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Abstract 

In this paper we propose a RObust Analog Design tool 
(ROAD) for post-tuning analog/RF circuits. Starting from an 
initial design derived from hand analysis or analog circuit 
synthesis based on simplified models, ROAD extracts accurate 
posynomial performance models via transistor-level simulation 
and optimizes the circuit by geometric programming. Importantly, 
ROAD sets up all design constraints to include large-scale process 
variations to facilitate the tradeoff between yield and 
performance. A novel convex formulation of the robust design 
problem is utilized to improve the optimization efficiency and to 
produce a solution that is superior to other local tuning methods. 
In addition, a novel projection-based approach for posynomial 
fitting is used to facilitate scaling to large problem sizes. A new 
implicit power iteration algorithm is proposed to find the optimal 
projection space and extract the posynomial coefficients with 
robust convergence. The efficacy of ROAD is demonstrated on 
several circuit examples. 
 
1. Introduction 

As IC technologies are scaled to finer feature sizes and circuit 
applications move to higher frequency bands, analog/RF circuit 
design faces several new challenges. Firstly, device models have 
become increasingly complex in order to characterize the physical 
behavior of transistors at high frequencies. Secondly, at these 
frequencies, parasitic couplings become more important and more 
complex. Finally, but perhaps most importantly, with sub-
wavelength photo-lithography, process variations become a 
critical issue and significantly impact the overall circuit 
performance. It is complex, if not impossible, to handle all these 
second order effects via hand analyses. Therefore, manually 
designing analog/RF circuits is time-consuming and requires a lot 
of design intuition and experience. Today’s analog/RF circuits are 
typically designed and verified through several iterations. 

To address this increasing difficulty of manual design, various 
approaches have been proposed for analog synthesis [1]-[8]. 
These methods take a fixed circuit topology as input and optimize 
the component sizes to meet design specifications. Advanced 
stochastic algorithms such as simulated annealing and genetic 
programming have been applied to search the entire design space 
for a globally optimal solution [2]-[4]. However, stochastic search 
algorithms can be very slow, especially when process variations 
are simultaneously considered [5]. 

Recently, it has been demonstrated that many analog circuit 
specifications can be cast into posynomial functions. As such, 
analog circuit sizing can be formulated as a geometric 
programming problem which guarantees that a globally optimal 
solution can be determined [6]-[8]. However, the traditional 
geometric programming approach requires the creation of the 
posynomial design equations by hand. Manually derived 
equations apply various simplifications and ignore many second 
order effects. In addition, the authors in [6]-[8] use corner 
enumeration to achieve robust analog design, where design 
equations are listed at all process corners. As such, the number of 

total design equations increases exponentially in the number of 
independent process parameters. Furthermore, it is not guaranteed 
that the worst-case design will occur at one of these process 
corners. 

In addition to modeling inaccuracy, process variations have an 
increasingly significant impact on circuit performance, thereby 
posing additional challenges for analog synthesis. For example, 
given a circuit that is synthesized for nominal process parameters, 
substantial device sizing may be required to accommodate large-
scale process variations and improve product yield.. 

In this paper, we propose a novel RObust Analog Design tool 
(ROAD) to post-tune analog/RF circuits based on accurate 
transistor-level simulation models and with consideration of large-
scale process variations. Using ROAD, a robust analog/RF design 
can be achieved via two steps. First, an initial nominal design is 
created from either manual analysis or automatic synthesis by 
traditional analog optimization algorithms [1]-[8]. Simplified 
device/coupling models can be utilized in this step to ease the 
manual design or speedup the automatic synthesis. This initial 
optimization provides a rapid but coarse search over the entire 
design space. Then, in the second step, ROAD is applied with 
detailed device/coupling/variation models to perform a more fine-
grained search and optimize the tradeoff between yield and 
performance. 

Compared with other robust design approaches [5], [9]-[11], 
the novelty of ROAD lies in our convex formulation of the robust 
design problem, which improves the optimization efficiency and, 
more importantly, helps to find a better solution. We find that, 
even for a small analog/RF design space, the circuit performance, 
e.g. the cost function for optimization, is not convex. This non-
convex property makes it difficult to apply traditional 
optimization algorithms, such as a gradient method with linear 
search, since all such algorithms assume a convex cost function 
and can otherwise become stuck at a locally optimal solution. On 
the other hand, although the stochastic algorithms such as 
simulated annealing and genetic programming are more robust 
and can find the global optimum, they are computationally 
expensive when using detailed circuit simulation models. 

ROAD combines the posynomial modeling and geometric 
programming to overcome this non-convex difficulty with low 
computation cost. We find that in a sufficiently small local design 
space, accurate posynomial models can be fitted for many circuit 
specifications from transistor-level simulation data. Given an 
initial design, ROAD first applies statistical analysis and 
approximates the best/worst-case circuit performances as 
posynomial functions in the local design space. It then optimizes 
the circuit by geometric programming, which can be transformed 
to a convex optimization that is easy to solve. This fitting and 
optimization procedure is repeatedly applied on successively 
narrowed local design space. Since ROAD sets up all design 
constraints with process variations and the posynomial model 
becomes increasingly accurate in the successively narrowed local 
design space, ROAD can converge to an accurate design with 
high yield. 
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Another novelty of ROAD is the utilization of a projection-
based approach for posynomial fitting. Compared with traditional 
posynomial fitting techniques [12]-[15], the proposed projection-
based method is more efficient and handles large-size problems. 
While the traditional projection theory generally trades accuracy 
for simplicity in terms of the dimension of projection space, we 
find that the rank-one projection is especially meaningful for 
posynomial modeling. The rank-one projection provides sufficient 
accuracy for approximating circuit performance and, most 
importantly, theoretical analysis shows that quadratic posynomials 
are invariant (i.e. remain posynomials) under the rank-one 
projection. In addition, a novel implicit power iteration algorithm 
is developed to find the optimal projection space and extract the 
posynomial coefficients. This iteration consists of a sequence of 
convex quadratic programming steps and exhibits robust 
convergence. 

The remainder of this paper is organized as follows. In 
Section 2 we propose and study the challenging problems for 
analog/RF post-tuning. Then we propose our ROAD approach, 
including statistical analysis, posynomial fitting and geometric 
programming in Section 3. The efficacy of ROAD is 
demonstrated by several circuit examples designed in the IBM 
BiCMOS 0.25 µm process in Section 4. Finally, we draw 
conclusions in Section 5. 
 
2. Post-Tuning for Analog/RF Circuits 
2.1 Non-convex Analog/RF Design Space 

 
Fig. 1. Circuit schematic for LNA. 

TABLE 1. Quadratic modeling result for LNA 
Eigenvalue # of A Eigenvalues of A Performance 

Negative Positive Minimal Maximal 
F0 (GHz) 4 8 -0.93 2.57 
S11 (dB) 6 6 -150.29 660.77 
S12 (dB) 6 6 -69.23 19.55 
S21 (dB) 4 8 -11.57 66.16 
S22 (dB) 7 5 -199.24 299.20 
NF (dB) 4 8 -1.49 12.51 

IIP3 (dBm) 8 4 -54.64 25.42 
Power (mW) 6 6 -1.59 24.40 

 
It is well known that the entire analog/RF design space is 

strongly nonlinear in general. In this paper, however, we find that 
the local analog/RF design space is not convex even for a small 
region. This non-convex property can be demonstrated by the 
following low noise amplifier example design in the IBM 
BiCMOS 0.25 µm process. 

Shown in Fig. 1 is a low noise amplifier which includes 12 
independent design variables and 8 design specifications. Given 
an initial design, we sample the local design space by a 
perturbation of ±5% on all design variables. The circuit 

performance in such a small local design space is fitted by the 
quadratic model: 
 CxBxAxxf TT ˆˆˆ  (1) 

where T
Nxxx ,,1  contains independent design variables, 

NNRÂ , NRB̂  and RĈ  are model coefficients and N is 
the total number of design variables. 

TABLE 1 shows the eigenvalue distribution of the quadratic 
coefficient matrix A for this LNA example. Note that, for most 
circuit performances, the A matrix includes both positive and 
negative eigenvalues with comparable magnitude. It, in turn, 
implies that the analog design space is neither convex nor 
concave, even for such a small/local perturbation region. 

One important reason for the above observation is that many 
analog/RF circuit performances are expressed as the sum of the 
multiplications of design variables, e.g. Lm ZGGain , 

2211 LWLWArea , etc. It is easy to verify that, for 
example, the function 21xxxf  is neither convex nor concave, 
since its corresponding quadratic coefficient matrix A has two 
eigenvalues 5.0 . The multiplication of different design 
variables results in the cross product term ji xx  in the quadratic 
model (1), rendering a non-convex design space. Such a non-
convex property of the analog/RF design space is called the “xy 
cross product pattern” or simply “xy pattern” in this paper. 

The underlying xy pattern of analog/RF circuits makes it 
difficult to apply traditional optimization algorithms, such as a 
gradient method with linear search, to post-tuning, since all these 
algorithms assume a convex cost function and, therefore, is very 
likely to become stuck at a locally optimal solution. On the other 
hand, although the stochastic algorithms, such as simulated 
annealing and genetic programming, are much more robust in 
terms of finding the global optimum, they are computationally 
expensive. The above analysis, therefore, motivates us to utilize 
other more effective optimization algorithms, e.g. the geometric 
programming, for analog/RF post-tuning, which can handle the xy 
pattern with low computation cost. 
 
2.2 Geometric Programming for Analog/RF Tuning 

Let T
Nxxx ,,1  be N real, positive variables. A function 

f is called posynomial if it has the form: 
 

1
21

21

i
Ni

Niii xxxcxf  (2) 

where Rci  and Rij . Note that the coefficients ic  must be 

nonnegative, but the exponents ij  can be real values. 
It has been demonstrated that many analog circuit 

specifications can be cast into posynomial functions [6]-[8]. As 
such, analog circuit sizing can be formulated as a geometric 
programming problem: 

 
Nix
Kixftosubject

xfminimize

i

i

,,10
,,11  

0

 (3) 

where Kfff ,,, 10  are posynomial functions. 
It is important to note that the xy pattern of analog/RF circuits 

can be easily handled by geometric programming, because the 
sum of the cross product terms is exactly a posynomial function. 
In fact, the posynomial functions xfxfxf K,,, 10  in (3) 
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might not be convex. However, geometric programming defines a 
set of new variables ii xy log  Ni ,,1,0  and new 
functions ii fg log  Ki ,,1,0 . The transformed 
cost/constraint functions ygygyg K,,, 10  are convex. In 
other words, instead of directly working on the original non-
convex functions xfi , geometric programming optimizes the 
transformed convex functions ygi . That’s the reason why 
geometric programming can be numerically robust and reach the 
global optimum while directly applying traditional algorithms, 
such as the gradient method with linear search, often gets stuck in 
the local minimum. For this reason, geometric programming is 
much better than the general nonlinear optimization algorithm for 
analog/RF post-tuning, since it can handle the xy pattern and 
reduce the probability of converging to local minimum. 

Geometric programming has been previously applied for 
analog synthesis in [6]-[8]. However, the existing geometric 
programming approach optimizes analog/RF circuits based on 
simplified models, similar to hand analysis equations. Our 
objective is to start with the solution derived from the 
optimization based on such equations and further optimize the 
design for robust performance using detailed device/variation 
modeling information. 
 
2.3 Quadratic Posynomial Modeling 

A key operation in ROAD is to extract posynomial 
performance models based on transistor-level simulation. Instead 
of modeling the circuit performance as full posynomial functions 
(2), ROAD utilities quadratic posynomial models [12]-[15]. The 
quadratic posynomial performance models are much easier to fit, 
and, more importantly, already provide sufficient accuracy to 
cover the local/small design space for post-tuning. 

Several techniques have been proposed for quadratic 
posynomial model generation [12]-[15]. Considering the tradeoff 
between modeling accuracy and computation cost, direct fitting 
[14] is the most efficient of these previous approaches. Direct 
fitting approximates the posynomial function by a quadratic form: 
 CXBAXXxf TT  (4) 

where 
T

NN xxxxX ,,,,, 1
11

1  includes independent design 
variables and N is the total number of design variables. 

NNRA 22 , NRB 2  and RC  are unknown posynomial 
coefficients which can be determined by the optimization: 

 
RCRBRAtosubject

fCXBAXXCBAminimize

NNN
i

ii
T

i
T
i

,,  

ˆ,,

1222

2

 (5) 

In (5), iX  and if̂  are the value of X and the exact value of the 
function f for the i-th simulated sample, respectively. The cost 
function (5) is a positive semi-definite quadratic function 
restricted to a convex constraint set [14]. Therefore, the 
optimization problem is convex and is guaranteed to have a 
globally optimal solution. 

In addition, the authors in [14] propose a heuristic template 
estimation to reduce the computation cost. The template 
estimation algorithm first fits the data samples to the quadratic 
function in (1). Then, in the second step, dominant posynomial 
terms are selected based on the value of Â , B̂  and Ĉ , and only 
these dominant terms are put into the cost function in (5) for final 
optimization. Note that, since the matrices Â  and B̂  in (1) have 

much smaller sizes than the matrices A and B in (5), template 
estimation reduces the computation cost significantly. 

Even with the template estimation, however, the number of 
problem unknowns in (1) is 2NO . The computational 
complexity for solving all these unknowns is of the order of 

6NO . This high computation cost limits previous approaches 
[12]-[15] to small or medium size applications. In ROAD, we 
propose a novel projection-based posynomial modeling algorithm, 
which can reduce the computation cost significantly. 
 
3. ROAD Methodology 

Our proposed robust analog design tool (ROAD) is facilitated 
by a combination of statistical analysis, posynomial modeling and 
geometric programming. In this section, we describe the key 
algorithms used in ROAD and highlight the novelty. 
 
3.1 Projection-Based Posynomial Modeling 

The key disadvantage of the posynomial modeling algorithm 
in [14] is the need to compute all elements of matrix A in (5) or 
matrix Â  in (1). These matrices are often sparse and rank-
deficient in many practical problems. Therefore, instead of finding 
the full matrix A, ROAD approximates A by another low-rank 
matrix LA . Such a low-rank approximation problem can be stated 
as follows: given a matrix A, find another matrix LA  with rank 

Arankp  such that their difference 
FL AA  is minimized. 

Here, 
F

 denotes the Frobenius norm, which is the square root 
of the sum of the squares of all matrix elements. For simplicity, 
we assume that A is symmetric in this paper. Any asymmetric 
quadratic form can be easily converted to the equivalent 
symmetric form [17]. 

From matrix theory [18], for any symmetric matrix nnRA , 
the optimal rank-p approximation with the least Frobenius-norm 
error is: 

 
p

i

T
iiiL PPA

1

 (6) 

where i  is the i-th dominant eigenvalue, and 1n
i RP  is the i-

th dominant eigenvector. The eigenvectors in (6) define an 
orthogonal projector T

pp
T PPPP 11 , and every column in LA  

is the projection of every column in A onto the subspace 
pPPspan ,,1 . We use this orthogonal projector for posynomial 

fitting in this paper. 
The above discussion is applicable to any quadratic form, 

without restricting A and LA  to be nonnegative. For posynomial 
fitting, we need to further prove that LA  is nonnegative, i.e. 

nn
L RA , if nnRA . For that, we need an additional theorem 

from matrix analysis. 

Perron-Frobenius theorem [17]: Let A be a real nonnegative 
matrix, i.e. nnRA . Then A1 , the spectral radius of A, 
is a simple eigenvalue of A. Moreover, there exists an eigenvector 

1P  with nonnegative elements associated with this eigenvalue. 

One conclusion from the Perron-Frobenius theorem is that, 
since the 1st dominant eigenvalue 1  and eigenvector 1P  for 
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nonnegative nnRA  are both nonnegative, the rank-one 

projection T
L PPA 111  is nonnegative. In other words, quadratic 

posynomials are invariant (i.e. remain posynomials) under the 
rank-one projection. 

On the other hand, the eigenvectors ,, 21 PP  are mutually 
orthogonal for a symmetric matrix A. Since 1P  is nonnegative, 

,, 32 PP  must contain non-positive elements. This implies that 
any rank-p projection with 2p  might convert a posynomial to 
a signomial with negative coefficients. 

ROAD utilizes the rank-one projection, which is theoretically 
guaranteed by the above discussion to map a posynomial to 
posynomial. The main advantage of such a rank-one projection is 
that, for approximating the matrix NNRA 22  in (4), only 1  

and 12
1

NRP  need to be solved, thus reducing the number of 
problem unknowns to NO . Compared with the problem size 

2NO  in previous approaches [12]-[15], our proposed 
projection-based method is more efficient and can be applied to 
large-size problems. In addition, we find that the rank-one 
projection achieves high accuracy in many practical applications, 
which will be demonstrated by numerical examples in Section 4. 
 
3.2 Coefficient Fitting via Implicit Power Iteration 

1. Start from an initial vector 12
0

NRQ  and set 1k . 

2. Compute 
Fkkk QQQ 111 . 

3. Solve the convex quadratic programming 

RCRBRQtosubject

fCXBXQQXCBQminimize

k
N

k
N

k

i
iki

T
ki

T
kk

T
ikkkk

,,  

ˆ,,

1212

2
1  

4. If the minimized cost function is unchanged, i.e. 

111
min

1
min ,,,, kkkkkkkk CBQCBQ  

  where  is the pre-defined error tolerance, then go to Step 5. 
Otherwise, 1kk  and return Step 2. 

5. The approximated posynomial function is 

k
T
k

T
kk

T CXBXQQXxf 1  
Fig. 2. Implicit power iteration algorithm. 

Since matrix NNRA 22  in (4) is not known in advance, we 
cannot use the standard matrix computation algorithm to compute 
its dominant eigenvalue 1  and eigenvector 1P . One approach is 
to solve the following optimization problem: 

 
RCRBRQtosubject

fCXBXQQXCBQminimize

NN
i

ii
T

i
TT

i

,,  

ˆ,,

1212

2

 (7) 

Compared with (4), equation (7) approximates matrix A by 
TQQ . Since the optimal rank-one projection is T

L PPA 111  
with 01  and 01P , we expect the cost function CBQ ,,  

in (7) to have the global optimum 11 PQ . Unfortunately, 

CBQ ,,  is a 4th order function of Q and, therefore, might not 
be convex. There is no efficient optimization algorithm that can 
be guaranteed to find the globally optimal solution for 

CBQ ,, . 
Instead of using the 4th order cost function in (7), we propose 

a novel implicit power iteration method to efficiently extract the 
unknown coefficients 1  and 1P . This implicit power iteration 
consists of a sequence of convex quadratic programming steps 
and exhibits robust convergence with an arbitrary initial point. An 
outline of this algorithm is shown in Fig. 2. 

In Fig. 2, the cost function kkkk CBQ ,,  in Step 3 is a 
positive semi-definite quadratic function over a convex constraint 
set. Therefore, the quadratic programming in Step 3 is convex and 
is guaranteed to converge to its global optimum. 

Next, we explain why the overall implicit power iteration 
yields the optimal rank-one projection T

L PPA 111 . Note that, 

Step 3 in Fig. 2 approximates matrix A by T
kk QQ 1 , where 1kQ  is 

determined in the previous iteration step. Finding such an optimal 
approximation is equivalent to solving the over-determined linear 
equation: 
 AQQ T

kk 1  (8) 
The least-square-error solution for equation (8) is given by [18]: 

 1
1

111 kk
T
kkk AQQQAQQ  (9) 

In (9), 12
111 Fkk

T
k QQQ , since 1kQ  is normalized in Step 

2 in Fig. 2. Equation (9) tells us the interesting fact that the 
quadratic programming in Step 3 “implicitly” computes the 
matrix-vector product 1kAQ , which is the basic operation 
required in the power iteration for dominant eigenvector 
computation [18]. 

Given the initial vector: 
 22110 PPQ  (10) 
where 0Q  is represented as the linear combination of all 
eigenvectors of A, the k-th iteration step yields: 
 2221110 PPQAQ kkk

k  (11) 

In (11), we ignore the normalization 
Fkkk QQQ 111  which 

is nothing else but a scaling factor. This scaling factor will not 
change the direction of kQ . Since 00Q  (Step 1 in Fig. 2) and 

01P  (based on the Perron-Frobenius theorem), 0Q  is not 

orthogonal to 1P , i.e. 01  in (10). Therefore, 111 Pk  (with 

21 ) will become more and more dominant over other 

terms. kQ  will asymptotically approach the direction of 1P , as 
shown in Fig. 3. 

 

P1 
P2 

P3 

P1 
P2 

P3 

P1 
P2 

P3 

333222111 PPPQ kkk
k3322110 PPPQ

3332221111 PPPQ

Q0 Q1 Qk 

 
Fig. 3. Convergence of power iteration in 3-D space. 

After the iteration in Fig. 2 converges, we have 

1111 PQQQ
Fkkk  and 111 PAQQ kk . T

kk QQ 1  is 

the optimal rank-one projection T
L PPA 111 . Thus the proposed 

implicit power iteration extracts the unknown coefficients 1  and 
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1P  with guaranteed convergence but in an implicit way, i.e. 
without knowing the full matrix A. This “implicit” property is the 
key difference between the proposed algorithm and the traditional 
power iteration in [18]. 

The above discussion demonstrates that the implicit power 
iteration is provably convergent if A is symmetric. For an 
asymmetric A, we can show that 1kQ  and kQ converge to the 
directions of the dominant left and right singular vectors of A. 
However, the global convergence is difficult to prove in that case. 
 
3.3 Robust Design with Process Variations 

Given a circuit topology, the circuit performance (e.g. gain, 
bandwidth) can be specified in terms of design variables (e.g. bias 
current, transistor sizes) and process parameters (e.g. THV , OXT ). 
Due to process variations, the process parameters must be 
modeled as random variables. Therefore, the circuit performance 

xf  with fixed design variables Nxxxx ,,, 21  is also a 
random variable that can be characterized by a probability density 
function. In ROAD, instead of handling the complete probability 
density function, we define three important metrics for each 
circuit performance: the mean value xf M , the lower bound 

xf LOW  and the upper bound xfUP , as shown in Fig. 4. The 
values of these three metrics xf M , xf LOW  and xfUP  can 
be computed by the APEX algorithm [19]. 

 xfM

xf LOW xfUP

PDF 

xf
 

Fig. 4. Probability density function of performance xf . 

ROAD classifies all design specifications into two categories: 
equality constraints (e.g. F0 = 2.14GHz) and inequality 
constraints (e.g. IIP3  5dBm and NF  2dB). In order to achieve 
robust design, ROAD incorporates the process variations into the 
cost function or constraints during optimization. For example, the 
design specification Specxf  is translated to 1SpecxfM , 

1xfSpec M  and xfxfminimize LOWUP . In other words, 
we force the mean value of xf  to equal Spec and minimize the 
variance of xf  under process variations. TABLE 2 summarizes 
all the geometric programming constraints utilized in ROAD. 

TABLE 2. ROAD formulation for geometric programming* 
Category Specification Cost Function/Constraint 

Equality Specxf  
1Specxf M  
1xfSpec M  

xfxfminimize LOWUP  

Specxf  1SpecxfUP  
Inequality 

Specxf  1xfSpec LOW  
 

ROAD first approximates xfM , xfM1 , xfxf LOWUP , 
etc. as posynomial functions, and then optimizes design variables 

Nxxxx ,,, 21  via geometric programming. Note that such an 

                                                                 
* TABLE 2 only considers positive Spec values. Negative Spec values can 
be normalized to positive ones through a proper scaling [14]. 

optimization will converge to a robust design with high yield, 
since the optimization constraints in TABLE 2 are set up for both 
nominal conditions and process variations. 
 
3.4 ROAD Iteration Scheme 

1. Start from an initial design 0D  and perturbation size ± %. Set 
iteration index 1k . 

2. Make a perturbation of ± % on all design variables of 1kD . 
This perturbation defines a local design space kS  for k-th 
post-tuning. Generate a set of samples kx  in kS . 

3. For every sampling point in kx , run transistor-level 
simulation and apply the APEX algorithm [19] to compute 

xf M , xf LOW  and xfUP . 
4. Fit the cost function and constraints (e.g. xfM , xfM1 , 

xfxf LOWUP , etc.) as posynomial functions using the 
proposed projection-based algorithm. 

5. Run geometric programming and find the optimal design kD  
in the design space kS . 

6. If the difference between kD  and 1kD  is smaller than a pre-
defined error tolerance, then go Step 7. Otherwise, 1kk  
and return Step 2. 

7. If % is smaller than the pre-defined minimal design space 
size, then stop iteration. Otherwise, 2 , 1kk  and 
return Step 2. 
Fig. 5. Outline of the overall ROAD iteration scheme. 

Global Design Space 

Optimal 
Design 

Local Design Space Narrowed Local Design Space 

Initial 
Point 

 
Fig. 6. Illustration of ROAD iterations. 

As summarized in Fig. 5 and depicted in Fig. 6, starting from 
an initial design, ROAD iteratively improves the circuit 
performance and product yield by successive posynomial fitting 
and geometric programming. In each iteration, ROAD fits 
posynomial models in a local design space to approximate the 
worst/best-case circuit performance with consideration of process 
variations. Then, geometric programming is utilized to find the 
optimal design in that local design space. 

The overall iteration is performed in two levels: inner loop 
iteration and outer loop iteration. The inner loop iteration searches 
the optimal solution in the local design spaces that have the same 
size but are centered at various expansion points. During the k-th 
iteration, the k-th local design space is defined by a perturbation 
of ± % on all design variables of the previous iteration result 

1kD . Then, after the optimal design is found under the current 
perturbation size ± %, ROAD reduces  by a factor of two and 
repeats the inner loop iteration for a finer-grained search. The 
iteration is stopped if no further improvement is identified 

859



 

between two successive steps and the current % is smaller than 
the pre-defined minimal design space size. Since the posynomial 
modeling error is successively reduced due to the iteratively 
narrowed design space, ROAD can converge to a final design 
with high accuracy. 

From our experience, the final design accuracy of the above 
ROAD iteration is mainly determined by the final value of %, i.e. 
the pre-defined minimal design space size in Step 7 of Fig. 5. This 
final % significantly impacts the posynomial modeling accuracy 
at the end of the iteration. Higher design accuracy can be 
achieved, if a smaller final % is utilized. On the other hand, the 
final ROAD design is not sensitive to the initial value of %. In 
many applications, the initial and final % can be typically 
selected as 5%~10% and 1%~5% respectively. 
 
4. Numerical Examples 

We demonstrate the ROAD flow as applied to circuit 
examples designed in the IBM BiCMOS 0.25 µm process. For 
each example three different designs are generated. The initial 
design is created by hand analysis, the nominal design is 
optimized without considering process variations, and the robust 
design is synthesized for high product yield. All the numerical 
experiments are performed on a SUN Sparc – 1GHz server. 
 
4.1 Low Noise Amplifier 

Shown in Fig. 1 is a low noise amplifier which includes 12 
independent design variables and 8 design specifications. In each 
post-tuning iteration we sample the local design space by a 
perturbation of ± % on all design variables. % is initially set to 
5% and then successively reduced to 1% during iteration. Two 
independent sampling sets, called training set and testing set 
respectively, are generated. The training set is created by 
orthogonal arrays [20], which pick up the most important samples 
based on statistical analysis; this is used for posynomial 
coefficient fitting. For testing and comparison, we collect 500 
random samples as the testing set and use them to verify the 
modeling accuracy. 

A. Robust Convergence of Implicit Power Iteration 
To test the convergence of the proposed implicit power 

iteration algorithm we pick 100 random initial vectors 00Q  
and use them for running power iteration in posynomial fitting. 
We find that all 100 experiments reliably converge without a 
single failure. 

B. Effect of Training Set Size 
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Fig. 7. Effect of training set size. 

For both direct fitting [14] and ROAD, Fig. 7 shows the 
relation between posynomial modeling error and training set size, 
where the perturbation % is set to 5%. Studying Fig. 7 we find 
that the number of samples in the training set should be 2~3 times 
greater than the number of problem unknowns. Further increasing 
the number of samples doesn’t have a significant impact on 
reducing the modeling error. This observation implies that the 
required number of samples depends on the number of problem 
unknowns. As the posynomial coefficient number is reduced in 
ROAD, we not only decrease the computation time for coefficient 
optimization, but also save a large portion of circuit simulation 
cost because of the smaller training set. 

C. Modeling Accuracy and Cost 
TABLE 3 and TABLE 4 compare the accuracy of three 

modeling approaches. Direct fitting without template estimation 
[14] is the most accurate since it takes into account all possible 
posynomial product terms in (4). However, although both the 
template estimation method and the proposed ROAD approach 
apply simplifications to reduce the computation cost, their fitting 
accuracy is still comparable to direct fitting without template 
estimation. 

In addition, comparing TABLE 3 and TABLE 4, one would 
find that, as the perturbation ± % is reduced from ±5% to ±1%, 
the posynomial modeling accuracy is greatly improved. The 
modeling error is less than 0.3% for all circuit performance in 
TABLE 4, which guarantees high design accuracy at the end of 
ROAD iteration. It should be noted that achieving small modeling 
error is extremely important for robust analog design. The process 
variations in today’s IC technologies typically introduce 
10%~20% variations on circuit performance. If the modeling error 
is not sufficiently less than this value, the circuit yield cannot be 
accurately estimated and optimized via these models. 

TABLE 3. Posynomial modeling error for LNA ( % = 5%) 

Performance Direct Fitting 
w/o Template 

Direct Fitting with 
Template [14] ROAD 

F0 0.09% 0.25% 0.10% 
S11 3.92% 4.45% 5.44% 
S12 0.33% 0.35% 0.36% 
S21 0.28% 0.40% 0.42% 
S22 2.49% 2.78% 2.97% 
NF 0.65% 0.74% 0.96% 
IIP3 1.31% 1.32% 1.39% 

Power 0.02% 0.30% 0.03% 

TABLE 4. Posynomial modeling error for LNA ( % = 1%) 

Performance Direct Fitting 
w/o Template 

Direct Fitting with 
Template [14] ROAD 

F0 0.021% 0.021% 0.021% 
S11 0.189% 0.208% 0.273% 
S12 0.020% 0.020% 0.020% 
S21 0.010% 0.012% 0.013% 
S22 0.249% 0.255% 0.257% 
NF 0.031% 0.033% 0.037% 
IIP3 0.063% 0.064% 0.064% 

Power 0.001% 0.001% 0.001% 

D. Robust Design 
With the pre-extracted posynomial performance models, the 

geometric programming is solved efficiently, taking 1~2 seconds 
for this LNA example. TABLE 5 shows the circuit performance 
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simulated by Spectre before and after the post-tuning. The initial 
manual design contains a couple of circuit performance metrics 
that don’t satisfy the design specifications. We apply the 
transitional sequential quadratic programming (SQP) and our 
proposed ROAD algorithm for nominal optimization, i.e. without 
considering process variations, respectively. It is shown in 
TABLE 5 that the traditional SQP approach is stuck at the local 
minimum while ROAD yields better circuit performance, 
especially much smaller power consumption. However, we also 
observe that the nominal ROAD design includes several 
performances (S21 and IIP3 as shown by the grey entries in 
TABLE 5) sitting on the boundaries of the design specifications. 

When the process variation information is included for robust 
design, however, the ROAD sizing is done so as to leave 
sufficient margin for each performance metric. These margins 
enable the circuit to meet design specifications under process 
variations. The efficacy of the robust design is further illustrated 
by Fig. 8, where Monte Carlo simulations are applied to plot the 
S21 distribution for both nominal and robust designs. Fig. 8 shows 
that the robust design produced by ROAD satisfies the 
specification for a much larger fraction of the process variations 
than the nominal design. 

TABLE 5. Circuit performance and synthesis cost for LNA 
Nominal Robust  Spec Initial 

SQP ROAD ROAD 
F0 (GHz) = 2.1 2.07 1.87 2.10 2.10  
S11 (dB)  -10 -13.98 -8.64 -12.92 -11.92 
S12 (dB)  -25 -23.89 -26.15 -26.23 -26.26 
S21 (dB)  15 14.60 14.63 15.00 15.46  
S22 (dB)  -10 -14.47 -10.07 -24.37 -17.27 
NF (dB)  1.5 1.19 1.10 1.30 1.42  

IIP3 (dBm)  5 4.97 5.80 4.99 5.51 
Power (mW) Min 13.23 11.46 7.47 9.34 

Cost 
(Simulation #)   122 1980 2640 
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Fig. 8. Probability distribution for S21. 

 
4.2 Scaling with Problem Size 

Fig. 9 shows a two-stage folded-cascode Op Amp which 
includes 34 independent design variables and 8 design 
specifications. In each post-tuning iteration we sample the local 
design space by a perturbation of ± % on all design variables. 
Similar as the LNA example, % is initially set to 5% and it is 
successively reduced to 1% during iteration. 

 
Fig. 9. Circuit schematic for Op Amp. 

A. Modeling Accuracy and Cost 
TABLE 6 and TABLE 7 summarize the modeling accuracy 

for both direct fitting with template estimation [14] and ROAD. 
Direct fitting without template estimation [14] includes 2381 
unknown coefficients and, therefore, is computationally 
infeasible. From the data in TABLE 6 and TABLE 7, template 
estimation and ROAD have similar modeling accuracy. However, 
as shown in TABLE 8, ROAD is 4x faster for both Spectre 
simulation and coefficient fitting. We expect that as the problem 
size increases further, ROAD would achieve more speedup over 
the traditional methods. 

In addition, it should be noted that the maximal ROAD 
modeling error is no more than 0.4% in TABLE 4, when the 
perturbation ± % is reduced to ±1%. This small error implies high 
design accuracy at the end of the ROAD iteration. 

TABLE 6. Posynomial modeling error for Op Amp ( % = 5%) 
Performance Template [14] ROAD 

Gain 0.11% 0.13% 
UGF 0.09% 0.07% 

Gain Margin 0.28% 0.16% 
Phase Margin 0.05% 0.05% 

Slew Rate 0.04% 0.05% 
Swing 1.66% 1.92% 
Power 0.15% 0.20% 

TABLE 7. Posynomial modeling error for Op Amp ( % = 1%) 
Performance Template [14] ROAD 

Gain 0.005% 0.005% 
UGF 0.007% 0.008% 

Gain Margin 0.006% 0.006% 
Phase Margin 0.002% 0.002% 

Slew Rate 0.005% 0.005% 
Swing 0.402% 0.388% 
Power 0.007% 0.009% 

TABLE 8. Posynomial modeling cost for Op Amp ( % = 5%) 
 Template [14] ROAD 

Problem Unknown # 630 137 
Sample # in Training Set 1458 343 
Spectre Simulation (Sec.) 1.01 105 2.33 104 
Coefficient Fitting (Sec.) 235.29 66.59 

B. Robust Design 
TABLE 9 shows the Spectre-simulated Op Amp performance 

before and after post-tuning. In TABLE 9, the initial circuit is 
over-designed, resulting in large power consumption. The 
nominal design optimized by the traditional sequential quadratic 
programming (SQP) is stuck at the local minimum, for which 
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several performances (Gain, Phase Margin and Slew Rate) still 
fail the design specifications. The nominal ROAD optimization 
yields a much better design that meets all design specifications, 
but it over-optimizes the circuit with several performances (UGF, 
Phase Margin and Slew Rate) sitting on the boundaries of the 
design specifications. Finally, the robust ROAD optimization 
takes into account the process variations and, therefore, leaves 
sufficient margin for each circuit performance metric during the 
optimization. Compared with the initial design, the robust design 
generated by ROAD achieves about 3x power reduction. 

TABLE 9. Circuit performance and synthesis cost for Op Amp 
Nominal Robust  Spec Initial 

SQP ROAD ROAD 
Gain (dB)  100 116.2 92.59 106.6 102.7 

UGF (MHz)  10 11.76 10.33 9.96 10.94 
Gain Margin  2 7.45 6.13 5.86 7.27 
Phase Margin  60 65.82 58.46 59.64 63.48 

Slew Rate (V/µs)  20 46.36 14.29 19.96 20.53 
Swing (V)  0.5 1.00 1.00 1.00 1.00 

Power (mW) Min 2.54 0.53 0.73 0.79 
Cost 

(Simulation #)   5034 5186 8038 

 
5. Conclusions 

In this paper, we propose a novel tool, ROAD, to post-tune 
analog/RF circuits quickly and accurately. ROAD utilizes a 
projection-based approach to generate accurate posynomial 
performance models from transistor-level simulation. In addition, 
it uses a novel implicit power iteration algorithm to extract the 
posynomial coefficients with robust convergence. Compared with 
previous posynomial modeling methods, ROAD achieves 
significant runtime speedup and scales well with problem size. 

The novelty of ROAD lies in our convex formulation of the 
analog sizing problem and our inclusion of statistical analysis to 
incorporate process variations during optimization. Unlike the 
nominal design which might over-optimize the circuit, ROAD 
leaves sufficient margin for each circuit performance metric. 
These margins enable the circuit to meet design specifications 
even in the presence of process variations. 

Finally, it is important to mention that the projection-based 
approach proposed in this paper is not limited to posynomial 
modeling for analog synthesis. The same idea can be applied to 
quadratic polynomial or signomial modeling in many other 
engineering applications. 
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