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Abstract
We describe the design and current status of our effort to imple-
ment the programming model of nested data parallelism into the
Glasgow Haskell Compiler. We extended the original programming
model and its implementation, both of which were first popularised
by the NESL language, in terms of expressiveness as well as effi-
ciency. Our current aim is to provide a convenient programming en-
vironment for SMP parallelism, and especially multicore architec-
tures. Preliminary benchmarks show that we are, at least forsome
programs, able to achieve good absolute performance and excellent
speedups.

1. Introduction
One of the most promising approaches to making efficient use of
parallel hardware isdata parallelism, in which a single computa-
tion is performed in parallel across a large number of data elements.
For example, High-Performance Fortran (HPF) and OpenMP ex-
ploit data parallelism by employing many processors to process
different parts of a single array; and SMPD programming withMPI
extends the same idea to a distributed setting.

Typically, the arrays are required to beflat (arrays of floats, for
example), but that is often quite inconvenient for the programmer.
In ground-breaking work in the 90’s, the NESL language and its
implementation offered data-parallel operations overnested data
structures(such as arrays of variably-sized subarrays), and allowed
all subarrays to be simultaneously computed in data-parallel [2, 1].

This paper describes our progress in taking NESL’s good ideas
and incorporating them in Haskell, a widely-used, purely functional
programming language. Doing so required us to generalise many
aspects of NESL’s design, and the project we describe here repre-
sents the culmination of a ten-year research programme. We make
several significant contributions:

• We are building support for nested data parallelism in Haskell,
a fully-fledged programming language; and we are doing so for
the world’s leading Haskell compiler, GHC. GHC’s implemen-
tation of Haskell already supports two different paradigmsfor
parallel programming: (a) explicit control parallelism, coordi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAMP 2007 16 January 2007, Nice, France.
Copyright c© 2007 ACM 978-1-59593-690-5/07/0001. . . $5.00.

nated with transactional memory [20, 10], and (b) semi-implicit
concurrency, based on annotations [28]. Our goal is to add a
third paradigm, data parallelism; we believe that there is no one
silver bullet for expressing parallelism.

• The crucial breakthrough in NESL was theflatteningor vec-
torisationtransformation, which transforms the nested program
such that it manipulates only flat arrays. We have extended this
transformation in several directions: we support not only built-
in types, product, and array types (like NESL), but also han-
dle user-defined, sum, and function types [5, 14]—the latterare
particularly challenging (Sections 4 and 5).

• Data parallel programs typically generate many intermediate ar-
rays. We improved on the implementation of NESL by develop-
ing fusion techniquesthat completely eliminate many of these
intermediates, which dramatically reduces the constant-factor
overhead [6, 7] (Section 6.3).

• When fusingparallel computations, we need to be careful not
to reduce opportunities for parallel execution too much, and we
need to minimise communication operations where possible.
To guide fusion in the presence of parallelism and to structure
the mapping of array operations onto concurrent threads, we
developed type-directed data distribution [11] (Sections6.1 and
Section 6.2).

• Our entire implementation is strongly typed, including thecom-
piler intermediate language. This is a real challenge, because
the representation of data-parallel arrays isnon-parametric; for
example, an array of pairs is represented as a pair of arrays.We
have developed an extension to Haskell’s type system calledas-
sociated types [4, 3], and a new extension of the typed interme-
diate language [26] that together solve this problem (Section 4).

• Our implementation is carefully structured so that most of it is
presented as a stack of Haskelllibraries, rather than as perva-
sive modifications to a Haskellcompiler. The only aspects that
must be built into the compiler itself are the support for array
comprehensions (syntax, type checking, desugaring; Section 2),
and the vectorisation transformation (Section 5).

In combination, these innovations lead to a very efficient imple-
mentation of a highly expressive form of data parallelism. To be
fair, this claim remains to be tested. We are currently implement-
ing a fully-fledged version of Data Parallel Haskell in the Glas-
gow Haskell Compiler (GHC) – a state of the art implementation
of Haskell – but the implementation is still incomplete.

This paper describes the current state of play: it sketches our
main contributions, gives some details of the implementation, and
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presents some first benchmarks.1 It does not attempt to describe the
various program transformations employed in our implementation
in technical, or even, formal detail—a comprehensive treatment is
well beyond the scope of a workshop paper. Instead, we illustrate
all major components of our approach by example and provide
references to publications focusing on particular sub-problems,
where such publications are already available.

2. What the programmer sees
In Data Parallel Haskell, parallelism is expressed implicitly, by op-
erations over a built-in type ofparallel arrays, denoted by[:.:].
For example,[:Float:] is the type of (dense) vectors of floating
point values:

type Vector = [: Float :]

As another example, a sparse vector can be efficiently represented
by a (dense) array of (index,value) pairs:

type SparseVector = [:(Int, Float):]

The dot product of a sparse and a dense vector is easily computed:

dotp :: SparseVector -> Vector -> Float
dotp sv v = sumP [: x * (v!:i) | (i,x) <- sv :]

Here, the subexpression[:x * (v!:i) | (i,x) <- sv:] is an
array comprehension, of type[:Float:]. Its value is obtained by
computing, for each element(i,x) of the sparse vectorsv, the
product ofx with the element of the dense vectorv at positioni,
where (!:) denotes indexing. Finally, we compute the sum of the
intermediate vector of products, using the functionsumP2

sumP :: [:Float:] -> Float

The operational intuition is thatdotp is executed by agang
of threads, one per processing element. Each thread in the gang,
a gang member, is responsible for a chunk of the sparse vector;
the gang member computes the appropriate part of the intermediate
vector, adds it up, and the sub-totals are combined to give the final
result. By using a tree-like reduction algorithm,sumP ensures that
the parallel step complexity ofdotp is logarithmic in the size of the
sparse vector. (Of course, it is essential that addition is associative.)
It is also essential that, unlike Haskell’s normal arrays, parallel
arrays are head-strict; that is, if the array is computed at all, then all
of its elements are computed. This property allows us to compute
the whole array at once, in data-parallel.

A crucial advantage of our approach is the ability tonestpar-
allel arrays and computations without restricting the available par-
allelism or introducing undue inefficiencies. For instance, a sparse
matrix can be represented naturally as an array of rows whereeach
row is a sparse vector:

type SparseMatrix = [:SparseVector:]

To multiply such a matrix with a dense vector, we simply compute
the dot product for each row (this formulation of the algorithm is
due to [1]):

smvm :: SparseMatrix -> Vector -> Vector
smvm sm v = [: dotp row v | row <- sm :]

This is a nested parallel computation: we applydotp to each row of
the matrix in parallel, butdotp is already a parallel operation. This

1 All code of our system is publicly available. For details, please refer to
http://haskell.org/haskellwiki/GHC/Data Parallel Haskell
2 In reality, sumP is overloaded using type classes, to have typeNum a =>
[:a:] -> a. In this paper, though not in the implementation, we ignore
that complication.

kind of parallelism is notoriously difficult to deal with. Inparticu-
lar, it would be naive to divide the work among the gang by simply
giving an equal number of rows to each gang member, since the
number of elements in each row may vary greatly. However, by
combining a specialised representation of nested arrays with code
vectorisation as we describe in Section 4, we are able to automat-
ically translate the above program into code containing only flat
parallelism that can be executed efficiently on stock hardware.

The rest of this paper usesdotp as a running example to explain
the successive steps through which the program is compiled to run
efficiently on parallel shared-memory machines. The example is
small enough that it can be understood, and the techniques scale to
real programs, as NESL has shown.

3. The big picture
The translation of high-level nested data parallel programs, as de-
scribed in the previous section, into efficient low-level code in-
volves a large number of source-to-source program transforma-
tions. Many of these transformations have been part of GHC’sop-
timiser for a long time, in particular a sophisticated inliner, worker-
wrapper unboxing, and constructor specialisation [19, 22,21, 18].
In the course of the Data Parallel Haskell project, we are adding
more, array-specific transformations. Due to GHC’s genericsup-
port for program transformations — specifically, the inliner and
rewrite rules [22, 18] — we can implement most of these new
transformations as library code, as opposed to extending the com-
piler itself. The exception being the vectorisation transformation
described in Section 5.

Figure 1 illustrates the anatomy of the array-specific transfor-
mations. The three major components are (1)flatteningthat trans-
forms nested into flat data parallelism; (2)fusion that eliminates
redundant synchronisation points and intermediate arrays, and thus
drastically improves locality of reference; and (3)gang parallelism
that maps parallel operations to a gang of threads. All transforma-
tions apply to both data types (labelled “– Data –”) and operations
on these data types (labelled “– Control –”). The figure namesthese
data types and operations and lists the sections in which they are in-
troduced and explained.

The basic idea is that, after flattening has eliminated all nest-
ing, we use a notion ofdistributed typesto explicitly distinguish by
type the sequential and the parallel components of a data parallel
program. Both components are subjected to their own fusion mech-
anism; i.e.,stream fusionandcommunication fusion, respectively.
Finally, we distribute the fused parallel components across a gang
of threads, each of which operates on a chunk of each array.

4. Non-parametric array representation
Standard arrays in Haskell are parametric; i.e., the array representa-
tion is independent of the type of array elements. This is achieved
by using arrays of pointers refereeing to the actual elementdata.
Such aboxedrepresentation is very flexible, but it is also detrimen-
tal to performance. The indirections consume additional memory,
increase memory traffic, and decrease locality of memory access.
The resulting runtime penalty can be of two orders of magnitude.

Consequently, GHC already offers non-standardunboxedarrays
for applications where array performance matters. However, these
unboxed variants are only available for arrays of basic type. If we
want efficiency and convenience for parallel arrays, we needthe
performance of unboxed arrays for arrays of arbitrary user-defined
algebraic datatypes.

Hence, a key aspect of our compilation strategy is anon-
parametric representation of parallel arrays— for each array,
we select an efficient representation based on the type of itsel-
ements [5]. For instance, a value of type[:Int:] is held as a
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[:e:] mapP, sumP, ...

UnboxedArray (.)^, sumP, ...

Dist a mapD, splitD, joinD, ...
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DistST s a

ST s a

distST, ...
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Communication fusion
"splitD/joinD", "mapD/mapD"

"streamS/unstreamS"

(Section 6.2)

Distributed types
(Section 6.1)

Vectorisation
(Section 5)

Non-parametric arrays
(Section 4)

Gang threads
(Section 7.2)

(Section 7.1)
Distributed state transformer

Nested data parallelism

Flat data parallelism

Flattening

Fusion

Gang parallelism

Figure 1. Structure of program transformations

contiguous memory area containing unboxed 32-bit integer values
— not as a block of pointers toInt-valued thunks, as is the case in
vanilla Haskell. In our notation ofassociated types[4], we declare
a type whose representation varies in dependence on a type argu-
ment as part of a Haskell type class that also contains elementary
operations on that type; for arrays we have

class ArrElem e where
data [:e:]
(!:) :: [:e:] -> Int -> e

Our concrete implementation is more complex with more opera-
tions, but the code shown here conveys the basic idea. The class
instance for integers takes the following form:

class ArrElem Int where
data [:Int:] = ArrInt ByteArray
(ArrInt ba) !: i = indexIntArray ba i

We represent the array by a contiguous region of bytes (aka
ByteArray) with an indexing primitiveindexIntArray that ex-
tracts a single 32-bit integer from aByteArray. (The code again
abstracts over the concrete implementation by omitting theuse of
unboxed types.)

TheArrElem instance forFloat, and other primitive types, fol-
lows the same pattern. But what about more complex data struc-
tures, such asSparseVector, which is a parallel array ofpairs?
It is quite unacceptable to represent it by an array of pointers to
(heap-allocated) pairs, because the indirection costs would be too
heavy. Instead, we represent it by apair of arrays:

class (ArrElem a, ArrElem b) => ArrElem (a, b) where
data [: (a,b) :] = ArrPair [:a:] [:b:]
(arr1, arr2) !: i = (arr1 !: i, arr2 !: i)

Thus, aSparseVector is represented by two unboxed arrays, one
storing the indexes of non-zero elements and one the actual float-
ing point values of those elements. Crucially, the two arrays must
have the same length, a constraint which cannot be expressedin

Haskell’s type system but is maintained by our implementation.
Notice that the representation iscompositional; that is, the repre-
sentation of an array of pairs is given by combining the represen-
tations of an array of the first and second elements of the pair, re-
spectively. This representation also allows us to combine two arrays
elementwise into an array of pairs in constant time.

More interesting is the representation of nested arrays. Since
ultimately, our goal is to eliminate nested parallelism, itis not
surprising that we also want to represent nested arrays in terms of
flat ones. Indeed, a nested array[:[:a:]:] can be encoded by

• a flatdata array[:a:] which contains the data elements and

• a segment descriptorof type [:(Int, Int):] which stores
the starting position and length of the subarrays embedded in
the flat data array.

This is captured by the following instance:

class ArrElem a => ArrElem [:a:] where
data [:[:a:]:] = ArrArr [:a:] [:(Int, Int):]
(ArrArr arr segd) !: i = sliceP arr (segd !: i)

wheresliceP extracts a subarray from a larger array in constant
time. Thus, the sparse matrix

[:[:(0,15),(2,9),(3,20):], [::], [:(3,46):]:]

will be represented as

ArrArr (ArrPair [:0,2,3,3:] -- data
[:15,9,20,46:])

(ArrPair [:0,3,3:] -- segment
[:3,0,1:]) -- descriptor

where the first array contains all the column indexes, the second
one all theFloats, and the third and fourth the start indexes and
lengths of the segments, respectively. Since all four arrays will be
unboxed, programs which process such matrices can be compiled
to highly efficient code.
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5. Vectorisation
It is important to understand that the programmer does not need to
be concerned with how parallel arrays are represented. Thisgreatly
simplifies the programmer’s task, at the expense of increased com-
plexity in the compiler, which has to generate code working on flat,
unboxed arrays from nested programs written under the assumption
of a parametric, boxed representation. This is the job ofcode vec-
torisation(also calledflattening), a compiler transformation which
eliminates nested parallelism.

In the literature, vectorisation is often performed on the array-
comprehension syntax directly, but we break it into two steps: first
we desugar the comprehension syntax into ordinary functionappli-
cations, and then we vectorise the latter. For us this is crucial, be-
cause otherwise vectorisation would have to treat theentireHaskell
language (before desugaring), whereas with our approach wecan
defer vectorisation until the Haskell program has been desugared
into GHC’s small intermediate lambda-calculus language [26].

For thedotp example of Section 2, the desugared form is as
follows:

dotp :: SparseVector -> Vector -> Float
dotp sv v = sumP (mapP (\(x,i) -> x * (v!:i)) sv)

The main idea of the vectorisation step is to generate for each
function in the program alifted version which works on arrays in-
stead of individual values. For instance, wherescalar multiplica-
tion, (*), computes the product of twoFloats, lifted multiplica-
tion computes the element-wise products of two arrays ofFloats:

(*^) :: [:Float:] -> [:Float:] -> [:Float:]

Whenever a function is used in a parallel context, code vectorisa-
tion replaces it by its lifted version. Vectorisation turnsthe desug-
ared definition ofdotp into this:

dotp :: SparseVector -> Vector -> Float
dotp (ArrPair is xs) v = sumP (xs *^ bpermuteP v is)

Here we can see that thescalar multiplication and array indexing,
clearly visible in the desugared version ofdotp, are replaced by
lifted multiplication and backwards permutation,bpermuteP:

bpermuteP :: [:a:] -> [:Int:] -> [:a:]
bpermuteP v is = [: v!:i | i <- is :]

Moreover, notice that since the first argument ofdotp is a vector
of pairs — recall the definition ofSparseVector in Section 2 —
its representation is a pair of vectors(ArrPair is xs), anddotp
works directly on this representation. The indicesis are used to
perform a back permute on the dense vector, extracting thosevalues
for which the corresponding elements in the sparse vector are non-
zero. The result is then multiplied elementwise withxs and, finally,
the sum of the array of products is computed.

Strictly speaking, we should have used lifted indexing,(!:^),
instead of back permute in the above code. The use of back per-
mute is an optimisation, which may be realised by a specialised
transformation rule triggered byv being free in the lambda abstrac-
tion passed tomapP. However, in our implementation, it is effec-
tively realised by the fusion transformation described in the next
section. We can’t discuss fusion in sufficient detail to demonstrate
thebpermute optimisation in this paper, though — which is why
we take the liberty to introduce back permute here.

Sincedotp appears in the sparse-matrix vector multiplication
smvm inside another array comprehension, we also need a lifted
version,dotp^, of dotp. We omitdotp^ here for space reasons.
More details are in [14], which discusses vectorisation of arbitrary
nestings in a higher-order language. Ultimately, we need basic
operations, such as(*) andsumP, in their original and their lifted

form. Everything else can be broken down to those two variants of
the basic operations.

6. Fusion
Code that uses vector operations suffers from a major sourceof
inefficiency: it introduces too many intermediate arrays and conse-
quently thread synchronisation points. The vectorisationtransfor-
mation makes matters worse, by introducing yet more intermedi-
ate arrays. For instance, the vectorised version ofdotp creates two
temporary arrays containing the results of the back permuteand
the elementwise multiplication, respectively. On parallel hardware,
where all array operations are executed by a gang of threads,these
threads must synchronise to signal the completion of each tempo-
rary. Both the temporary arrays and the resulting thread synchroni-
sation are unnecessary: ideally, we would like each gang thread to
traverse its local chunk of the sparse vector, extracting values from
the dense vector, multiplying and adding in one go.

The process of collapsing a pipeline of collective operations
into a single loop is calledfusion, and has been extensively stud-
ied (e.g. [30, 23, 16, 12, 15]). It is much easier to achieve ina
purely-functional context, where most prior work concernsfusion
of list operations, often calleddeforestation(e.g. [29, 9, 27, 24]).
In our approach, however, we have to deal with arrays, with the
substantial additional complication of having to fuseparallel oper-
ations. Our runningdotp example demonstrates the latter tension:
on a sequential machine one would fuse the entiredotp algorithm
into a single sequential loop, but that would obviously be hopeless
on a parallel machine. What we must do instead isfirst to split the
computation into chunks, one chunk for each gang thread, andthen
to perform aggressive fusion. In turn, that requires us to express the
“chunking” strategy explicitly in the intermediate language, rather
than hide it in the runtime system, so that the post-chunkingpro-
gram is exposed to fusion transformations.

Our mechanism for exposing the chunking is calleddistributed
types[11], which we discuss next in Subsection 6.1, followed by
removal of synchronisation points by fusing phases of parallel
computations in Subsection 6.2, and finally removal of temporary
arrays by array fusion in Subsection 6.3.

6.1 Distributed types

Our main vehicle for distinguishing between synchronisation and
computation is the typeDist a of distributed values. For instance,
Dist Int, pronounced “distributedInt”, denotes a collection of
local integers, such that there is one local integer value per gang
member. Arrays can be distributed, too:Dist [:Float:] is a
collection of local arraychunks, again one per gang member, which
together make up the array. Arrays are distributed across gang
members and joined back together by the following functions:

splitD :: [:a:] -> Dist [:a:]
joinD :: Dist [:a:] -> [:a:]

Distributed values support a number of operations, most impor-
tantly mapping:

mapD :: (a -> b) -> Dist a -> Dist b

While splitD and joinD denote synchronisation,mapD is the
main means of implementing parallel computation phases: the gang
members concurrently apply the (purely sequential) function to
their respective local values.

The above is sufficient to express a wide range of parallel
operations. For instance,bpermuteP can be implemented as

bpermuteP :: [:a:] -> [:Int:] -> [:a:]
bpermuteP xs is =
joinD (mapD (bpermuteS xs) (splitD is))
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Here, we distribute the index array across the gang, then apply a
sequential backpermute (bpermuteS) concurrently to each chunk,
and join the results back together. Analogously, elementwise mul-
tiplication is defined as

(*^) :: [:Float:] -> [:Float:] -> [:Float:]
xs *^ ys =
joinD (mapD mult (zipD (splitD xs) (splitD ys)))
where mult (lxs, lys) = zipWithS (*) lxs lys

The argument arrays are distributed withsplitD and then chunk-
wise combined byzipD:3

zipD :: Dist a -> Dist b -> Dist (a, b)

Thus, each gang member processes a pair of local chunks, comput-
ing the local products, which are then joined together.

Note that while(*^) distributes both arrays, in the case of
bpermuteP, the data arrayxs is not distributed because the entire
array is required for each local computation. Distributed types
permit us to make explicit the distinction between local values,
which are accessible only by a particular thread, and globalones,
which are available to all threads.

By now, the definition ofsumP in terms of distributed types
should hold no surprises:

sumP :: [:Float:] -> a
sumP xs = sumD (mapD sumS (splitD xs))

It distributes the argument arrayxs, has each gang member sum its
local portion sequentially withsumS, and finally sums up the local
results withsumD :: Dist Float -> Float.

In this exposition, we only discuss distributed types and fusion
for operations on flat arrays. However, the presented approach
scales to nested arrays, using the representation based on segment
descriptors outlined in Section 4.

6.2 Removing synchronisation points

Distributed types make the structure of parallel computations quite
explicit, but how can they be used for fusing pipelines of such
computations? Let us revisit the vectorised code fordotp from
Section 5. By inlining4 the definitions of(*^) andsumP, it can be
rewritten as follows. (In Haskell,(.) denotes function composition
and($) is function application with very low operator precedence.)

dotp (ArrPair is xs) v =
sumD . mapD sumS . splitD . joinD . mapD mult
$ zipD (splitD xs) (splitD (bpermuteP v is))

Ignoring the call tobpermuteP for the moment, the above con-
tains two parallel computation phases (the twomapD) with a
join/distribute phase (thesplitD . joinD) in between. It is easy
to see that the latter is unnecessary — instead of first joining and
then again distributing the result of the elementwise multiplication,
it can be used directly to compute the sum. Thus, we can replace
the subexpressionsplitD . joinD by the identity.

In this example,splitD . joinD has no effect at all. In gen-
eral, asplitD/joinD combination may perform load balancing
(e.g., after filtering a distributed array). However, to keep matters
simple, we ignore load balancing for the moment and assume that
we want to apply the following rewrite rule whenever it matches:

"splitD/joinD" forall xs. splitD (joinD xs) = xs

3 We could write this slightly more concisely withzipWithD, but the given
form is more useful for the following fusion discussion.
4 Much of what follows depends crucially on inlining library code into
user-written programs. Fortunately, GHC supports cross-module inlining,
allowing the libraries to be pre-compiled while still retaining the high-level
form for later inlining by the library’s clients.

GHC has support for specifying such rewrite rules directly in li-
braries in the form of source code pragmas [18], and this is how we
implement the various rewrite rules that we need for fusion.

Applying thesplitD/joinD rule todotp, we get

dotp (ArrPair is xs) v =
sumD . mapD sumS . mapD mult
$ zipD (splitD xs) (splitD (bpermuteP v is))

This code still contains a superfluous synchronisation:mapD mult
causes each gang thread to compute its share of elementwise prod-
ucts and then to synchronise with the rest of the gang. However,
there is no need for this, as the next operationmapD sumS is also
purely thread-local. Hence, we want to apply a distributed types
version of the well known map fusion law:

"mapD/mapD" forall f g xs.
mapD f (mapD g xs) = mapD (f . g) xs

Operationally, this means that two adjacent computation phases
with no global operations in between can be combined into a single
one. Applying themapD/mapD rule, we get

dotp (ArrPair is xs) v =
sumD . mapD (sumS . mult)
$ zipD (splitD xs) (splitD (bpermuteP v is))

Now, we are left with a synchronisation betweenmapD andsumD.
This is genuinely required, since the global reduction needs to
access all local sums.

Let us now consider the subexpression to the right of the($).
When we inlinebpermuteP, we notice that its outermostjoinD
cancels the enclosingsplitD by thesplitD/joinD rule discussed
previously; hence we get (for just thezipD subexpression)

zipD (splitD xs) (mapD (bpermuteS v) (splitD is))

Applying the rewrite rule

"zipD/mapD" forall xs f ys.
zipD xs (mapD f ys) =

mapD (\(x, y) -> (x, f y)) (zipD xs ys)

followed by themapD/mapD rule, inlining mult, and performing
two standard simplifications, we end up with the following opti-
mised code for the dot product:

dotp (ArrPair is xs) v =
sumD

. mapD (\(lxs, lis) ->
sumS . zipWithS (*) lxs (bpermuteS v lis))

$ zipD (splitD xs) (splitD is)

Assuming constant-time implementations of the distributed
types primitivessplitD andzipD5 all that is missing for an ef-
ficient, parallel implementation ofdotp is to fuse the purely se-
quential array operationssumS, zipWithS, andbpermuteS. After
sequential array fusion, which we discuss in the following subsec-
tion, each gang member essentially forms and sums up the local
products, and then,sumD combines the individual contributions
into the final result.

6.3 Removing temporary arrays

We implement sequential array fusion using the same mechanism
for rewrite rules that we employ to remove synchronisation points.
However, given the plethora of collective array operations, we need
to reduce those to a very small set of elementary fusable recursive

5 Zipping of distributed values is a constant-time operationsince, similarly
to parallel arrays, aDist of pairs is internally represented as a pair of
Dists; splitD is implemented in terms of constant-time array slicing (cf.
Section 4).
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array operations — not unlike foldr/build or destroy/unfoldr fusion
for lists. The crucial point here is that we minimise the number
of different recursivefunctions that partake in fusion. There is no
problem in having a wide range of non-recursive interface functions
on top of the small set of fusable, recursive ones. Starting from our
earlier work on equational array fusion [6], we recently developed
a new fusion framework, which we callstream fusion, as it models
array traversals as a stream of array elements.

Here, we can only sketch the basic ideas behind stream fu-
sion. However, we previously presented a particular instance of
stream fusion, namely stream fusion for byte strings, whichhas
been highly successful and produces code competitive with C[7].
Nevertheless, fully fledged array fusion presents additional chal-
lenges; in particular, streaming of segmented arrays and the stream-
based implementation of permutation operations. We are planning
to explain the details in a forthcoming paper.

The essential abstraction behind stream fusion is the notion of a
lazy stream,Stream e, of array elementse:

data Stream e = forall s. -- existential type
Stream (s -> Step s e) !s Int

data Step s e = Done
| Skip !s
| Yield !e !s

Such a stream consists of aseedof types, a stepping functionof
type(s -> Step s e), and asize hintof typeInt. The stepping
function incrementally produces the stream of elements from the
seed. The size hint bounds the number of elements that may be
produced, which is useful to optimise memory allocation. The
stream contains three types of elements:Done flags the end of the
stream,Skip indicates dropped array elements, andYield gives a
single array element of typee.

We move between arrays and streams with the two functions

streamS :: [:e:] -> Stream e
unstreamS :: Stream e -> [:e:]

which give rise to the following mainstream fusion rule:

"streamS/unstreamS" forall s.
streamS (unstreamS s) = s

We manipulate streams with stream operators, including

mapT :: (a -> b) -> Stream a -> Stream b
foldT :: (b -> a -> b) -> b -> Stream a -> b
zipWithT :: (a -> b -> c)

-> Stream a -> Stream b -> Stream c

that enable us to express array processing as stream processing.
For example, the sequential array operations used in our running
exampledotp are implemented as follows:

sumS = foldT (+) 0 . streamS
bpermuteS a = unstreamS . mapT (a!:) . streamS
zipWithS f a1 a2 =
unstreamS (zipWithT f (streamS a1) (streamS a2))

After inlining these definitions into the optimised definition of
dotp given at the end of the previous subsection, the stream fusion
rule can be applied twice to eliminate the two temporary arrays,
and so turn the lambda abstraction into

\(lxs, lis) -> foldT (+) 0
$ zipWithT (*) (streamS lxs)

(mapT (a!:) (streamS lis))

All temporary arrays are gone. We are left with streams only.Why
is this better? Its better as the stream processors are not recursive
and so easily optimised by inlining. The optimised implementation

of streams is beyond this paper, but the results of stream fusion for
byte strings [7] and our preliminary results for arrays in Section 8
support the claim of the efficiency of streams.

7. Gang parallelism
In the previous section, we discussed how we decompose data-
parallel array operations into genuinely parallel operations (such as
splitD, joinD, mapD) and purely sequential operations (such as
mapS, zipWithS, bpermuteS) which are executed simultaneously
by all members of a thread gang. Overall, this leaves us with three
kinds of code: (1) non-array Haskell code, (2) parallel operations on
distributed types, and (3) sequential array code distributed across
a gang. The first category, non-array Haskell code, can include
explicit concurrency operators, such asforkIO, which implies that
we may get data parallelism in multiple, explicitly forked threads.

We deal with this situation by mapping both array parallelism
and GHC’s explicit parallelism to the same set of thread and syn-
chronisation primitives provided by the runtime. In particular, the
thread gangs executing data-parallel operations consist of standard
GHC threads. This allows us to delegate the problem of scheduling
multiple gangs which compete with each other and with non-gang
threads for a limited numbers of processing elements to GHC’s
scheduler. It remains to be seen how the scheduler must be im-
proved to efficiently handle advanced scenarios involving multiple
gangs and user-created threads.

7.1 Distributed state

Parallel arrays are two phase data structures: they are initialised by
destructive updates, but are restricted to read-only access as soon
as initialisation is complete. Thus, while parallel arrayspresent the
user with a purely functional interface, their initialisation isstateful
behind the scenes. Haskell provides support for such structures
in the form of thestate transformer monadST which captures
stateful computations in a referentially transparent manner [13].
A computation of typeST s a transforms a state indexed by the
type s and produces a value of typea. The ST monad provides
operations for allocating and updating mutable arrays, which are
finally frozen, which is when they become immutable and can
be used outside of their state transformer. The implementation of
unstreamS follows this pattern: it fills a newly allocated mutable
array with elements produced by the stream and then freezes it.

While this is sufficient for sequential code, parallel arrays are
initialisedsimultaneouslyby several gang members, each of which
initialises its local chunk. In other words, the gang threads trans-
form the samedistributedstate in parallel. We capture this idea in
the form of adistributed state transformer monadDistST, which
we embedded intoST by the following operation:

distST :: DistST s a -> ST s (Dist a)

Given a stateful distributed computation of typeDistST s a,
distST executes it concurrently once with each gang thread. The
local results (of typea) of the gang threads are collected in a dis-
tributed valueDist a. The semantics is quite similar to that of
mapD which executes apurecomputation on each gang thread and,
indeed,mapD is implemented in terms ofdistST:

mapD :: (a -> b) -> Dist a -> Dist b
mapD f d = runST $
distST (do {x <- myD d; return (f x)})

The functionrunST :: (forall s. ST s a) -> a encapsu-
lates the execution of a state transformer in a purely functional con-
text, in a safe manner. Moreover,myD extracts the current thread’s
local value of the distributed valued:

myD :: Dist a -> DistST s a
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Figure 2. Speedup of smvm on Intel Xeon and Sun Fire (UMA)

The functionmyD is stateful, because conceptually, the identity of
the thread it is executed on forms part of the distributed state.

7.2 Gang threads

Like parallel arrays, distributed values are two phase datastruc-
tures, which are initialised destructively. Thus,distST itself is im-
plemented in terms of more primitive combinators:

distST p = do
d <- newMD g -- alloc dist val
distST_ (do { x <- p -- run gang thread

; writeMyMD d x}) -- write result
freezeMD d -- make immutable

Here, a new mutable distributed value is allocated (newMD), filled
by the gang members (writeMyMD), and then frozen (freezeMD) to
be consumed by pure code. The workhorse of the implementation
is distST_: it passes a computation to each gang thread and then
blocks until all threads have completed. Its signature is

distST_ :: DistST s () -> ST s ()

In our set up, a gang thread goes through the following simple
loop: (1) it waits for aDistST s () computation, to be issued
by a call todistST_ in a vanilla Haskell thread; (2) executes the
computation, (3) signals its completion, and (4) then blocks until
the next computation arrives.

This simple work distribution scheme is possible due to a bene-
ficial interaction between code vectorisation and gang parallelism:
vectorisation eliminates nested parallelism, thus ensuring that the
computations executed by gang threads never need to performpar-
allel operations themselves. This crucial property removes the need
for a work queue which would be necessary if parallel operations
could be nested at this lowest level.

8. Preliminary results
Data Parallel Haskell is very much work in progress. For instance,
the syntactic sugar and the compiler transformations described in
Sections 2 and 5 have not been implemented yet. Moreover, the
creation and scheduling of gangs is, so far, rather ad hoc. The
library of parallel arrays and algorithms, however, is already quite
usable, including automatic fusion of both sequential and parallel
computations. This allows us to validate our approach bymanually
vectorising our running example and measuring its performance.

Since our implementation is entirely based on concurrency
primitives provided by the production version of GHC, it is fairly
portable and we were able to run the benchmarks on three quite
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different architectures: (1) an Intel-based SMP with two dual-core
Xeon CPUs running under Linux with a 2.6.15 kernel, (2) a Sun
Fire E6900 with 32 Sparc processors running under Solaris 5.10
(but due to system resource allocation policies, we were only able
to use 16 of the 32 PEs at a time), and (3) an AMD64 machine
(using a HyperTransport bus) with eight dual-core Opteron CPUs
running under Linux with a 2.6.19 kernel. All Haskell code was
compiled with GHC 6.7 and the sequential C reference implemen-
tation was compiled with gcc 4.1.

Figure 2 shows the speedups of vectorisedsmvmwith a10, 000×
10, 000 sparse matrix with approximately 1 million non-zero
Double elements on the Intel Xeon and Sun Fire machines. The
speedups are linear as expected, since after fusion the algorithm
runs almost entirely in parallel. Moreover, again due to thefusion
framework, our library does not introduce any significant ineffi-
ciencies — the difference between the running times of the parallel
algorithm on one PE and a purely sequential version are fairly small
(912 vs. 830ms on the Sun Fire and 252 vs. 249 ms on Intel).

Even more importantly, we did not only achieve good speedup,
but the absolute running time of our implementation is not far from
hand-coded C. Figure 3 shows absolute running times of the same
benchmark including the running time of a sequential C reference
implementation. On the Sun Fire, a sequential C implementation of
the benchmark runs in approximately 660ms; the parallel Haskell
version requires 920ms on one PE and is already faster with two
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PEs, where it takes 476ms. These results are for using gcc forboth
compiling the C program and as a backend for GHC. Sun’s cc runs
our C implementation of the algorithm four times faster thangcc on
the Sun Fire, but we cannot use it as a backend for GHC, as GHC
uses some gcc-specific language extensions. On the Intel Xeon the
parallel Haskell program runs in 252ms on one core, comparedto
70ms needed by the C version, and needs four PEs to outperform
the sequential C code. The performance difference between the C
and Haskell code is largely due to inadequacies of GHC’s backend
code generator, which has never been optimised for numerically
intensive code; in particular, it uses the fairly few registers available
on IA32 very ineffectively.6 Register pressure is less of an issue on
the Sparc architecture, which we believe is the main reason for the
better relative performance of GHC on that architecture. The good
news is that we believe that this performance gap can be closed, or
at least strongly reduced, by adding some well understood backend
optimisations to GHC — a task that is largely independent of our
approach to compiling nested data parallelism.

The two machines discussed so far have a uniform memory ac-
cess (UMA) architecture, whose memory latency is uniform across
the whole address space. Furthermore, the Sun Fire providesa
very high memory bandwidth, which is particularly important in
smvm since only few arithmetic operations are performed for every
load and store. In contrast, the AMD Opteron machine has anon-
uniform memory acccess (NUMA) architecture, so that accessto
memory “near” to (i.e. physically adjacent to) a processor is faster
than access to “distant” memory (i.e. memory attached to other pro-
cessors). The effect of NUMA becomes apparent in the speedup
graph for for the Opteron, which is is displayed in Figure 4. Here
we use a40, 000 × 20, 000 sparse matrix with approximately 8
million non-zero elements. We run this benchmark in four variants
by varying it along two dimensions: (a) we useFloat or Double
and (b) we use one or two cores per CPU. As long as we use only
one core per CPU, the speedup is not far from that achieved on the
Sun Fire. However, if we use both cores of every CPU, we see a
significantly reduced speedup. After some experiments withsmall
kernels, we believe that we can attribute this behaviour to two prop-
erties of the hardware: (1) the main problem is that the memory
bandwidth of the HyperTransport-based bus is simply not sufficient
to saturate the arithmetic capacity of two cores forsmvm and, (2)
to a lesser extent, we see some reduced performance due to a large
proportion of the memory traffic being to “distant” memory. We en-
sured load balancing of memory traffic by using the Linux NUMA
utility numactl to set a memory interleave policy. However, if
memory allocation in GHC were NUMA-aware (which it currently
is not), we could optimise memory allocation for arrays by set-
ting suitable memory affinity. This would surely improve matters,
but probably not dramatically, because the main limitationof smvm
on this hardware is simply the available memory bandwidth. Inter-
estingly, the absolute performance of the parallel Haskellcode is
1298ms, on one core, and 900ms for the purely sequential C ref-
erence code, which is much closer than on the Intel Xeon. We still
need to investigate the reason for this in detail. It is most likely
due to differences between the x86-64 and IA32 architecture: ei-
ther gcc’s backend for the x86-64 is less optimised, or the x86-64
architecture is an easier target for GHC, especially as it eases the
register pressure compared to IA32.

Finally, we would like to emphasise that the results presented
here are preliminary. Small changes, be it to our library implemen-
tation, to GHC, or to the compilation strategy, can have surpris-
ingly large effects. Nevertheless, our results constitutea construc-
tive proof that it is possible to compile at least one data-parallel

6 This is even the case when using gcc as the backend, as GHC forces gcc
to reserve some registers for global use.

Haskell program with a standard compiler onto a range of shared-
memory multiprocessors such that (a) it is competitive in absolute
performance, and (b) it scales with adding processors. Our goal is
to extend this result to a much wider variety of programs.

9. Related Work
We have drawn our inspiration from the seminal work on NESL
and its implementation by program transformation [1, 2]. Tothis
groundbreaking work, we added (a) the integration of NESL’spar-
allel programming model into a fully-fledged functional language,
(b) the generalisation of vectorisation to Haskell’s full type struc-
ture including functionals, (c) a comprehensive fusion framework
for distributed arrays, (d) the lifting of compiler magic into li-
brary code with associated types and rewrite rules, and (e) atype-
preserving translation.

Prins et al. worked on various aspects of the vectorisation of
nested data parallel programs; see, e.g., [17]. Most of their work
was also in the context of a functional language, but one that
like NESL lacks many of Haskell’s features. Their work is largely
orthogonal to ours.

So et al. [25] developed a parallel library of immutable ar-
rays for C/C++ supporting what they callsub-primitive fusion. The
goals and ideas behind this fusion framework are rather similar to
those discussed in Section 6. However, So et al. do not require in-
lining of user-defined functions for fusion and they also introduce a
light-weight synchronisation mechanism. Like us, they also strive
for a seamless integration of data parallelism and explicitconcur-
rency within a single program.

Fluet et al. [8] recently started the manticore project, where
they combines CML-style explicit concurrency with nested data-
parallelism. They introduce an approach to support multiple schedul-
ing disciplines in one runtime system, much like the scheduling we
will also need to efficiently combine explicit concurrency with
nested data parallelism. We expect to to be able to directly benefit
from the results of that project.

There is a rich body of work on parallel programming models
and implementation techniques for functional languages (both data
parallel and task parallel). However, a comprehensive discussion of
this work is beyond the present paper.

10. Conclusions
We described the design and implementation status of our current
effort to support nested data parallelism in the highly optimising
Glasgow Haskell Compiler, such that it co-exists elegantlywith ex-
isting support for two forms of more explicit parallel programming.
Our implementation is partial, but we chose a bottom up approach
to implementation, where we can conduct rigorous performance
tests of more low-level components of our implementation before
moving further up. Currently, we have a parallel library of flat and
segmented arrays, including automatic fusion of both sequential
and parallel computations. For a sparse-matrix vector multiplica-
tion benchmark, this library achieves good absolute performance
and excellent speedups on Intel IA32, Sun Sparc, and AMD x86-
64 SMP machines.

We still have a lot of work ahead of us before we have a com-
plete system, but the current results indicate that we are sofar in
good shape. Our current focus is on SMP, and especially, multicore
machines. However, nested data parallelism, and we believealso
our implementation strategy, extend to both distributed-memory
parallel systems as well as to SIMD and stream processors (such
as GPUs) — or even to heterogeneous systems combing them.
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