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We investigate attitudes toward uncertainty using a new instrument with gambles for 
substantial stakes. We focus on the evaluation of gambles involving known (the probability and 
payoff are precise) and unknown (ambiguity in the probability and/or payoff) uncertainty. 
Several features of our instrument are notable.  First, subjects make choices for different levels 
of ambiguity over probabilities, over payoffs, and decisions involving ambiguity over 
probabilities and payoffs simultaneously.  Second, we measure preferences at different base 
probability levels allowing us to explore systematic variations in aversion for different levels of 
underlying uncertainty over both possible gains and possible losses. Third, we use two different 
frames, describing the gambles as a “lotteries” or as “investments / insurance” decisions. Finally, 
our design avoids informational asymmetries between the subject and the experimenter, as the 
level of information for the experimenter and subjects is equal throughout the experiment. Any 
missing information in the ambiguous gambles is unavailable to all, rendering the gambles 
‘unknowable’ in the terminology of Chow and Sarin (2002). Our findings indicate that the 
subjects are ambiguity averse.  The nature of this aversion differs depending on whether the 
gambles involve gains or losses. 
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1.  Introduction 

One of the fundamental problems in the study of decision making is the analysis of 

choices under uncertainty, especially when the probabilities or payoffs to an event are unknown.  

Choices involving uncertain events can generally be classified in two categories: risky events 

and ambiguous events. A risky event is an event that is typically thought of as having a clear 

probability for a given outcome. For instance, a 10% chance at winning a prize of $50 in a raffle.  

Ambiguous events encompass a greater degree of uncertainty.  This would include not only 

being unsure of the outcome of an event, but also not being sure of the probability of an event or 

the payoff associated with an event.  Consider the question, “What is the chance that the 

transmission in your car will break in the next year, and how much will it cost to fix it?”  In this 

case, neither the exact probability of breakdown nor the exact cost of the repair are known, 

though a decision-maker may have some idea of the range of probabilities or payoffs.  Many 

day-to-day decisions have these properties.  As Heath and Tversky (1991) note, “The potential 

significance of ambiguity…stems from its relevance to the evaluation of evidence in the real 

world.” 

One of the first papers to address ambiguity in decision-making was that of Knight 

(1921), where he distinguished between measurable, with precise probabilities, and 

unmeasurable, with unknown probabilities, uncertainty.1 Little was written over the next few 

decades involving the role of ambiguity as it was viewed that Knight’s distinctions did not play a 

role in decision theory (see Savage, 1954). However, the advent of the Ellsberg paradox 

reintroduced the importance of ambiguity in affecting decision-making. (Ellsberg, 1961) This 

sparked an increase in experimental research regarding attitudes toward uncertainty. Early works 
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include Becker and Brownson (1964) and Slovic and Tversky (1974), which found evidence of 

ambiguity aversion. Over the last 15 years, a number of works have focused on explanations for 

ambiguity aversion, such as the comparative ignorance hypothesis proposed by Heath and 

Tversky (1991), which was extended in Fox and Tversky (1995), and by the evaluability 

hypothesis of Hsee, Blount, Lowenstein, and Bazerman (1999). Recent works by Chow and 

Sarin (2001) and Fox and Weber (2002) delve further into the comparative ignorance hypothesis. 

Chow and Sarin (2002) provide three classifications of uncertainty: known, unknown, and 

unknowable. The known case is similar to that of Knight’s measurable uncertainty; all of the 

information regarding probabilities is known and precise. The unknown case involves ambiguity 

yet there is an individual or source other than the decision-maker with additional information 

regarding the ambiguity, and this is known by the decision-maker. Unknowable uncertainty 

pertains to ambiguous events where the decision-maker has as much information as anyone else 

regarding the uncertainty.  

In this paper we investigate attitudes toward a particular type of ambiguity, where the 

probability distributions over the unknown parameter of the decision are known. This ‘weak’ 

ambiguity is the simplest form of ambiguity.   We explore ambiguity not only in the probability 

of an event, but also in the outcome and in situations that involve ambiguity in the probability 

and outcome simultaneously. We use a new instrument designed to measure attitudes toward 

uncertainty in gamble choices, where the precise gambles are similar to the known uncertainty 

and the ambiguous gambles are comparable to the unknowable uncertainty mentioned in the 

previous paragraph. The subjects complete a series of choice tasks in precise (known) and 

ambiguous (unknowable) settings involving gambles for substantial financial stakes.   

                                                                                                                                                             
1 Our paper addresses a somewhat different distinction.  In our experiments the uncertainty is not unmeasurable, but 
rather the probability distribution over the unknown probability is known.  Under this form of “weak” ambiguity 
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In all cases the distribution of the unknown parameter is given in a way that is transparent 

for the subjects.  We include gambles at three different underlying probabilities (10, 50 and 90 

percent), over gains and losses, and in two different decision frames (abstract and 

investment/insurance).   The instrument and additional aspects of the experimental design are 

explained in the next section. 

The remainder of the paper is organized as follows. Section 2 presents the instrument 

used for measuring attitudes toward uncertainty. Section 3 contains the experimental design and 

procedures. Section 4 provides the results of our experiment and a comparison of our findings 

with other works. We conclude with a summary and discussion.   

2.  An instrument for measuring attitudes toward uncertainty  

We have developed a new instrument for measuring attitudes toward precise and 

ambiguous gambles for monetary stakes.  Our goals with this instrument include ensuring that 

the subjects understand the mechanism (or nature) driving the ambiguity and that they know that 

the experimenter does not have any informational advantage over the subjects regarding the 

outcome of the gamble. The subjects are not only informed of the range of the ambiguity but also 

the second order, or underlying, distribution of the ambiguous aspect of the gamble.  The use of 

this “weak” ambiguity effectively creates a range of possible expected values for the gamble.  In 

our experiments, the distribution of the unknown parameter is uniform.  The payment procedure 

is described in detail to subjects prior to their making any decisions, and makes clear to subjects 

the distribution over possible probabilities or payoffs. 

Our instrument is notably different from other instruments used to measure preferences 

toward precise and ambiguous gambles. The ambiguity mechanism of Powell and Ansic (1997) 

                                                                                                                                                             
probabilities are still measurable, but less transparent to the decision maker.   
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involves the use of five different charts with possible distributions of outcomes. In Schubert et al 

(2000), an ambiguous gamble is represented by two precise gambles with an equal likelihood of 

occurrence where a precise gamble involves receiving a large sum with a certain probability, p, 

and a smaller sum with probability 1-p. This type of weak ambiguity does not appear to be as 

transparent as that used in our experiment. Other studies differ from ours in the asymmetry of 

information between the experimenter and the subject.  Hogarth and Kunreuther (1989) 

implement ambiguity through a comment regarding the certainty of the probability of an event. 

After stating the probability of loss, the unambiguous situation involves a statement regarding 

“feeling confident” about the probability.  In the ambiguous situation the subject should 

“experience considerable uncertainty.” Di Mauro and Maffioletti (1996) state how they chose to 

keep the subjects in the ‘dark’ about how the ambiguity will be resolved. Eisenberger and Weber 

(1995) implement ambiguity through an Ellsberg urn or past stock prices for a bank.  In these 

cases the experimenter has full information about the ambiguity: she knows the balls in the urn 

and the previous stock price.  This asymmetry of information between the subjects and the 

experimenter is not present in our experiment.  

The importance of there being similar information states between the experimenter and 

the subject should be noted. Fox and Tversky (1991) proposed the comparative ignorance 

hypothesis, which states that, “…ambiguity aversion is produced by a comparison with less 

ambiguous events or with more knowledgeable individuals.” In the experiments described in the 

previous paragraphs, it is evident that the experimenter is knowledgeable of the exact nature of 

the ambiguity while the subjects are not. This may affect how the subjects view the gamble and 

therefore their valuations. Indeed, Chow and Sarin (2002) find that this asymmetry alone can 

significantly affect valuations. They write, “If the experimenter knows the probability, the 
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comparative ignorance effect is more pronounced and the subjects are reluctant to bet.” It is 

possible that such an asymmetry may cause subjects to lower their valuations of an ambiguous 

gamble, not because of the ambiguity, but rather because they think they are playing against a 

rigged game.  Regarding the Ellsberg scenario, Dawes, Grankvist, and Leland (2000) note that, 

“…the problem might not be a concern about ambiguity so much as a concern about a ‘stacked 

deck.’” We have attempted to eliminate this information asymmetry, or stacked deck, by 

designing our instrument so that the level of information regarding any uncertainty is the same 

between the subjects and experimenter throughout the experiment. 

Our measure involves a series of choices between a gamble and a certain amount.  Each 

choice involves a tradeoff between two types of choices in a decision sheet, modeled after the 

choice sheets developed in Holt and Laury (2002).  In Table 1 we show one such decision sheet 

with ambiguity in probabilities.    For each Decision, the subjects must choose between Option A 

and Option B.  Note that Option A is constant for all decisions, and has an expected value of 

$25.00, while option B is a certain amount ranging from $16 for Decision 1 to $35 for Decision 

20.  For each decision sheet, Option B changes in $1 increments. Only an extremely ambiguity-

averse person would prefer Option B at the top of the sheet, and only an extremely ambiguity-

seeking person would prefer option A at Decision 20.   While each sheet appears to involve 

numerous decisions, this is not really the case.  The point where subjects cross over from 

preferring Option A to preferring Option B provides a measure of the subject’s valuation of the 

gamble.  By comparing similar sheets with the same underlying probability of winning and 

payoff with varying degrees and types of ambiguity, i.e. expected values, we can measure 

subjects’ aversion to uncertainty. 
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Table 1. A sample decision sheet with ambiguity in the probability 
 
 Option A Option B Your Choice 

A or B 

Decision 1 
 

45-55% chance at winning $50 
 

$16.00 
 

 

Decision 2 
 

45-55% chance at winning $50 
 

$17.00 
 

 

Decision 3 
 

45-55% chance at winning $50 
 

$18.00 
 

 

Decision 4 
 

45-55% chance at winning $50 
 

$19.00 
 

 

Decision 5 45-55% chance at winning $50 
 

$20.00 
 

 

Decision 6 45-55% chance at winning $50 
 

$21.00 
 

 

Decision 7 45-55% chance at winning $50 
 

$22.00 
 

 

Decision 8 45-55% chance at winning $50 
 

$23.00 
 

 

Decision 9 45-55% chance at winning $50 
 

$24.00 
 

 

Decision 10 45-55% chance at winning $50 
 

$25.00 
 

 

Decision 11 45-55% chance at winning $50 
 

$26.00 
 

 

Decision 12 45-55% chance at winning $50 
 

$27.00 
 

 

Decision 13 45-55% chance at winning $50 
 

$28.00 
 

 

Decision 14 45-55% chance at winning $50 
 

$29.00 
 

 

Decision 15 45-55% chance at winning $50 
 

$30.00 
 

 

Decision 16 45-55% chance at winning $50 
 

$31.00 
 

 

Decision 17 45-55% chance at winning $50 
 

$32.00 
 

 

Decision 18 45-55% chance at winning $50 
 

$33.00 
 

 

Decision 19 45-55% chance at winning $50 
 

$34.00 
 

 

Decision 20 45-55% chance at winning $50 
 

$35.00 
 

 

 
 

Decision used:_________   Die Throw:_________   Your Earnings:_________ 
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Subjects complete a series of sheets, where the underlying probability, the range over 

probabilities, the range over payoffs, and ranges over probabilities and payoffs simultaneously 

are varied.  The full set of decision sheets is summarized in Table 2.  For example, the sample 

decision sheet shown in Table 1 appears as sheet 10 in the gain domain of Table 2.  The Option 

A choice consists of a 45-55 percent chance of winning a prize of $50.  The Option B choice, the 

certain alternative, ranges from $16 for Decision 1 to $35 for Decision 20.  The structure of the 

instrument prevents the subjects from stating certainty equivalents outside of a reasonable 

standard.  For instance, there is no opportunity for a subject to state a certainty equivalent of 

greater than $50 for a gamble with a prize of $50.  Our instrument measures preferences at three 

different base probability levels: 10, 50, and 90 percent.  This allows us to explore systematic 

variations in aversion for different levels of underlying uncertainty.  

As mentioned earlier, we use discrete uniform distributions as the second order 

distributions in the gambles involving weak ambiguity. To operationalize the ranges, the subject 

draws a chip from a box that contains 1 chip for each number in the range.  For instance, in the 

example in Table 1 the box contains 11 chips: a chip for 45 percent, another for 46 percent, and 

so on through 55 percent.  The subjects are informed in the instructions that there is only one 

chip for each number in a range and that this means that each chip has an equal likelihood of 

being drawn. Additionally, they are informed that they may inspect any box to verify the chips.  

The subjects also roll two ten sided dice to determine the outcome of a gamble.  We conduct 

examples of winning and losing gambles, along with allowing the subjects to ask questions, to 

ensure that the subjects understand the nature of the ambiguity.  Once all decisions are made, one 

decision is randomly selected for each subject for payment.   

 



Table 2. Experimental design: Decision sheets 
 

  Gain Domain (abstract and investment):    Loss Domain (abstract and insurance): 
  Option A choice Option B choice:    Option A choice Option B choice: 
       Choice Range 

 
   Choice Range 

  
Decision 

sheet 
Probability 

(%) 
Prize 
($) 

Minimum 
($) 

Maximum 
($)  

Decision 
sheet 

Probability 
(%) 

Prize 
($) 

Minimum  
($) 

Maximum 
($) 

1          10 50 1 20  1 10 50 1 20
2          5-15 50 1 20  2 5-15 50 1 20
3          0-20 50 1 20  3 0-20 50 1 20
4          10 45-55 1 20  4 10 45-55 1 20
5          10 40-60 1 20  5 10 40-60 1 20
6          5-15 45-55 1 20  6 5-15 45-55 1 20
7          10 0-100 1 20  7 10 47-53 1 20
8          10 25-75 1 20  8 10 44-56 1 20
                     
9          50 50 16 35  9 50 50 16 35

10          45-55 50 16 35  10 45-55 50 16 35
11          50 45-55 16 35  11 50 45-55 16 35
12          45-55 45-55 16 35  12 45-55 45-55 16 35
                     

13          90 50 31 50  13 90 50 31 50
14          85-95 50 31 50  14 85-95 50 31 50
15          80-100 50 31 50  15 80-100 50 31 50
16          90 45-55 31 50  16 90 45-55 31 50
17          90 40-60 31 50  17 90 40-60 31 50
18          85-95 45-55 31 50  18 85-95 45-55 31 50
19          90 47-53 31 50  19 90 0-100 31 50
20          90 44-56 31 50  20 90 25-75 31 50

 
 



      
  

Because neither the subject nor the experimenter knows the actual values of the 

ambiguous variables, our design avoids asymmetry of information between the subject and the 

experimenter. However, we cannot be certain that the subjects do, in fact, believe that there is no 

informational asymmetry. Therefore this instrument is an approximation.   

3.  Experimental design and procedure 

Our design elicits subjects’ certainty equivalents using the instrument described above.  

The treatment combinations used in our experimental design vary the decision frame, and are 

shown in Table 3.  Subjects complete either Set A or Set B of the decision sheets. Each set uses 

one of two different frames, describing the gambles as abstract “lotteries” or as 

“investments/insurance” decisions. Each subject completes a full set of decision sheets, giving 

valuations for precise (known) and ambiguous (unknowable) gambles over both possible gains 

and possible losses, which allows us to explore asymmetries in preferences relative to a reference 

point.  We refer to the case of lotteries as the abstract treatment and the investment and 

insurance decisions as the context treatment.   

Table 3.  Experimental design: Treatment combinations 
 
 

 
Treatment 

 
Precise 

Ambiguity in 
Probabilities 

Ambiguity in 
Payment 

Ambiguity in 
Probabilities and 
Payment 

Abstract: 
Gain 

Set A Set A Set A Set A 

Abstract: 
Loss 

Set A Set A Set A Set A 

Investment Set B Set B Set B Set B 
Insurance Set B Set B Set B Set B 

 
Furthermore, the subjects face four different types of information in both decision frames 

and treatments.  The ‘precise’ information frame has exact probabilities and exact payments 

stated. In the ‘ambiguity in probability’ frames, the probability is stated as a range and the 

payment is fixed.  Conversely, in the ‘ambiguity in payment’ frames, the probability is fixed and 
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the payment is stated as a range.  Finally, in the ‘ambiguity in probability and payment’ frames, 

ranges are stated for both the probabilities and payments.   

Two pre-test sessions were conducted in Principles of Economics classes at Virginia 

Tech; 65 students participated in these sessions.  Six laboratory sessions were conducted with 84 

volunteer subjects recruited from other Principles of Economics classes.  Table 4 shows the 

number of participants and average payment for the pre-tests and for each laboratory session.   

Table 4.  Number of participants and average payment for each session 
 

 Abstract Context Average*
Session Lotteries Invest/Insure Payment
Pre-test 1 29  $26.90  
Pre-test 2  36 $34.70  
Lab 1 15  $26.27  
Lab 2  12 $32.58  
Lab 3  13 $19.85  
Lab 4 14  $31.79  
Lab 5  15 $31.40  
Lab 6 15  $34.00  
Totals 73 76 $29.67  

 
*Calculations for the average payments for the pre-test  
sessions are based on the payments received by the 10  
students selected to be paid from each of these sessions. 

 

In the pre-test sessions, after consent forms were distributed and completed, instructions 

and forms were distributed, illustrated on an overhead projector, and read aloud by the 

experimenters.2 The experimenters also simulated the procedure and payment method by 

completing an experiment in the front of the room.  In the simulation, one of the experimenters 

acted as if she was participating in the experiment by completing an example decision sheet on a 

transparency and then drawing the appropriate chips to clarify the ambiguity, i.e., she drew a 

chip to determine the exact percentage out of the range of possible percentages.  She then rolled 

the dice to determine the outcome.  This was done in plain view of the subjects.  After the 
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demonstration, we informed the subjects that they could inspect any of the ambiguity devices 

(boxes of chips) or the dice. The decision sheets were distributed in a randomized order that was 

the same for all participants.  At the end of the experiment, the experimenter drew 10 subject 

numbers for payment and the rest were allowed to leave.  These 10 subjects each chose a chip to 

determine the gamble played, rolled a die to select a decision, and then played that decision.  

They were then paid their earnings in private.  

In the six laboratory sessions, which took place at the Laboratory for the Study of Human 

Thought and Action (LSHTA) at Virginia Tech, all of the participants received a $5 payment for 

showing up and were paid for one of their own decisions chosen at random.  The experimental 

procedure used in the laboratory sessions was otherwise identical to that used in the pretest 

sessions.  Subjects played their decisions and were also paid in private. 

The expected average payment to each subject for his or her decision is $25, in addition 

to a show up payment for those subjects attending the LSHTA sessions of $5.  Actual average 

payment for the pretest sessions, for the 20 students who were chosen to be paid, was $30.80.  

The actual average payment for the laboratory sessions was $29.40, which includes the $5 show 

up payment.  Each session lasted approximately 1 hour and 20 minutes. 

4.  Results 

4.1. Descriptive Results 

We first present aggregate data by the level of uncertainty, for gains and losses, pooled 

over the decision frames.  Table 5 contains the average valuations for a subset of the gambles. 

The asterisks, next to some of the valuations for gambles involving ambiguity, indicate whether 

the valuation is significantly different from the precise (or known) gamble at each level of 

                                                                                                                                                             
2 Instructions are provided in the appendix for the context treatment with the insurance decisions conducted first. 
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probability.3 Consider the winning gambles, where the valuations represent the average 

minimum selling price for each of the gambles.  Note that for each of the probability levels, the 

precise gambles have the highest minimum selling price suggesting an aversion to ambiguity. 

Aversions to ambiguity in probability, payoff, and both probability and payoff simultaneously 

are evident in the low and high probability gambles. For the midrange gamble, ambiguity 

aversion is significant for the gamble involving dual ambiguity.  

Table 5.  Average valuations of gambles by ambiguity levels for gains and losses  
(pooled over decision frames) 

 
Minimum Selling Price for 

WINNING GAMBLES 
   Payoff 
Probability $50  $45-55 $40-60 

10% 10.19 9.79* 10.12 
5-15% 9.42** 9.21***    . 
0-20% 8.42***    .    . 

      
50% 24.11 24.14    . 

45-55% 23.94 23.01***    . 
      

90% 41.56 40.98* 40.53*** 
85-95% 39.54*** 40.16***    . 

80-100% 40.75**    .    . 
     

Willingness to Pay to Avoid 
LOSING GAMBLES 

   Payoff (losses) 
Probability $50  $45-55 $40-60 

10% 9.55 9.51 9.74 
5-15% 9.99* 10.17*    . 
0-20% 10.69***    .    . 

      
50% 26.52 25.94*    . 

45-55% 25.95* 25.46***    . 
      

90% 41.26 41.05 40.60** 
85-95% 41.14 40.85**    . 

80-100% 40.47***    .    . 
Notes:  *** indicates significance at 1 percent.
 ** indicates significance at 5 percent. 
 * indicates significance at 10 percent.

 

                                                 
3 One-sided means tests. 
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The valuations presented in the loss domain represent the maximum willingness to pay to 

avoid the gamble. There is not such a clear aversion to ambiguity in the loss domain as was 

evident for gambles for gains. There does appear to be ambiguity aversion for low probabilities 

of loss as the valuations increase with increases in ambiguity. However, the subjects appear to 

prefer ambiguity for the midrange and high probability of loss gambles. For these gambles the 

willingness to pay decreases as the level of ambiguity increases. 

In both domains, the subjects significantly overvalue low probability events (gambles 

with expected values of +/- $5) and undervalue high probability events (gambles with expected 

values of +/- $45). However, there is evidence that the subjects undervalue midrange events in 

the gain domain and overvalue these events in the loss domain (gambles with expected values of 

+/- $25). 

Table 6 presents the mean valuations for this subset of gambles for each of the treatments 

separately4. Similar patterns of ambiguity aversion in the gain domain are revealed. As for the 

loss domain, we again see an aversion to ambiguity for small probabilities of loss but evidence of 

ambiguity seeking for the midrange and high probabilities in both contexts. There appears to be 

evidence of a context effect in the gain domain. The minimum selling prices are higher for the 

gambles framed as “investments”.  In the loss domain, the context effect appears reversed as the 

valuations for the “gambles” are on average greater than those for “insurance” for low and 

midrange probabilities of loss. The valuations are similar in both contexts for high probabilities, 

however.5    

                                                 
4 As in Table 5, the asterisks indicate whether the valuation is significantly different from the precise gamble at each 
level of probability. 
5 Tables containing the average valuations for all of the gambles are included in the appendix. 
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Table 6.  Average valuations by decision frame
 

CONTEXT 
INVESTMENT 

 Payoff 
Probability $50 $45-55 $40-60 

10% 10.78 9.74** 10.43 
5-15% 9.53** 9.53**   . 
0-20% 7.92***   .   . 

    
50% 24.58 24.82   . 

45-55% 25.11 23.28***   . 
    

90% 42.22 42.03 41.88 
85-95% 40.55*** 41.07**   . 

80-100% 41.62   .   . 
    

 
INSURANCE 

 Payoff 
Probability $50 $45-55 $40-60 

10% 8.75 8.96 8.90 
5-15% 9.30 9.71   . 
0-20% 9.93**   .   . 

    
50% 26.00 25.33   . 

45-55% 25.69 25.29**   . 
    

90% 41.39 41.23 39.99*** 
85-95% 41.13 40.21***   . 
80-100% 40.68   .   . 

 

 
ABSTRACT 

WINNING GAMBLES 
 Payoff 

Probability $50 $45-55 $40-60 
10% 9.60 9.84 9.81 

5-15% 9.32 8.89*   . 
0-20% 8.90*   .   . 

    
50% 23.64 23.45   . 

45-55% 22.76** 22.73**   . 
    

90% 40.90 39.92 39.17*** 
85-95% 38.48*** 39.22***   . 

80-100% 39.88**   .   . 
    

  
LOSING GAMBLES 

 Payoff 
Probability $50 $45-55 $40-60 

10% 10.35 10.05 10.58 
5-15% 10.68 10.63   . 
0-20% 11.44**   .   . 

    
50% 27.01 26.56   . 

45-55% 26.22** 25.62***   . 
    

90% 41.11 40.88 41.21 
85-95% 41.15 41.45   . 
80-100% 40.25***   .   . 
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4.2. Regression analysis  

The analysis in the previous section provides some insight into attitudes toward 

uncertainty in a general sense. However, a considerably larger number of valuations were given 

as subjects offered values for all of the gambles listed in Table 2. In this section, we attempt to 

control for additional factors and determine whether the introduction of weak ambiguity, in the 

probability, payoff, or both, has any significant effect on the valuations. Since each individual 

gives a number of valuations, the data are dependent. We therefore use random effects regression 

models, which allow us to control for individual effects. 

The variables used in the regression analysis are defined in Table 7. While the majority of 

the variables are straightforward in their interpretation, some clarification of the Range variable 

is useful. This variable is a measure of the “size” of the ambiguity for a gamble. For example, a 

gamble involving a 0-20% at winning $50 has an expected value (EV) of $5. However, the 

ambiguity introduces a range of possible expected values from a minimum of 0% chance at $50 

(EV=$0) to a maximum of a 20% chance of $50 (EV=$10). The Range variable takes a value of 

10 in this example; the difference between the minimum and maximum possible expected values 

($0 to 10).6 Gambles that do not involve ambiguity, for instance a 50% chance at $50, have 

Range values of zero.   

                                                 
6 A second example: An 85-95% chance at losing $45-55 has a minimum possible EV of -$38.25 (85%*-$45) and a 
maximum EV of -$52.25 (95%*-$55). The Range is 14 in this example. 
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Table 7.  Description of variables in regression models 

  

VALUATION 
The minimum selling price for gambles in the gain domain and willingness to 
pay to avoid gambles in the loss domain. 

Context = 1 if context (investment/insurance) treatment 
 = 0 if abstract (lotteries) treatment 
Range Measure of "size" of the ambiguity from range of possible EVs. 
 (ex. A gamble of a 0-20% chance at $50 has a range of EVs 
 of $0-10. The value of Range is therefore 10.) 

Probability = 1 if ambiguity in the probability only of the gamble 
 = 0 otherwise 
Payoff = 1 if ambiguity in the payoff only of the gamble 
 = 0 otherwise 
Both = 1 if ambiguity in the probability and the payoff of the gamble 
 = 0 otherwise 
  

Table 8 reports results from econometric models estimated separately for gains and 

losses.7  A model is estimated at each expected value to investigate if there are significant 

differences in valuations between precise and ambiguous gambles after controlling for context 

effects. Additionally, these models examine the roles of size and location of ambiguity on 

affecting valuations. The dependent variable in each model is the subjects’ valuations. This is a 

positive value in the gain domain as it is indicative of willingness-to-accept and a negative value 

in the loss domain as it represents willingness-to-pay to avoid possible losses. Hausman test 

statistics and the associated p-values are presented for each model.8

                                                 
7 Wald tests were conducted to see if the absolute value of the constant terms, for each absolute expected value, are 
equal in both domains. The p-values of the test for the gambles with an expected value of +/- $5 is 0.662 and for 
gambles with an expected value of +/- $45 is 0.219. We cannot reject the null hypothesis that the absolute value of 
the coefficients are equal at any reasonable level of significance. However, the p-value for the test of gambles with 
an expected value of +/- $25 is 0.000. These results suggest that base valuations are similar, in absolute terms, for 
low and high probability gambles but not for mid probability gambles.  
8  The Hausman test compares the estimator of a consistent model, eg. a fixed-effects model, with that of a more 
efficient model, eg. the random-effects model. A significant test statistic indicates that the independent variables and 
the random effects are correlated. For more information see Hausman (1978) and Kennedy (1992). 
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 The gain domain 
 
The positive constants for each model in this domain are as expected. The constant of 

9.956 for gambles with an expected value of $5 suggests risk seeking behavior for low 

probabilities of winning. The value of 40.629 for gambles with an expected value of $45 

suggests risk aversion for high probabilities of winning.9

Table 8. Random effects models. The dependent variable is the VALUATION of each gamble. 

   GAIN    LOSS   
Exp. Value     5     25      45  -5  -25  -45  
Constant 9.956 *** 23.483 *** 40.629 *** -10.198 *** -26.866 *** -41.342 ***
 (0.554)  (0.549)  (0.580)  (0.627)  (0.558)  (0.537)  
Context 0.330  1.312 ** 1.902 *** 1.389 * 0.841  0.131  
 (0.704)  (0.706)  (0.705)  (0.796)  (0.716)  (0.668)  
Range 0.000  -0.111 *** 0.023  -0.158 ** 0.104 *** -0.013 ** 
 (0.039)  (0.036)  (0.035)  (0.078)  (0.038)  (0.005)  
Probability -1.224 *** 0.374  -1.684 *** 0.306  0.097  0.549 * 
 (0.428)  (0.314)  (0.472)  (0.679)  (0.332)  (0.332)  
Payoff -0.127  0.566 ** -1.216 ** 0.111  0.058  0.585 * 
 (0.327)  (0.311)  (0.551)  (0.346)  (0.326)  (0.354)  
Both -0.943 **  -1.775 *** 0.344    0.616  
 (0.432)   (0.668)  (0.618)    (0.389)  
Loglikelihood -2822.6  -1620.0  -3033.4  -2922.1  -1589.1  -2826.4  
         
No. of obs.10 1034  580  1041  1031  563  1024  
           
Hausman stat. 8.97  0.09  2.51  1.07  0.03  1.13  
p-value 0.0619  0.9935  0.6428  0.8992  0.9983  0.8901  

*** indicates significance at the 1 percent level. 
** indicates significance at the 5 percent level. 
* indicates significance at the 10 percent level. 
 
 The Context coefficient is positive in the three models, increasing in statistical 

significance as the expected value of the gamble increases. This suggests a preference for 

gambles framed as investment decisions, particularly as the probability of gain increases. 

                                                 
9 We report the results of a fixed-effects model for the gain domain gambles with an expected value of $5 in the 
appendix. The p-value of the Hausman statistic is marginally significant for the associated RE model.  
10 The number of usable observations. Observations are considered unusable (dropped from the analysis) if the 
subject did not choose a certainty equivalent or provided multiple equivalents for a gamble. The maximum possible 
number of observations for the models with expected values of +/-$5 and +/-$45 is 1,192 (149 subjects * 8 gambles) 
and for expected values of +/-$25 the maximum number is 596 (149 subjects * 4 gambles). 
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The size (indicated by Range) and location (indicated by Probability, Payoff, and Both) 

of ambiguity play an interesting role in the valuations. Generally, the range of ambiguity does 

not significantly alter the valuations. It is statistically significant only for gambles with an 

expected value of $25. 

 The location of the ambiguity plays a greater role in affecting valuations. Ambiguity in 

the probability of winning plays a significant role in the valuations for low and high 

probabilities. The negative coefficient values are indicative of ambiguity aversion. The 

significantly negative coefficients for Both indicate aversion to ambiguity when the decision 

involves ambiguity in both the probability and the payoff for low and high probabilities of 

winning. 

 The Payoff coefficient is negative for low and high probabilities indicating ambiguity 

aversion, but this coefficient is only statistically significant for the expected value of $45. The 

significantly positive Payoff coefficient for the mid probability tends to offset the negative Range 

coefficient for these gambles. 

 These findings lead to a more general result regarding ambiguity in the gain domain: The 

subjects are not concerned with the size (or Range) of ambiguity but rather the location. We posit 

that the ambiguity in the probability drives the results. Note that for gambles with expected 

values of $5 and $45, both coefficients involving ambiguity in the probability are significantly 

negative (Probability and Both). While the payoff coefficient is significant for the high 

probability to win gambles, it is of lesser magnitude than the coefficients involving probability.   
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The loss domain

 The significantly negative constants are as expected. The –10.198 value for gambles with 

expected values of -$5 suggests risk aversion. However, the –41.342 value for high probability 

of loss gambles suggests risk seeking behavior. 11

 The context coefficient is not significant in any of the models. This suggests that the 

subjects did not discern a difference between the gambles framed as lotteries for possible losses 

versus insurance decisions.  

 The range and location of ambiguity coefficients present a different picture from that of 

the gain domain. Unlike the gain domain, the Range coefficient is significant in all of the models 

in the loss domain, indicating that the size of the ambiguity plays an important role in decision 

making regarding possible losses. The subjects are averse to increases in Range for low and high 

probabilities of loss while exhibiting a preference for mid probabilities. The location coefficients 

are insignificant for the low and mid probability gambles. However, two of the location 

coefficients, Probability and Payoff, are marginally significant and positive for high probabilities 

of loss. These findings support a more nuanced result regarding the size and location of 

ambiguity for gambles involving possible losses. This is discussed in more detail in the 

following section. For now, we will generalize by stating that the subjects are more concerned 

with the size (or Range) of the ambiguity rather than with the location, with possible exception to 

high probabilities of loss. 

                                                 
11 In addition, a dummy variable indicating if the subject is female was also included in each of the models to check 
for overall sex differences (not shown). The coefficient was insignificant in all models in both domains. The most 
significant p-value was 0.22 in the gain domain and 0.14 for the loss domain. Therefore we cannot reject the 
hypothesis that the coefficient on the dummy variable for female is equal to zero in either domain. Nevertheless, the 
coefficient was negative in the gain domain and positive in the loss domain. 
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4.3. Comparison of our Results with other Research 

Hogarth and Kunreuther (1989) conduct experiments involving ambiguity in insurance 

decisions where subjects responded as either firms or consumers.  For comparative purposes we 

will focus on their findings regarding subjects making consumer decisions for insurance.  These 

authors find that subjects are averse to ambiguity for low probabilities of loss but prefer 

ambiguity for high probabilities of loss. While the summary statistics of a subset of the gambles 

presented in Table 5 support this finding, the coefficients for Range and ambiguity location for 

the loss domain models in Table 9 provide a more limited support. The Range coefficient is of 

lesser absolute value for high probability of loss gambles compared to the low and mid 

probabilities. Furthermore, the positive location coefficients are larger for high probabilities of 

loss. The location values will more than offset the negative Range coefficient if the range of 

ambiguity is sufficiently small.  This would support ambiguity preference for high probabilities 

of loss. 

 Di Mauro and Maffioletti (1996) present hypotheses related to the models of Einhorn and 

Hogarth (1985) and Gardenfors and Sahlin (1982).  The hypothesis suggested by Einhorn and 

Hogarth’s anchoring adjustment model is that individuals will switch from ambiguity aversion to 

preferring ambiguity as the probability of loss increases.12 The accompanying hypothesis for the 

Gardenfors and Sahlin maximin model is that subjects will be ambiguity averse regardless of the 

level of probability.  Our results can provide support for both hypotheses. According to the loss 

domain models in Table 9, there is support for the anchoring adjustment model if the Range (or 

size) of the ambiguity is sufficiently small. However, if the Range is large then this will dwarf 

the location effects for high probability of loss gambles and this supports the maximin model.  

                                                 
12 This hypothesis is supported by the findings regarding consumer decisions by Hogarth and Kunreuther (1989). 
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Camerer and Kunreuther (1989) conduct experiments for insurance protection using 

double-oral auction markets.  In these experiments the probabilities of loss are no greater than 50 

percent, with the majority being 20 or 30 percent. They introduce ambiguity in the probability of 

loss through the use of a discrete uniform distribution.  The expected values of the probabilities 

of loss when the consumers are facing ambiguity are 10 and 30 percent.   In their example, for a 

20 percent loss the range of possible loss probabilities is from 0 to 40 percent.  These authors 

find an insignificant price effect (or willingness-to-pay) with consumer-only ambiguity.  We 

have two instances of ambiguity in the probability with an expected value of 10 percent.  We 

find a significant price difference between the willingness-to-pay to avoid the precise (known) 

and ambiguous (unknowable) gambles with ranges of 5-15 percent and 0-20 percent chance of 

loss. 13  The negative and highly significant Range coefficient for an expected loss of $5 also 

suggests ambiguity aversion.  

Mangelsdorff and Weber (1994) find, “…a significant difference in attitude towards 

ambiguity in the gain and in the loss domain.” They report significant ambiguity aversion in the 

gain domain and ambiguity neutrality in the loss domain. We find ambiguity aversion as well in 

the gain domain, driven by the location of the ambiguity. However, we also find support for 

ambiguity aversion in the loss domain driven by the size of the ambiguity. 

Fox and Tversky (1991) put forth the comparative ignorance hypothesis stating that 

ambiguity aversion arises from a comparison with less ambiguous events or with more 

knowledgeable individuals. They find support for this hypothesis through a series of experiments 

involving bets with ambiguity in the probabilities in the gain domain. Our design eliminates 

informational asymmetries to avoid this effect regarding more “knowledgeable individuals”, i.e. 

the experimenters. However, our experiment uses a within-subject design where the subjects 

                                                 
13 Means testing indicates significant differences between these gambles as shown in Table 5. 
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make decisions regarding both precise and ambiguous gambles. This allows for comparisons 

between the types of “events”, i.e. the gambles. Our results can be interpreted as support for the 

comparative ignorance hypothesis given the statistically significant differences in valuations 

between the precise and ambiguous gambles. In the gain domain, subjects exhibit a preference 

for the precise rather than ambiguous gambles as indicated by the greater certainty equivalents.14 

We find limited support for this claim in the loss domain. The subjects prefer the precise gamble 

to ambiguity for low probabilities while this is true for high probabilities of loss only if the size 

of the ambiguity is sufficiently large. 

Chow and Sarin (2001) investigate attitudes toward ambiguity in probabilities using bets 

in the gain domain to investigate the comparative ignorance hypothesis. They find that ambiguity 

aversion exists in both comparative and non-comparative contexts. In Chow and Sarin (2002), 

the authors are interested in attitudes to known, unknown, and unknowable uncertainty. They 

again find evidence of aversion to ambiguity in the probabilities of gambles in the gain domain. 

Our results also indicate ambiguity aversion regarding probabilities in the gain domain.   

The majority of research efforts involving attitudes toward ambiguity involves 

introducing vagueness in the probability of an event occurring. There is a paucity of results 

involving ambiguity in the payoff or amount of loss. Furthermore, little has been done involving 

gambles that jointly involve ambiguity in the probability and payoff combined. We found there 

to be evidence that the location of ambiguity is a factor in attitudes toward uncertainty. This is 

particularly the case in the gain domain. However, we recognize that the effect is strongest when 

the ambiguity is located in the probability for these gambles. In the loss domain, there is 

evidence of ambiguity aversion driven by the range, or size, of the ambiguity. This aversion 

increases as the range increases.  

                                                 
14 This is also evident from the negative location coefficients in the gain domain models in Table 9. 
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5.  Summary and discussion 

We have attempted to investigate possible differences in behavior with regard to precise 

(known) and ambiguous (unknowable) gambles. We conducted an experiment using a new 

instrument designed to elicit responses in these types of situations. Furthermore, we included 

ambiguity in each aspect of the gamble: the probability, the outcome, and in both the probability 

and the outcome simultaneously.  This experiment was designed so that the level of information 

of the subject is equal to that of the experimenters.  This was done to minimize any comparative 

ignorance effects due to a “stacked deck” scenario. In other words, we attempt to ensure that the 

subjects did not feel that it was possible for the experiment to be rigged by the experimenter.   

The subjects exhibit ambiguity aversion in both domains. We found some rather 

interesting results regarding the ‘location’ of the ambiguity.  In the gain domain, subjects exhibit 

greater ambiguity aversion if the ambiguity is in the probability of the event occurring and also 

in the case where there is ambiguity in both the probability of the outcome and the amount of the 

outcome.  However, in the loss domain ambiguity aversion is driven primarily by the size of the 

ambiguity rather than the location. This finding is of note because it may help in determining 

why consumers pay, in some cases, rather large premiums for insurance. For example, service 

contracts and extended warranty purchases are significant for electronic devices and automobiles 

and are quite profitable for providers. In these cases the probability of breakdown is relatively 

small, yet consumers may feel that the range of repair costs can be considerable. While the 

expected loss is relatively low, buyers are willing to pay a premium to avoid the uncertainty in 

the size or amount of possible losses. We also found that there were treatment effects in the gain 

domain. The subjects exhibited a preference for gambles framed as investment opportunities, as 

opposed to lotteries.  There were no significant treatment effects in the loss domain.   
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Additional research is necessary to further clarify the role ambiguity plays in decision 

making. While we have attempted to minimize comparative ignorance effects due to 

informational asymmetries, a useful future research endeavor would be to use this instrument in 

a noncomparative framework. Such a project, using a between-subject design, would provide a 

robust test of the comparative ignorance hypothesis using known and unknowable uncertainty in 

the vein of Chow and Sarin (2002). Additional research into the location of ambiguity would also 

be useful in explaining decision-making under uncertainty. This may include an investigation 

into “thresholds” regarding ambiguity in the outcome. In other words, determining the manner in 

which the range of ambiguity in the outcome affects valuations. Finally, the development of an 

experimental technique that involves time lags between the decision and the determination of the 

outcome would be interesting. Many real-world decisions, such as an insurance purchase, 

involve making a purchase today as a guard against future possible losses. Incorporating a lag 

into an experimental setting may be used to measure attitudes toward ambiguity, and 

discounting, in a more realistic sense.    
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 Appendix 
 

Tables of average valuations. 
 

      GAIN DOMAIN          
   Pooled Data   Abstract treatment Context treatment 

Prob. Payment Mean Std. Dev. # obs. Mean # obs. Mean # obs. 
10 50 10.19 5.32 145 9.60 72 10.78 73 

5-15 50 9.42 4.95 146 9.32 72 9.53 74 
0-20 50 8.42 4.87 144 8.91 73 7.91 71 
10 45-55 9.79 4.74 143 9.84 70 9.74 73 
10 40-60 10.12 5.55 146 9.81 72 10.43 74 

5-15 45-55 9.21 5.09 145 8.89 72 9.53 73 
10 0-100 10.16 5.39 82 9.54 43 10.85 39 
10 25-75 9.19 4.47 83 9.55 44 8.80 39 
           

50 50 24.11 4.92 145 23.64 72 24.58 73 
45-55 50 23.94 5.28 143 22.76 71 25.11 72 

50 45-55 24.14 5.26 147 23.45 73 24.82 74 
45-55 45-55 23.01 4.82 145 22.73 71 23.28 74 

           
90 50 41.56 5.82 147 40.91 73 42.22 74 

85-95 50 39.54 5.82 142 38.48 69 40.55 73 
80-100 50 40.75 5.9 145 39.88 72 41.61 73 

90 45-55 40.98 5.49 147 39.92 73 42.03 74 
90 40-60 40.53 5.4 145 39.17 72 41.88 73 

85-95 45-55 40.16 5.29 147 39.22 72 41.07 75 
90 47-53 40.56 5.69 84 40.96 44 40.12 40 
90 44-56 40.31 5.18 84 40.19 44 40.45 40 
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    LOSS DOMAIN      
   Pooled Data   Abstract treatment Context treatment 

Prob. Payment Mean Std. Dev. # obs. Mean # obs Mean #obs 
10 50 -9.55 5.91 143 -10.35 71 -8.75 72 

5-15 50 -9.99 5.69 146 -10.68 73 -9.30 73 
0-20 50 -10.69 5.67 144 -11.45 72 -9.93 72 
10 45-55 -9.51 5.87 145 -10.05 73 -8.95 72 
10 40-60 -9.74 6.03 144 -10.58 72 -8.90 72 

5-15 45-55 -10.17 5.77 144 -10.63 72 -9.71 72 
10 47-53 -9.43 5.7 81 -10.50 44 -8.16 37 
10 44-56 -10.01 5.77 84 -10.48 44 -9.50 40 
           

50 50 -26.52 5.11 141 -27.01 72 -26.00 69 
45-55 50 -25.95 5.03 139 -26.22 68 -25.69 71 

50 45-55 -25.94 5.12 143 -26.56 71 -25.33 72 
45-55 45-55 -25.46 5.26 140 -25.62 71 -25.29 69 

           
90 50 -41.26 4.57 145 -41.11 71 -41.39 74 

85-95 50 -41.14 4.5 143 -41.16 72 -41.13 71 
80-100 50 -40.47 4.4 146 -40.25 72 -40.68 74 

90 45-55 -41.05 4.83 142 -40.88 72 -41.23 70 
90 40-60 -40.6 5.6 144 -41.20 73 -39.99 71 

85-95 45-55 -40.85 4.79 143 -41.45 73 -40.21 70 
90 0-100 -42.37 6.49 79 -41.93 41 -42.84 38 
90 25-75 -41.32 5.36 82 -41.81 43 -40.77 39 

 
Fixed-effects model for gains with 

expected value of $5 
Expected Value 5  
Constant 10.070 ***
 (0.257)  
Range 0.003  
 (0.039)  
Probability -1.245 ***
 (0.428)  
Payoff -0.115  
 (0.327)  
Both -0.960 ** 
 (0.432)  
   
within 0.0324  
between  0.0199  
overall 0.0083  
   
No. of observations 1034  

*** indicates significance at the 1 percent level. 
** indicates significance at the 5 percent level. 
* indicates significance at the 1 percent level. 
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Instructions 
 
Do not communicate with any other participant during this experiment.  Participants who do not abide by 
this rule will be excluded from the experiment and from all payments.  If you have questions concerning 
the experiment please ask me. 
 
In your folders are decision sheets with a list of various choice situations.  These situations are of two 
different types: investment decisions and insurance decisions.  An explanation of each type of situation 
and how the outcomes of these situations are determined will be given to you before you make any 
decisions. 
 
Insurance Decisions 
You have recently purchased a new car or truck.  This vehicle may suffer some type of mechanical failure 
or breakdown and need to be repaired.  There are decision sheets in your folder with a list of various 
choice situations.  For each decision, you will choose between taking a chance on the vehicle breaking 
down and paying the cost of repair or purchasing insurance to insure yourself against having to pay for a 
repair. There is either a specified percentage chance or a range of percentage chances that the vehicle will 
need a repair.  For example, there might be a 75% chance of a repair or a range such as 25-35%.  Also, 
the cost of a repair is either a specified amount or a range.  For example, there might be a $40 repair or a 
$50-60 repair.  You will pay for any repair or insurance purchase with the $60 you earned for completing 
the survey. 

 
How does the insurance decision work? 

Two examples of some possible decisions are shown below.   
 
Example 1. 
 Option A Option B Your Choice 

A or B 

Decision 1 
 

50% chance at $30 repair 
 

Pay $20.00 
 

 

 
Let’s look at Decision 1.  You can risk having to pay for a $30 repair with a 50% chance OR you can pay 
$20 to insure against any repair costs.  If you choose to purchase insurance for $20, picking Option B, 
you will pay this amount and keep the rest of your money.  That would be $40 in this case ($60 - $20 
insurance = $40).  If this decision is chosen for payment and you picked Option A then you will keep the 
$60 if the vehicle does not breakdown.   
 
Example 2.   
 Option A Option B Your Choice 

A or B 

Decision 2 5-15% chance at $45-55 repair Pay $1.00 
 

 

 
Let’s look at Decision 2.  You can risk having to pay for a $45-55 repair with a 5-15% chance OR you 
can pay $1 to insure against any repair costs.  If you choose to purchase insurance for $1, picking Option 
B, you will pay this amount and keep the rest of your money.  That would be $59 in this case ($60 - $1 
insurance = $59).  If this decision is chosen for payment and you picked Option A then you will keep the 
$60 if the vehicle does not breakdown.   
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How does this loss occur?   First, we determine the exact percentage chance of the vehicle needing repair 
and the exact cost of the repair.  In Example 1 these are already determined: the percentage chance of the 
vehicle needing a repair is 50% and the cost of the repair is $30. 
   
In Example 2, we have to determine the exact percentage chance out of the 5-15% range.  Each of the 
percentage chances of the vehicle needing a repair in the range is equally likely.  You will draw a chip 
from a box of 11 white chips to determine the exact percentage chance of the vehicle needing repair.  
(There are 11 numbers in the range of 5-15% ⇒ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.)  Let’s suppose you 
draw a 9.  Then the percentage chance of the vehicle needing repair is 9%. Similarly, you will draw a chip 
from a box of 11 red chips to determine the cost of the repair.  (There are 11 numbers in the range of $45-
55 ⇒ 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55.) Each of the repair costs is equally likely.  Let’s suppose 
you draw a 53.  Then the repair cost is $53. 
 
Second, you will roll two ten-sided dice.  (One die has “10s”, and the other has “1s” on it.  If you roll 00 
on one die and 0 on the other, then that is rolling 100).  Thus the roll will be a number between 1 and 100.  
If the number you roll is equal to or smaller than the percentage chance of the vehicle needing a repair, 
then your vehicle has had a breakdown and you will have to pay for repairs.  If the number is higher than 
the percentage chance of the vehicle needing a repair, you do not have to pay any repair costs. 
 
Continuing with Example 2.  Suppose you have chosen to take a chance on the vehicle needing a repair 
and have drawn chips to determine there is a 9% chance of a repair costing $53.  Then if you roll a 
number between 1 and 9, the vehicle needs a repair and you must pay the repair cost of $53.  If you roll a 
number between 10 and 100, the vehicle does not need any repairs. Now suppose that, instead of taking a 
chance on the vehicle needing a repair, you chose to pay $1 in Decision 2 of Example 2.  Then you will 
keep $59 ($60 - $1 = $59). 
 
At the end of all of the sessions today, one of your insurance decisions from a decision sheet will be 
chosen randomly, and you will either take a chance on paying for a repair or pay for insurance.  Your best 
strategy is to treat each decision as if it could be the one you will pay for. 
 
I will now show you how these experiments are conducted. 
 
Now is the time for questions.  Feel free to ask any questions that you may have. 
 
All of the participants have received identical decision sheets in the experiment.  Please fill out the 
decision sheets in the order you find them.  Remember to put your ID Code on each sheet. After you have 
completed each sheet please place it immediately in the yellow folder.  You are not allowed to view or 
correct any decision sheets that you have placed in the yellow folder. 
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Investment Decisions 
In this experiment, you are given an opportunity to invest between two different firms, Firm A and Firm 
B.  There are decision sheets in your folder with lists of different decisions.  For each decision, you will 
choose between investing in Firm A which is a risky investment with a larger possible return or investing 
in Firm B which has a certain return.  For Firm A, there is either a specified percentage chance or a range 
of percentage chances that the firm will be successful.  For example, there might be a 75% chance of a 
return or a range such as 25-35%.  Also, the investment return for Firm A is either a specified amount or a 
range.  For example, there might be a $40 return or a $50-60 return on investing. 

 
How does investing work? 

Two examples of some possible decisions are shown below.   
 
Example 1. 
 Firm A Firm B Your Choice 

A or B 

Decision 1 
 

10% chance at $20 
 

$1.00 
 

 

 
Let’s look at Decision 1.  You can choose to invest in Firm A with a 10% chance at a $20 return OR you 
can choose to invest in Firm B and receive a certain return of $1.00.  If this decision is chosen for 
payment and you picked Firm A then you will receive $20 if the firm is successful.  If you picked Firm B 
you will receive $1. 
 
Example 2. 
 Firm A Firm B Your Choice 

A or B 

Decision 2 
 

85-95% chance at $45-55 
 

$31.00 
 

 

 
Let’s look at Decision 2 in this example.  You can choose to invest in Firm A with an 85-95% chance at a 
$45-55 return OR you can choose to invest in Firm B and receive a certain return of $31.00.  If this 
decision is chosen for payment and you picked Firm A then you will receive $45-55 if the firm is 
successful.  If you picked Firm B you will receive $31. 
 
How does this investment work?   First, we have to determine the exact percentage chance of a return on 
investment and the exact amount of the return for Firm A.  In Example 1 these are already determined: the 
percentage chance of a return is 10% and the return is $20. 
   
In Example 2, we have to determine the exact percentage chance of a return out of the 85-95% range.  
Each of the percentage chances of a return in the range is equally likely.  You will draw a chip from a box 
of 11 white chips to determine the exact percentage chance of a return.  (There are 11 numbers in the 
range of 85-95% ⇒ 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95.)  Let’s suppose you draw a 92.  Then the 
percentage chance of a return is 92%.  Similarly, you will draw a chip from a box of 11 red chips to 
determine the amount of the return on your investment.  (There are 11 numbers in the range of $45-55 ⇒ 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55.)  Let’s suppose you draw a 48.  Then the return is $48 if the firm 
is successful. 
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Second, you will roll two ten-sided dice to see if the firm is successful.  (One die has “10s”, and the other 
has “1s” on it.  If you roll 00 on one die and 0 on the other, then that is rolling 100).  Thus the roll will be 
a number between 1 and 100.  If the number you roll is equal to or smaller than the percentage chance of 
a return, the firm is successful and you will receive the investment return.  If the number is higher than the 
percentage chance of a return, the firm is not successful and you will not receive any return on your 
investment. 
 
Continuing with Example 2.  Suppose you have chosen to invest in Firm A and the chips have been drawn 
to determine there is a 92% chance of a return of $48.  Then if you roll a number between 1 and 92, the 
firm is successful and you receive the $48 return.  If you roll a number between 93 and 100, the firm is 
unsuccessful and you do not receive any return on your investment. 
 
At the end of all of the sessions today, one of your investment decisions from a decision sheet will be 
chosen randomly, and you will be paid in cash for your decision about this investment opportunity.  Your 
best strategy is to treat each decision as if it could be the one you get paid for. 
 
I will now show you how these experiments are conducted. 
 
Now is the time for questions.  Feel free to ask any questions that you may have. 
 
All of the participants have received identical decision sheets in the experiment.  Please fill out the 
decision sheets in the order you find them.  Remember to put your ID Code on each sheet. After you have 
completed each sheet please place it immediately in the blue folder.  You are not allowed to view or 
correct any decision sheets that you have placed in the blue folder. 
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