Why Capability-Based System?

Nur Izura Udzir

March 22, 2007

1 Loose Control in TS-Based Systems

Coordination in distributed computing involves a group of loosely coupled agents cooper-
ating in order to solve problems in a decentralized fashion. One of the popular approaches
to coordination is generative tuple-space based communication, where agents interact via
a shared data space.

LiNDA, the shared data space coordination paradigm, is a popular alternative to the
conventional point-to-point communication approaches, and its advantages have been de-
scribed in earlier chapter.

Despite LINDA’s powerfulness, it is unfortunate, however, that its very reliance on open
and flexible communications leaves it vulnerable to manipulations, which gives rise to a
lot of relevant security problems, like secrecy and integrity of data and program code.
This becomes particularly problematic in the case of coordinating multiple intelligent, and
mostly mobile, agents.

This shortcomings has led to the exploitation of several alternative approaches to en-
force security policies in distributed computing systems, and to marry them with tuple-
space based coordination in the hope of having a system that offers secure conversation
while enjoying the flexibility and openness of the tuple-space models. These ‘secure’ vari-
ants of LINDA assist greatly in alleviating the security problems, but do not fully control
every aspect of coordination that ought to be controlled.

Capability-based coordination may offer a solution to the problem. Acting as a ‘ticket’,
capabilities provide a means to control agents’ access to objects in the system. These
tickets can be given to the chosen agents granting them different privileges over different
kinds of data.

2 Security Issues

Throughout this thesis, it is assumed that capabilities are protected by means of some kind
of security technique. Although the security aspect of the capability-based system is not
the focus of this research, this does not diminish its importance. For protection, it is vital



that capabilities are unforgeable. There are a number of possibilities to make capabilities
unforgeable:

e Hardware tags: each word will be associated with a 1-bit tag [Ber80, Sol97]. The
word containing a capability can be tagged “on” to prevent it from being modified
or copied by agents. This scheme has yet to be proven a successful implementation.
The research reported in this thesis, however, does not explore this kind of low-level
mechanism.

e Protected address space: capabilities are stored in a memory area that is not acces-
sible to users. The protection relies on the fact that capabilities are not allowed to
migrate into any address space directly accessible by the users (where they could be
modified) [PS85]. This scheme requires the capabilities to be maintained in a cen-
tralized list (known as capability list or c-list), which is not favourable to distributed
environment.

e Language-based security: using programming languages to enforce protection on
capabilities, an approach adopted in Java, for example. This scheme, however, is
not suitable for open heterogeneous systems, as the coordination and computation
languages need to be orthogonal.

e Cryptography: capabilities are encrypted, and can only be decrypted using the des-
ignated key(s). This is possibly the most popular scheme. For example, VLOS
[CMO02b] used the RipeMD-128 cryptographic hashing algorithm, a variation of the
RipeMD-160 cryptographic hashing function [DBP96], to calculate its capabilities’
128-bit hash value. Amoeba [TMvR86] uses both the conventional and public-key
encryption to protect its capabilities from being forged. Capabilities in any message
are encrypted with a unique key made up from the source machine and the destina-
tion machine identifiers. Another tuple-space based system, the Tagged Sets [OHO5]
use public- and private-key encryption mechanism to protect their shared tagged sets
in a distributed environment.

Digital signatures are often used for message authentication—messages are digitally
signed with the sender’s private key, and consequently the sender’s public key can be used
to check the message’s authenticity and that its contents are intact. Vitek et al. [VBOO03]
discusses the use of digital signature in SECOS where messages are appended with an
extra field (the signature) which can be extracted by the receiver to be matched against
the message. Keys for each field are inversed to produce a matching replica to the message,
and the (signature) value is tied to the message. These are done using built-in functions
which are not made directly available to untrusted agents—to prevent any misuse of the
signature, or unauthorized template-keys constructions.

Even though capabilities in general are mainly associated with protection, the issue of
security is not addressed in this paper. Rather, the discussion focuses on incorporating
capabilities as a controlling mechanism, while assuming that the security aspect has been



dealt with using some kind of techniques, for example cryptography. If such security exists,
then capabilities in this system can be made secure. If capabilities are secure, the objects
they protect are also secure of unauthorized access.

3 Why Capabilities?

Capabilities [Dv66] have been used as the basis for a variety of systems (see [Lev84]| for
numerous examples). They have the attractive features of providing a single, uniform
mechanism for naming, accessing, and protecting objects within the system. In all of these
systems, the capabilities are managed by (trusted) software kernel. A capability [Nut02]
is an unforgeable ‘ticket’ given to an agent that specifies which kind of operations on a
certain object are permitted to the holder of the capability. Capabilities can be defined
in a more general way: as ‘visibility’ filters to create a more refined control over agents’
operations on objects in the system.

Capabilities are well suited for open distributed systems as they themselves are dis-
tributed in the sense that:

e the controlling attributes are held by the agents, rather than being attached to ob-
jects, thus putting no storage overhead on the objects.

e verification is made by the kernel upon the presentation of the capability by the
agent, without the need to search any list. Therefore, verification time is constant in
capability-based systems.

e the decision to grant a capability to an agent is the responsibility of some holder of
the capability, not the kernel. The kernel only generates and checks the capabilities.

e capabilities can be transferred from one agent to another. This is a form of ‘distribu-
tion’ as, subject to certain constraints, any agent (not necessarily the object creator)
possessing the capability can pass a copy of it to another agent.

In addition, a capability mechanism also supports the flexibility inherent in distributed
systems:

e it accommodates user-defined rights, not restricted to those fixed by the system, thus
allowing them to be dynamically changed; and

e its ‘domain flexibility’ feature allows agents to join and leave the system simply by
requesting (and possessing) appropriate capabilities to access the objects, as opposed
to having to modify numerous lists attached to each object relevant to the agents’
execution.



3.1 Capabilities versus access control lists

An ACL is associated with each data object and consists of a list of users, enumerating
what accesses to the object each user is permitted to exercise. ACLs can be difficult to
administer. Expressing authorization for a large number of users becomes awkward when it
entails managing lists comprising large numbers of entries. UNIX systems therefore employ
a modified scheme: for each object, the owner only specifies object access permissions for
the user, for a small number of specified groups of users, and for all other users. Windows
NT also addresses this administration problem by supporting access permissions for groups.

The decision subsystem for an ACL-based discretionary policy simply obtains the name
of the user on whose behalf a particular process is executing, checks the ACL for an entry
containing that user name, and grants accesses according to the ACL entry that is found.
This has been called a list-oriented approach.

An alternative to ACLs is to associate with each process a list of capabilities, each of
which names an object along with the kinds of access to that object that the capability-
holder is permitted (Kain and Landwehr, 1986). The decision subsystem for a capability-
based access control mechanism checks the list of capabilities associated with the process
making the access to see if a capability is present for the desired data object and access
mode. This has been called a ticket-oriented approach.

As mentioned earlier, capabilities have attractive features that make them a suitable
controlling mechanism for open, distributed and heterogeneous systems. Capability-based
security mechanisms are more flexible than their ACL-based counterparts.

Access Control Lists (ACLs). Access rights are attached to the objects. These rights
are represented by a list of sets of attributes, where each set of attributes represents
the access permission granted to a certain domain of agents, e.g. the owner and all
others.

This mechanism is favourable in many simple applications, because it corresponds
directly to the needs of the users, allowing them to specify (upon object creation)
which domain, and what kind of operations are allowed on it [PS85]. Unfortunately,
in more complex situations, it is not very easy to implement: this method requires
every access to the object to be checked, i.e. searching the access list—this can be
time consuming in large systems.

Capabilities. Access rights are held by the members of a domain (the agents), instead
of being attached to the objects. These rights must be obtained (by submitting
a request) by the agents prior to performing any operation on the objects. If the
request is granted, an unforgeable ‘ticket’ is returned to the requesting agent. The
ticket (also known as ‘capability’) identifies the domain, the object, and the rights
granted.

Although capabilities do not correspond directly to the needs of the users, they are
useful for localizing information for a particular domain. Moreover, no list needs to
be searched—the protection system needs only verify that the access is valid based



on the capability (for that access) presented by the process. Managing capabilities,
however, may be quite inefficient, particularly in terms of revocation and controlling
the propagation of capabilities.!

Capabilities can only refer to named objects, e.g. tuple-spaces, but not tuples or tuple
elements, as they are nameless. Access control lists, on the other hand, have this advantage
over capabilities in the sense that they are applicable to named as well as unnamed objects.
However, they are not very practical in an open system due to its requirement of attaching
large lists (of sets of system-fixed attributes) to each objects. Combined with the required
distributed domain management, this inherently limits the flexibility and increases the
complexity of the system.

Using capabilities, on the other hand, does not incur the abovementioned limitations,
for the simple fact that:

1.

Each agent stores its own set of capabilities, putting no overhead on the objects
to which they refer. This is in contrast to some popular practice [PS85, TMvR86,
CMO02a, RH97]| where the kernel needs to maintain a list which stores all capabilities
in the system, thus defeating the purpose of using capabilities for a decentralized
control in distributed systems.

The information contained in the capability itself is sufficient for the kernel to assess
its validity of the operation(s) for the specified object.

. Verification time is constant—this can prove to be advantageous in cases of large

number of tasks having restricted access to an object [CMO02b], as no list need be
searched.

Granting capabilities for an object is the sole responsibility of its owner, leaving the
kernel only with the tasks of generating and checking the capabilities.

It does not restrict the rights to be only of those fixed by the system, allowing them
to be dynamically changed (which is essential in an open, and possibly a long life-
span, system). Therefore, it accommodates user-defined rights—a kernel needs only
to know that an operation exists in order for it to be able to grant, and verify, a right
for that operation [Wo099].

Capabilities feature ‘domain flexibility’, which is lacking in access control lists—the
domains in access control lists are fixed. The simple possession of a valid capability
for an object authorizes the agent to access it [PS85], without requiring the concept
of a user to be included in the kernel [CM02b].

Unlike access control lists, capabilities can be transferred from one agent to another.
Although there needs to be some kind of control over the propagation of rights,>

1See Revocation on page ?? and Transitivity (for propagation of capabilities) on page ?7 in Section ?7.
2In some applications, the distribution of capabilities may need to be restricted so as to prevent them
from being freely-propagated, for more control.



this property adds more flexibility to the system. A capability transfer is rather
like adding an agent to an access control list domain: a specific capability defines
an (ACL) domain as consisting of those agents who (currently) hold the capability.
This shows that capabilities support dynamically created domains.

8. Only a small overhead in extra communication costs are incurred in order to add
capabilities to the other parameters in an operation [Wo099].

Despite the advantages of implementing capabilities, this approach, however, is more
complicated compared to access control lists. Nevertheless, due to its suitability for open
distributed systems, and partly inspired by this challenge, this area of research is pursued
to obtain a more refined control in such an environment.

4 Why Capability-Based Coordination?

LinDA is a powerful model suitable for coordination in open, heterogeneous systems, but
it has some drawbacks, particularly in the security and control aspects, inspiring much
research work aimed at improving this aspect of LINDA. As mentioned in the previ-
ous chapter, capabilities have been incorporated in a number of tuple-space based sys-
tems [ML95, DFP98, GP03, CM02b, BRP02] and discussed in [Wo099]. In these systems,
however, capabilities are mainly discussed as an access control mechanism.

The research presented in this thesis defines capabilities in a more general terms: as
‘visibility’ filters to create a more refined control over agents’ operations on objects in the
system. With capabilities, the (open) system is more finely controlled, yet still flexible—a
strong enough reason for using capabilities in tuple-space systems. Although capabilities
can only be applied to named objects, and tuples are nameless, this problem is overcome
with the use of multicapabilities—a new concept introduced in this research.

Although capabilities have their advantages, they also have limitations, mainly related
to their management, which deter their advancement (in terms of implementability) in
large systems. Nonetheless, the flexibility and distributive properties of capabilities make
it worth exploring the possibility of incorporating them as the controlling mechanism in
the tuple-space coordination systems with the aim of obtaining a more refined control in
open, heterogeneous environments.

5 Summary

Capabilities possess the attractive features to act as a distributed controlling mechanism
suitable for coordination of agents in open systems. To complement LINDA’s powerful
coordination properties, this thesis deployed capability-based control to overcome LINDA’s
lack of it. The following chapter will discuss the LINDA-like capability-based coordination
system developed for this purpose.



References

[Ber80]

[BRP02]

[CMO02a]

[CMO2b)]

[DBPY6]

[DFP9S]

[Dv66]

[GPO3]

[Lev84]

[ML95]

Viktors Berstis. Security and protection of data in the ibm system/38. In
ISCA’80: Proceedings of the 7th Annual Symposium on Computer Architecture,
pages 245-252, New York, NY, USA, 1980. ACM Press.

Ciaran Bryce, Chrislain Razafimahefa, and Michel Pawlak. Lana: An approach
to programming autonomous systems. In Boris Magnusson, editor, FCOOP
2002, Lecture Notes in Computer Science 237/, pages 281-308. Springer-Verlag,
Berlin Hiedelberg, 2002.

Voon-Li Chung and Chris S. McDonald. The continuing evolution of VLOS.
In Hamid R. Arabnia, editor, Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, PDPTA 02,
Las Vegas, Nevada, USA, Volume 3, pages 1385-1392. CSREA Press, 24-27
June 2002.

Voon-Li Chung and Chris S. McDonald. The development of a distributed
capability system for VLOS. Australian Computer Science Communications,
24(3):57-64, Jan-Feb 2002. Appeared in Proceedings of the 7th Asia-Pacific
Conference on Computer Systems Architecture - Volume 6, Conferences in Re-
search and Practice in Information Technology Series.

Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a
strengthened version of RIPEMD. In D. Gollmann, editor, Fast Software

Encryption, Lecture Notes in Computer Science 1039, pages 71-82. Springer-
Verlag, Berlin Hiedelberg, 1996.

Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A ker-
nel language for agents interaction and mobility. [IEEE Trans. on Software
Engineering, 24(5):315-330, May 1998.

J. B. Dennis and E. C. van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143-155, March 1966.

Daniele Gorla and Rosario Pugliese. Enforcing security policies via types. In
D. Hutter, G. Mueller, W.Stephan, and M. Ullman, editors, Proc. of 1st In-
ternational Conference on Security in Pervasive Computing (SPC’03), Lecture
Notes in Computer Science 2802, pages 88—103. Springer-Verlag, 2003.

Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.
http://www.cs.washington.edu/homes/levy/capabook/.

Naftaly H. Minsky and Jerrold Leichter. Law Governed Linda as a coordination
model. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors,
Object-Based Models and Languages for Concurrent Systems, Lecture Notes

7



[Nut02]

[OHO05]

[PS85]

[RHO7]

[S0197]

[TMvRS6]

[VBOO3]

[Wo0099]

in Computer Science 924, pages 125-146. Springer-Verlag, Berlin Hiedelberg,
1995.

Gary Nutt. Operating System: A Modern Perspective. Addison-Wesley, USA,
2 edition, 2002.

Manuel Oriol and Michael Hicks. Tagged sets: A secure and transparent coor-
dination medium. In Jean-Marie Jacquet and Gian Pietro Picco, editors, Pro-
ceedings of the Seventh International Conference on Coordination Models and
Languages, Lecture Notes in Computer Science 3454, pages 252—-267. Springer-
Verlag, Berlin Hiedelberg, April 2005.

James L. Peterson and Abraham Silberschatz. Operating System Concepts.
Addison-Wesley, USA, 2 edition, 1985.

Thomas Riechmann and Franz J. Hauck. Meta objects for access control:
Extending capability-based security. In Proc. ACM New Security Paradigms
Workshop 97 (NSPW97), Great Langdale, UK, 1997.

Frank G. Soltis. Inside the AS/400, Featuring the AS/400e series. 29th Street
Press, Loveland, CO, USA, 1997.

Andrew S. Tanenbaum, S. J. Mullender, and R. van Renesse. Using sparse ca-
pabilities in a distributed operating system. In Proceedings of the 6th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 558-563,
Washington DC., 1986. IEEE Computer Society.

Jan Vitek, Ciaran Bryce, and Manuel Oriol. Coordinating processes with secure
spaces. Science of Computer Programming, 46(1-2):163-193, 2003.

Alan Wood. Coordination with attributes. In Paolo Ciancarini and Alexan-
der L. Wolf, editors, Coordination Languages and Models: Proc. 3rd Interna-
tional Conference COORDINATION’99, Lecture Notes in Computer Science
1594, pages 21-36. Springer-Verlag, Berlin Hiedelberg, 1999.



