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MARKOV CHAINS FOR EXPLORING POSTERIOR DISTRIBUTIONS 

University of Minnesota 

Several Markov chain methods are available for sampling from a poste- 
rior distribution. Two important examples are the Gibbs sampler and the 
Metropolis algorithm. In addition, several strateges are available for con- 
structing hybrid algorithms. This paper outlines some of the basic methods 
and strategies and discusses some related theoretical and practical issues. 
On the theoretical side, results from the theory of general state space Markov 
chains can be used to obtain convergence rates, laws of large numbers and 
central limit theorems for estimates obtained from Markov chain methods. 
These theoretical results can be used to guide the construction of more effi- 
cient algorithms. For the practical use of Markov chain methods, standard 
simulation methodology provides several variance reduction techniques and 
also gives guidance on the choice of sample size and allocation. 

1. Introduction. Suppose we are given a posterior distribution T on a 
quantity 0 with values in a space E. Usually E will be a subset of Itk and .rr will 
have a density with respect to a a-finite measure p, 

For simplicity, T will be used to denote both the distribution and the density. We 
may be interested in computing a particular numerical characteristic of T, or 
more generally in developing an understanding of what information T contains 
about 0. 

Several methods for computing characteristics of posterior distributions are 
now available. These include asymptotic approximations, numerical integra- 
tion and sampling or Monte Carlo methods. Sampling methods for examining 
posterior distributions provide ways of generating samples with the property 
that the empirical distribution of the sample, or an appropriately weighted em- 
pirical distribution, approximates the posterior distribution. Using such sam- 
ples, it is easy to estimate characteristics such as the mean or standard devia- 
tion of a function of 0. Marginal distributions can be estimated using smoothing 
or, in some cases, variance reduction methods. In addition, for equally weighted 
samples, methods for viewing point clouds, such as rotating plots and Grand 
Tours, can be used to examine the joint'uncertainty about three or more com- 
ponents or features of 0. 

A number of different sampling methods are available. In rare cases it is 
possible to sample directly from the posterior distribution and thus obtain an 
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i.i.d. sample from T . In most problems this is not possible. Either the sample 
has to be dependent, or the distribution used to generate the sample has to be 
different from .ir. A method that uses independent samples from a distribution 
similar to T is importance sampling. The sample is then weighted to make up for 
the difference between T and the distribution used to generate the sample. Over 
the past decade, most work on sampling methods for exploring posterior distri- 
butions has centered on importance sampling [Geweke (1989), Stewart (1979), 
Zellner and Rossi (1984) among others]. More recently, results of Gelfand and 
Smith (1990) on the Gibbs sampler have rekindled interest in the use of depen- 
dent samples generated using Markov chains with equilibrium distribution T. 

Gelfand and Smith extend the Gibbs sampling algorithm of Geman and Geman 
(1984), originally developed for Bayesian image reconstruction, to continuous 
distributions and show how the algorithm can be used in a wide variety of 
problems. Other methods of generating Markov chains with a specified equi- 
librium distribution include the Metropolis algorithm [Metropolis, Rosenbluth, 
Rosenbluth, Teller and Teller (1953)l and some of its variants and extensions. 

This paper outlines a number of the basic Markov chain algorithms that 
are available, and describes several ways in which the algorithms can be com- 
bined to form hybrid algorithms. Results from the theory of general state space 
Markov chains [Nummelin (1984) and Revuz (1975)l are used to derive prop- 
erties of these algorithms and to suggest improvements to some algorithms. 
Finally, some issues that arise in the implementation of Markov chain methods 
are discussed. 

2. Some Markov chains. 

2.1. Notation and definitions. This subsection gives some informal defini- 
tions of concepts that are needed in the remainder of the section. More careful 
definitions of some of these concepts are given in Section 3. 

A time-homogeneous Markov chain with invariant distribution .ir is a se- 
quence of E-valued random variables {X,; n 2 0) such that the transition ker- 
nel P defined by 

P(XnlA) =P{Xn+l E A  I Xo,. . . ,Xn) 
satisfies 

.ir(A)= S .ir(dx)P(x, A) 

for all measurable sets A. The distribution ofXo is the initial distribution of the 
chain. The conditional distribution of Xn given Xo is written as 

where Pndenotes the nth iterate of the kernel P. 
The invariant distribution .ir is an equilibrium distribution for the chain if 

for r-almost all x, 

lim Pn(xl A) = T(A)
n-03 
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for all measurable sets A. A Markov chain with invariant distribution n is 
irreducible if, for any initial state, it has positive probability of entering any set 
to which n assigns positive probability. A chain is periodic if there are portions 
of the state space it can only visit at certain regularly spaced times; otherwise, 
the chain is aperiodic. If a chain has a proper invariant distribution n and it 
is irreducible and aperiodic, then T is the unique invariant distribution and is 
also the equilibrium distribution of the chain (see Theorem 1in Section 3). 

Many approaches are available for constructing Markov chains with a speci- 
fied invariant distribution. Several strategies are outlined in the following 
subsections. 

2.2. Conditioning and the Gibbs sampler. One approach to constructing a 
Markov chain with invariant distribution n is to use conditioning. Suppose X 
has distribution T, f is a function defined on E and Y = f(X). If 

then P(x,A) = Q(f(x),A) is a transition kernel with invariant distribution n. 
Since P(x, .) puts all its mass on the set f-'({f(x))), P will typically not be 
irreducible. But choosing several functions fi, . . . , f,, constructing the corre- 
sponding conditioning kernels PI,. . . , P, and using these kernels in order pro- 
duces another kernel P = PIPz.. . P, with invariant distribution .ir that may 
be irreducible. This is the strategy used in the Gibbs sampler of Gelfand and 
Smith (1990). If E is a subset of a product space and x E E can be written as 
x = (xl,.. . , x,), then the Gibbs sampler uses the functions 

f o r i =  l , . . . , m .  
The kernel obtained by conditioning on Y produces Xn + 1 by sampling from 

the conditional distribution X / Y = f (X,). As a result, for any y the conditional 
distribution X / Y = y is an invariant distribution for this kernel. Any kernel 
that is invariant with respect to these conditional distributions for ally will have 
invariant distribution T. In particular, a kernel that applies one of the methods 
described below to the conditional distributions X ( Y = y produces a kernel 
with invariant distribution T .Again, a single kernel of this type is usually not 
irreducible, but several can be used in series to produce an irreducible kernel. 

The parameterization used to constvct a Gibbs sampler can have a signifi- 
cant effect on its performance. A discussion of these parameterization issues 
is given, for example, by Hills and Smith (1992). The performance of Gibbs 
samplers can also sometimes be improved by introducing auxiliary variables 
[Besag and Green (1993), Section 51. A particularly successful example of this 
approach is the algorithm of Swendsen and Wang (1987) for sampling from the 
multicolor generalization of the Ising model. 

2.3. The Metropolis algorithm. The Metropolis algorithm was originally 
introduced by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) 
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for computing properties of substances composed of interacting individual 
molecules. This algorithm has been used extensively in statistical physics 
[Hammersley and Handscomb (1964)' Section 9.31. A variation on this algo- 
rithm was proposed by Barker (1965).A generalization was introduced by 
Hastings (1970)and studied further by Peskun (1973).Another generalization 
is known as the hit-and-run algorithm [Smith (1984)and Schmeiser and Chen 
(1991)l.The Metropolis algorithm forms the basis of the simulated annealing 
algorithm [Kirkpatrick, Gelatt and Vecchi (1983)l. In the discrete Bayesian 
image reconstruction problems considered by Geman and Geman (1984),the 
Gibbs sampler can be viewed as a special case of Barker's version of the Metropo- 
lis algorithm. 

2.3.1. The general algorithm. To define Hastings' version of the algorithm, 
suppose that .ir has a density with respect to p and let Q be a Markov transition 
kernel of the form 

To avoid some trivial special cases, let E+= {x: r ( x )  > 0 )  and assume that Q(x, 
E+)= 1 for x E+.Also assume that r is not concentrated on a single point. 
Then define 

If the chain is currently at a point Xn = x,  then it generates a candidate value Y 
for the next location Xn+ from the distribution Q(x,.). With probability a(x ,  y )  
this candidate is accepted and the chain moves to Xn+ 1 = y. Otherwise, the step 
is rejected and the chain remains at  Xn+ 1 = x. 

This algorithm only depends on r through ratios of the form T(y)/.ir(x);thus 
T only needs to be known up to a normalizing constant. 

If ~ ( x ) q ( x ,  y )  = 0 if r ( y )= 0. Thus the chain almost surely y )  > 0,  then a(%, 
does not leave the set E+once it is entered. The restrictions imposed on Q ensure 
that E+will be entered after at most one step. In practice, the initial state will 
always be chosen to be in E+.The formal specification of P is extended to the 
complement of E+for mathematical completeness. 

If we define the off-diagonal density of a Metropolis kernel as 

and set 

r x  = 1 - Sp(x, y)p(dy), 

then the Metropolis kernel P can be written as 



MARKOV CHAINS 1705 

where Sx denotes point mass at x. The value r(x) is the probability that the 
algorithm remains at  x. Since p satisfies the reversibility condition 

it follows that n is an invariant distribution for P: for any measurable set A, 

For P to be irreducible, it is necessary that Q be irreducible, but this is not 
sufficient: irreducibility of P depends on both Q and n.If P is irreducible and 
7r({x: r(x) > 0)) > 0, then, by the results of Nummelin (1984), Section 2.4, the 
Metropolis kernel is aperiodic. 

The original Metropolis algorithm assumes q(x, y) = q( y, x). In this case the 
acceptance probability simplifies to 

Barker (1965) and Hastings (1970) consider several alternative forms of the 
acceptance probability, but results of Peskun (1973) show that the form given 
here is optimal among a fairly wide range of choices. The main reason is that 
this form rejects candidate steps less often than other forms. Hastings suggests 
monitoring rejections. Other forms of the acceptance probability may be useful 
in kernels used for conditioning as discussed in Section 4.3.2 below. 

The Metropolis algorithm is very general, allowing a variety of useful special 
cases based on different choices of the transition kernel Q. The following sub- 
sections give a few examples of Metropolis kernels that are useful for examining 
posterior distributions. 

2.3.2. Random walk chains. Suppose E = JRk, p is Lebesgue measure and 
f is a density on E. If Y is generated by drawing Z independently from f and 
setting Y =x +Z, then q(x, y) = f (  y - x ) .  Thus the kernel Q driving the Metropolis 
chain is a random walk. Natural choices for the increment distribution include a 
uniform distribution on a disk, a normal distribution or perhaps a multivariate 
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t distribution. Split-t distributions [Geweke (1989)l may also be useful. The 
scale matrix for f can be taken as a constant c times the inverse information 
at the posterior mode. Good choices for the step size constant c are still an 
open problem, but c = 1and c = seem to work reasonably well in a number 
of examples. 

If the increment density f is symmetric about the origin, then q is symmetric 
and the simpler form of the acceptance probability can be used. The algorithm 
given by Miiller (1991) corresponds to a random walk Metropolis chain with an 
increment density f that is symmetric about the origin. The hit-and-run algo- 
rithm [Smith (1984) and Schmeiser and Chen (1991)l with a uniform direction 
choice and step size chosen by the Metropolis method corresponds to a random 
walk chain with a spherically symmetric increment density. 

If the density f is strictly positive on all of Ktk,then the random walk Metropo- 
lis kernel is irreducible and aperiodic. Iff is not strictly positive everywhere, 
but is strictly positive on a neighborhood of the origin, then a sufficient condi- 
tion for the Metropolis kernel to be irreducible and aperiodic is that E+be open 
and connected. 

2.3.3. Independence chains. Candidate steps Y can also be chosen from a 
fixed density f .  This option is discussed in Hastings (1970), Section 2.5. In this 
case, q(x,y) = f(y) and the acceptance probability a(%,y ) can be written as 

a(x,y)= min -
{",:5;11}1 

where W(X) = dx)/f(x). This function w is the importance weight function that 
would be used in importance sampling if observations were generated from the 
density f .  

The independence Metropolis chain is closely related to the corresponding 
importance sampling process. Candidate steps with low weights are rarely ac- 
cepted. On the other hand, candidates with high weights are usually accepted, 
and the process will usually remain at these points for several steps, thus using 
repetition to build up weight on these points within the sample. If some points 
have very high weight values, then the process may "get s tuck at these points 
for a long time. Thus, as for importance sampling, it is useful to choose f to 
produce a weight function that is bounded, and as close to constant as possible. 
If the weight function is constant, then the Metropolis algorithm will never re- 
ject candidate steps, and the chain produces an i.i.d. sample from T . Again, the 
best choice off for an independence ~ e t r o ~ o l i s  kernel is still open to question, 
but, because of the close relation to importance sampling, it is reasonable to 
conjecture that multivariate t distributions with low degrees of freedom, split- 
t distributions and other distributions that have been found to be useful as 
importance sampling densities will be good choices in this context as well. 

An independence Metropolis kernel is irreducible and aperiodic if and only 
iff is positive p-almost everywhere on E+. 

For some problems, there may be a natural density f to use in an indepen- 
dence chain but it may be difficult or impossible to sample directly from f .  Geyer 
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(1991) suggests constructing an auxiliary chain Yn with equilibrium distribu- 
tion f and switching the states of the Xn and Yn chains with the Metropolis 
acceptance probability 

The resulting bivariate chain (X,, Yn) has an invariant distribution with density 
proportional to ~ ( x )  f (  y). 

2.3.4. Rejection sampling chains. An interesting special case of the inde- 
pendence Metropolis kernel occurs if sampling from f uses rejection sampling. 
Rejection sampling [see, e.g., Ripley (1987), Section 3.2.1 is the basis for several 
algorithms for generating variates from standard univariate distributions. This 
method has also been suggested by Zeger and Karim (1991) and by Carlin and 
Gelfand (1991) for use with the Gibbs sampler in cases where it is not possible 
to sample directly from certain conditional distributions. 

In attempting to use rejection sampling to sample directly from .rr, we use 
a density h and a constant c such that, hopefully, ~ ( x )  5 c h(x) for all x. Pairs 
(2,U) are generated by generating Z from h and U uniformly on the interval 
[O,c h(Z)l until a pair satisfying U < T(Z) is obtained. The final Z then has 
density 

If we do indeed have .rr(x) 5 c h(x), then f is proportion'al to .ir and we obtain an 
i.i.d. sample from .rr. But it is very difficult to ensure that c is large enough for 
c h to dominate .ir without choosing c excessively large, leading to an inefficient 
algorithm with many rejections. And even then without extensive analysis of 
the tails of h and .rr we cannot be certain that c h does dominate .rr. 

Fortunately, using this rejection scheme to drive an independence Metropo- 
lis chain provides a simple remedy. If we define C = {x: ~ ( x )  5 c h(x)), then the 
Metropolis acceptance probability is 

for x E C, 

f o r x $ C , y ~ C ,  
, "  

(min{a(y)h(x) ' I}, C..rr(x)h(y) for x $ C, y 

Thus the algorithm will occasionally reject candidate steps when the chain 
is at  a point x @ C. This repeats the point x within the sample path and thus 
compensates for the deficiency in the envelope at x. Dependence is introduced 
to make up for this deficiency and ensure that .rr is the invariant distribution of 
the Markov chain. If the envelope is in fact adequate, then no candidates are 
rejected, and the chain produces an i.i.d. sequence from .rr. 

The visits to the set C form a renewal process that can be used for a regen- 
erative analysis of a rejection sampling chain. 
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2.3.5. Autoregressive chains. If E = IRk, p is Lebesgue measure and f is 
a density on E with respect to p, then an intermediate strategy between a 
random walk and an independence kernel is obtained by generating Z from f 
and defining candidate steps by Y = a + b(x - a )  + Z. Here a E IRk is a fixed 
vector and b is either a real constant or a fixed k x k matrix. Thus q(x,y) = 
f (y - a - b(x - a)). For b = 1this reduces to the random walk kernel. For a = 0 
and b = 0 it produces an independence kernel. If 0 < b < 1, then this strategy 
shrinks the current state toward the point a before adding the increment Z. 

In this autoregressive strategy, it is also possible to take b < 0. If b = -1, 
then the current state is reflected about the point a before adding the increment 
Z. This is used by Hastings (1970), Example 2, to induce negative correlations 
between successive states in the chain. This will often reduce the variance of 
estimates of expectations of linear functions. It can be viewed as a method of 
producing antithetic variates [Ripley (1987), Section 5.31. 

The reflection strategy can be taken to a limit by using a degenerate in- 
crement density concentrated at the origin. This corresponds to generating a 
candidate step by just reflecting the current state x about the point a to produce 
y = 2a -x. This candidate is then accepted with probability 

Since the candidate generation density is not absolutely continuous with re- 
spect to Lebesgue measure, the dominating measure for ", this limiting kernel 
does not satisfy the definition of a Metropolis kernel given above. Nevertheless, 
it does have invariant distribution n.It is obviously periodic and not irreducible 
and therefore cannot be used alone. But it can be useful in mixtures or cycles 
with other kernels as discussed below. 

Strategies that use reflection about a point a are most effective when the 
density .ir is approximately symmetric about a .  Other symmetries, such as axial 
symmetries, can be exploited along similar lines. 

2.3.6. Grid-based chains. Ritter and Tanner (1991) propose a method called 
the griddy Gibbs sampler for Gibbs sampling in problems where conditionals 
cannot be sampled directly. This method is also described in Tanner (1991). The 
idea is to evaluate the conditional density on a grid and use an approximate cu- 
mulative distribution function based on these grid values to generate variables 
with approximately the right conditional distribution. 

Using this algorithm in its pure form may require quite a fine grid and thus 
a very large number of posterior density evaluations to control the error in the 
approximation. Fortunately, as in the case of rejection sampling, it is possible to 
embed this algorithm in a Metropolis chain to ensure that the equilibrium dis- 
tribution is exactly .rr even for a coarse grid. To simplify the discussion, suppose 
that E = R,p is Lebesgue measure and f is a density on E with respect to p. In 
higher-dimensional problems, the one-dimensional algorithm can be applied to 
each coordinate in turn, as in the Gibbs sampler, or along randomly chosen di- 
rections, as in the hit-and-run algorithm. Let X I , .  . . ,x, be a fixed set of points. 
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To generate a candidate step Y, first select a point xk from X I , .  . . ,x, according 
to a distribution that is proportional to the density values .ir(xl),. . . ,~ ( x , )at 
these points. Then generate an increment Z from f and add this increment to 
xk to obtain Y = xk +2.Thus the density of the candidate generation kernel is 

and the probability of accepting a candidate is 

d y )C d x i ) f ( x  - x i )  
a(x,  y )  = min 

d x )C ~ ( x i ) f ( y-x i ) '  

If the tails of the density f are thick enough, then the acceptance probability 
will be bounded away from 0. 

For equally spaced points the density q(x, y )  is a kernel-smoothed approxi- 
mation to ~ ( x ) .If this approximation is good, then the acceptance probability 
will be close to 1,and the chain will produce approximately i.i.d. variables from 
T .  If the approximation is not particularly good, the Metropolis chain will re- 
ject frequently to compensate for deficiencies in the approximation, but the 
equilibrium distribution will still be exactly equal to T .  

Several variations on this approach are possible. The points can be equally 
spaced or unequally spaced, and different probabilities can be used. For exam- 
ple, the points might be obtained as a sample from a density that approximates 
.rr and the probabilities taken to be proportional to the corresponding impor- 
tance weights. This approach could be applied directly in higher dimensions. It 
may also be useful in some cases to use different densities f at each point. 

Another variation is to use a sliding lattice centered at the current location 
x of the chain. Thus the grid points would be of the form x f ih for 0 5 i 5 m 
for some fixed increment h . This changes the candidate generation density to 

C d x  fih)f (  y -x F ih)
q (x , y )= C d x  & ih) 

and the acceptance probability to 

T(y ) C 7r( y & ih)f ( X  -y F ih)C T ( X  fih)
a(x ,  y )  = min 

r ( x ) C ~ ( x f i h ) f ( y - x ~ i h ) C ~ ( y f i h ) '  

This approach is particularly useful if there is too much uncertainty about the 
range of the distribution to permit using a fixed grid. 

For a sliding lattice grid it is possible to consider the limiting case where 
the increment distribution is point mass at the origin. In this case candidates 
are chosen from the lattice with probabilities proportional to T ( X  % ih) and are 
accepted with probability 

C ~ ( xfih)
a(x,  y )  = min { C T ( yfih)' '1' 



1710 L. TIERNEY 

If the support of T is bounded and the lattice is wide enough to cover the support 
from any starting point in the support, then a(x, y )  = 1for all x and y in the 
support. As in the reflection scheme discussed above, this limiting case has in- 
variant distribution n but is not irreducible. Again it can be used in combination 
with other kernels. It also has the advantage that the conditional expectation 
E [X, + 1 I X,] is very easy to compute; this is useful for variance reduction. 

2.4. Combining strategies. The methods outlined above can be used in a 
pure form, or they can be combined into hybrid strategies. One way to form 
a hybrid strategy is to use conditioning, as described above, and then apply a 
more basic strategy to the conditional distributions. Two other basic forms of 
hybrid strategies are mixtures and cycles. Suppose PI,.. . ,P, are Markov ker- 
nels with invariant distribution n. In a mixture, positive probabilities al, . . . , a, 
are specified, and at each step one of the kernels is selected according to these 
probabilities. In a cycle, each kernel is used in turn, and when the last one is 
used the cycle is restarted. 

Mixtures and cycles can be used in several ways. For example, a Gibbs sam- 
pler can be combined with occasional steps from an independence chain in a 
mixture or a cycle to "restart" the Gibbs sampler and thus reduce correlations 
while preserving the equilibrium distribution. As another example, suppose 0 
can be split into two components (01, 02), and direct sampling from 81 1 O2 is possi- 
ble but direct sampling from O2 1 01 is not possible. Such a situation is considered 
by Zeger and Karim (1991). Then "Gibbs steps" for O1 I Q2 can be combined with 
Metropolis steps for 02 I O1 in a mixture or a cycle. 

If one of the kernels in a mixture is irreducible and aperiodic, then it is 
easy to see that the mixture kernel is irreducible and aperiodic as well. If one 
of the kernels is irreducible and aperiodic, then the cycle kernel is often also 
irreducible and aperiodic, but there are simple counterexamples that show that 
no general statement to this effect can be made. In general, irreducibility and 
aperiodicity of a cycle need to be verified for each case unless one of the kernels 
has some special structure (see Proposition 4). 

Mixtures can also be constructed by selecting according to a fixed distri- 
bution from a family of transition functions indexed by a general parameter. 
Hit-and-run algorithms with a uniform direction distribution [Smith (1984) and 
Schmeiser and Chen (1991)l can thus also be viewed as mixtures. 

3. Some theoretical results. This section presents some results from the 
theory of general state space Markov chains in a form that is useful for establish- 
ing properties of Markov chains constructed to have a specified invariant distri- 
bution. The development in this section is based primarily on Nummelin (1984). 

To start off, we need some more notation and definitions. Let E be a count- 
ably generated a-algebra on E. A (Markov) transition kernel on (E, &) is a map 
P: E x E --+ [O,11such that: 

(i) for any fixed A E E ,  the function P( . ,A) is measurable; 
(ii) for any fixed x E E, the function P(x, . ) is a probability measure on (E, E). 
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Probabilities for a Markov chain with transition kernel P started at x are de- 
noted by P,. 

If u is a probability, P is a transition function on (E, E )  and h is a real-valued, 
&-measurable function, then UP,Ph and uh are defined by 

and 
~h = 1h( y)v(dy) 

for all x E E and A E E. A nonnegative real-valued function h is called harmonic 
for P if h = Ph. 

Following Nummelin, the total variation norm of a bounded signed measure 
X on (E, E )  is defined as 

XI1 = sup X(A) - inf X(A). 
A € &  A € &  

The total variation distance between two such measures X1 and X2 is I X 1  - X 2 .  
Other definitions of the total variation distance may differ by a factor of 2. 

The notation {A, i.0.) means that the sequence A, occurs infinitely often, 
that is, ElAn = m. 

For general state spaces, irreducibility is defined with respect to a a-finite 
measure y. A transition kernel P on (E, E )  is p-irreducible if p(E) > 0 and for 
each x E E and eachA E E with y(A) > 0 there exists an integer n = n(x,A)> 1 
such that Pn(x,A) > 0. For our purposes, it is natural to take y = T. The usual 
notion of irreducibility for a discrete state space corresponds to irreducibility 
with respect to counting measure. 

A n-irreducible transition kernel P is periodic if there exists an integer d > 2 
and a sequence {Eo, E l , .  . . ;Ed- 1) of d nonempty disjoint sets in E such that, 
foralli  = 0, . . . ,d - 1andallx E Ei, 

P(x, Ej) = 1 for j = i + 1 (modd). 

Otherwise, the kernel is aperiodic. 

3.1. Convergence of distributions. A crucial concept in the theory of dis- 
crete state space Markov chains is recurrence. This concept is also crucial in 
the convergence theory of general state space chains. A general definition of 
recurrence is given in Nummelin (1984), Definition 3.5. A definition that is 
sufficient for the present context is as follows. A T-irreducible chain X, with 
invariant distribution T is recurrent if, for each B with T(B) > 0, 

P,{X, E Bi.0.) > 0 forallx, 

P, {X, E B Lo.) = 1 for T-almost all x. 

The chain is Harris recurrent if P, {X, E B i.0.) = 1for all x. 
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Suppose a chain P is n-irreducible and that T is an invariant distribution 
for the chain. To obtain a contradiction, suppose in addition that the chain is 
not recurrent. Then Theorem 3.6(i) and Proposition 3.9(iv) of Nummelin (1984) 
show that there exist sets Bi such that E = UBi and the Bi are transient, that 
is, Pn(x, Bi) 4 0 for all x. Since at least one of these sets must have positive 
n-probability, this leads to a contradiction. Thus if P is n-irreducible and has 
n as an invariant distribution, then P must be recurrent. By Corollary 5.2 of 
Nummelin (1984), a T-irreducible recurrent chain has an invariant measure 
that is unique up to a multiplicative constant. The chain is called positive re-
current if the total mass of this measure is finite; otherwise it is null recurrent. 
Thus if P is n-irreducible and n is an invariant probability distribution for P, 
then P must be positive recurrent, and n is its unique invariant distribution. If 
P is also aperiodic, then Theorem 3.7(i) and Proposition 6.3 of Nummelin (1984) 
show that the transition probabilities converge to n. This is summarized in the 
following theorem. 

THEOREM1. Suppose P is T-irreducible and TP= n.Then P is positive re- 
current and n is the unique invariant distribution of P. If P is also aperiodic, 
then, for n-almost all x, 

llPn(x,.) - TI1 +0, 

with . 1 1  denoting the total variation distance. If P is Harris recurrent, then the 
convergence occurs for all x. 

Athreya, Doss and Sethuraman (1992) present a proof of this result from 
first principles. 

While this result does not provide any information on the rate of convergence, 
its assumptions are quite minimal. In fact, the assumptions are essentially 
necessary and sufficient: if 

IIPncx,.) - TI1 + 0 

for allx, then, by Proposition 6.3 of Nummelin (1984), the chain is n-irreducible, 
aperiodic, positive Harris recurrent and has invariant distribution n. 

The exceptional null set for non-Harris recurrent chains is a nuisance. Fortu- 
nately, in our applications it is usually not hard to verify that a chain is Harris 
recurrent. The basic result, which follows from Theorem 3.6(i) and Theorem 3.8 
of Nummelin (1984), is the following theorem. 

THEOREM I f  P is recurrent, then it is Harris recurrent if and only if every 2. 
bounded harmonic function is a constant. 

A condition that is satisfied by most irreducible Gibbs samplers is given by 
the following corollary. 

COROLLARYSuppose P is n-irreducible and nP = n. If P(x, .) is absolutely 1. 
continuous with respect to n for all x ,  then P is Harris recurrent. 
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PROOF. Let h be a bounded harmonic function for P. The assumptions im-
ply that P is recurrent; hence by Proposition 3.13 of Nummelin (1984) h = r h  
T-almost everywhere. Absolute continuity then implies that (Ph)(x)= r h  for all 
x. Thus h - ~ h ,that is, h is a constant. 

For general Metropolis kernels as defined above, no additional conditions 
are needed. 

COROLLARY2. Suppose P is a T-irreducible Metropolis kernel. Then P is 
Harris recurrent. 

PROOF. Let h be a bounded harmonic function for P. Since the assumptions 
imply that Pis recurrent, h = ~h T-almost everywhere as in the preceding proof. 
Suppose x E E+, let p(x,y) denote the off-diagonal density of the Metropolis 
kernel and let r(x) be the probability that a chain starting at x remains at x. 
Now JA r(y)p(dy)= 0 implies JAp(x,y )~ (dy)= 0 for x E Ef .  Therefore 

and thus 

J P ( ~ ,d ~ ) h ( ~ )= (1- r(x))rh+ r(x)h(x)= h(x). 

This in turn implies 

for every x E E+.Since r is not concentrated on a single point, T-irreducibility 
implies that r(x) < 1for all x. Thus h(x) = ~h for all x E E+.Finally, if x # E+, 
then, by the restrictions imposed on Q and the definition of a(x,y), we have 
Q(x,EC)= 1and a(x,y)= 1,and therefore h(x) = (Ph)(x)= rh .  Thus h z rh ,  
that is, h is a constant. 

A similar development to the one presented in this section is given in a paper 
by Chan (1993),which came to my attention while preparing the revision of 
this paper. 

3.2. Rates of convergence. A Markov chain is called ergodic if it is positive 
Harris recurrent and aperiodic. Several stronger forms of ergodicity that pro-
vide information on the rate of convergence in Theorem 1are available. 

A rather weak form of ergodicity stronger than simple ergodicity is called 
ergodicity of degree 2. If SBdenotes the hitting time for the set B, then an 
ergodic chain with invariant distribution .rr is ergodic of degree 2 if 
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for all B E E with T ( B )> 0 [Nummelin (1984),Definition 5.51. For such a chain 

for T-almost all x [Nummelin (1984),Corollary 6.91. Ergodicity of degree 2 is 
typically very difficult to verify in practice. 

Two stronger forms of ergodicity are calledgeometric and uniform ergodicity. 
An ergodic Markov chain with invariant distribution T is geometrically ergodic 
if there exists a nonnegative extended real-valued function M with TIMI < oo 
and a positive constant r < 1 such that 

for all x. The chain is uniformly ergodic if there is a positive constant M and a 
positive constant r < 1 such that 

sup llPn(x, . ) - T I ~ I:Mrn. 
x EE 


Uniform ergodicity implies geometric ergodicity, and geometric ergodicity im- 
plies ergodicity of degree 2. 

To give more easily verified sufficient conditions for geometric and uniform 
ergodicity, we need the notions of a minorization condition and a small set. 
A T-irreducible kernel P satisfies a minorization condition M ( m ,P ,  C ,  u )  for an 
integer m 2 1, a constant p > 0, a set C E E and a probability measure u on E 
if T ( C )> 0 and 

pu( .  ) 5 Pm(x, . ) for all x E C.  

A set C is a small set for P if P satisfies a minorization condition M ( m ,P ,  C ,v) 
for some m,p and u. In the general theory, small sets play similar roles to 
individual states in discrete chain theory. 

The following drift condition is sufficient to ensure geometric ergodicity and 
can sometimes also be used to verify uniform ergodicity. 

PROPOSITIONSuppose Xn is ergodic and there exist a nonnegative real- 1. 
valued E-measurable function g ,  a small set C ,  a constant r > 1 and a n  integer 
m > 1 such that 

,)+E [rg(xn  sup -g ( X n )I xn= x] = sup(rPmg-g )  < 0 
x E CC CC 

and 
sup E[~(X,+,);  Xn+,  E CC IXn = x ]  = supPm(lccg)< co. 
x E C C 

Then Xn is geometrically ergodic. If g is  bounded, then Xn is uniformly ergodic. 

PROOF.Since lIPn(x, . ) - T I ~ is nonincreasing in n ,  an aperiodic chain Xn is 
geometrically ergodic if Yn=Xnm is geometrically ergodic for any integer m 2 1. 
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So it is sufficient to consider the case m = 1.For this case, Proposition 5.21and 
Theorem 6.14(iii)of Nummelin (1984)show that the hypotheses of the proposi-
tion imply geometric ergodicity. Finally, the proof of Theorem 1in Chan (1989) 
[see also Theorem 3.1 and the following remarks in Chan (1993)l shows that 
under these hypotheses there exist constants a and b and a positive constant 
p < 1such that 

IIPn(x,. ) - I (a + bg(x))pn. 

So if g is bounded, then X, is uniformly ergodic. 

This condition can sometimes be used to verify geometric or uniform ergodi-
city of Gibbs samplers by taking C to be bounded with ~ ( x )positive on C and 
takingg to depend only on one of the coordinates. Chan (1993)gives corollaries 
to this result with sufficient conditions that may be easier to verify, and shows 
how to use these results to verify geometric ergodicity of Gibbs samplers in 
several examples. 

An alternative conditionfor geometricergodicityof a Gibbs kernel is given by 
Schervish and Carlin (1992).Remarks following the proof of their Corollary 1 
show that their square integrability condition implies geometric ergodicity as 
it is defined here. 

For uniform ergodicity, a simple necessary and sufficient condition is avail-
able [Nummelin (1984),Theorem 6.151. 

PROPOSITION2. A transition kernel P is uniformly ergodic if and only if 
the state space E is small. Furthermore, if P satisfies a minorization condition 
M(m,P,E,  v), then the convergence rate r satisfies rm  5 (1- p). 

PROOF. This follows from Theorem 6.15 of Nummelin (1984),together with 
the observation that a minorization conditionM(m,p,E,  v) for P implies that P 
is v-irreducible, that the conditions M(k,P,E, v) hold for all k 2 m and there-
fore that P is aperiodic. The rate result follows from the remarks after The-
orem 6.15 of Nummelin and the representation of the invariant distribution 
given in Corollary 5.2 of Nummelin. 

Roberts and Polson (1990) give conditions for uniform ergodicity based on 
continuity and compactness. In addition, they give a version of the preceding 
theorem based on a minorization condition with m = 1. 

For a Metropolis kernel, the following corollary gives a sufficient condition 
for uniform ergodicity that can often be ensured by truncating .rr to a suitable 
compact set. 

COROLLARY3. A Metropolis kernel with p(Ef)< mand q and .rr bounded and 
bounded away from 0 on E+satisfies a minorization condition M(1,P,E ,  v) with 
v proportional to the restriction of p to EC,and is therefore uniformly ergodic. 

Weaker conditions are possible. 
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For a n  independence Metropolis kernel, a sufficient condition for uniform 
ergodicity can be given in terms of the weight function. 

COROLLARY4. An independence Metropolis kernel with density f and 
bounded weight function w = r/f satisfies a minorization condition M(1,@, E,-ir) 

with /3 = (SUP w)-l, and is thus uniformly ergodic. The convergence rate r satis-
fies r 5 (1- /3) = (1- (supw)-I). 

Under certain conditions we can infer rates of convergence of mixtures or 
cycles of kernels from their components. For mixtures, if one kernel is uniformly 
ergodic then the mixture is as follows. 

PROPOSITION3. Suppose P1and P2have invariant distribution r and P1 
is uniformly ergodic. Then for 0 < cx < 1the kernel cxPl + (1- a)P2is uni-
formly ergodic. 

PROOF. Since P1is uniformly ergodic, it satisfies a minorization condition 
M(m, /3, Elu) for some m, /3 and u. Thus 

for all x. So cxPl + (1- a)P2satisfies a minorization condition M(m,am,@,E ,  u) 
and is uniformly ergodic. 

For cyclic combinations, a stronger hypothesis appears to be needed. 

PROPOSITION4. Suppose P1and P2have invariant distribution r and as-
sume that P1satisfies the minorization condition M(1,@,E ,  u) for some @ and u. 
Then PIP2and P2P1are uniformly ergodic. 

PROOF. SincePl(x1.)>/3u(.)for allx, 

So PlP2 satisfies the minorization condition M(1, /3, E lup2) and is therefore 
uniformly ergodic. Similarly, 

and P2P1satisfies the minorization condition M( l ,@,Elu). 

Since an  independence kernel with bounded weight function w = -ir/f satisfies 
a minorization condition M(1,@, E lu, ), any mixture or cycle containing such a 
kernel is uniformly ergodic. Thus any strategy can be made uniformly ergodic 
by inserting periodic or random "restart steps" using a restart distribution f 
with sufficiently thick tails. 
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3.3. Limiting behavior of averages. Suppose we use a single long run to 
estimate the expectation 7if of a real-valued 7i-integrable function f by the sam- 
ple average 

The limiting behavior of this average is described by a law of large numbers 
and a central limit theorem. 

A law of large numbers can be obtained from the ergodic theorem or the 
Chacon-Ornstein theorem. The following theorem is a corollary to Theorem 3.6 
in Chapter 4 of Revuz (1975). 

THEOREM3. Suppose X, is ergodic with equilibrium distribution T and 
suppose f is real-valued and 7i/f 1 < oo.Then for any initial distribution, f,, -+ 7if 
almost surely. 

The law of large numbers holds for any ergodic chain; it does not require any 
conditions on the rate of convergence to the stationary distribution. The central 
limit theorems that  are available do require some assumptions on the rate of 
convergence. The following central limit theorem is given in Corollary 7.3 of 
Nummelin (1984). 

THEOREM Suppose Xn is ergodic of degree 2 with equilibrium distribution 4. 
7i and suppose f is real-valued and bounded. Then there exists a real number 
rr( f )  such that the distribution of 

fi(f,, - 7if 1 

converges weakly to a normal distribution with mean 0 and variance a(fI2for 
any initial distribution. 

The boundedness assumption on f can be removed if the chain is uniformly 
ergodic. 

THEOREM Suppose X,, is uniformly ergodic with equilibrium distribution 5. 
7i and suppose f is real-valued and 7i(f2)< m. Then there exists a real number 
a( f )  such that the distribution of 

fi(f,, - T f  1 

converges weakly to a normal distribution with mean 0 and variance ~ ( f ) ~for 
any initial distribution. 

This follows from Corollary 4.2(ii) of Cogburn (1972). The assumption that  
the chain is uniformly ergodic implies, in Cogburn's terminology, that  the entire 
state space is uniform. 
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The conditions in these theorems are stronger than they need to be. 
Nummelin (1984), Theorem 7.6, gives a weaker condition, but it is stated in 
terms of expectations related to hitting times for sets with positive T-probability 
and appears rather difficult to verify directly. Kipnis and Varadhan (1986) give 
a central limit theorem for reversible Markov chains that only requires a finite 
limiting variance; T6th (1986) extends their result to nonreversible chains, but 
has to add another condition that is not easy to verify or interpret. 

Nummelin also gives an expression for a( f )  in terms of potential operators 
for P.Kemeny and Snell(1976), Corollary 4.6.2, and Peskun (1973) give explicit 
expressions for a ( f )  for a finite state space. None of these expressions appear 
to be suitable for numerical determination of a( f )  in the present context. 

As a final note, the ergodicity assumptions in the theorems of this subsection 
imply that the chains are aperiodic. Aperiodicity is not necessary for these 
results on sample path averages to hold. 

4. Implementation issues. In addition to examining the theoretical prop- 
erties of a Markov chain, there are several implementation issues that need to 
be considered before using such a chain to examine a posterior distribution. 

4.1. Choosing a sampling plan. There are two extreme approaches to us- 
ing Markov chains to sample from a posterior distribution. At one extreme, a 
Markov chain can be used to generate n independent realizations from the pos- 
terior distribution by using n separate runs, each of length m ,  and retaining 
the final states from each chain. The run length m is to be chosen large enough 
to ensure that the chain has reached equilibrium. The other extreme is to use 
a single long run, or perhaps a small number of long runs. Experience and 
theoretical assessments in the simulation literature appear to favor the use 
of long runs [Bratley, Fox and Schrage (1987), Section 3.1.1; Kelton and Law 
(1984) and Whitt (1991)l. The major drawback of using short runs is that it is 
virtually impossible to tell when a run is long enough based on such runs. Even 
using long runs, determining how much of the initial series is affected by the 
starting state is very difficult, but some literature on the subject is available 
[Ripley (1987), Section 6.11. A second drawback of short runs is that it makes 
inefficient use of the data: only n out of a total of n m  data points are used. 
With a single run of length n m  it is possible to use all the data, after possibly 
discarding a small initial fraction. 

A complication that does arise from the dependence in using a single series 
is that variances of estimates are harder to obtain. Again, the simulation litera- 
ture offers several alternatives, such asrthe use of batch means and time series 
analysis [Bratley, Fox and Schrage (1987), Chapter 3, and Ripley (1987), Chap- 
ter 61. Some approaches designed specifically for Markov chains are described 
by Geyer (1992); other methods are discussed by Geweke (1992). Another ap- 
proach currently being explored is to use regenerative simulation methods [Rip- 
ley (1987), Section 6.41 by identifying embedded renewal processes or by mod- 
ifying Markov chain methods to have easily identified embedded renewal pro- 
cesses. An example of such a renewal process is given at the end of Section 2.3.4. 

For some purposes it may nevertheless be useful to have an approximate 
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independent sample from the posterior. Using long runs this can be achieved 
by retaining every rth point of a sample path. The number r of points to skip 
in order to produce approximate independence can usually be chosen much 
smaller than the number m of steps needed to reach approximate equilibrium, 
since small amounts of correlation are usually much less serious than biases 
in estimates of means. 

4.2. Determining the run  length. Another consideration is to determine the 
total sample size or run length required for accurate estimates. For an i.i.d. 
sample of size n from a posterior distribution -ir, the standard deviation of the 
sample mean of a function f(0) is a/+, where a is the posterior standard 
deviation of f(0). If a preliminary estimate of a is available, perhaps from an 
asymptotic analysis, then this can be used to estimate the sample size that 
would be required in i.i.d. sampling. In dependent sampling, observations are 
generally positively correlated and a larger sample size will be required. If the 
series can be approximated by a first-order autoregressive process, then the 
asymptotic standard deviation of the sample mean is 

where again a is the posterior standard deviation of f(0) and p is the autocor- 
relation of the series f(X,). A rough guess for p can thus be used to adjust the 
sample size for dependence in the series. 

Instead of determining a fixed sample size in advance, it is also possible 
to use sequential or batch-sequential rules for determining when to stop sam- 
pling. Since prior information on the values of the posterior mean and standard 
deviation is often available from initial analysis, Bayesian sequential methods 
are a natural choice. Batching can be used to ensure that an assumption of 
normality for batched means is reasonable. 

An intermediate option is to determine a sample size based on a pilot run. 
Raftery and Lewis (1992) suggest one possible approach. 

4.3. Variance reduction. As with any simulation method, variance reduc- 
tion techniques can often significantly reduce the sample sizes required for 
accurate estimates. Standard variance reduction methods such as importance 
sampling, conditioning, antithetic variates, control variates and common vari- 
ates [Bratley, Fox and Schrage (19871, Chapter 2, and Ripley (1987), Chapter 51 
can be used with any Markov chain method. 

4.3.1. Importance sampling. Importance sampling can be used as a vari- 
ance reduction method by constructing a Markov chain with equilibrium dis- 
tribution -irf instead of -ir and then weighting sample results with appropriate 
importance weights [Hastings (1970), Section 2.51. To reduce the variance of an 
estimate of an expectation ~ f ,  the density -irf(x) would be chosen to be nearly 
proportional to f(x)l. 
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Importance sampling is also useful if it is easier to construct a chain with 
equilibrium distribution T', or if a sample from such a chain is already available. 
For example, this approach can be used to estimate expectations for a non- 
conjugate prior distribution with a Gibbs sampler for a similar but conjugate 
prior distribution. 

Using common sample paths with importance weights is particularly use- 
ful for comparing expectations under two similar distributions, perhaps corre- 
sponding to two different prior distributions or to the deletion of some observa- 
tions. The positive correlations resulting form using the same series to estimate 
the two expectations will reduce the variance of the estimated difference. This 
can be viewed as an example of using common variates. 

As with any application of importance sampling, unbounded weight functions 
should be used with caution. 

4.3.2. Conditioning. Suppose an ergodic Markov chain produces pairs of 
the form (X,, Y,), the X margin of the equilibrium distribution is T and the con- 
ditional expectations h(Y,) = E[f(X,) I Y,] can be evaluated. Then the sample 
average of the conditional expectations h(Y,) will converge to the expectation 
xf. For a sequence of i.i.d. pairs the average of the conditional expectations has 
smaller variance than the average of the series f (X,). Whether this form of con- 
ditioning leads to a reduction in variance for a dependent series depends on the 
correlation structure. A sufficient condition is that the correlations in the h(Y,) 
series are no larger than the correlations in the f(Y,) series. Liu, Wong and 
Kong, (1991), Theorem 4.1, show that this condition holds for the random scan 
Gibbs sampler, in which the coordinate to update is selected independently ac- 
cording to a fixed distribution at each step. Another sufficient condition is given 
by Schmeiser and Chen (1991). 

Conditioning is particularly useful for computing expectations or marginal 
densities of coordinate margins in Gibbs samplers, since the assumptions re- 
quired for the Gibbs sampler imply that conditional means or densities of one 
parameter given the rest are usually available. In this case the variables Y, 
consist of all coordinates of the Gibbs sampler sequence X, except the one of 
interest. Gelfand and Smith (1990) refer to this use of conditioning as Rao- 
Blackwellization. 

The pairs (X,, Y,) can be constructed to facilitate evaluating the conditional 
expectations h(Y,). In some cases these expectations are available in closed 
form, in others they can be approximated using asymptotic methods or low- 
dimensional numerical integration. A general method for constructing a chain 
(X,, Y,) is to start with a chain Y, with invariant distribution -ir and another 
Markov kernel R with invariant distribution T. The X, components are then 
generated from the distribution R(Y,, .). The conditional expectations h(Y,) = 
(Rf)(Y,) are particularly easy to calculate for the discrete limiting reflection 
and lattice kernels described in Sections 2.3.5 and 2.3.6. 

A chain (X,, Y,) can also be formed by taking X, to be a chain with invariant 
distribution -ir and taking Y, to consist of X, - 1 and some of the variates used 
to generate X, from X, - 1. For example, Schmeiser and Chen (1991) propose 
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a conditioning scheme in which Y, consists of X, - 1 and the direction taken 
by the hit-and-run algorithm. The conditional expectation h(Y,) is computed 
by a one-dimensional integral. If this integral is evaluated numerically, then 
this may require a rather large number of posterior density evaluations. The 
number of evaluations can be reduced significantly by replacing the numerical 
integral by the conditional expectation of a finite grid chain with the conditional 
distribution as its invariant distribution. 

The augmented chains (X,, Y,)used for conditioning are also Markov chains 
with known invariant distributions. Their properties can therefore be derived 
from the results of the preceding section. 

4.3.3. Antithetic and control variates. Antithetic variation can be intro- 
duced into a Markov chain method by using a Metropolis step in which a candi- 
date step is obtained by reflecting the current state of the chain through a point. 
If the posterior density is approximately symmetric about this point, then the 
sample will be also, and the resulting negative correlations will reduce vari- 
ances of estimates of expectations of linear functions of 8. This technique can 
also be used to take advantage of approximate axial symmetries in a poste- 
rior distribution. 

One way to introduce control variates into a Markov chain method is to 
use the sample path with importance weights to calculate estimates of nor- 
mal approximations and to correct for the errors in these estimates. Another 
approach, described by Schmeiser and Chen (1991), is to calculate estimates 
of normal approximations using common variates, for example, by transform- 
ing the variates used to generate candidate steps in a Metropolis algorithm to 
appropriate normal variates. 

4.4. Other issues. In using Markov chain methods, it is important to moni- 
tor the performance of the samplers to ensure that they are not exhibiting any 
unusual behavior. Gelfand and Smith (1990) propose the use of quantile plots 
to monitor performance. Monitoring sample paths of estimates is also useful 
for this purpose, as is monitoring autocorrelations of the parameters. Time se- 
ries methods may also be useful for determining whether a series exhibits any 
unusual features. 

For Metropolis chains it is also important to keep track of the number of 
candidates that are rejected. For an independence chain, the proportion of re- 
jections can be related to the total variation distance between the posterior 
density 7r and the candidate generation density f .  

Some consideration of numerical stability is needed in using any sampling- 
based method. Expressions used to evaluate log posterior densities obtained 
by translating mathematical formulas into a computer language are often rea- 
sonably stable near the posterior mode but may not be stable far away from 
the mode. This can lead to overflows or, on IEEE hardware, results that are 
NaN's or infinities. One way to avoid these problems is to carefully study the 
formulas for evaluating the log posterior density and modify them to be nu- 
merically stable even for extreme parameter values. The effort required to do 
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TABLE1 

Pump failures for pumps at the Farley 1nuclear plant. Times are in thousands of hours 


Pump 1 2 3 4 5 6 7 8 9 10 

Failures 5 1 5 14 3 19 1 1 4 22 
Times 94.320 15.720 62.880 125.760 5.240 31.440 1.048 1.048 2.096 10.480 

this can be considerable. An expedient alternative that is often effective is to 
truncate the parameter space to a reasonable range that contains essentially 
all the posterior probability and for which the posterior density formula is nu- 
merically stable. This truncation also often ensures that a Markov chain used 
to sample from .ir is uniformly ergodic and thus improves the behavior of the 
Markov chain estimates. 

A numerical issue that is unique to Markov chain methods is the possibility 
that rounding may introduce absorbing states. If this happens, results obtained 
from a Markov chain method may be meaningless. Again truncation away from 
areas of the state space where such rounding may occur can be helpful. 

Another important consideration in selecting a Markov chain strategy is the 
cost of implementing and using the strategy. The costs can usually be broken 
down into three rough groups: the cost of coding the strategy, the cost of generat- 
ing the chain and the cost of storing and processing the results. The importance 
of these costs varies from problem to problem, and as a result different chains 
may be optimal for different problems. There are also tradeoffs that may need to 
be considered. The Gibbs sampler is easier to code from scratch than most other 
methods, but code for a Gibbs sampler tends to contain fewer reusable compo- 
nents. Some strategies, such as grid-based chains, may require a rather large 
number of posterior density function evaluations but require a smaller sample 
size than other methods if these function values are used for variance reduction. 

5. An example. One of the examples presented by Gelfand and Smith 
(1990) is a hierarchical Poisson model. Failures in pumps at a nuclear power 
plant are assumed to occur according to independent Poisson processes with 
each pump having its own failure rate X I , .  . . ,Xlo. These rates are modeled 
as independent draws from a common distribution of rates. The pumps are 
observed for different periods of time. The counts and observation periods are 
given in Table 1. 

Gaver and O'Muircheartaigh (1987) analyze these data using an empirical 
Bayes approach. Gelfand and Smith (1990) use the Gibbs sampler. They assume 
a conjugate prior structure in which the rates, conditional on a hyperparameter 
p, have a gamma distribution G(a, P) with density proportional to xa - le-Dx, 
and /3 has a gamma distribution G(y, 6) with y = 0.01 and 6= 1. For comparison 
with the results of Gaver and O'Muircheartaigh (1987), Gelfand and Smith set 
cu to the method of moments estimator, cu = 1.802. 

To allow for the possibility of outliers in the rates, Gaver and O'Muirchear- 
taigh (1987) also consider several other distributions, including a t distribution 
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with 5 degrees of freedom for the logarithms of the rates. Carlin and Gelfand 
(1991) examine a prior of this form using a Gibbs sampler in which the condi- 
tional distributions are sampled by rejection sampling. We consider a variant 
of this model in which, conditional on a parameter 8, the logarithms of (Xi -O)/a 
have a standard t distribution with 5degrees of freedom, and 8 has a normal dis- 
tribution with mean p and standard deviation T . Following Carlin and Gelfand, 
we set p = -1 and T = 1. Like the parameter a in the gamma model, the param- 
eter a in the t model is a function of the conditional coefficient of variation of 
the rates. For a log normal rather than a log t model, the conditional means and 
coefficients of variation of the rates are equal if 0 = log(a)- ;a2-log(@) and a2= 
log(l+l/a).With these identifications, posterior expectations under the t model 
can be computed using the Gibbs sampler sequence under the gamma model 
and importance weights equal to the ratios of the t to the gamma density values. 

The Gibbs sampler is particularly well suited to this problem under the 
conjugate gamma model. If the counts are denoted by si and the times by ti, 
then, given @, the Xi are independent G(a + si,ti + @), and, given X I , .  . . ,Xlo, 
the distribution of @ is G(y + 10al EXi + 6). Proposition 2 can be used to show 
that this Gibbs sampler is uniformly ergodic. Suppose the sampler is run by 
selecting first new values for the Xi and then a new @. Then the distribution of 
the new @, depends on the initial values of the parameters only through 
the initial value of @, @(o). Let f(@(l) I @(o)) denote the conditional density of the 
new @ given the initial one. It is sufficient to show that 

is positive for all positive The probability distribution u in the minoriza- 
tion condition with m = 2 needed to apply Proposition 2 can then be taken 
proportional to J fp I A(@ I X)fx I p(X I u)h(u)du. To show that h is positive, write 

a+si  a +s, - 1 -Xi(ti + /3(o))d~
(ti + 40)) xi e I 1 . .. dXl0 

i = l  
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The final right-hand side does not depend on and is positive, which com- 
pletes the proof. 

Four Markov chain methods were used to estimate failure rates for pumps 
1 , 5  and 10 under the t model. The first method used the Gibbs sampler for the 
gamma model with importance weights. The remaining three methods were 
Metropolis chains. All three were applied to the logarithms of the parameters 
standardized by the first-order approximate mean vector and covariance ma- 
trix. The first Metropolis algorithm was an independence chain with candidates 
generated by a multivariate t distribution with 2 degrees of freedom. The sec- 
ond algorithm was a random walk chain with increments generated from a 
normal distribution with independent components, zero means and standard 
deviations equal to 0.5. The final algorithm was a rejection independence chain 
with envelope density proportional to a mixture of a multivariate t distribu-
tion with 2 degrees of freedom and a standard normal distribution. The mixing 
probabilities were 0.2 for the t distribution and 0.8 for the normal distribution. 
The multiplier for the envelope was chosen based on a preliminary sample of 
50 observations to produce a rejection probability in the candidate generation 
phase of approximately 0.85; thus the expected number of function evaluations 
needed per candidate should be approximately 110.15 = 6;. 

Conditioning was used to reduce variances of estimates from the resulting 
series. Since conditional means of one rate given all other parameters are not 
available under the t model, a sliding five-point lattice kernel as described at the 
end of Section 2.3.6 was used for conditioning. The lattice kernel was applied on 
the logarithm scale, and a lattice spacing of 1.5 asymptotic marginal posterior 
standard deviations was used. 

The results for runs of length 5000 are shown in Table 2. Batch means based 
on batches of size 50 were used to estimate standard errors. Serial correla- 
tions in the batch means were negligible for all but the random walk sam- 
plers; for the random walk samplers the serial correlations among batch means 
were approximately 0.2 for all three rates. Standard errors for the random 
walk were adjusted for the correlations by modeling the batch means as first- 
order autoregressions. 

For comparison, Table 2 also shows asymptotic approximations to the pos- 
terior means and standard deviations computed by applying the moment gen- 
erating function method described in Tierney, Kass and Kadane (1989) on the 
logarithm scale. 

The reweighted Gibbs sampler performs rather poorly for estimating expec- 
tations under the t model. The reason is that the t model has thicker tails than 
the gamma model, and the weight function is therefore unbounded and quite 
large in the tails. This approach might work more reasonably for a truncated 
t model. 

The independence chain performs somewhat better than the random walk 
chain. This is not surprising, since the posterior distribution is not too different 
in shape from the candidate generation density for the independence chain 
and this chain usually performs better in such situations. Random walk chains 
tend to be less sensitive to the choice of the increment distribution and, as a 
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TABLE2 
Estimated posterior means for the t prior using the importance-weighted Gibbs sampler and 
independence, random walk and rejection Metropolis chains. For the Metropolis chains, R is the 
proportion of candidates rejected by the Metroplois algorithm. For the rejection chain, F is the aver- 

age number of function evaluations per candidate step 
-

Xl x 100 X5xl0 Xl0 x10 
Asymptotic approximations 

Approx. post. mean 7.314 4.655 19.143 

Approx. post. SD 2.744 2.394 4.286 


Importance-weighted Gibbs sampler 
Sample average Est. post. mean. 6.921 4.927 16.800 

Est. stand. err. 0.404 0.302 0.539 
Conditioning Est. post. mean. 7.343 4.429 19.087 

Est. stand. err. 0.010 0.203 0.013 

Independence (R = 0.653) 
Sample average Est. post. mean. 7.459 4.778 19.160 

Estt. stand. en: 0.098 0.074 0.155 
Conditioning Est. post. mean. 7.292 4.646 19.166 

Est. stand. err. 0.019 0.025 0.012 

Random walk (R = 0.563) 
Sample average Est. post. mean. 7.436 4.685 19.592 

Estt. stand. err. 0.241 0.254 0.373 
Conditioning Est. post. mean. 7.317 4.569 19.137 

Est. stand. err. 0.020 0.065 0.017 

Rejection (R = 0.028,F = 7.81) 
Sample averaae Est. post. mean. 7.244 4.639 19.054-

Est, stand. err. 0.048 0.045 0.072 
Conditioning Est. post. mean. 7.295 4.630 19.125 

Est. stand. err. 0.008 0.011 0.009 

result, work better than independence chains with a poorly chosen candidate 
generation density. 

In this comparison of chains of length 5000 the rejection chain dominates all 
others. The Metropolis rejection rate of approximately 2.8% is very low, which 
means that the sequence produced by the rejection chain is almost an i.i.d. se- 
quence from the posterior distribution. But the series required approximately 
40,000 evaluations of the log posterior density function, compared to only 5000 
for the random walk and independence chains. It is possible that better choices 
of the envelope density and constant could reduce the number of function eval- 
uations required without seriously reducing the performance. 

In almost all cases the use of the simple lattice conditioning kernel reduced 
variances by a factor of 10 or more. The five-point lattice requires a total of nine 
conditional density evaluations per observation. In the present example the con- 
ditional density of X i  given all other components only depends on 6' and is quite 
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simple. In other examples these evaluations would be more costly and would 
have to be compared to the cost of using a longer chain, perhaps with subsam- 
pling. For some strategies, such as grid-based Gibbs samplers, these conditional 
density values would be computed while generating the chain and would thus 
be available at no cost, provided storage is not a limiting consideration. 

6. Conclusions. Markov chains can be used to explore posterior distribu- 
tions in a variety of ways. Simple uses include estimating expectations under 
the posterior distribution and generating samples from the posterior distribu- 
tion for constructing plots of one-, two- or three-dimensional margins. A more 
elaborate application is to use a Markov chain to control an animation in which 
a function of the parameter is viewed as the parameter is moved through the 
posterior distribution by the chain; an example of this approach is outlined in 
Tierney (1991). 

Different Markov chains have different characteristics in different problems. 
Which characteristics are desirable can vary from one application to another. 
For computing averages it is usually desirable to reduce correlations, perhaps 
even making them negative, in order to reduce variances. For the animation 
example mentioned above, on the other hand, the strong positive serial correla- 
tions usually present in a random walk Metropolis chain are in fact an advan- 
tage. As a result, no single Markov chain method will dominate all others in all 
problems. It is important to be able to select or design a method with suitable 
characteristics from a range of methods and strategies for combining methods. 

Hybrid algorithms provide a general way of adding certain characteristics, 
such as uniform ergodicity to speed convergence, to other algorithms. Another 
useful strategy is to incorporate approximate algorithms, such as rejection or 
grid-based algorithms, into a Metropolis algorithm to ensure that the invariant 
distribution is exactly equal to the posterior distribution. 

More work is clearly needed to understand the effects of varying the parame- 
ters in Metropolis and hybrid algorithms and to determine good default values 
for these parameters. Strategies for adaptively setting these parameters would 
also be useful. Another important open issue for higher-dimensional problems 
is to determine when it is better to use algorithms that move through the pa- 
rameter space in arbitrary directions, and when it is better to partition the 
parameter into components and use algorithms that, like the Gibbs sampler, 
change only one component at  a time. 
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DISCUSSION 

HANIDOSS' 

Ohio State University 

0. Introduction. In my comments I discuss two topics, the basic conver- 
gence theorem (Theorem 1)and the importance-weighted Gibbs sampler, in 
particular, the question of assessing the variability of estimates formed by this 
method. 
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