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ABSTRACT 

Occlusion culling is a genre of algorithms for rapidly eliminating portions of three-dimensional geometry hidden 
behind other, visible objects prior to passing them to the rendering pipeline. In this paper, an extension to the 
popular shadow frustum culling algorithm is presented, which takes into account the fact that many planar 
occluders can be grouped into compound convex solids, which in turn can provide fewer and larger culling frusta 
and therefore more efficient elimination of hidden geometry. The proposed method combines planar and solid 
occluders using a unified selection approach and is ideal for dynamic environments, as it doesn’t depend on pre-
calculated visibility data. The solid occluders culling algorithm has been applied to commercially deployed 
virtual reality systems and test cases and results are provided from actual virtual reality shows. 

Keywords 
Hidden surface removal, visibility, virtual reality, games, dynamic environments. 

 

1. INTRODUCTION 
In dense or large three-dimensional environments, the 
visible geometry consists of many hundreds of 
thousands of polygons. Fortunately, most of these 
primitives are not visible simultaneously from an 
arbitrary vantage point. If the amount of actually 
invisible (hidden) polygons that are nevertheless sent 
to the graphics hardware for rendering is kept low, 
the performance of the application can gain a 
significant boost. The algorithms used for culling 
these surfaces fall into three categories, back face 
elimination, view frustum culling and occlusion 
culling, the later being not so trivial as the rest. 

Occlusion Culling 
In occlusion culling, geometry that is hidden behind 
objects closer to the camera point is discarded before 
being subject to depth sorting algorithms, although 
this geometry may pass the other two culling tests. 

 
Most occlusion culling methods use planar occluders 
[Hud97a] and their projections on the viewing plane. 
These planar occluders are often the polygons of the 
blocking geometry. Culling tests take place either in 
3D space (viewer coordinate system, see Fig. 1) or in 
the resulting discrete image space, after projecting 
and rasterising the occluders and the potentially 
hidden geometry in an image buffer. The Hierarchical 
Z-Buffer [Gre93a] and the Hierarchical Occlusion 
Map [Zha98a] are two good examples of the later 
approach. Other techniques rely on the concept of 
space partitioning in cells, which are visible through 
openings, named portals, as in [Lue95a]. Binary 
Space Subdivision is often utilized to automatically 
segment space into cells based on the geometry 
[Tel91a]. The related visibility culling techniques 
may use pre-calculated information or clip entire cells 
on the fly. BSP and cell-and-portal techniques work 
very well for enclosed environments, such as building 
interiors and are thus favored by the game 
development community. Occlusion culling 
techniques may pose some restrictions on navigation 
freedom (non-arbitrary view location) in order to gain 
simplicity and performance, as is the case in 
[Dow01a]. A more extensive presentation of the 
different occlusion culling methods is clearly beyond 
the scope of this paper but the interested reader can 
find a thorough and comprehensive survey and 
comparison of occlusion culling algorithms in 
[Coh03a].  
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Occlusion tests using small, independent occluders, 
such as geometry polygons or view-dependent planar 
occluders, are inefficient because an object may be 
partially hidden by two or more occluders and 
therefore not discarded, but totally hidden by the joint 
surface that the occluders may produce (Fig. 2). To 
address this, fusion algorithms have been proposed 
by many authors, as in [Sch00a] and [Kol00a]. These 
methods try to combine the resulting frusta (in 3D 
space) or produce aggregate footprints (in image 
space) of the occluders in order to maximize the 
culling effectiveness of closely packed but otherwise 
unrelated occluders. Joining either the view-
dependent occluders or the resulting frusta or 
projected polygons (image-space footprints) involves 
expensive operations that have to be performed at 
each frame. Furthermore, containment tests with non-

convex (or multiple) frusta or non-convex polygons 
that are generated from the joint projected occluders 
are inherently more complex and time consuming 
when compared to simple individual convex occluder 
tests. Joining and visibility testing can be simplified 
by generating approximate convex aggregations of 
occluder clusters but in this case, an error is 
introduced which may become intolerable, especially 
when the viewer comes close to the occluders. 

The method for occlusion culling presented here 
relies on the use of convex solid occluder shapes in a 
scene to block away geometry fragments (or 
hierarchies of objects) from arbitrary view points. It 
extends the work of Hudson et al [Hud97a] for 
occlusion culling using shadow frusta to address the 
inefficiency of partial visibility discussed above, 
while avoiding the expensive joining calculations. 
Shadow frustum culling uses – usually convex - 
planar occluder polygons, which can be part of the 
visible scene geometry or dummy (proxy) occluders, 
in order to create semi-infinite conical frusta with 
edges emanating from the viewpoint and passing 
through the polygon’s vertices (Fig. 1). A geometrical 
entity, which can be anything from a simple polygon 
to a scene-graph hierarchy of complex objects, is 
blocked if its bounding volume is completely 
contained within the frustum. In the case of a 
hierarchy of objects, if it cannot be safely discarded 
as a whole due to partial containment into the shadow 
frustum, the tree is traversed in search of a potentially 
fully hidden sub-tree. Hudson et. al. [Hud97a] 
proposed a dynamic occluder selection mechanism 
which maintains a small list of most efficient 
occluders for each frame, selected among the full set 
of planar occluders using proximity, alignment and 
area coverage criteria. More about this selection 
mechanism and its extension to the solid occluder 
paradigm will be discussed in section 3. 

 

Motivation 
In many static or dynamic environments and 
especially in the case of outdoor scenes, where the 
geometry is often blocky (buildings, cars etc), 
clustered and possibly sparse, simple occlusion 
culling performs very poorly due to the partial 
occlusion phenomenon (Fig. 2): Two or more 
adjoining planar occluders may partially hide a 
distant object but the combined occlusion area of 
them may hide it completely. This object cannot be 
eliminated if the frustum for each occluder is created 
separately, and the joining of frusta is, as mentioned, 
an expensive operation. Pre-calculation methods 
solve this problem but cannot be effectively applied 
to dynamic environments. 

 

Figure 1. Principle of the shadow frustum culling 
method. 

 

Figure 2. The generation of the culling frusta from 
convex solid silhouettes eliminates many cases of 

partial occlusion. 

 



2. METHOD OVERVIEW 
To overcome this limitation, instead of individual 
planar polygons, convex solid occluders were used, 
such as boxes and cylinders as visibility blocking 
proxies for large isolated structures. For the moment, 
solid occluders are manually defined (modeled). A 
convex solid, when projected on an arbitrary plane, is 
guaranteed to produce a convex polygon. The convex 
frustum of the projected polygon is the union of the 
frusta that would be generated from the individual 
planes of the faces of the solid occluder, thus 
bypassing the need to merge frusta in order to avoid 
partial occlusion. 

Solid occluders are easy and efficient to define in 
open space environments and therefore the method is 
most suitable for such scenes. In enclosed (indoor) 
static environments, although the application of the 
method is equally feasible, it does not provide any 
gain when compared with the simpler cell-and-portal 
occlusion culling schema. Shadow frustum culling 
using solid occluders is inherently compatible with 
moving geometry as the solid blockers can be 
transformed in space in the same manner as the rest 
of the geometry, without any computational 
overhead.  

For each frame, the solid occluder frustum is 
generated as follows (Fig. 3). The view-dependent 
silhouette of the solid occluder is extracted by 
determining the edges belonging to adjacent 
polygons, which are not both visible or hidden 
simultaneously: 
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where kN is the normal vector of triangle ktr , 0kP  

the triangle’s first point and C  the viewpoint. 

The silhouette edges do not lie on the same plane in 
general. Therefore, a cap (near plane) for the semi-
infinite frustum must be approximately constructed, 
based on the relative position of the viewer and the 
silhouette points. If the near plane is too close, 
geometry that is contained in the convex hull of the 
edge poly-line may be falsely eliminated. Similarly, 
choosing a plane near the average of the silhouette 
points can be a disastrous selection for elongated 
solid occluders in the view direction for the same 
reason (Fig. 4). Therefore, the near plane of the 
frustum is chosen so that it passes through the furthest 
point of the silhouette line relative to the viewer. The 
normal vector of the near frustum cap is the average 
directional vector between each silhouette point and 
the viewpoint C :   
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where iS  is the i-th point out of the K silhouette 

vertices. 

The effectiveness of the solid occluders becomes 
apparent when the viewpoint is moving among 
buildings or other isolated obstacles at inspection 
distance (near). Planar occluders would mostly 
produce partial occlusion when the viewer is not 
facing the main sides of the geometry straight on. 
Most of the time, we view structures and moving 
objects from odd angles and this is where the solid 
occluders technique provides a unified and 
contiguous frustum to take into account all planar 
sides at once. 
 

 

Figure 3. Frustum creation, from silhouette 
determination to (convex) frustum generation. 
The near cap of the frustum passes from the 

furthest silhouette point to the camera position. 

 



3. OCCLUDER SELECTION 
As explained by Hudson et al. [Hud97a], a scene may 
contain too many occluders for a real-time 
application to be able to test each object against each 
one of them. For instance, in a finished virtual reality 
production, such as the “Walk through Ancient 
Olympia” by the Foundation of the Hellenic World 
(FHW) [Gai04a], a virtual world may contain more 
than 200 occluder planes and solids. Therefore, an 
optimal set of occluders has to be selected for each 
frame at run-time in order to keep the number of 
“active” occluder primitives to a minimum. For this 
task, a ranking function planarf  and solidf  has to be 

devised for each type of blocking primitives that 

takes into account the solid angle of the frustum. For 
planar occluders, Hudson et al. use the area-angle 
approximation presented by Coorg and Teller 
[Coo97a]: 

 2planar
AN Vf
V

− ⋅=  (3) 

where A is the area of a planar occluder, N  is its 

normal vector and V  is the vector from the 
viewpoint to the center of the occluder. The criterion 
of eq. (3) provides a reliable measure of occluder 
importance. For solid occluders we use an 
approximation formula, which depends on the 
projection on the view plane of the solid occluder’s 
volume Vol and the squared distance of the occluder 
from the viewpoint: 
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Note that the above ranking function for the solid 
occluders does not depend on angular attributes as 
the near plane of the constructed frustum always 
faces the center of projection (see eq. (2)). planarf  and 

solidf  are balanced and do not need further biasing to 

become compatible. At each frame cycle, an active 
set of occluders, consisting of both solid and planar 
ones, is determined by evaluating and sorting the 
result of the corresponding ranking function for each 
one of them. Please note that due to time coherence 
and the fact that the occluder selection is not critical 
for the visual quality, it is not necessary to perform 
this sorting task at every frame. A typical size for the 
active occluders set is 10 – 20 occluders, depending 
on the field of view. For instance, our framework, 
running on a four-wall surround-screen platform, uses 
a set of 15 active occluders. 
 
 

4. CASE STUDIES AND RESULTS 
Various tests were run to compare the performance of 
the solid occluder algorithm with the one of the 
planar occluder scheme. As both planar and solid 
occluders are supported and incorporated in our 
application software that is used to drive the virtual 
reality shows at FHW, we were able to isolate the two 
cases under exactly the same application execution 
scenarios. The integration of the occlusion techniques 
within a complex scene-graph platform (SGI OpenGL 
Performer-based) also allowed for realistic 
performance testing, taking advantage of all the other 
optimizations available, such as frustum culling and 
location-sensitive geometry switching. The testing 
and benchmarking themselves took place in a four-

 

Figure 4. Near frustum cap selection.  

 



wall CAVE-like surround screen virtual environment. 
This means that view-frustum culling alone was not a 
very effective acceleration technique as the largest 
portion of the world was visible at any time in at least 
two displays. Therefore, this setup presented an ideal 
testbed for occlusion culling methods.   

The test cases presented here are two extreme ones, 
one sparse rural environment - Ancient Olympia, as 
presented in the “Walk through Ancient Olympia” 
thematic show of FHW [Gai04a] – and a dense 
cityscape. Ancient Olympia consists of approximately 

3250 10⋅  triangles, while the cityscape case uses 
about 3500 10⋅  triangles. The respective graphs in 
Fig. 5 and 6 show the number of primitives actually 
rendered (not culled) per walkthrough instance. For 
the statistic data capture, pre-recorded viewpoint  
position and orientation paths were used in order to 
maintain consistency among the experiments with 
different culling techniques. 

In sparse environments, when the view position is far 
from the blocking geometry, the gain of the solid 
occluders over the planar ones is not significant. But 
when the viewpoint moves closer to objects, the solid 
occluders create larger, contiguous frusta, which 
effectively cull the hidden objects. Fig. 5 
demonstrates this fact. At the view locations marked 
as A, B and C, the camera is facing towards the 

adjacent buildings. As planar occluders fail to cover 
both visible sides of a building simultaneously, 
hidden geometry is partially occluded, while in the 
case of the solid occluders it is fully occluded. Solid 
occluders are very convenient for structural 
geometry, like buildings, where convex polyhedra 
can be very intuitively placed or generated to tightly 
match the structure’s shape. 

In the second case study presented here (Fig. 6), a 
camera navigates through a model city, viewing the 
scene from a wide range of angles and locations. In 
order to keep the number of occluders low, each 
building is associated with a single though sub-
optimal occluder. Using three box occluders instead 
of one, would have resulted in a more tight fitting of 
the geometry and therefore better culling results. The 
scene complexity of modeled environment is very 
balanced with regard to the view-direction due to the 
uniform distribution of three-dimensional models in 
space. As can be verified by the measured visible 
primitives at each path location, in this dense 
environment, there is an almost constant performance 
ratio between the solid and the planar occlusion 
culling method.  

Apart from the computational cost of the geometry-
frustum containment test, which is common to both 
planar and solid occluder methods, the overhead 

Figure 5. Sparse environment test case – Ancient Olympia. Solid occluders offer a significant culling 
performance improvement when the camera is moving near structures or when inspecting objects. 



introduced by the solid occluders comes from the 
determination of the visible edges of a convex solid, 
at each frame (see statistics in Table 1 and 2). In 
practice, this overhead is negligible because the 
silhouette is computed for very few and simple solid 
objects. This is ensured by the selection mechanism 
discussed in section 3. 

The solid occluders culling method is an approximate 
algorithm, whose accuracy, compared to exact 
visibility calculation methods, depends on the 
selection of the occluders. In general, as occluders 
are enclosed in the shell of the actual geometric 
entities, the method is conservative, i.e. visibility is 
overestimated.  

 

5. CONCLUSION 
Even though the speed of today’s graphics cards is 
increasing at a phenomenal rate, it will always be the 
case that researchers and game developers alike 
would like to push more geometry through the 
graphics pipeline than the card can handle at 
acceptable frame rates. Removing non-visible 
geometry before it reaches the pipeline is an 

Occlusion Method No Occl. 
Culling 

Planar 
Occluders 

Solid 
Occluders 

Average 
primitives/frame 73096.9 57150.1 52882.0 

Average 
Draw Time (ms) 100.57 89.71 85.14 

Average 
Overhead (ms)  

- 0.99 1.89 

Table 1. Ancient Olympia Statistics 
 
 

Occlusion 
Method 

No Occl. 
Culling 

Planar 
Occluders 

Solid 
Occluders 

Average 
primitives/frame 145488.8 100038.2 81064.2 

Average 
Draw Time (ms) 136.80 92.60 78.26 

Average 
Overhead (ms)  

- 1.19 2.63 

Table 2. Cityscape Statistics 
 
 

Figure 6. Dense environment test case. The chart shows primitives actually rendered (no occlusion / 
view frustum culling). There is an almost constant gain of the solid occluders over the planar ones. 



important aspect of real time graphics. Occlusion 
culling in general and more specifically the shadow 
frustum culling method does exactly that, removing 
large portions of the scene-graph from the pipeline at 
a significant speed gain as we saw from the plots. 
Furthermore, the use of convex solid occluders 
pushes the rendering speed higher and provides an 
intuitive extension to the shadow frustum culling 
method. 

One aspect that has not been investigated in this 
paper is the generation of frustums from non-convex 
solids. The silhouette determination of concave solids 
and the intersection of arbitrary geometry with a non-
convex frustum is CPU intensive and well beyond the 
practical limits of real-time applications. 
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