
Efficient Occlusion Culling using Solid Occluders

Georgios Papaioannou

gepap@fhw.gr

Athanasios Gaitatzes

 Foundation of the Hellenic World
Poulopoulou 38

11851, Athens, Greece

gaitat@fhw.gr

Dimitrios Christopoulos

christop@fhw.gr

ABSTRACT

Occlusion culling is a genre of algorithms for rapidly eliminating portions of three-dimensional geometry hidden
behind other, visible objects prior to passing them to the rendering pipeline. In this paper, an extension to the
popular shadow frustum culling algorithm is presented, which takes into account the fact that many planar
occluders can be grouped into compound convex solids, which in turn can provide fewer and larger culling frusta
and therefore more efficient elimination of hidden geometry. The proposed method combines planar and solid
occluders using a unified selection approach and is ideal for dynamic environments, as it doesn’t depend on pre-
calculated visibility data. The solid occluders culling algorithm has been applied to commercially deployed
virtual reality systems and test cases and results are provided from actual virtual reality shows.

Keywords
Hidden surface removal, visibility, virtual reality, games, dynamic environments.

1. INTRODUCTION
In dense or large three-dimensional environments, the
visible geometry consists of many hundreds of
thousands of polygons. Fortunately, most of these
primitives are not visible simultaneously from an
arbitrary vantage point. If the amount of actually
invisible (hidden) polygons that are nevertheless sent
to the graphics hardware for rendering is kept low,
the performance of the application can gain a
significant boost. The algorithms used for culling
these surfaces fall into three categories, back face
elimination, view frustum culling and occlusion
culling, the later being not so trivial as the rest.

Occlusion Culling
In occlusion culling, geometry that is hidden behind
objects closer to the camera point is discarded before
being subject to depth sorting algorithms, although
this geometry may pass the other two culling tests.

Most occlusion culling methods use planar occluders
[Hud97a] and their projections on the viewing plane.
These planar occluders are often the polygons of the
blocking geometry. Culling tests take place either in
3D space (viewer coordinate system, see Fig. 1) or in
the resulting discrete image space, after projecting
and rasterising the occluders and the potentially
hidden geometry in an image buffer. The Hierarchical
Z-Buffer [Gre93a] and the Hierarchical Occlusion
Map [Zha98a] are two good examples of the later
approach. Other techniques rely on the concept of
space partitioning in cells, which are visible through
openings, named portals, as in [Lue95a]. Binary
Space Subdivision is often utilized to automatically
segment space into cells based on the geometry
[Tel91a]. The related visibility culling techniques
may use pre-calculated information or clip entire cells
on the fly. BSP and cell-and-portal techniques work
very well for enclosed environments, such as building
interiors and are thus favored by the game
development community. Occlusion culling
techniques may pose some restrictions on navigation
freedom (non-arbitrary view location) in order to gain
simplicity and performance, as is the case in
[Dow01a]. A more extensive presentation of the
different occlusion culling methods is clearly beyond
the scope of this paper but the interested reader can
find a thorough and comprehensive survey and
comparison of occlusion culling algorithms in
[Coh03a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Occlusion tests using small, independent occluders,
such as geometry polygons or view-dependent planar
occluders, are inefficient because an object may be
partially hidden by two or more occluders and
therefore not discarded, but totally hidden by the joint
surface that the occluders may produce (Fig. 2). To
address this, fusion algorithms have been proposed
by many authors, as in [Sch00a] and [Kol00a]. These
methods try to combine the resulting frusta (in 3D
space) or produce aggregate footprints (in image
space) of the occluders in order to maximize the
culling effectiveness of closely packed but otherwise
unrelated occluders. Joining either the view-
dependent occluders or the resulting frusta or
projected polygons (image-space footprints) involves
expensive operations that have to be performed at
each frame. Furthermore, containment tests with non-

convex (or multiple) frusta or non-convex polygons
that are generated from the joint projected occluders
are inherently more complex and time consuming
when compared to simple individual convex occluder
tests. Joining and visibility testing can be simplified
by generating approximate convex aggregations of
occluder clusters but in this case, an error is
introduced which may become intolerable, especially
when the viewer comes close to the occluders.

The method for occlusion culling presented here
relies on the use of convex solid occluder shapes in a
scene to block away geometry fragments (or
hierarchies of objects) from arbitrary view points. It
extends the work of Hudson et al [Hud97a] for
occlusion culling using shadow frusta to address the
inefficiency of partial visibility discussed above,
while avoiding the expensive joining calculations.
Shadow frustum culling uses – usually convex -
planar occluder polygons, which can be part of the
visible scene geometry or dummy (proxy) occluders,
in order to create semi-infinite conical frusta with
edges emanating from the viewpoint and passing
through the polygon’s vertices (Fig. 1). A geometrical
entity, which can be anything from a simple polygon
to a scene-graph hierarchy of complex objects, is
blocked if its bounding volume is completely
contained within the frustum. In the case of a
hierarchy of objects, if it cannot be safely discarded
as a whole due to partial containment into the shadow
frustum, the tree is traversed in search of a potentially
fully hidden sub-tree. Hudson et. al. [Hud97a]
proposed a dynamic occluder selection mechanism
which maintains a small list of most efficient
occluders for each frame, selected among the full set
of planar occluders using proximity, alignment and
area coverage criteria. More about this selection
mechanism and its extension to the solid occluder
paradigm will be discussed in section 3.

Motivation
In many static or dynamic environments and
especially in the case of outdoor scenes, where the
geometry is often blocky (buildings, cars etc),
clustered and possibly sparse, simple occlusion
culling performs very poorly due to the partial
occlusion phenomenon (Fig. 2): Two or more
adjoining planar occluders may partially hide a
distant object but the combined occlusion area of
them may hide it completely. This object cannot be
eliminated if the frustum for each occluder is created
separately, and the joining of frusta is, as mentioned,
an expensive operation. Pre-calculation methods
solve this problem but cannot be effectively applied
to dynamic environments.

Figure 1. Principle of the shadow frustum culling
method.

Figure 2. The generation of the culling frusta from
convex solid silhouettes eliminates many cases of

partial occlusion.

2. METHOD OVERVIEW
To overcome this limitation, instead of individual
planar polygons, convex solid occluders were used,
such as boxes and cylinders as visibility blocking
proxies for large isolated structures. For the moment,
solid occluders are manually defined (modeled). A
convex solid, when projected on an arbitrary plane, is
guaranteed to produce a convex polygon. The convex
frustum of the projected polygon is the union of the
frusta that would be generated from the individual
planes of the faces of the solid occluder, thus
bypassing the need to merge frusta in order to avoid
partial occlusion.

Solid occluders are easy and efficient to define in
open space environments and therefore the method is
most suitable for such scenes. In enclosed (indoor)
static environments, although the application of the
method is equally feasible, it does not provide any
gain when compared with the simpler cell-and-portal
occlusion culling schema. Shadow frustum culling
using solid occluders is inherently compatible with
moving geometry as the solid blockers can be
transformed in space in the same manner as the rest
of the geometry, without any computational
overhead.

For each frame, the solid occluder frustum is
generated as follows (Fig. 3). The view-dependent
silhouette of the solid occluder is extracted by
determining the edges belonging to adjacent
polygons, which are not both visible or hidden
simultaneously:

0 0

(,)

() () 0

i j

i i j j

edge tr tr Silhouette

N P C N P C

∈ ⇔

   ⋅ − ⋅ ⋅ − ≤      
 (1)

where kN is the normal vector of triangle ktr , 0kP

the triangle’s first point and C the viewpoint.

The silhouette edges do not lie on the same plane in
general. Therefore, a cap (near plane) for the semi-
infinite frustum must be approximately constructed,
based on the relative position of the viewer and the
silhouette points. If the near plane is too close,
geometry that is contained in the convex hull of the
edge poly-line may be falsely eliminated. Similarly,
choosing a plane near the average of the silhouette
points can be a disastrous selection for elongated
solid occluders in the view direction for the same
reason (Fig. 4). Therefore, the near plane of the
frustum is chosen so that it passes through the furthest
point of the silhouette line relative to the viewer. The
normal vector of the near frustum cap is the average
directional vector between each silhouette point and
the viewpoint C :

 () ()
1 1

0 0

K K

near i i
i i

N C S C S
− −

= =

= − −∑ ∑ (2)

where iS is the i-th point out of the K silhouette

vertices.

The effectiveness of the solid occluders becomes
apparent when the viewpoint is moving among
buildings or other isolated obstacles at inspection
distance (near). Planar occluders would mostly
produce partial occlusion when the viewer is not
facing the main sides of the geometry straight on.
Most of the time, we view structures and moving
objects from odd angles and this is where the solid
occluders technique provides a unified and
contiguous frustum to take into account all planar
sides at once.

Figure 3. Frustum creation, from silhouette
determination to (convex) frustum generation.
The near cap of the frustum passes from the

furthest silhouette point to the camera position.

3. OCCLUDER SELECTION
As explained by Hudson et al. [Hud97a], a scene may
contain too many occluders for a real-time
application to be able to test each object against each
one of them. For instance, in a finished virtual reality
production, such as the “Walk through Ancient
Olympia” by the Foundation of the Hellenic World
(FHW) [Gai04a], a virtual world may contain more
than 200 occluder planes and solids. Therefore, an
optimal set of occluders has to be selected for each
frame at run-time in order to keep the number of
“active” occluder primitives to a minimum. For this
task, a ranking function planarf and solidf has to be

devised for each type of blocking primitives that

takes into account the solid angle of the frustum. For
planar occluders, Hudson et al. use the area-angle
approximation presented by Coorg and Teller
[Coo97a]:

 2planar
AN Vf
V

− ⋅= (3)

where A is the area of a planar occluder, N is its

normal vector and V is the vector from the
viewpoint to the center of the occluder. The criterion
of eq. (3) provides a reliable measure of occluder
importance. For solid occluders we use an
approximation formula, which depends on the
projection on the view plane of the solid occluder’s
volume Vol and the squared distance of the occluder
from the viewpoint:

2

3solid
Vol Volf V
V V

−
= ⋅ = (4)

Note that the above ranking function for the solid
occluders does not depend on angular attributes as
the near plane of the constructed frustum always
faces the center of projection (see eq. (2)). planarf and

solidf are balanced and do not need further biasing to

become compatible. At each frame cycle, an active
set of occluders, consisting of both solid and planar
ones, is determined by evaluating and sorting the
result of the corresponding ranking function for each
one of them. Please note that due to time coherence
and the fact that the occluder selection is not critical
for the visual quality, it is not necessary to perform
this sorting task at every frame. A typical size for the
active occluders set is 10 – 20 occluders, depending
on the field of view. For instance, our framework,
running on a four-wall surround-screen platform, uses
a set of 15 active occluders.

4. CASE STUDIES AND RESULTS
Various tests were run to compare the performance of
the solid occluder algorithm with the one of the
planar occluder scheme. As both planar and solid
occluders are supported and incorporated in our
application software that is used to drive the virtual
reality shows at FHW, we were able to isolate the two
cases under exactly the same application execution
scenarios. The integration of the occlusion techniques
within a complex scene-graph platform (SGI OpenGL
Performer-based) also allowed for realistic
performance testing, taking advantage of all the other
optimizations available, such as frustum culling and
location-sensitive geometry switching. The testing
and benchmarking themselves took place in a four-

Figure 4. Near frustum cap selection.

wall CAVE-like surround screen virtual environment.
This means that view-frustum culling alone was not a
very effective acceleration technique as the largest
portion of the world was visible at any time in at least
two displays. Therefore, this setup presented an ideal
testbed for occlusion culling methods.

The test cases presented here are two extreme ones,
one sparse rural environment - Ancient Olympia, as
presented in the “Walk through Ancient Olympia”
thematic show of FHW [Gai04a] – and a dense
cityscape. Ancient Olympia consists of approximately

3250 10⋅ triangles, while the cityscape case uses
about 3500 10⋅ triangles. The respective graphs in
Fig. 5 and 6 show the number of primitives actually
rendered (not culled) per walkthrough instance. For
the statistic data capture, pre-recorded viewpoint
position and orientation paths were used in order to
maintain consistency among the experiments with
different culling techniques.

In sparse environments, when the view position is far
from the blocking geometry, the gain of the solid
occluders over the planar ones is not significant. But
when the viewpoint moves closer to objects, the solid
occluders create larger, contiguous frusta, which
effectively cull the hidden objects. Fig. 5
demonstrates this fact. At the view locations marked
as A, B and C, the camera is facing towards the

adjacent buildings. As planar occluders fail to cover
both visible sides of a building simultaneously,
hidden geometry is partially occluded, while in the
case of the solid occluders it is fully occluded. Solid
occluders are very convenient for structural
geometry, like buildings, where convex polyhedra
can be very intuitively placed or generated to tightly
match the structure’s shape.

In the second case study presented here (Fig. 6), a
camera navigates through a model city, viewing the
scene from a wide range of angles and locations. In
order to keep the number of occluders low, each
building is associated with a single though sub-
optimal occluder. Using three box occluders instead
of one, would have resulted in a more tight fitting of
the geometry and therefore better culling results. The
scene complexity of modeled environment is very
balanced with regard to the view-direction due to the
uniform distribution of three-dimensional models in
space. As can be verified by the measured visible
primitives at each path location, in this dense
environment, there is an almost constant performance
ratio between the solid and the planar occlusion
culling method.

Apart from the computational cost of the geometry-
frustum containment test, which is common to both
planar and solid occluder methods, the overhead

Figure 5. Sparse environment test case – Ancient Olympia. Solid occluders offer a significant culling
performance improvement when the camera is moving near structures or when inspecting objects.

introduced by the solid occluders comes from the
determination of the visible edges of a convex solid,
at each frame (see statistics in Table 1 and 2). In
practice, this overhead is negligible because the
silhouette is computed for very few and simple solid
objects. This is ensured by the selection mechanism
discussed in section 3.

The solid occluders culling method is an approximate
algorithm, whose accuracy, compared to exact
visibility calculation methods, depends on the
selection of the occluders. In general, as occluders
are enclosed in the shell of the actual geometric
entities, the method is conservative, i.e. visibility is
overestimated.

5. CONCLUSION
Even though the speed of today’s graphics cards is
increasing at a phenomenal rate, it will always be the
case that researchers and game developers alike
would like to push more geometry through the
graphics pipeline than the card can handle at
acceptable frame rates. Removing non-visible
geometry before it reaches the pipeline is an

Occlusion Method No Occl.
Culling

Planar
Occluders

Solid
Occluders

Average
primitives/frame 73096.9 57150.1 52882.0

Average
Draw Time (ms) 100.57 89.71 85.14

Average
Overhead (ms)

- 0.99 1.89

Table 1. Ancient Olympia Statistics

Occlusion
Method

No Occl.
Culling

Planar
Occluders

Solid
Occluders

Average
primitives/frame 145488.8 100038.2 81064.2

Average
Draw Time (ms) 136.80 92.60 78.26

Average
Overhead (ms)

- 1.19 2.63

Table 2. Cityscape Statistics

Figure 6. Dense environment test case. The chart shows primitives actually rendered (no occlusion /
view frustum culling). There is an almost constant gain of the solid occluders over the planar ones.

important aspect of real time graphics. Occlusion
culling in general and more specifically the shadow
frustum culling method does exactly that, removing
large portions of the scene-graph from the pipeline at
a significant speed gain as we saw from the plots.
Furthermore, the use of convex solid occluders
pushes the rendering speed higher and provides an
intuitive extension to the shadow frustum culling
method.

One aspect that has not been investigated in this
paper is the generation of frustums from non-convex
solids. The silhouette determination of concave solids
and the intersection of arbitrary geometry with a non-
convex frustum is CPU intensive and well beyond the
practical limits of real-time applications.

REFERENCES
[Coh03a] Cohen-Or, D., Chrysanthou, Y., Silva, C.

T., and Durand, F. A Survey of Visibility for
Walkthrough Applications, IEEE Trans.
Visualization and Computer Graphics, 9, pp. 412-
431, 2003.

[Coo97a] Coorg, S., and Teller, S. Real-time
Occlusion Culling for Models with Large
Occluders, in ACM Symposium on Interactive 3D
Graphics proc., pp. 83-90, 1997.

[Dow01a] Downs, L., Möller., T., and Séquin, C. H.
Occlusion Horizons for Driving through Urban
Scenery, in ACM Symposium on Interactive 3D
Graphics proc., pp. 121-124, 2001.

[Gai04a] Gaitatzes, A., Christopoulos D., and
Papaioannou, G. The Ancient Olympic Games:

Being Part of the Experience, in Eurographics 5th
International Symposium on Virtual Reality,
Archaeology and Intelligent Cultyral Heritage
(VAST 2004) proc., pp. 19-28, 2004.

 [Gre93a] Greene, N., Kass, M., and Miller, G.
Hierarchical Z-Buffer Visibility, in ACM
SIGGRAPH ’93 conf. proc., pp. 231–240, 1993.

[Hud97a] Hudson, T., Manocha, D., Cohen, J., Lin,
M., Hoff, K., and Zhang, H. Accelerated
Occlusion Culling Using Shadow Frustra, in 13th
Annual ACM Symposium on Computational
Geometry proc., pp. 1–10, 1997.

[Kol00a] Koltun, V., Chrysanthou, Y., and Cohen-
Or, D. Virtual occluders: An Efficient
Intermediate PVS Representation, in Rendering
Techniques 2000: 11th Eurographics Workshop
on Rendering proc., pp. 59–70, 2000.

[Lue95a] Luebke, D., and Georges, C. Portals and
Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets, in ACM Symposium on Interactive
3D Graphics proc., pp. 105–106, 1995.

[Sch00a] Schaufler, G., Dorsey, J., Decoret, X., and
Sillion, F. Conservative Volumetric Visibility
with Occluder Fusion, in ACM SIGGRAPH 2000
conf. proc., pp. 229–238, 2000.

[Tel91a] Teller, D., and Sequin, C. H. Visibility
Preprocessing for Interactive Walkthroughs, in
ACM SIGGRAPH '91 conf. proc., pp. 61-69,
1991.

[Zha98a] Zhang, H. Effective Occlusion Culling for
the Interactive Display of Arbitrary Models, Ph.D.
Dissertation, Department of Computer Science,
UNC-Chapel Hill, 1998.

