A USER-ORIENTED SOFIWARE RELIABILITY MODEL

ROGER C. CHEUNG

Bell Telephone Laboratories,
Naperville, Illinois 60540

ABSTRACT

A user-oriented reliability model has been
developed to measure the reliability of service
that a system provides to a user community. It
has been observed that in many systems, especially
software systems, reliable service can be provided
to a user when it is known that errors exist,
provided that the service requested does not
utilize the defective parts. The reliability of
service, therefore, depends both on the reliability
of the components and the probabilistic distri-
bution of ulitization of the components to provide
the service. In this paper a user-oriented relia-
bility figure of merit is defined to measure the
reliability of a software system with respect to a
user environment. The effects of the user profile,
which summarizes the characteristics of the users
of a system, on system reliability is discussed.

A simple Markov model is formulated to determine
the reliability of a software system based on the
reliability of each individual module and the
measured inter-modular transition probabilities as
the user profile. Sensitivity analysis techniques
are developed to determine modules most critical
to system reliability. The applications of this
model to develop cost-effective testing strategies
and to determine the expected penalty cost of
failure are also discussed. Some future refinements
and extensions of the model are presented.

INTRODUCTION

The reliability of a system depends on the
purpose of the analysis as well as the method to
measure it. In many cases a hardware system is
considered to have failed if any of its components
have failed. On the other hand, it has been ob~
served that many systems can continue to provide
reliable service in the presence of component
failures so long as the service requested is not
influenced by the adverse effects of the defective
parts. This phenomenon is especially common in
software systems. It has been conjectured that
every large-scale software system contains some
errors. In fact, many of the software reliability
models attempt to measure the number of residual

bugs in the program.l’z’3 Yet it is our experi-

ence that many of these systems give us reliable
services. From a user's point of view, the relia-
bility of the system can be measured as the proba-
bility that when a user demands a service from

the system it will perform to the satisfaction of
the user. Since a large-scale system can perform
a variety of services, this measure of reliability

565

has to take into account both the inherent quality
of the system (reliability with respect to differ-
ent services) and the probabilistic distribution
of service requests.

In this paper, we will discuss the definition
of user-oriented reliability and its relationship
to the user profile. A Markov reliability model
is formulated under the assumptions that both
module reliabilities and inter-module control
transfers are independent. The use of this model
for sensitivity analysis to identify critical
modules is developed. The application of the
model to reliability estimation testing strategy,
maintenance philosophy and estimation of penalty
cost are presented. The concept of user-oriented
reliability and the reliability model are applica-
ble to both hardware and software systems.

SOFTWARE RELIABILITY

It is very difficult to give a formal defini-
tion to the term "software reliability". One can
say that the reliability of a program is equal to
one if correct, and zero if incorrect. However,
many such “incorrect" programs give us the correct
answer most of the time. It seems appropriate for
use to evaluate the reliability of the program by
a probabilistic measure as one minus the proba-
bility of failure. A failure is said to occur if,
given the input values and specifications of the
computations to be performed by the program, the
output values are either incorrect or indefinitely
delayed. With such understanding, and neglecting
the performance requirements for the time being,
the reliability of a piece of software may be
evaluated from two points of view.™?

The first approach attempts to
reliability of a program directly.
the reliability of a program by .the
software bugs in the program, i.e.,
mistakes made during the design and
1,2,3

measure the

We can rate
"number" of
the number of
implementation

of the program. This number may then be used
to determine the mean time to failure of the
program. It has been suggested that the rate at
which software errors are detected could be used
as a projection of the number of software bugs

still in the program 1’2’3. Using this approach,

reliability is an inherent property of the piece
of software independent of the way the program is
used.

Alternatively, we may also treat the reliability
of a program from the viewpoint of the quality of
the service it provides to a user. The user-
oriented reliability of a program (in a certain

CH1338=3/TH/0D0N0-08A5%00.75 ©) 1978 IFEE

user environment) is defined as the probability
that the program will give the desired output with
a typical set of input data from that user environ-
ment. Since the sequence of codes executed is
dependent on the input data, and an error in the
nonexecuted statements or branches does not have
any effect on the output of the program, the
software system reliability depends on the proba-
bility that a bug is activated in a typical run.
The reliability of the system depends on the
""component' reliabilities weighted by the user
profile, which summarizes the dynamic character-
istics of a typical execution of the program in a
particular enviromment. There are many possible
measures of the user profile, depending on the
formulation of the reliability model. For example,
if a telephone system has a service reliability
objective of 99.98 percent, at least 99.98 percent
of all telephone calls should be handled correctly.
However, different telephone calls activate different
features: local 2-way, 3-way, conference call,
call waiting, call transfer, call pick-up, toll
call, etc. The distribution of the utilization of
these features depends heavily on the community
served by the telephone system, e.g., business,
residential, hotel-motel, etc. A user profile can
be defined as the frequency distribution of use of
these features. A business community will have a
different user profile from a residential community.
A reliability model may be formulated at this
level by measuring the reliability of the different
features and using the user profile as a weighing
function to obtain system service reliability.
Using this measure, one should expect that the
system reliability in a business community may be
different from that in a residential community.
The model can be refined by considering that these
features share hardware and software components.
We can then express the system reliability as a
function of the reliability and frequency distri-
bution of utilization of these components.

Ideally we would like a reliability model
where the '"component" reliabilities can be inde-
pendently determined. We would also like to have
a simple user profile which can be measured easily
by monitoring the dynamic behavior of the program.
The concept of the user profile is not really new.
It has been used in research work in memory manage-
ment. The address trace is usually used as an
effective user profile to develop memory management

technique56’7. Experiments performed have shown

that this user profile is remarkably consistent in
a particular user enviromment®. If the user
environment is not homogeneous, several user
profiles may be needed, one for each application
of the program.

A USER-ORIENTED SOFTWARE RELIABILITY MODEL

Development of the model
A large program can be viewed as a collection
of logically independent modules, which can be
designed, implemented and tested independently .
Although there are different criteria for defining
9,10
E]

a module a module is usually defined to
perform a particular function. Let us define the
reliability of a module as the probability that

the module performs the function correctly, i.e.,
the module produces the correct output and transfers

566

control to the next module correctly. (If, in a
particular software system, several '"modules" are
logically dependent and perform a well-defined
function together, we have to combine these as a
single module and define its reliability in the
same manner). When a set of user input is supplied
to the program a sequence of modules will be
executed. The reliability of the output will
depend on the sequence of modules executed anc the
reliability of each individual module.

We first assume that the reliabilities of the
modules are independent. This means that errors
will not compensate each other, i.e. an incorrect
output from a module will not be corrected later
by subsequent modules. Let us define a process as
an execution of the program. Since errors do not
compensate each other, the system output of the
process is correct if and only if the correct
sequence of modules is executed and in every
instance of module execution, the module produces
the correct result. The reliability of a module,
in general, is a function of many factors and the
study of the reliability function of a module is
beyond the scope of this paper. However, if no
modification is made on the modules and the user
environment does not change, the reliability
function of a module should remain invariant. We
will assume that the module reliability functions
can be determined.

We next assume that the transfer of con:rol
among program modules is a Markov process. This
implies that the next module to be executed will
depend probabilistically on the present module
only and is independent of the past history.
assumption may not be valid for all types of
programs. Although the assumption of Markovian
behavior of control flow at the instruction level
is questionable, experiments performed by re-
searchers in memory management and scheduling have
shown that this assumption may be valid at the

macroscopic (module) 1evelll’12 for a large number
of programs. When no modification is made on the
modules, the transition probabilities have becen
shown to be quite consistent for a given user

environment8’13' We will treat these

probabilities as constants, and they completely
characterize the user environment with respect to
the reliability model and serve as the user profile.

This

Reliability model
Let us represent the control structure of the
program by a directed graph where every node Ni

represents a program module and a directed branch
<Ni’Nj) represents a possible transfer of control

from 'Ni to Nj' To every directed branch (Ni,Nj)

let us attach a probability Pij as the probability
that the transition (Ni’Nj) will be taken when

control is at node N,. This transition probability
represents the branching characteristics of the
decision point at the exit point of the module Ni'

Let Ribe the reliability of node Ni'

Without loss of generality, let us assume
that the program graph has a single entry node

and a single exit node. Let us consider every
node in the graph as a state of the Markov process,
with the initial state corresponding to the entry
node of the program graph. Two states C and F are
added as the terminal states, representing the
state of correct output and failure respectively.
For every node Ni a directed branch (Ni’F) is

created with transition probability (1 - Ri),

representing the occurence of an error in

the execution of module Ni' Since errors do not
compensate each other, a failure in Ni will
ultimately lead to an incorrect system output,
regardless of the sequence of modules executed
afterwards. This phenomenon is represented by the
transition to the terminal state F. The original
transition probability between Ni and N, is
modified into Ri Pij’ which represents ghe proba-
bility that the execution of module Ni produces

the correct result and control is transferred to
module N,. For the exit node Nn a directed branch

(Nn,C) is created with transition probability Rn

to represent correct termination at the exit node.
The reliability of the program is therefore the
probability of reaching the terminal state C from
the initial state of the Markov process.

The reliability of the program can be calcu-
lated from the following procedure. Let
{Nl’NZ""Nn} be the set of nodes in the program

graph with Nl the entry node and Nn the exit node.
Let Ri be the reliability of node Ni and Pij the
transition probability of the branch (Ni,Nj).

Let Pij=0 if the branch (Ni,Nj) does not exist.
The states of the Markov model are {C’F’NI’NZ""’
Nn}. Let the transition matrix be P, as shown in

(1), where P (i,j) represents the probability of
transition from state i to state j in the Markov
process. Let Q be the matrix obtained from

P, be deleting all the vows and columns correspond-
ing to the absorbing states C and F. For any posi-

-

tive integer n, let the nth power of P be |

¢ F Ny 2
c [0 0 0
F oo 1 0 0
N |o 1R, o RpP,

b4
#

i i RiPiZ
n-1 0 l—Rn—l 0 Rn—lp(n—l)2
N
noRL 1R 0 0
n

567

Evidently, P" (i,j) is the probability that start-
ing from i, the chain enters ﬁhe absorbing state

i € {C,F} at or before the n® step. The relia~
bility of the program R is the probability of
reaching state C (correct termination) from the
initial state Nl' Hence we have

R = PP @, © (2)

Let S8 be an n by n matrix such that

S=1+Q+ QZ + Q3 + ... = L Q

If Q is finite, which is the ggse here, and let W
= I1-Q, it can be shown that

s =w = (17t 3

It is not difficult to show that

R=S(1,n)Rn)

Sensitivity Analysis

Besides getting an estimation of the quality
of a system this model indicates to the user how
to improve the system reliability most effectively
by evaluation the sensitivity of the system relia-
bility with respect to that of a module.

The sensitivity 54 of the system reliability

R with respect to the reliability Ri of module Ni

is defined as the partial derivative of R with
respect to Ri'

_ OR)
5i~ 3R,
i
Since R =S (1,n) R = (-t -
’S nand S = (I-Q) © _ "1 4. can
be shown thatl
M
B ntl nl (6)
R=R -1 W
N
h] n
0 . 0 1
. 0 .. 0
. RlPij o RlPln
. . 1)
R.P,. . R.P
11 i“dn
Rn-lP(n—l)j"' Rn—lp(n—l)n
0 cos 0 J

where 'Mhll is the minor of W (n,1) and can be
evaluated as the determinant of the remain-

ing matrix by removing the nth row and 1st
column from W, and [wT is the determinant
of the square matrix W.
Let us now try to express R as a function of
Ri' Recall that the branching probabilities Pij

are independent of the module reliabilities. The
determinant le can be evaluated by expanding it
along any row i in terms of the cofactors,
W =W (i,1 + i cee
[w] (1,1) oy + W (4,2) oy, +

+ W(i,n) %0

1

where aij is the cofactor of W (4i,j).

Since the module reliabilities are independent,
the cofactor aij is not a function of Ri' Therefore,

[w| = Ky + Kyy By fori=1,..., n-1, (7)
where Kli = aii’
n
K,. =-1 P,.0O..»
2i 5=1 ij7ij

and Kli and KZi are not functions of Ri'

Similarly, the determinant IMnl‘ can also be

evaluated by expanding it along any row i in
terms of the cofactors Bij of Mnl (i,3),

= i=1,..., n-1. (8
lmnll kg +kyR, for i n-1. (8)
where kl. ={0 for i = 1
1 IB
i(i-1) for i = 2,...,n~1.
n
k,,=-2% P,, B, .
2 4, T3 iG-D

and k,, and k,. are not functions of R,.
11 2i i

R= D™ R kg YRRy for 11,000 ()

ST TR

The sensitivity can be computed by differentiating
equation (9) with respect fo Ry,

DR ()l Kyskos ~ Kaskyy (10)

s, =R = (- N> S
i 9 R n 2
i CTRESTLY
for i = 1, ...,n-1

s = %;5 =S (1,n)

n n
where k k.. and K,, and K., are defined in

1i’ 724 11 23
equations (8) and (7) and can be evaluated from
the matrix I-Q.

APPLICATION

By measuring the operational characteristics
of a piece of software, the user-oriented reliability

563

model gives us two types of figures of merit: the
reliability of its service and the sensitivity of
its reliability with respect to that of different
modules. The reliability measure gives the user a
direct estimation of the confidence he should

place in the program. It also indicates the quality
of service the program is going to provide and
whether further testing and improvement is required
for his application. The sensitivity coefficients
with large values indicate to the user the critical
modules which have the greatest impact on system
reliability.

The reliability model can be used to develop
an effective testing strategy given limited testing
resources. Testing techniques are usually designed
to show that the program is as close to a "correct"
program as possible by detecting as many bugs as
possible. A more effective testing strategy is to
show that the program is as 'reliable" as possidle
(for a given testing budget) by concentration oa
the module with the largest sensitivity coeffi-
cients. The reliability model identifies the
critical modules where proof of correctness or
exhaustive testing techniques should be used.
Stricter acceptance tests should be imposed on
these modules. For example, if a path sensiti-
zation strategy is used for testing, it may be
sufficient to cover all decision-to-decision paths
on non-critical modules but necessary to cover all
simple paths in addition to loop boundary condi-
tions of critical modules. Module reliability at
execution time can also be improved by incorgorat—
ing self-checking and recovery capabilitiesl »17,
The sensitivity analysis will determine where such
fault-tolerant capabilities should be introduced
most effectively. For example, in a telephone
system, audits have been used to improve the
operational reliability of the system. The user-—
oriented reliability model will enable us to
distribute our design effort as well as our real-
time processor resources to audit the most cri:ical
data structures. On the other hand, we should
also consider the cost of implementing these
reliability improvements which may depend on
factors as size, logical complexity and structure,
relationship with other modules, and the program-
mer's understanding of the module. Therefore, the
distribution of our resources should depend both
on the effectiveness (sensitivity coefficient Si)

and the marginal cost of improving the reliability
of the module.

With respect to program maintenance, the
sensitivity analysis indicates modifications that
may have a traumatic effect on the reliability of
the system. If critical modules have been shoun
to be reliable, one should avoid as much as pcssi-
ble modifying them when considering maintenance
alternatives (0f course, this does not preclude
modifications that will improve their reliability).
One must be aware that correcting a non-critical
error may introduce a bug to the critical modules,
thus degrading the system reliability more then
improving it. The priority of different requests
for correcting errors in modules should be arranged
in the order of their impact on the improvement of
the system reliability, as measured by their
sensitivity coefficients.

An extension of the model can also enable the
user to evaluate the effect of an error in a

module. It is observed that not all software bugs
are equally costly. A software bug in the missile
firing module for a defense system may make the
whole program unacceptably unreliable, even when
the rest of the program is error-free. A software
bug which can cause the loss of a master file in a
business transaction system is also more critical
than one which causes an error in a single trans-
action. Therefore, besides the frequency of
execution, the importance of the reliability of a
software module should also take into account the
criticality and penalty-cost of a bug in that
module. If the effect of an error in a module is
known, the Markov reliability model can be extended
by attaching a penalty cost Ci to the branch from

node Ni to the failure state F as the penalty cost

of a software bug in that module. Let Xi be the

expected penalty cost given that the program

control is now at node Ni. The expected penalty

cost of the program is therefore Xl, which can be

solved from the following set of n recurrent
equations:
n
X, = C.(1-R,) + R,Z P
i i i lj=1

X, for i =1,..., (11
ij3)

An evaluation on the expected penalty cost of the
program may be a better criterion for the accept-
ance of the system than the absolute reliabilty of
the program. Similarly, a sensitivity analysis
can also be performed to determine the critical
modules which have the most significant effect on
the expected penalty cost of the program. The
penalty cost is therefore another figure of merit
in evaluating the criticality of a module.

ESTIMATION OF PARAMETER VALUES

The parameters of the reliability model are
the transition probabilities Pij and the relia-

bility of the individual modules Ri. In the

model, we assume that the system will enter the
terminal failure state F when there is an error
in the module. The transition probabilities
therefore represent the branching characteristics
of the program when the modules are functioning
correctly. The branching characteristics can be
measured by selecting a large representative
sample of N sets of valid input data, running the
program, and measuring the frequency of execution
of each inter-module transfer. A technique for
optimal instrumentation of the program to measure
these frequencies using self-metric software can

be found in Reference.ls’19

The reliability of each module may be esti-~
mated using a variety of methods. It may be de-
termined by stochastic testing, i.e., by selecting
a representative sample of X sets of valid input
data from a user environment, running the program,
and finding the number Y of correct sets of program
output. The reliability of the program is esti-
mated to be Y/X. When the number of tests is
large, a reasonable estimation can be obtained.
If the system is already operational, the relia-
bility of each module may also be projected from

its operational history, i.e., by measuring the
ratio of the number of times it produced correct

569

output to the number of times it was used. 1In
recent years, many models have also been formulated
to predict system reliability using the "black

box" approach.20’21 These models may also be used
to estimate the reliability of a module.

CONCLUSIONS

In this paper the concepts of user-oriented
reliability and user profile have been presented.
The reliability of a system is expressed as a
function of the reliabilities of its components
and the user profile. A Markov model is developed
under the assumptions of independence of module
reliability and the Markovian behavior of control
transfer among modules. The applicability of the
model to a particular program in a particular user
environment depends on the validity of these
assumptions. Although there are many criteria
used in decomposing a system into modules, modules
are usally designed so that the function of a
module is independent of the source of its input,
the destination of its output, and the past history
of use of the module. Since these modules can be
independently implemented, separately tested and
reused from different places, it is reasonable to
conjecture that the reliabilities of the modules
are independent. This assumption has been shown
to be valid by an experiment done by Parnas“‘ on
system in which the modules are well-defined in

terms of external characteriscs9’23. The Markovian
behavior of control transfer may be applicable
only to certain systems. In some business trans-
action systems and telephone switching systems,
the program has no loops and no locality behavior
has been observed. The sequence of operations
executed depends mainly on the transaction or
feature that the user requests. For a particular
transaction or feature, the branching characteris-
tics of the system seems to be quite independent
of the values of input data variables in rather
large domains. The same properties have been
observed in many programs and form the basis of
many memory management strategies through measure-

ment of program behavior.z4

The user-oriented reliability model enables
us to evaluate the reliability of the service of
the system and the sensitivity of system reliabili-
ty with respect to component reliabijlities. Using
this model we can predict the operational quality
of the system and determine how much testing will
be sufficient for a particular reliability perform-
ance goal of an application. The sensitivity
analysis can indicate to us the program modules
most critical to system reliability so that exhaus-
tive testing and run-time fault-tolerance capabili-
ties such as audits can be concentrated on them.

It indicates that perhaps the goal of testing
should be oriented towards showing reliability
instead of correctness. If the penalty cost of a
failure can be estimated, the expected penalty
cost may be a better figure of merit than relia-
bility.

The user—oriented reliability model also
raises some interesting questions on system design.
The model indicates that program modules used most
often during execution time probably are the
critical module from a reliability point of view.

a

We would like to keep their structures simple and
elegant, perhaps sacrificing efficiency. However,
they are also the modules where efficiency is most
important due to the frequency of use. We may
want to optimize them sacrificing simplicity and
structure. Can we design a system that is both
reliable and efficient? A reasonable answer seems
to be:
i.e., 100 percent reliable. This indicates that
either we have to develop techniques to optimize
code without sacrificing its structure or we can
optimize only the small parts where correctness
can be shown.

The applicability of user-oriented reliabili-
ty is not limited to software alone. Hardware
reliability can also be estimated by the number
of "users" being affected by a failure. For
example, the maintenance strategy of a telephone
system may be oriented towards minimizing the
number of phone calls affected. Fault resolution
and the frequency of periodic diagnosis may be
tailored according to the severity of the fault.
Down-time may be measured in virtual time in terms
of the expected number of phone calls denied
service rather than physical time. As more and
more logic is integrated into a chip, the possi-

bility of a design error may be just as great as in

software. The proposed user-oriented software
reliability model may be refined to account for
component failures due to aging in addition to
design errors. Hopefully, a practical reliability
model for both software errors and hardware faults
can be formulated in the future.

Acknowledgment Part of the research was
supported by Rome Air Development Center, Contract
F30602~76-C-0397, while the author was at North-
western University.

REFERENCES
Shooman, M. L. "Operational Testing of Soft-
ware Reliability During Program Development,"
Record of IEEE Symposium Computer Software
Reliability, New York City, 1973.
Jelinski, Z. and Moranda, P. B. "Software
Reliability Research,' Statistica Computer
Performance Evaluation, edited by Walter
Freiberger, Academic Press 1972, p. 464.
Moranda, P. B. "Predictions of Software
Reliability During Debugging," 1975 Proce-
edings of the Annual Reliability and Main-
tainability Symposium, Jan. 1975,
Washington D.C.
Ramamoorthy, C. V., Cheung, R. C., and Kim,
H. H. "Reliability and Integrity of Large
Computer Programs', Computer System Relia-
bility, Infotech State of a Art Report 20,
1974.
Cheung, R. C. A Structural Theory for Improv-
ing Software Reliability, Ph.D. Thesis,
Dept. of EECS, Univ. of California, Berkeley,
California, 1974.
Belady, L. A. "A Study of Replacement Algo-
rithms for a Virtual-storage Computer",
IBM Systems Journal, Vol. 5, No. 2, 1966,
pp. 78-101.

(11

(2]

[3]

[4]

[5]

[6]

optimize only after you know it is correct,

7]

[8]

[9]

[10]

[11]

[12]

[13]

(14]
[15]

{16]

[17]

(18]

{19]

[20]

[21]

[22]

[23]

[24]

Mattson, R. L., Gecsei, J., Slutz, D. R., anc
Traiger, I. L. "Evaluation Techniques for
Storage Hierarchies", IBM System Journal,

Vol. 9, No. 2, 1970, pp. 78-117.

Hatfield, D. J. "Experiments of Page Size,
Program Access, Patterns, and Virtual Memory
Performance'", IBM Journal of Res. Develop.,
Jan. 1972, pp. 58-66.

Parnas, D. L. "On the Criteria To Be Used in
Decomposing Systems into Modules", Comm. ACM,
Vol. 15, No. 12, Dec. 1972, pp. 1053-1058.
Myers, G. J. Reliable Software Through Com-
posite Design, Petrocelli/Charter, New York
1975.

Ramamoorthy, C. V. "The Analytic Design of A
Dynamic Look Ahead and Program Segmenting
System for Multiprogrammed Computers", Proc.
ACM Nat. Conf., 1966, pp. 229-239.

Pinkerton, T. B. "Program Behavior and Control
in Virtual Storage Computer Systems', Tech.
Rep. 4, Univ. of Michigan, 1968.

Haftield, N. J. and Jerald, J. "Program
Restructuring for Virtual Memory", IBM Syst.
J., Vol. 10, No. 3, 1971, pp. 168-192.

Cinlar, E. Introduction of Stochastic Processes,
Prentic-Hall, 1975, Chap. 5.6.

Nomizu, K. Fundamentals of Linear Algebra,
McGraw Hill, 1966.

Randell, B "System Structure for Software
Fault~tolerance', Proc. 1975 Int. Conf. on
Reliable Software, 1975 pp. 437-457.

Yau, S. S. And Cheung, R. C. '"Design of Self-
Checking Software", Proc. 1975 Int. Conf. o2
Reliable Software, 1975, pp. 450-457.

Cheung, R. C. Kim H. H., Ramamoorthy, C. V.,
and Reddi, S. S. "Automated Generation of
Self-metric Software", 7th Hawaii Inter-
national Conference on System Sciences,

Jan. 1974,

Cheung, R. C. and Ramamoorthy, C. V. "Optimal
Measurement of Program Path Frequencies and
its Applications', Proc. of 1975 International
Federation of Automatic Control Congress,

Aug. 1975.

Brown, J. R. and Lipow, M. "Testing for
Software Reliability," Proc. of 1975 Int. (onf.
on Reliable Software, April, 1975, pp. 518-
527.

Nelson, G. C. Software Reliability, TRW-SS--
75-05, Nov. 1975.

Parnas, D. L. "Some Conclusions from an
Experiment in Software Engineering Techniques",
Fall Joint Comp. Conf., 1972, pp. 325-329.
Parnas, D. L. "A Technique for Software
Module Specifications with Examples", Comm. ACM,
May 1972, pp. 330-336.

Special issue on Measurement of Program
Behavior, Computer, Nov. 1976.

