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Abstract— As technology scales into the sub-90nm domain,
manufacturing variations become an increasingly significant
portion of circuit delay. As a result, delays must be modeled
as statistical distributions during both analysis and optimization.
This paper uses incremental, parametric statistical static timing
analysis (SSTA) to perform gate sizing with a required yield
target. Both correlated and uncorrelated process parameters
are considered by using a first-order linear delay model with
fitted process sensitivities. The fitted sensitivities are verified to
be accurate with circuit simulations. Statistical information in
the form of criticality probabilities are used to actively guide
the optimization process which reduces run-time and improves
area and performance. The gate sizing results show a significant
improvement in worst slack at 99.86% yield over deterministic
optimization.

I. INTRODUCTION

As technology scales into the sub-90nm domain, manu-
facturing variations have become an increasingly significant
portion of circuit delay. As a result, delays are best modeled
by statistical distributions rather than deterministic values. The
resulting distribution of this performance indicates the fraction
of chips that will suffer from parametric yield loss. Parametric
yield loss occurs when a chip is functional, but does not meet
performance specifications such as a required clock cycle.

To improve parametric yield, it must be considered during
design optimization using statistical static timing analysis
(SSTA). Continuing to use deterministic static timing analysis
(DSTA) as in current methodologies can be both pessimistic
and misleading for optimization tools. By using SSTA, the
optimization tool is assured that the entire relevant process
space is examined during a single timing analysis. Parametric
SSTA further allows the optimizer to deduce the impact of
multiple sources of variation on timing simultaneously. Due to
the necessary additional work in SSTA, run-times of SSTA are
larger than DSTA. To reduce this overhead, incremental SSTA
is ever more important. Incremental SSTA assures that run-
time overhead is minimized by requiring only the necessary
timing updates to satisfy a timing answer after a perturbation
of the design.

Recently, several methods for SSTA have been proposed
[1]–[4]. The path-based methods, while they consider corre-
lation due to re-convergent fanout and shared process param-

eters, are inherently not incremental. They require a run-time
intensive integration over the process space after every change.
On the other hand, the block-based methods, while they are
incremental, have not considered correlation. The block-based
methods recently presented in [3] consider correlation yet
retain incremental capabilities. Complementing the previous
work on SSTA, some work has started to examine statistical
optimization using non-incremental, non-parameterized SSTA.
These works tend to only address random variation [5]–[9], use
simplified heuristics [5], [6], [8], [9], ignore path correlations
[8], [9], or are too complex for large-scale optimization [10].
The contributions of this work can be summarized as the
following:
• This paper uses incremental SSTA for circuit optimization

while considering multiple correlated and independent
sources of variation.

• This is the first paper that actively uses SSTA to guide
gate sizing. Statistical information, in the form of criti-
cality probabilities, is used to select candidate gates that
guide the optimizer to a better solution more quickly than
passive SSTA optimization.

In Section II, a brief description and some examples show
how DSTA cannot consider optimization effects on parametric
yield. The benefits of using SSTA in the same situations
are also presented. In Section III, the deterministic sizing
problem is formulated and a sensitivity-based sizing algorithm
is presented. Then in Section IV a brief introduction to param-
eterized, block-based SSTA is given. In Section V, the deter-
ministic sizing algorithm is extended to use a SSTA tool and
improvement over worst-case (WC) DSTA-based optimization
is demonstrated. In Section VI, the baseline statistical sizing
algorithm is improved using criticality information to actively
guide the optimization. Results comparing the deterministic
sizing, statistical sizing, and criticality-guided statistical sizing
are presented and discussed. Finally, conclusions and future
work are presented in Section VII.

II. DSTA VS. SSTA
Traditional DSTA has used process corner case files for per-

forming timing analysis. A process corner case file (or corner
for short) is a set of values assigned to all process parameters



to bound the circuit performance. Past methodologies have
performed late mode optimization while considering DSTA in
a single WC corner1. The WC corner is defined as the corner
with every parameter at a µ ± 3σ value such that a typical
circuit has the least slack. Similarly, a best-case (BC) corner
is defined for early mode timing analysis. Corner-based DSTA
is both pessimistic and misleading for circuit optimization.

First, the WC corner (or a worse corner) has a very small
likelihood of occurring in any manufactured part. This results
in a pessimistic view of circuit performance if manufacturing
has a true goal of 3σ yield. For example, consider a design that
has equal sensitivity to two independent sources of variation.
In the traditional WC corner, each of these sources is set at its
3σ value. For every parameter to assume a value greater than
or equal to 3σ in a single manufactured part has a probability
of (1 − F (µ + 3σ))2 ≈ 1.83 × 10−6 where F is the cumu-
lative distribution function (CDF). Therefore, optimization is
performed at an effective corner of F−1(1.83×10−6) = 4.24σ
where F−1 is the inverse CDF. Thus, the corner is pessimistic
by a factor of 4.24σ

3σ =
√

2. If we generalize this to n sources of
variation, we can potentially reduce the pessimism by a factor
of
√

n. SSTA avoids this pessimism by reporting the true 3σ
circuit performance. This extreme pessimism can potentially
mask the likely critical paths in a design with paths that are
extremely unlikely to be limiting in any manufactured chip.
The additional optimization to fix these paths can consume
extra power and prevent finding a good solution.

In addition to using an extremely unlikely corner, DSTA
could miss the performance-limiting process corner entirely
since it only uses a single WC corner. The true performance-
limiting corner depends on timing constraints between clock
and data-path arrival times and their sensitivity to the specific
source of variation. For example, suppose that both the data-
path and clock are sensitive to Leff variation. If the data-path
is logic dominated, it will be more sensitive (i.e., it becomes
slower more quickly) than the clock as Leff increases. In this
case, the WC setting for Leff is the largest (µ + 3σ) value.
However, if the data-path is mostly wire-dominated delay, it
will be less sensitive to Leff than the clock path. In this
case, the smallest (µ − 3σ) value of Leff is performance
limiting. To find the true WC corner, every combination of
process parameters that are shared between the clock and
data-path must be enumerated. This results in an exponential
number of process corners with the true WC corner being
design specific. Examining all corners during optimization is
prohibitive. SSTA avoids enumerating all process corners by
propagating probability distributions that represent all corners
simultaneously.

In addition to potentially missing the true WC corner, DSTA
cannot accurately assess the effects of many critical paths on
yield. If there are many equally criticality paths on a chip
that are not perfectly correlated, the maximum circuit delay
is always worse than if there is a single worst path. This

1The nominal corner is sometimes used during optimization for aggressive,
speed-binned designs.

is termed a “slack wall.” Having more paths increases the
probability that one of the paths will be critical in some
portion of the process space. WC design cannot formally
quantify this effect, but heuristic figures-of-merit as in [8]
often do. However, these heuristics do not consider factors
such as correlation among the paths. In addition, they also
fail to be truly incremental. In WC optimization, the critical
paths presented may be misleading to the optimizer due to
inadequate correlation information. For example, if we have
two completely correlated paths with one being nominally
more critical, the less critical path will not be limiting in
any manufactured chip. This is because the more critical path
will always dominate it in every portion of the process space.
WC design, in the absence of correlation information, assumes
that the single worst path is always the most critical or any
near critical path could potentially be the critical path in a
manufactured part. Optimizing the second most critical path
may result in wasted area and power. In addition, optimizing
this path could potentially prevent the optimizer from finding
a solution that meets timing. SSTA can quantify the effects of
a slack wall and thereby avoid unnecessary yield loss due to
it.

III. DETERMINISTIC GATE SIZING

The objective of deterministic gate sizing is to compute the
sizes of logic gates such that a timing constraint is met while
consuming the smallest amount of total cell area or power.
Traditional deterministic gate sizing can be formally defined
as,

min
∑

∀i∈gates

C(i)

s.t. τ ≤ Ttarget,

where C(i) is the cost (power, area, etc.) of gate i, τ is the
circuit delay, and Ttarget is a target cycle delay. If the timing
constraint cannot be met, which is often the case, it is best to
minimize the amount by which it fails.

Many exact and heuristic approaches to deterministic gate
sizing have been proposed [11]–[14]. Algorithm 1 shows the
implementation of a generic sensitivity-based sizing algorithm
that is similar in spirit to TILOS [12]. The general idea of the
algorithm is to start from minimum-sized gates, pick a set of
candidate gates and try increasing each candidate gate one-at-
a-time. For each candidate, the circuit slack change and added
gate capacitance are measured. The gate with the largest slack
improvement per increase in gate capacitance is then selected
as the best move. It is sized up and the whole procedure is
repeated until the constraints are met or no improvement is
seen. Traditional algorithms [11]–[14] only consider a single
(often WC) process corner and, therefore, are incapable of
guaranteeing a specific yield.

IV. PARAMETERIZED SSTA

SSTA performs probabilistic timing analysis of a circuit
considering process variations. Parameterized SSTA performs
statistical timing while retaining the contributions of individual



Algorithm 1 Generic sensitivity-based sizing algorithm.
1: Minimum size all gates.
2: repeat
3: Γ ⇐Generate list of candidate gates
4: Initialize best solution, Sbest = 0, gbest = 0
5: for gcur ∈ Γ do
6: Increment size of gcur

7: Compute change in slack, ∆slack

8: Compute change in cost, ∆cost

9: Scur ⇐ ∆slack

∆cost

10: Restore size of gcur

11: if Scur > Sbest then
12: gbest ⇐ gcur

13: Sbest ⇐ Scur

14: end if
15: end for
16: Increase size of best gate, gbest

17: until Sbest = 0 or Slack ≥ 0

process parameters to the variation. The fundamental delay
model used in our block-based SSTA is a weighted sum of
normal distributions. The parameterized first-order expansion
is expressed as

d = d0 +
∑

i

sixi + srxr, (1)

where d0 is the mean value of delay. xr and the xi’s are
random variables normally distributed with mean zero and
variance one, N(0, 1), that represent individual process param-
eters. The xi random variables represent process parameters
that are globally shared among all gates or wires while
the xr random variable represents independent (uncorrelated)
variation. The magnitude of the variation is given by the
absolute value of coefficients, si and sr, which can differ for
each timing quantity. Equation 1 is the statistical canonical
form for all delays, required arrival times (RAT), arrival times
(AT), and slacks.

A. Statistical Propagation

The SSTA engine traverses the circuit network in breadth-
first topological order like DSTA. At each node, the mean and
variance of the statistical maximum AT is efficiently calculated
using analytic formulas [15], [16]. The correlation coefficient
is calculated from the covariance of the two canonical delays.
Each output parameter sensitivity, si, is computed by linearly
combining the delay sensitivities of the ATs using tightness
probabilities. A tightness probability, Ta, is the probability
that the random variable (a) is the greatest of a set. Thus, for
signals a and b, the output parameter sensitivity is calculated
as si = Tasi,a + Tbsi,b for each parameter, i, where Ta

and Tb are the tightness probabilities. The first and second
moments of the resulting distribution are matched by selecting
an appropriate mean and random sensitivity, sr. Backwards
propagation is done in a similar manner with RATs and a
statistical minimum operation. Addition and subtraction are
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Fig. 1. INV delay with Leff variation.

done by adding or subtracting the correlated terms element-by-
element and using the square root of the sum of the squares for
the independent term. All primary outputs and latch inputs are
connected to a virtual sink and annotated with the appropriate
negative RAT or setup time. The slack of the entire circuit is
then measured at the virtual sink. For detailed explanation of
the SSTA methodology and verification of the accuracy with
monte carlo, please refer to [3], [17], [18].

B. Process Sensitivities

The model for the delay variation coefficients, si, of the
first-order parameterized model are now experimentally ver-
ified using Spice as in [19]. The variability parameters are
assumed to be fully correlated within a gate. In general, every
gate arc could have an arbitrary sensitivity that is derived from
the transistor widths, gate load, and input slew. However, the
experiments in this section show that this dependency can be
simplified by substituting the nominal gate delay itself into the
variability equation. From this observation, the coefficients of
the canonical delay model (Equation 1) are easily derived from
the nominal delay as

si = f(w,CL, Sin) = cd0. (2)

where w is the set of transistor widths, CL is the load
capacitance, and Sin is the input slew rate. c is a fitted constant
for a timing arc of a specific gate type and d0 is the delay in the
absence of variation. First, to motivate the model, the delay of
an inverter with an output load of 100 fF and input slew of 25
ps is simulated with a range of sizes 1× to 20× and the best
and worst delays are measured. Figure 1 shows the resulting
delay and its variation due to Leff . Qualitatively, it can be seen
that the variation bars are proportional to the nominal delay.
Reducing the gate delay (by increasing the size of the gate or
decreasing the load) decreases the delay variation. Similarly,
increasing the gate delay (by decreasing the size or increasing
the load) increases the delay variation. Therefore, expressing
the variability as a constant percentage of nominal delay is
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for Leff variation.

reasonable. Figure 2 is a plot of the nominal delay (d0) of the
inverter against the percentage change of the nominal delay
(d0±3σ

d0
) for the entire Leff data set with a variety of loads

and input slews. The data is approximately constant for the
simulated ranges. In addition, the results show a constant for
many other variation parameters and different gate types2.

In the following experiments, there are three correlated and
one independent sources of variation. Each parameter has an
asserted value ±10% of nominal delay as the sensitivity. These
sources represent negative-bias temperature instability (NBTI)
degradation3, temperature, a single Vth, and an independent
term to represent intra-die variation of all three parameters.
Each of the first three terms is fully correlated among all gates
whereas the last term is independent among all gates. The
independent variable for intra-die modeling can be made less
pessimistic as shown in previous publications [4], [20], but
that is not done in this paper. The nominal gate delay model
considers the effects of both load capacitance and input slew
rates on delay.

V. STATISTICAL GATE SIZING

Similar to deterministic gate sizing in Section III, the
objective of statistical gate sizing is to meet a timing constraint
while minimizing total cell area or power. However, since
the circuit delay is now a probability distribution, the timing
constraint is probabilistic. The statistical sizing problem is
supplemented with a user-defined yield target which specifies
that a fixed percentage of manufactured parts are required

2For very slow input slew rates with low gain gates (large size and low
load), the constant phenomena does not quite hold, because the above model
assumes that the time spent charging or discharging the load capacitance
dominates the gate delay. If this is not true, then the input slew and the
switching speed of the transistors within the gate determine the delay variation.
This case is not considered further since it involves severely over-sizing the
current stage of logic and under-sizing the previous stage, which is not realistic
in an optimized circuit.

3NBTI is a time-related fatigue of PFET drive strength.

to work in order for the timing constraint to be met. The
statistical gate sizing problem can be formally defined as,

min
∑

∀i∈gates

C(i)

s.t. Y (Ttarget) ≥ Ytarget,

where Ytarget is a yield target and Y (τ) is the yield of a
given circuit delay, τ . Specifically, Y (τ) = 1 − CDF (τ),
since a larger slack has a lower yield. Ttarget is the same
delay constraint as in the deterministic formulation.

The baseline statistical optimization is similar to Algo-
rithm 1, but uses statistical slack instead of deterministic
slack. Statistical slack is the slack at which the designer
specified yield target is met. Formally, this is the inverse
yield function evaluated at the yield target, Y −1(Ytarget). The
statistical slack is a convenient way to reuse existing circuit
optimization algorithms that rely on a single (deterministic)
timing quantity. All AT and RAT values are propagated as
distributions and slack values are calculated as distributions.
For this paper, all statistical slacks are measured at Ytarget =
99.86% (3σ). It should be noted that this concept depends
on the first two moments of the distribution and is therefore
not dependent on any specific distribution. For the purposes
of this paper, however, all distributions are approximated as
normal. Methods for analyzing non-linear and non-Gaussian
parameters in the same SSTA framework were demonstrated
in [18] and could easily be used in all algorithms presented.

In this section, optimizations are performed with either
DSTA or SSTA, but all results are measured with the same
SSTA setup. The DSTA-based optimization uses the gates on
the most critical path in the WC corner as candidates for up-
sizing. Among the candidate gates, it up-sizes the one that
shows the most improvement in deterministic slack per unit
gate capacitance. SSTA, however, can find critical paths in
different portions of the process space. Therefore, in statistical
optimization, the worst statistical slack gates are used as
candidates for up-sizing. This allows the optimizer to consider
up-sizing gates that are sub-critical in the WC corner but are on
the most critical path in other portions of the process space.
Statistical sizing was performed with a maximum candidate
list size of 10, 20, 50 or all gates in the circuit. Statistical
sizing up-sizes the candidate gate with the largest improvement
in statistical slack per unit gate capacitance.

Table I shows the final statistical slack, cell area, and run-
time for sizing a small industrial circuit. The best solution
considers all gates in the circuit during every iteration and
has1 37.6% better worst slack than the DSTA-optimized
solution. Obviously, the run-time of this method is excessive.
Examining more candidate gates in statistical optimization
has an obvious run-time penalty, because each gate requires
that the circuit slack be evaluated through incremental SSTA.
The run-time with 20 candidates is nearly 3× longer than
the deterministic case and 50 gates is almost 7× longer. For
larger circuits, examining all of the gates is impractical. If
we decrease the number of gates to 10 so that the run-time is
comparable to deterministic optimization, the results are much



TABLE I
GATE SIZING RESULTS FOR A 1200 GATE INDUSTRIAL DESIGN.

Statistical? Candidates Slack (ns) Area Time (s)
No - -1.569 9805 94
Yes 10 -2.906 9823 54
Yes 20 -1.523 9825 263
Yes 50 -1.501 9836 720
Yes All -0.978 9868 20792

worse than deterministic optimization. This is due to the fact
that the optimization cannot even consider the entire critical
path at each move. In the next section, a heuristic to replace
statistical slack for selecting candidate gates is presented.

VI. CRITICALITY GUIDANCE

In the previous section, significant improvements were
made with statistical gate sizing by up-sizing gates that are
sub-critical in the WC corner. These sub-critical gates can
contribute to the mean and variance of the critical path but
do not lie directly on the WC critical path. The run-time
when doing this exhaustively during statistical sizing is exor-
bitant. This section presents the criticality probability metric
and demonstrates how it can improve candidate selection in
statistical sizing. The criticality probability of a gate is the
likelihood that the critical path of a manufactured chip goes
through the gate. A high criticality probability indicates that
a gate is a good candidate for improving the critical path in
many manufactured parts. There are three properties that affect
the criticality probability of a gate: the slack magnitude, the
circuit topology and the slack correlation with other critical
structures.

The easiest property to understand is the slack magnitude.
Consider the slack PDFs of three gates in Figure 3. For
simplicity, assume that the slacks are uncorrelated. Gate A
is always more critical than gate B. The PDFs of A and B
do not overlap in the region of −3σ to +3σ for either PDF.
Therefore, signal A is more negative in every manufactured
part. However, if we compare A and C, the situation is mixed.
Sometimes, C can be more critical than A, but usually, A is
more critical than C. The exact probability of this outcome is
given by the tightness probability of the statistical minimum
as described in Section IV.

The second property that can affect the criticality probability
of a gate is the topology of the circuit. As an example, consider
Figure 4 where all paths have equal slack and, according to
traditional DSTA, are equally critical. According to the slack,
each of these gates is an equally viable candidate for sizing.
However, it is much more efficient to increase the size of gate
A because it improves the delay of all paths simultaneously.
It is topologically preferred over the other gates4.

Lastly, the correlation of gates can affect their criticality.
Again, consider Figure 4. As before, the best candidate for

4It should be noted that past works have used critical path counts as a
weighting factor for gates. However, this is topological-only and doesn’t
consider the magnitude and correlations of the slacks.
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Fig. 4. Criticality probability and slack as selection metrics.

sizing would be gate A since all paths converge through it,
but this might not offer improvement due to loading of the
previous stages. The next best candidate is gate D, the 2-input
NOR, because it is the least correlated with the other paths.
NOR gates are more sensitive to PFET variations because they
have a taller PFET stack than NAND gates. Therefore, the
overall circuit variability (and 3σ delay) can be improved the
most by up-sizing the single NOR gate. This NOR gate is
preferred, since it will make the output delay less dependent
on NBTI and improves the correlation of the critical paths as
a whole.

However, the effects of correlation on circuit performance
can be more complicated than this. In another example,
consider a circuit with two outputs A and B. Signal A has a
mean delay of 3 and standard deviation 0.101. Signal B has a
mean delay of 3 and standard deviation 0.1. The 3σ delay of A
is 3.303 which is obviously greater than the delay of B at 3.3.
In the DSTA, the logic driving A is the only one that can have a
positive sensitivity because infinitesimally improving the delay
of signal B will not improve overall timing. However, in the
statistical regime, signal B can contribute almost equally to
the variability of the statistical maximum of A and B. The
amount of this contribution depends on the correlation between



Fig. 5. The effect of correlation on the (a) mean (µ), (b) standard deviation
(σ), and (c) µ + 3σ of the maximum of two random variables.

signals A and B. Figure 5 shows the mean and standard
deviation of the statistical maximum of the previous two paths
for different correlation coefficients. There is a penalty when
the sub-critical path is not fully correlated because the mean
of the maximum of two non-perfectly correlated variables is
worse than the maximum of two perfectly correlated variables
(see Figure 5a). There is a sharp increase in the mean as
random variables become slightly uncorrelated (ρ < 1.0) while
the standard deviation has an approximately linear decrease in
Figure 5b. The resulting effect on the µ + 3σ point is shown
in Figure 5c. This phenomenon can increase the µ+3σ delay
at the output of a critical path gate and demonstrates that sub-
critical paths must be considered. By speeding up the sub-
critical path so that the resulting delay distributions overlap
less, one can minimize the contribution of these paths to the
resulting output distribution. Improvement could also be made
by making the delays more (or much less) correlated. Our
algorithm considers improving the side paths as we consider
more candidate gates for up-sizing. However, the candidate
list must be efficiently generated so that the run-time penalty
is minimized. This problem is addressed in this section.

Fig. 6. Criticality probability computation example.

A. Criticality Probability

After propagating statistical AT and RAT distributions in
block-based SSTA, each edge retains the tightness probabil-
ities as they merge into their respective sink timing points.
Many paths in a circuit can have some non-zero probability
of being the critical path when using SSTA (i.e., they are
critical in some portion of the process space). Other paths have
zero probability due to being dominated by other paths. Given
the tightness probabilities that include the effects of correla-
tion, the global node and edge criticalities can be calculated
with a backward breadth-first calculation as explained in [3].
Consider the timing graph in the top of Figure 6. Each pin-to-
pin arc of every gate and net is represented by an edge in the
graph. An edge criticality is the probability that a timing arc
is on the critical path. A node criticality is the probability that
a pin of a gate or net is on the critical path. The virtual sink
is given a probability of 1 since it is the sink of all paths and
is always on the critical path. An edge criticality is formally
defined as the product of its output node criticality and the
edge’s tightness probability,

Pe = TePn,sink. (3)

Each node has a criticality that is the sum of all outgoing edge
criticalities,

Pn =
∑

e∈FO

Pe. (4)

The probability of a gate being on a critical path is given by
the sum of all of its edge criticalities,

Pgate =
∑

e∈gate

Pe = Poutnode. (5)

Since the sum of the tightness probabilities entering a node
is equal to one, the probability of the gate is equal to the
output node criticality assuming a single output. The tightness
probabilities are calculated while considering correlation, but
the criticality probabilities are assumed to be independent
during criticality computation.



B. Candidate Selection

The metric for candidate generation that can efficiently
select candidate gates for statistical gate sizing is the criticality
probability as described in Section VI-A. The criticality prob-
ability is desirable as a candidate selection metric because it
considers the slack magnitude, topology, and slack correlation
while statistical slack in Section V and III only considers the
magnitude of the slack.

Algorithm 2 shows the entire candidate selection algorithm
that replaces line 3 in Algorithm 1. The algorithm first updates
the criticality probabilities and then considers each gate in the
design as a potential candidate. If the criticality-probability
slack is one of the k largest seen, we add it to the candidate
list. If the candidate list exceeds the k gate limit, the worst
item is removed. Algorithm 2 requires linear time, O(n), to
compute the criticality probabilities where n is the number of
gates. During a single pass of all gates, the algorithm can keep
track of the best candidates in a priority queue implementation
of the candidate list. Whenever a new largest element is
found, the smallest element can be removed in O(log k)
where k candidates are saved. The worst case requires that
all but the final candidates be inserted and removed from the
queue. Therefore, the overall complexity of Algorithm 2 is
O(n log k). If k is constant, this reduces to O(n).

Algorithm 2 Improved candidate generation algorithm.
1: Calculate criticality probabilities.
2: Reset candidate list, Γ
3: for gates ∈ entire circuit do
4: if Pgate > Min(Γ) or Size(Γ) < k then
5: Add to candidate list, Γ
6: end if
7: if Size(Γ) > k then
8: Remove minimum Pgate from candidate list, Γ
9: end if

10: end for

C. Criticality-Guided Results

In this experiment, four variants of sizing are compared:
nominal deterministic, WC deterministic, baseline statistical
and criticality-guided statistical. All variants follow the form
of Algorithm 1, but they differ on how candidate gates are
identified in line 3. In each variant, we allow the optimizer
to calculate sensitivities for k candidate gates. k is fixed at
15% of the number of gates in the design which should easily
subsume the critical path5.

In the deterministic sizing variants, we use the sum of
negative slacks, instead of minimum slack, as the optimization
figure-of-merit (FOM) to approximate the behavior of the
statistical virtual sink. This gives DSTA a global view of all
circuit outputs and prevents it from prematurely getting stuck
at a local minimum. Deterministic sensitivities are calculated

5Making k a percentage of the total gate count no longer guarantees linear
run-time, but run-time is not significantly effected in practice.

as improvement in FOM divided by the additional gate input
capacitance.

Statistical sensitivities are computed as the improvement in
3σ slack at the virtual sink divided by the additional gate
input capacitance. In the baseline statistical variant, statistical
optimization uses the k most negative statistical slack gates
in the same manner as the experiment of Section V. The
criticality-guided variant is the improved algorithm that uses
criticality probability information to select candidate gates for
sensitivity analysis as described in Section VI-A.

The results of the four sizing variants are shown in Table II.
The netlist topologies are taken from the ISCAS benchmarks
and synthesized with an industrial logic synthesis tool. The
final gate sizes are from a large 130nm industrial library
(14 inverter sizes, 12 buffer sizes, 8 NAND2 sizes, etc.). As
before, all final measurements are done with the same SSTA
setup, but the deterministic cases use DSTA during optimiza-
tion only. The statistical slacks are up to several hundred
picoseconds better than WC deterministic optimization and
improvements are seen in most cases. Sometimes the extra
robustness requires additional power (e.g., C17, C432, C499,
C880), but not always (e.g., C1908). Only one case (C1355)
had a slack significantly worse than the WC optimization. The
criticality probability is usually more efficient in guiding us to
a final solution than the statistical slack approach which can
reduce the area or the overall run-time of the algorithm. The
improvement can be seen in a power-delay plot of Figure 7
where the criticality-guided algorithm clearly is more efficient
than the baseline sigma-sampled algorithm. The run-time
overhead compared to the deterministic cases is still typically
5−10×, but it should be noted that the WC deterministic case
may miss the true WC corner completely. These experiments
assume that the WC corner is known a priori. Interestingly,
the nominal optimization sometimes obtains better results than
the WC optimization (e.g., C17, C432, C3540) as observed in
other works [19].

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
 17.8  17.9  18  18.1  18.2  18.3  18.4

S
l
a
c
k
 
(
n
s
)

Total Gate Capacitance

Statistical Slack
Criticality Guided

Fig. 7. Power-delay plot for C3540 with statistical slack and criticality
probability guided statistical optimization.



TABLE II
NOMINAL DETERMINISTIC (NOM), WC DETERMINISTIC (WC),

STATISTICAL SLACK (SS) AND CRITICALITY PROBABILITY (CP) GUIDED

STATISTICAL RESULTS (SLACK IN PS, CAP IN PF, AND TIME IN SEC).

Bench. Mode Slack Cap Time ∆Slack
C17 WC -269 1.438 0.0 -

Nom -225 1.464 0.0 44
SS -315 1.436 0.0 -46
CP -217 1.501 0.2 52

C432 WC -104 9.686 23.0 -
Nom -77 9.758 27.2 27

SS -75 9.883 153.7 29
CP -1 10.177 182.6 103

C499 WC -190 15.806 21.7 -
Nom -190 15.803 19.9 0

SS -153 16.015 237.3 37
CP -157 15.999 166.4 33

C880 WC -289 18.476 13.7 -
Nom -289 18.476 12.5 0

SS -274 18.478 60.5 15
CP -268 18.505 41.6 21

C1355 WC -60 18.139 421.1 -
Nom -65 17.912 366.1 -5

SS -91 17.710 1679.4 -31
CP -93 17.741 1379.2 -33

C1908 WC -545 13.643 68.2 -
Nom -544 13.670 65.4 1

SS -544 13.640 331.6 1
CP -546 13.627 278.6 -1

C3540 WC -282 18.295 200.2 -
Nom -279 18.240 188.9 3

SS -265 18.354 1022.5 17
CP -264 18.356 754.1 16

C5315 WC -67 66.654 473.2 -
Nom -75 66.567 422.6 -8

SS -3 67.226 3801.2 64
CP -8 67.130 2474.8 59

C7552 WC -50 68.898 367.8 -
Nom -78 68.663 184.5 -28

SS -38 68.900 1474.6 12
CP -39 68.846 1167.7 11

VII. CONCLUSIONS

Statistical optimization proves to be crucial to obtain ade-
quate performance with a yield constraint. Worst-case DSTA
can be both pessimistic and misleading for optimization. This
produces sub-par results on many circuits. This work has
shown that incremental, parameterized SSTA can be used dur-
ing gate-sizing to optimize circuits while considering multiple
sources of both correlated and uncorrelated variation. The
improved accuracy of SSTA allows gate sizing to obtain supe-
rior results when compared to DSTA optimization. However,
since the run-time of SSTA is larger than DSTA, the run-time
of gate sizing algorithms can become exorbitant if not used
wisely. Subsequently, the active use of statistical criticality
probabilities are shown to guide gate sizing to better results
than statistical optimization alone. This sometimes requires
extra area/power, but is often compensated for with more
efficient use of the area/power.
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