 21 minutes. The bad-to-good ratios range from 1.5 for Tcl up to 27
for C++. Note the logarithmic axis. The legend shown here applies to Figures 2 through
7 as well. Refer to the “Plots and Statistical Methods” section for more details.

does indeed exist. I will usually not give the p-value
itself, but rather say “... is larger than ...” if 0 < p <
0.10 or “... tends to be larger than ...” if 0.10 < p <
0.20. If p > 0.10, there is “no significant difference.”

At several points I also provide confidence inter-
vals, either on the differences in means or on the dif-
ferences in logarithms of means—that is, on the ratios
of means. The confidence levels are chosen so that
they are open ended, with their upper end at infinity.
I computed the confidence intervals using bootstrap-

Table 1. Programming-language comparison statistics.

Number of Compiler or
Language programs execution platform
Tcl 10 Tcl 8.2.2
Rexx 4 Regina 0.08g
Python 13 Python 1.5.2
Perl 13 Perl 5.005_02
Java 24 SunJDK 1.2.1/1.2.2
C++ 11 GNU g++2.7.2
C 5 GNU gec 2.7.2

ping, which is described in more detail elsewhere."

Given the study’s validity caveats, these quantita-
tive statistical inference results merely indicate trends
and should not be considered precise evidence.

Table 1 shows the number of programs considered
for each language and the execution platforms used.
The Java evaluation uses either the JDK 1.2.2 Hotspot
Reference version or the JDK 1.2.1 Solaris Production
version with JIT, depending on which one was faster
for each program. I executed all programs on a 300-
MHz Sun Ultra II workstation with 256 Mbytes of
RAM, running under SunOS 5.7. The results for C
and Rexx are based on only five and four programs,
respectively, and are thus rather coarse estimates of
reality, but for all other languages, the results derive
from 10 or more programs, which is a broad-enough
base for reasonably precise results.

The “The Programming Problem: Phonecode” and
“Comparison Validity” sidebars describe the study’s
setup and validity. Readers interested in a more
detailed description of the study can find it on the Web
at ftp.ira.uka.de.

RESULTS

I evaluated the programs using three different input
files: 21000, which contains 1,000 nonempty random

Comparison Validity

Any programming language compari-
son based on actual sample programs is
valid only to the degree to which the capa-
bilities of the respective programmers
using these languages are similar. In our
case, we only need the programs to be
comparable on average, not in individual
cases. Several factors present program
comparability threats for the 80 programs
analyzed in the study.

The programs come from two different
sources. The Java, C, and C++ programs
were produced in 1997 and 1998 during
a controlled experiment in which all the
subjects were computer science master stu-
dents.! The Perl, Python, Rexx, and Tcl
programs were produced under more vari-
able conditions, created by volunteers after

Computer

I posted a “call for programs” message on
several newsgroups. Consequently, these
subjects show more diversity in back-
ground and experience.

Programmer capabilities

It is plausible that a public call for pro-
grams may attract only fairly competent
programmers, hence the script programs
reflect higher average programmer capa-
bilities than the nonscript programs.
However, two observations suggest that
this discrepancy is not a problem. First,
with some exceptions, the students who
created the nonscript programs were also
quite capable and experienced. Second, a
fair fraction of the script programmers
described themselves as either beginners

in programming with their respective
scripting language or as not having a thor-
ough programming background, includ-
ing a VLSI designer, a system administra-
tor, and a social scientist.

Within the nonscript group, the Java
programmers tended to be less experi-
enced in their language than the C and
C++ programmers because Java was still
a new language in 1997 and 1998. In the
script group, the Perl subjects may have
been more capable than the others
because the Perl language appears to
attract especially capable programmers—
at least that is my personal impression.

Work time reporting accuracy
In contrast to the nonscript programs

The Programming Problem: Phonecode

All programs in the study implement the same functionality, namely
a conversion from telephone numbers into word strings, as follows.

The program first loads a dictionary of 73,113 words into mem-
ory from a 938-Kbyte flat-text file that consists of one word per line.
It then reads “telephone numbers” from another file, converts them
one by one into word sequences, and prints the results. A fixed map-
ping of characters to digits defines the conversion as follows:

civ bku
666 777

rwx
222

dsy ft am
333 44 55

lop
888

ghz
999

e jng
0 111

This means for instance the digit 5 may map into either an a or
an m. The program must find a sequence of words such that the
sequence of characters in these words exactly corresponds to the
sequence of digits in the phone number. All possible solutions must

phone numbers; m1000, which contains 1,000 arbi-
trary random phone numbers with empty records
allowed; and z0, which contains no phone numbers at
all and thus serves to measure dictionary load time only.

be found and printed. The program creates the solutions word-by-
word and, if no word from the dictionary can be inserted at some
point during that process, a single digit from the phone number can
appear in the result at that position. Many phone numbers have no
solution at all. Here is an example of the program output for the
phone number “3586-75,” where the dictionary contained the
words “Dali,” “um,” “Sao,” “da,” “Pik,” and 73,108 others:

3586-75: Dali um
3586-75: Sao 6 um
3586-75: da Pik 5

Alist of partial solutions must be maintained by the program while
it processes each number, and the dictionary must be embedded in a
supporting data structure, such as a 10-ary digit tree, for efficient access.

rather large, it is unstable. The Wilcoxon test,
which takes the whole sample into account, con-
firms that C++’s median time tends to be shorter
than the Java median, with p = 0.18.

e (C’s median runtime is shorter than Java’s, Rexx’s,

Runtime and Tcl’s and tends to be shorter than Perl’s and
I'started my analysis by investigating the total run- Python’s.
time, then examined the initialization and search e Tcl’s and Perl’s runtimes—except for two very

phases separately.
Total: 21000 data set. Figure 1 shows that, except for
C++, Java, and Rexx, the programs run in less than

slow programs—tend to exhibit less variability
than do other languages’ runtimes.

one minute. This data suggests several meaningful
comparisons.

e Tcl’s median runtime is not significantly longer
than that for Java or even C++.

® Both Python’s and Perl’s median run times are
shorter than those of Rexx and Tcl.

e C++’s median can be confusing. Because the dis-
tance to the next larger and smaller points is

We should avoid overinterpreting the plots for C
and Rexx, which have only a few points. The Rexx
programs can be made to run about four times faster
by recompiling the Regina interpreter to use a larger
hash table size; the additional memory overhead is
negligible. If we aggregate the languages into only
three groups (one with C and C++, one with Java, and
one with scripts), C and C++ are faster than Java (p
=0.074) and tend to be faster than scripts (p = 0.15).

from the controlled experiment, for which
we know the real programming time accu-
rately, nothing kept the script programmers
from “rounding down” the working times
they reported when they submitted their
programs. Worse, some apparently read
the requirements days before they actually
began implementing the solution. One
such programmer reported reading the
program two weeks before the start of cod-
ing, “... during which my subconscious
may have already worked on the solution.”

Evidence, however, indicates that the
script group’s average work times are rea-
sonably accurate, too: Common software
engineering wisdom, which says that “the
number of lines written per hour is inde-
pendent of the language,” holds fairly well
across all languages. Even better, the same
data also confirms that the programmer

capabilities are not higher in the script
group.

Different task and work conditions

The nonscript group’s instructions
focused on correctness as the main goal;
acceptance tests required high reliability
and at least some efficiency. The script
group’s instructions mentioned eight other
program quality goals besides the main
goal of correctness. In place of the accep-
tance test in the nonscript group, the
script group received the z1000 input and
output data for their own testing. Both
these differences may represent an inher-
ent script group advantage.

Summary
Opverall, given the design of the data col-
lection, the script group’s data will likely

reflect several relevant if modest a priori
advantages over the nonscript group’s
data. It is also likely that some modest dif-
ferences exist in the average programmer’s
capability between any two of the lan-
guages. These threats to validity suggest
that we should discount small differences
among any of the languages, as they might
be based on data weaknesses. Large dif-
ferences, however, are likely to be valid.

Reference
1. L. Prechelt and B. Unger, A Controlled
Experiment on the Effects of PSP Train-
ing: Detailed Description and Evaluation,
Tech. Report 1/1999, Fakultit fiir Infor-
matik, Universitit Karlsruhe, Germany,
Mar. 1999, ftp.ira.uka.de.

October 2000

Tcl

Rexx

Python

Perl

Java

C++

4 8 16 32 64
Runtime for z0 in seconds

Figure 2. Program runtime for loading and preprocessing the dictionary only (z0 data
set). Note the logarithmic axis. The had-to-good ratios range from 1.3 for Tel up to 7.5

for Python.

Tl

Rexx

Python

Perl

Java

C++

e — el -)
I -
$ ¥ v .
[P R S - Mo | |
e AT o e o S
i P S .
E } t I {o

256 1,024 4,096

Runtime for 21000 after loading in seconds

Figure 3. Program runtime for the search phase only, computed as time for the 21000
data set minus time for the z0 data set. Note the logarithmic axis. The bad-to-good
ratios range from 2.9 for Perl up to more than 50 for C++.

There is no significant difference between the average
Java and script runtimes. The results give an 80 per-
cent confidence that a script will run at least 1.29 times
as long—and a Java program at least 1.22 times as
long—as a C or C++ program. The bad-to-good ratios
are much smaller for scripts (4.1), than for Java (18)
or even C and C++ (395).

Initialization phase only, z0 data set. I next focused on
the time to read, preprocess, and store the dictionary.
Figure 2 shows the corresponding runtimes. The
results clearly show C and C++ to be faster in this
phase than all other languages tested. The fastest
script languages are again Perl and Python.

For the aggregate grouping, we find with an 80 per-
cent confidence level that, compared to a C or C++

Computer

program, a Java program will run at least 1.3 times
as long, while a script will run at least 5.5 times as
long. Compared to a Java program, a script will run
at least 3.2 times as long.

Search phase only. Finally, I subtracted the runtime
for the loading phase (z0 data set) from the total run-
time (z1000 data set) to obtain the runtime for the
actual search phase only. Figure 3 shows the corre-
sponding runtimes, which reveal the following:

e Very fast programs occur in all languages except
for Rexx and Tcl, while very slow programs
occur in all languages.

e Tcl’s median run time is longer than the run times
for Python, Perl, and C, but shorter than the run
time for Rexx.

e Python’s median runtime is shorter than the run
times for Rexx and Tcl and tends to be shorter
than the run time for Java (p = 0.13).

e Perl’s median run time is shorter than the medi-
ans for Rexx, Tcl, and Java.

e C++’s median differs significantly from any other
language’s.

The group-aggregated comparison indicates no sig-
nificant differences among any of the groups.
However, the results give an 80 percent confidence
that the scripts’ runtime variability is smaller than that
of Java by a factor of at least 2.1, and smaller than
that of C and C++ by a factor of at least 3.4.

Memory consumption

Figure 4, which shows the total process size at the
end-of-program execution for the z1000 input file,
encourages several observations:

e Clearly, the most memory-efficient programs come
from the C and C++ groups, while the least mem-
ory-efficient programs come from the Java group.

e Except for Tcl, few of the script languages con-
sume more memory than the worst half of the C
and C++ programs.

e Tclscripts require more memory than other scripts.

e For Python and Perl, the relative variability in
memory consumption tends to be much smaller
than for C and, in particular, C++.

o A select few of the scripts consume large amounts
of memory.

e On the average, for the group-aggregated view
and with a confidence of 80 percent, the Java pro-
grams consume at least 32 Mbytes more mem-
ory (297 percent) than the C and C++ programs,
and at least 20 Mbytes more memory (98 per-
cent) than the script programs. The script pro-
grams consume at least 9 Mbytes more memory
(85 percent) than the C and C++ programs.

I conclude from these findings that Java’s memory
consumption typically runs twice as high as for scripts
and that scripts are not necessarily less memory-effi-
cient than a program written in C or C++, although
they cannot beat a parsimonious C or C++ program.

Common wisdom suggests algorithmic programs
demand a time and memory trade-off: Making a pro-
gram faster usually requires more memory. Within our
given set of programs, this rule holds for all three non-
script languages, but the opposite rule tends to hold for
script languages: Scripts that use more memory actually
tend to be slower than scripts that use less memory.

Length and amount of commenting

Figure 5 shows the number of lines in each program
source file that contain anything that contributes to
the program’s semantics: a statement, declaration, or
at least a delimiter such as a closing brace. Nonscripts
typically are two to three times longer than scripts.
Even the longest scripts are shorter than the average
nonscript. At the same time, scripts tend to contain a
significantly higher density of comments (p = 0.020):
Nonscripts average a median of 22 percent as many
comment or commented lines as they have statement
lines, while the scripts average 34 percent.

Program reliahility

With the z1000 input file, three programs—one C,
one C++, and one Perl—produced no correct outputs
at all, either because they could not load the large dic-
tionary or timed out during the load phase. Two Java
programs failed with near-zero reliability for other
reasons, and one Rexx program produced many of its
outputs with incorrect-format-only scripting, result-
ing in a reliability of 45 percent.

Ignoring these highly faulty programs and com-
paring the rest by language group—thereby exclud-
ing 13 percent of the C and C++ programs, 8 percent
of the Java programs, and 5 percent of the script pro-
grams—reveals that C and C++ programs are less reli-
able than the Java and script programs. These
differences, however, depend on just a few defective
programs and should thus not be generalized.

However, that these differences show the same trend
as the fractions of highly faulty programs we’re
excluding offers good evidence that this reliability
ordering among the language groups is real. The
scripts’ advantages may derive from the better test
data available to script programmers, as described in
the “Comparison Validity” sidebar.

Next, I compared the behavior for the input file
m1000, which allows for phone numbers that do not
contain digits, only dashes and slashes. Such a phone
number should result in an empty encoding, but we
don’t usually think of such inputs when reading the
requirements. Hence, the m1000 input file tests pro-

Tl e F— .
BT -
Python f@_‘lo °
Mo |
Perl 3 ¢ ° ! °

Java o col—de O 0s T, .

e E& “Meee ;{ .

0 20 40 60 80

Memory consumption for z1000 in Mbytes

Figure 4. Amount of memory the program required, including interpreter or runtime
system, the program itself, and all static and dynamic data structures. The bad-to-good
ratios range from 1.2 for Python up to 4.9 for C++.

Tcl o H 8 — .

I

Python .
Perl

Java

Cor . é_t) *Mo 'ﬁ .

0 100 200 300 400 500 600
Program length (statement LOCs)

Figure 5. Program length, measured in number of noncomment source lines of code.
The bad-to-good ratios range from 1.3 for C up to 2.1 for Java and 3.7 for Rexx.

gram robustness. Most programs cope with this situ-
ation well, but half of the Java programs and four
script programs—one written in Tcl and three in
Python—crashed when they encountered the first
empty phone number after processing 10 percent of
the outputs. Usually, an illegal string subscript or array
subscript caused the crash. Of the other programs,
15—one written in C, five in C++, four in Java, two in
Perl, two in Python, and one in Rexx —fail exactly on
the three empty phone numbers, but work correctly
otherwise, resulting in a reliability of 98.4 percent.

Summing up, it appears that scripts are no less reli-
able than nonscripts.

Work time and productivity
Figure 6 shows the total work time for designing,
writing, and testing the program as reported by the

October 2000

Tl o&? Oo.o:,. . .

Rexx D}_O T _{0

Python OQ’" aEL °

Perl i & =

............ YRR
Java %%0050009 o9 o o © o o

I
0 5 10 15 20 25

Total time for programming in hours

Figure 6. Total working time for realizing the program. The programmers measured and
reported the script group times; the experimenter measured the nonscript group times.
The bad-to-good ratios range from 1.5 for C up to 3.2 for Perl. Three Java work times of
40, 49, and 63 hours exceed the chart’s bounds and thus are not shown.

script programmers and as measured for the nonscript
programmers.

We see that scripts, which have a total median of 3.1
hours, take less than half as long to write as nonscripts,
which have a total median of 10.0 hours, although
validity threats may have exaggerated this difference.

Fortunately, we can check two things at once,
namely, the correctness of the work-time reporting and
the equivalence of the programmer capabilities in the
script versus the nonscript group. Both these possible
problems, if present, tend to bias the script group’s
worktimes downward: We would expect cheaters to
fake their time to be shorter, not longer, and, if there is
a difference, we expect to see more capable program-
mers in the script group compared to the nonscript
group because in 1997 and 1998, when the study took
place, the Java programmers were less experienced rel-
ative to the other programmers. This check relies on
an old rule of thumb, which says that programmer pro-
ductivity measured in lines of code per hour is roughly
independent of the programming language. Several
widely used effort estimation methods—including
Barry Boehm’s Cocomo® and Capers Jones’ program-
ming language table for function point estimation*—
explicitly assume that productivity LOC per hour is
independent of programming language. Figure 7 plots
the validation of my work-time data, based on this
rule. Judging from the reliably known productivity
range of Java, all data points, except perhaps the top
three Tcl and topmost Perl results, are quite plausible.

None of the median differences show clear statistical
significance, although Java versus C, Perl, Python, or
Tcl—where 0.07 < p < 0.10—comes close to doing so.
Even in the group-aggregated view, with its much larger
groups, the difference between C and C++ versus scripts
is insignificant (p = 0.22), and only Java is less produc-
tive than scripts (p = 0.031), the difference being at least
5.2 LOC per hour, with 80 percent confidence.

m Computer

This comparison lends credibility to the study’s
work-time comparison. The times reported for script
programming are likely either only modestly opti-
mistic or not at all so. Thus, a work-time advantage
for the script languages of about factor two holds. The
Java work times appear to be a bit pessimistic because
when the study took place, the Java programmers
were less experienced than the other programmers.

Program structure

If we consider the designs chosen by those who
wrote programs in the various languages studied, we
uncover a striking difference. Most programmers in
the script group used the associative arrays provided
by their language and stored the dictionary words to
be retrieved by their number encodings. The search
algorithm simply attempts to retrieve from this array,
using prefixes of increasing length based on the rest
of the remaining current phone number as the key.
Any match found leads to a new partial solution to
be completed later.

In contrast, essentially all the nonscript program-
mers chose one of the following solutions: In the sim-
ple case, they stored the whole dictionary in an array,
usually in both its original character form and the cor-
responding phone number representation. They then
selected and tested one-tenth of the whole dictionary
for each digit of the phone number they were encod-
ing, using only the first digit as a key to constrain the
search space. This procedure leads to a simple but
inefficient solution.

The more elaborate case uses a 10-ary tree in which
each node represents a certain digit, nodes at height »
representing the nth character of a word. A word is
stored at a node if the path from the root to this node
represents the word’s number encoding. This solution
is most efficient, but requires a comparatively large
number of statements to implement the tree con-
struction and traversal. In Java, the large resulting
number of objects also leads to high memory con-
sumption due to the severe memory overhead incurred
per object by current Java implementations.

The script programs require fewer statements relative
to the nonscript programs because they do most of the
actual search with the hashing algorithm, which is used
internally by the associative arrays. In contrast, the non-
script programs require the programmer to code most
of the search process’s elementary steps explicitly. This
difference is further accentuated by the effort—or lack
of it—for data structure and variable declarations.

Despite the existence of hash table implementations
in both the Java and C++ class libraries, none of the
nonscript programmers used them, choosing instead
to implement a tree solution by hand. Conversely, the
script group’s programmers found the hash tables
built into their languages to be an obvious choice.

SIGNIFICANT FINDINGS

Comparative analysis of 80 implementations of the
phonecode program in seven different languages
resulted in the following significant findings:

e Designing and writing the program in Perl,
Python, Rexx, or Tcl takes no more than half as
much time as writing it in C, C++, or Java—and
the resulting program is only half as long.

e [observed no clear differences in program relia-
bility among the language groups.

e The typical script program consumes about twice
as much memory as does a C or C++ program.
Java programs consume three or four times as
much memory as C or C++ programs.

o For the phonecode program’s initialization phase,
which consists of reading the 1-Mbyte dictionary
file and creating the 70K-entry internal data
structure, the C and C++ programs complete
about three to four times faster than Java pro-
grams and about five to 10 times faster than the
script languages.

e For the main phase of the phonecode program,
which involves searching through the internal
data structure, the C and C++ programs run only
about twice as fast as Java. The script programs
also tend to be faster than the Java programs.

e Within the script languages, Python and Perl run
faster than Tcl for both phases.

e For all program aspects investigated, the perfor-
mance variability that derives from differences
among programmers of the same language—as
described by the bad-to-good ratios—is on aver-
age as large or larger than the variability found
among the different languages.

Considering the large number of implementations
and the broad range of programmers investigated, this
study’s results, when taken with a grain of salt, are
probably reliable despite the validity threats I’ve
noted. The results, however, can be considered valid
only for the phonecode problem; generalizing to dif-
ferent application domains would be risky. For exam-
ple, I doubt that the relative results for the script
languages group would hold up well when applied to
other problems.

Despite these caveats, directly comparing different
programming languages can provide meaningful
insights. For example, I conclude from the study that
Java’s memory overhead is still huge compared to C
or C++, but its runtime efficiency has become quite
acceptable. The scripting languages, however, offer
reasonable alternatives to C and C++, even for tasks
that must handle fair amounts of computation and
data. Their relative runtime and memory-consump-
tion overhead will often be acceptable, and they may

Tcl ° };‘ 00 ® o °

RO J' . ‘...; Mesefeeneanne

Python

Perl

Java

C++

Source text productivity (LOC/hour)

60

80

Figure 7. Source text productivity in noncomment lines of code per total work hour. The

bad-to-good ratios range from 1.4 for C to 3.1 for Tel.

offer significant advantages with respect to program-
mer productivity, at least for small programs like the
phonecode problem.

along the lines of the one described here. Such work
is necessary if we are to disperse the fog of vendor
hype and programmer advocacy so that we can see
each language’s strengths, weaknesses, and peculiari-
ties clearly. Acquiring such knowledge will help
advance the state of software development overall. []

I advocate that more and larger studies be conducted

References

1. E. Bradley and R. Tibshirani, “An Introduction to the
Bootstrap,” Monographs on Statistics and Applied
Probability 57, Chapman and Hall, New York, 1993.

2. L.Prechelt, An Empirical Comparison of C, C++, Java,
Perl, Python, Rexx, and Tcl for a Search/String-Pro-
cessing Program, Tech. Report 2000-5, Fakultit fiir
Informatik, Universitat Karlsruhe, Germany, Mar. 2000,
ftp.ira.uka.de.

3. B.W. Boehm, Software Engineering Economics, Pren-
tice Hall, Englewood Cliffs, N.J., 1981.

4. C. Jones, Software Productivity Research, Programming
Languages Table, Version 7, http://www.spr.com/
library/Olangtbl.htm, 1996 (as of Feb. 2000).

Lutz Prechelt is head of Quality Assurance at abaXX
Technology, Stuitgart, Germany. At the time of this
study, he was assistant professor at the University of
Karlsrube. His research interests are empirical soft-
ware engineering, benchmarking issues, parallel pro-
cessing, and research methodology. Prechelt received
a PhD in informatics from the University of Karl-
srube. He is a member of the IEEE Computer Soci-
ety, the ACM, and the GI. Contact him at lutz@
prechelt.de.

October 2000

