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ABSTRACT: The success of simulation environments will depend partly on how realistically the models mimic human
behavior. While human behavior is affected by various moderators (see Pew and Mavor [28], for an initial list),
cognitive models typically do not take into account the effects of many of these moderators. We propose that cognitive
models can be augmented to account for such effects by modifying either their knowledge or the parameters of the
architecture that they are built with. To provide an example of the two ways in which cognitive models can be modified
to capture the effects of behavior moderators, we present an ACT-R model that performs a cognitive task while being
affected by the moderators of as anxiety and pre-task appraisal. These changes are validated in a preliminary way by
comparison with human data, which shows us where these models can be improved and provides lessons for further
work. Most importantly, we argue that more realistic models of human behavior reflecting these moderators and
individual differences can be achieved by implementing similar modifications within other cognitive models and by

reusing these modifications for an existing architecture as an overlay.

1. Introduction

In the 1950’s Alan Turing suggeste tha intelligert
machine coutl be bult by modéing the human brain
Yeas later a far numbe of computdiond modek hae
been bult to dther answe psychologich quesions a
replace humas in variots tasks Despte ther swccesse
a predictig human behavio in a variey of tasks
cognitive mode$ hawe almos totally ignored the fad tha
cognitive adivity is often moderatd by factors tha are
nat directly relatel to the ongoiry task As a resit,
cognitive modek hawe rarey included the effecs d
behaviormoderaing factos sut as noise temperature
stress exdtemert and © on Even moe rarey hawe theg
modek been vdidated o tested.

How to include behavio moderatos into modes o
cognition is a aucid isste if the god is to build high
fidelity cognitive models Building su¢t mode$ migit not
be vey important for some types d psydologicd
reearch After dl, it isa comnon practice fa empiricd
reearcherswho ae nd interestd in behaviormoderatos
pe se to averag dab acres subjed b avoid tle
contaminging dfecs d sud extraneos variables
Indeed for modg cognitive psychologists behavio
moderatos ae nothirg bu confaunds tha need to ke
contrdled. Similarly, cognitive nodek aimel to ke use
as surogak uses in sone stuatiors need nat include the
effecs d behavie moderators In sone case it even
seens moe desirabled avod the dfecs d moderators
A modekltutor [1], for example does not neel to ge
impatiert or angy jus like ahuman tuta might get.



However, models that account for the dfeds of behavior
moderators are esentia when the situation requires that
the models be so redistic that they, optimally, cannot be
distinguished from humans performing the same task.
Such situations include military ssimulations. Whilein the
past, a military exercise would require a extensive
amount of human resources, nowadays training can take
placewith synthetic environments. Cogritive models can
populate these environments representing some or all of
the entities involved in red combats. Using cognitive
models as intelligent agents enables the use of redistic
environments for training purposes [28, 34].

Using synthetic environments to train military personnel
requires that the agnitive models driving the friendly and
enemy entities engage in adions that are expected by
human pilots in comparable cmbat situations. However,
until now, the behavior of such agents is nat affeded by
many fadors that are very likely to affect the behavior of
humans. Fadors such as dress time of day, level of
training and so on, influence human behavior in the
battlefield [28] and should be built-in any cogritive model
that is aimed to be redistic enough to provide high
quality training.

2. Cognitive Architecturesand CGF's

Newell [26] defined cognitive achitedures as those
aspeds of cognition that are task-independent and
relatively constant. That is, cognitive achitectures
represent the set of fixed mechanisms that mediate human
cogrition.

In response to Newell’s [26, 27] cdl for unified theories
of cognition, a number of cognitive architedures have
emerged. Soar [19], ACT-R [2], and EPIC [18] are the
ones used more often to gude the construction of
cogritive models. JACK is aso being increasingly used
[6].

In some caes, models based on cognitive architectures
were built for use for training purposes in military
simulations. The TacAir-Soar system [35] is a notable
example. In TacAir-Soar, cogritive models developed
with the Soar cognitive achitedure [22, 17] simulate the
behavior of military personnd in fixed-wing aircraft
missions. TacAir-Soar was succesdully used in Stow
97, alarge-scde simulation exercise in which up to 3,700
computer-generated forces were involved as bath friendly
and enemy entities [14]. A next step for al of these
modelsisto include more aspeds of human behavior.

3. Behavior Moderators

We ae using the term behavior moderators to refer to
those variables that affed human performance in a given

task. Furthermore, we adopt Pew and Mavor's ([28]
chapter 9) taxonomy for distinguishing types of
moderators into external and internal.  External
moderators are inputs from the environment that influence
how the person performs the task. These moderators
originate outside the person and include physiologicd
stresors (i.e., environmenta fadors sich as temperature,
noise, etc), physicd and cognitive workload, and fatigue.
Internal  moderators are those originating inside the
person. Examples of internal moderators are the
intelligence, expertise levels, expedancies, etc.

It should be noted, however, that dividing moderators into
external and internal is nat aways easy. While, for
example, noise and dtitude @n be eaily identified as
environmental stressors and therefore placed in the
external moderator caegory, dedding where to pace
dehydration is not as obvious. Although dehydration is an
internal state of a person, it is also the result of externa
fadors sich hea and water shortage.

Behavior moderators that affed human behavior in the
battlefield are discussed in detail by Pew and Mavor ([28]
chapter 9). Therefore, we only present a few examples of
moderators  that have been studied empiricdly

(Appendix).

4. Modeling Behavior
Cognitive Architectures

Moderators in

The dfeds of behavior moderators can ke included in
cogritive models in two ways. One way is by modifying
the ontent of the mode itself and the other by
augmenting the agnitive achitedure that was used to
build the model. The two options exist becaise models
rely on bath the spedfic knowledge that are provided with
and the fixed mechanisms contained in the agnitive
architedure that are built with [11, 34].

We will briefly discussthe two options and then we will
present work that ill ustrates both approadces.

4.1 Modifying the agnitive model

A number of individua-difference fadors cen be
simulated by varying the anount of knowledge that is put
into the model. This represents varying the level of
expertise, typicdly representing the level of education or
training. This change can be done ather diredly (i.e., by
providing the model with fewer or different rules) or
indiredly by training the model with life-time simulations
of different length and type. This approach is mostly
applicable for fadtors that are based on content.

Jones, Ritter, and Wood [15] provide an illustrative
example of modifying the model. They were dtempting



to classify the differences between adult and children’s
performance on atask. One of the approaches considered
was simply to reduce the knowledge available to the
model by removing production rules. Ancther way was to
reduce the number of memory elements that could be
processed simultaneously by deleting and splitting the
production rules that contained a great number of memory
elements.

The first change is direct, and models directly differences
in knowledge. The second change relates to how
information is represented across and within rules. Both
of these types of changes can reflect the effects of
moderators as well asindividual differences.

4.2 Maodifying the Cognitive Ar chitecture

Other moderators can be implemented by producing
overlays to the architecture. That is, the effect of the
factors can be modeled by adjusting the architecture itself.
For example, moderators that affect the processing speed
of working memory can be simulated by simply adjusting
the value of the architectural parameter that corresponds
to working memory processing speed.

Jones et al. [15] tried out two such architectural changes
to smulate the performance of children on the Tower of
Nottingham task. One such change was to limit the
number of elements that were active in working memory
by increasing the retrieval threshold parameter of the
ACT-R architecture. Alternatively, they increased the
value of the expected gain noise parameter to influence
the strategy choice procedure and therefore increase the
stochasticity of the model. The latter manipulation
produced the best match to empirically collected data
from children.

There are numerous, interesting behavior moderators that
can be implemented this way that are of interest to those
modeling synthetic forces (see the Appendix for a few
examples).

5. An Example Implementation of these Two
Approaches

We now turn into an example of how the two ways of
including behavior moderators into models of cognition
can be gpplied and tested. We present a cognitive model
of serial subtraction that performs the task under the
effects of task-appraisal and worry™.

YIn fact, the model aso includes the effects of caffeine on
performance. However, caffeine will not be discussed
here. Theinterested reader is directed to [33]

The serial subtraction task is to start with a large 4-digit
number and to repeatedly subtract from it a specified 1- or
2-digit number. For example, the number 1,396 can be the
gtarting number from which the number 7 should be
subtracted repeatedly.

Serial subtraction was chosen because it is a task that is
often used to measure the effects of stressors on cognitive
performance (e.g., [36]). It was not chosen because of
surface vaidity for synthetic forces tasks, although it and
related tasks will have to be included in models of air
traffic controllers and other operators that do navigation
tasks and mental arithmetic as part of their problem
solving. As we shdl see, we have data on how serial
subtraction is affected by various moderators. These
moderators can giverise to large individual differences on
task performance.

The cognitive model was built using the ACT-R 4.0
cognitive architecture [2]. ACT-R is a production
system-based cognitive architecture that combines a
symbolic with a sub-symbolic level. The symbolic level
represents knowledge as rules (i.e., productions) and as an
associative network of interconnected nodes, dso called
chunks. The distinction between productions and network
nodes maps into a distinction between procedural and
declarative knowledge. The sub-symbolic level describes
the processes that support knowledge, with activation
being a central concept at this level.

In ACT-R, production rules are considered the atomic
components of thought, that is, they are the most basic
unit by which thought processes. Therefore, a production
must be selected at each step of performing a task. When
more than one production matches the current goal, the
systems selects one of them via a process called conflict
resolution. In general, the conflict resolution mechanism
selects a production by weighing the cost and benefits for
each of the matching productions and then sdecting the
best candidate. When, however, there is a lot of noise in
the process, the mechanism can sometimes select less
optimal productions. More information on ACT-R is
available at act.psy.cmu.edu.

Our ACT-R model performs a serial subtraction task in
the same format that is used to study performance under
stress. The model’s declarative knowledge consists solely
of arithmetic facts and goal-related information, and its
procedural knowledge by rules to retrieve subtraction
results from memory. The task can be performed using
two strategies. One strategy is to perform subtractions by
counting back from the starting number as may times as
indicated by the second number (e.g., 7 times). The other
strategy is to retrieve subtraction results directly from
memory.



Figure 1 presents the graphical interface of the model.
The two main windows are the Control Panel and the
Model Behavior windows. The Control Panel window
contains several options for selecting the mode’s
conditions, run control, and some advanced output
options. This window alows the model' s moderators to
be set.

The Model Behavior window displays aspects of the
model’s behavior, such as the current result and whether it
is a correct or erroneous result, as wel as the declarative
memory chunks that are being used to solve the problem.
Summary statistics (number of attempts, number of
errors, and task latency) are aso displayed in this
window.
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Figure 1. The graphicd interfaceof the seria subtradion
model.

5.1 Modifying the architecture

The behavior moderator we chose to include in the serial-
subtradion model is task-appraisal [23, 24]. Task-
appraisal is considered an internal moderator as it
represents an individud’s subjedive evduation of a
stresful event. Based on the evaluation, appraisal can be
of a chalenging o a threaening form. A challenging
appraisa is made when the individual deems her abilities
high enough to cope with the stresful event, while a
threaening appraisal arises when the stresfulness of the
task is judged to surpass the coping abilities of the
individual. Task-appraisals can be distinguished further
into pre-task appraisals and post-task appraisals based on
whether they are formed before or after the exeaution of
the task.

Empiricd evidence suggests a link between the form of
task-appraisal (i.e., threatening vs. challenging) and
performance on arithmetic tasks such as the serid-
subtradion task we use in our model. While threaening

appraisals have been associated with fewer solution
attempts and poorer performance, challenging appraisals
have been related with better performance axd more
solution attempts than neutral situations [17, 31, 36].

We have dtempted to model these results by varying the
level of the Expeded Gain Noise (EGN) parameter of
ACT-R. EGN represents the level of randomness present
in the onflict resolution process that is, the process by
which ACT-R deddes which rule will fire when more
than one rule matches the goal of the system.

This noise parameter has been previousy varied to
cgpture the irrationality present in the thought process of
children [15]. We have simply set this parameter to a
small vdue (0.1) to model a “clea-heal” in the cae of
challenging appraisa and to a greaer value (1.0) in order
to provide greder stochasticity in the strategy selection
processunder athreaening appraisal state.

By varying the default values of the EGN parameter of
the ACT-R architecture we have been able to model the
effeds of the pretask appraisal moderator. The modd
aso takes into acount post-task appraisal. Post-appraisal
simply inherits the parameters of pre-task appraisal a the
end o ead running cycle.

Data suggest that it is not this Smple; there is amost a
resetting that occurs auch that the gpraisds are nat
exadly the same (Task 1 post is not identicd to Task 1
pre). This simplification is aworking assumption that can
be refined | ater.

As can be seen in the top two sedions of Table 1, the
model produces a pattern of results that is smilar with
that reported at the group level in an empirical study using
the same serial-subtradion task [36].

As can been seein the upper section of Table 1, the model
performs more attempts and it is also more acairate under
neutral than urder challenging appraisal. This raises
questions about ACT-R’s default value of the EGN
parameter (default vaueis“Nil”).

The model performance provides a very close fit to the
empiricd daa for threaening appraisas. For challenging
appraisals it does not attempt as many subtradions as
subjeds did. As the number of model runs (N) can be
increased, the difference is reliable but not a terrible flaw.
However, the model produces very predsey the
percentage of corred responses out of the total number of
attempts for both conditions.

5.2 Madifying the knowledge of the model

The previous subsedion described how we modified the
EGN parameter of the cogritive achitedure to cepture



the effects of task-gppraisal in our serial-subtraction
model. However, we believe that some behavior
moderators might be built into cognitive models without
varying the values of architectural parameters. Instead,
the knowledge provided to the model can be modified to
incorporate the effects of behavior moderators. As an
example, we have used the same serial-subtraction model
and we have modified its knowledge in order to simulate
the effects of worry on performance.

For the purposes of our current work, we defined worry as
the anxiety that is specific to the task to be performed but
that is processed in a non-task specific and non-
productive way. Because our task is of an arithmetic
nature, worry may be equivalent to the term math anxiety
that is used by Ashcraft and Kirk [4]. This type of effect
is likely to be found in other stressful, anxiety-producing
tasks that might be found is synthetic environments or
their real-world analogue.

Previous research has associated math anxiety with
performance  decrements on somewhat complex
arithmetic tasks. Particularly, lower accuracy and longer
latencies have been observed in solving arithmetic
problems that involve a carry operation, such as
multicolumn addition [3, 9]. Ashcraft and Kirk [4]
suggest that the effect of math anxiety on arithmetic
performance is caused by an on-line reduction of working
memory resources. In line with Eysenck and Calvo's [8]
processing efficiency theory, they propose that math
anxiety produces intrusive thoughts that compete with the
main task for cognitive resources. Because of this, the
amount of cognitive resources that remains available for
the arithmetic task is diminished under high math anxiety.
Indeed, participants with high levels of math anxiety
report the presence of such intrusive thoughts when
solving arithmetic tasks (Faust, 1992, cited in [4]).

We have simulated the experience of intrusive thoughts
by modifying the knowledge of the serial-subtraction
model to enable the model to “worry”. Specificaly, we
added into the model’s procedural knowledge a simple
rule that can fire any time while the model is performing
the serial-subtraction task. In essence, math anxiety here
is modeled as a secondary task that is performed
concurrently  with  serial  subtraction. It directly
implements distracting thoughts. These thoughts thus
lead to a decrease in working memory -- due to the seria
nature of rulefiring in ACT-R, whenever the worry rule
fires, it resultsinto a slowing down of the execution of the
subtraction task. In addition to producing an increase in
total solution time, the occasional firing of the worry
production affects the content of working memory.
Because the processing of the main task is halted when
the worry rule fires, there is more time for task-relevant
declarative information to decay from working memory.

The decay of memory information produces more
frequent retrievals of inappropriate arithmetic facts. This
results in performance that is not only slower, but more
errorful as well when the task is performed under high
anxiety conditions.

As shown in Table 1, when the model performs the serial-
subtraction task with math-anxiety “turned-on”, it makes
more errors and takes more time.

To the best of our knowledge, there are no available data
that examine the effects of math anxiety on performance
in a seria subtraction task. Therefore, we have not yet
been able to compare directly the performance of our
model with human data. Nevertheless, the model seems
to capture the effects reported by studies tha use
multicolumn addition (e.g., [4]). The middle section of
Table 1 shows the average performance of our model with
math-anxiety turned on and off under different levels of
task-appraisal.

Table 1. Comparison of model with human data.

Pre-task Number CH TH NE
appraisal of
M odel Attempts 57.6 > 46.2 < 70.7
Correct 53.2 > 42.1 < 70.7
(N=100)
% correct 92% 91% 100%
Model with  Attempts 43.2 > 37.2 < 59.3.
Worry
(N=100) Correct 37.9 > 32.6 < 59.3
% correct 88% 88%
Tomakaet al. Attempts 61 > 46 n.a
(1993)
Correct 56 > 42 n.a
% correct 92% 91%

Note Human data taken from Tomaka et a. [36];
< and > denote significant differences at the p<.01 level, N=
number of simulation runs, CH=challenging appraisal,
TH=threatening appraisal, NE=neutral



6. Conclusions

The mgritive model that we have presented implements
the two approades we suggested for including the dfeds
of behavior moderators. First, we have varied a
parameter that is provided by the ACT-R architecure to
model performance under different task-appraisals.
Second, we have modified the knowledge of the model to
simulate the influence of anxiety in general as knowledge
that has scondary effeds and applied it to a math task.

In both cases we were dle to produce the pattern of
results that are documented by empiricd reseach. We did
this by using very simple techniques that could be eaily
adopted and used in cognitive models of other tasks by
reusing ou overlay in ACT-R. This approach of adding a
reusable overlay could be gplied to aher architedures,
moderators, and models. We believe that a greater number
of moderators should be explored and their effeds sould
be modeled by using reusable techniques that can be
shared among modelers.

These dhanges do not appear to be model specific. As
they were aeaed within a agnitive achitedure, they
should be reusable by other models. We can now cregte
nealy immediate predictions of the dfeds of task
appraisa and worry on dl the tasks that have models
provided in the ACT-R modéd library, including driving,
phone dialing, and interface use. All the source files for
the ACT-R model of seria subtradion and the two types
of overlays we discused here ae avalable &
acs.ist.psu.edu/ papers/serial-sub/

Including the dfeds of behavior moderators into
computational models of cognition will give power to
cogritive modelers as it will provide them with the
cgpability of designing models tha can cgoture more
redisticdly human behavior. The design of highfidelity
models is particularly important for models that can be
used for training purposes. In particular, cognitive models
that populate synthetic environments in  military
simulations shoud incorporate the dfeds of behavior
moderators in order to achieve training environments that
closdly match the dharacteristics of red combat. Idedly,
entities in synthetic environments sould perform their
missions should very similarly when they are operated by
human users and when they are driven cognitive models.

References

[1] Anderson, J. R., Corbett, A. T., Koedinger, K. R., and
Pdletier, R.: Cognitive tutors. Lesons leaned.
Journal of the Learning Sciences, Vadl. 4, pp. 167-
207, 1995.

[2] Anderson, J. R, and Lebiere, C.: The domic
components of thought. Mahwah, NJ: Erlbaum, 1998

[3] Ashcraft, M., H, and Faust, M. W.: Mathematics
anxiety and mental arithmetic performance An
exploratory investigation. Cognition and Emotion,
Vol. 8, pp. 97-125, 1994

[4] Ashcraft, M. H, and Kirk, E. P.: The relationship
among working memory, math anxiety, and
performance Journal of Experimental Psychoogy:
Generd, Val. 13, pp. 224-237, 2001.

[5] Bartl, C., and Dorner, D.: PSl: A theory o the
integration of cogrition, emotion and motivation. In
F. E. Ritter & R. M. Young (Eds.), Proceedings of
the 2nd European Conference on Cogritive
Modelling, pp. 66-73, Thrumpton, Nottingham, UK:
Nottingham University Press 1998.

[6] Busetta, P., Rénnquist, R., Hodgson, A., and Lucss,
A.: JACK intelligent agents - Components for
intelligent agents in JAVA. AgentLink News Letter,
2(Jan.), 1999  www.agent-software.com/white-
paper.pdf.

[7] Cian, C., Koumann, N., Barraud, P. A, Raphel, C.,
Jmenez C., and Mdlin, B.: Influence of Variationsin
Body Hydration on Cogritive Function: Effed of
Hyperhydration, Hea Stress and Exercise-Induced
Dehydration. Journal of Psychophysiology, Vol. 14,
2000.

[8] Eysenck, M. W, and Cdvo, M. G.: Anxiety and
performance the procesing efficiency theory.
Cognition and Emotion, VVal. 6, pp. 409434, 1992,

[9] Faust, M. W., Ashcraft, M. H, and Flek, D. E.:
Mathematics anxiety effeds in simple aad complex
addition. Mathematical Cogrition, Vadl. 2, pp. 25-62,
1996.

[10]Hammond, K., R, Hamm, R., M, Grasda, J., and
Pearson, T.:. Dired comparison of the dficag of
intuitive and analyticd cognition in expert judgment.
IEEE Transadions on Systems, Man and
Cybernetics, Vol. 17, pp. 753770, 1987.

[11]Howes, A., and Young, R.: Leaning consistent,
interadive, and meaningful task-adion mappings: A
computational model. Cognitive Science, Vol. 20, pp.
301-356, 1996.

[12]Hudlicka, E. Modeling behavior moderators in
military performance models (Technicd report
9716). Lincoln, MA: Psychonometrix Associates Inc,
1997.

[13]Hudlicka, E., and McNeese, M. C.: Assssnent of
user affective & belief states for interface aaptation:
Applicaion to an Air Force pilot task. Journa of
User Modeling and User Adapted Interadion, Spedal
Isauie on User Moddling and Adaptation of Affedive
Computing, 2002

[14] Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K.
J.,, Kenny, P., and Koss F. V.: Automated intelligent
pilots for combat flight simulation. Al Magazne,
Vol. 20, pp. 27-41, 1999.

[15] Jones, G., Ritter, F. E, and Wood D. J.: Using a



cognitive architecture to examine what develops.
Psychological Science, Val. 11, pp. 93-100, 2000.

[16] Jongman, G. M.. How to fatigue ACT-R? In
Proceedings of the Second European Conference on
Cognitive Modelling, pp. 52-57, Nottingham:
Nottingham University Press, 1998.

[17]Kelsey, R. M., Blascovich, J., Leitten, C. L.,
Schneider, T. R., Tomaka, J, and Wiens, S.:
Cardiovascular reactivity and adaptation to recurrent
psychological stress. The moderating effects of
evaluative observation. Psychophysiology, Vol. 37,
pp. 748-756, 2000.

[18] Kieras, D. E, and Meyer, D. E.: An overview of the
EPIC architecture for cognition and performance
with application to human-computer interaction.
Human-Computer Interaction, Vol. 12, 391-438,
1997.

[19]Laird, J. E, Newdll, A., and Rasenbloom, P. S.: Soar:
An architecture for genera intelligence. Artificia
Intelligence, Vol. 47, pp. 289-325, 1991.

[20]Koelega, H. S, and Brinkman, J.-L.: Noise and
vigilance: An evduative review. Human Factors,
Vol. 28, 465-481, 1986.

[21] Koelega, H. S, Brinkman, J.-L., and Bergman, H.: No
effect of noise on vigilance performance? Human
Factors, Val. 28, pp. 581-593, 1986.

[22] Laird, J., E, Newell, A., and Rosenbloom, P. S.: Soar:
An architecture for genera intelligence. Artificia
Intelligence, Vol. 47, pp. 289-325, 1991.

[23] Lazarus, R. S.: Psychologica stress and the coping
process. New Y ork: McGraw-Hill, 1966.

[24] Lazarus, R. S., and Folkman, S.: Stress, appraisal and
coping. New Y ork: Springer Publishing, 1984.

[25]Lovett, M. C., Dally, L. Z., and Reder, L. M.: A
source activation theory of working memory: cross-
task prediction of performance in ACT-R. Journal of
Cognitive Systems Research, Vol. 1, pp. 99-118,
2000.

[26] Newell, A.: You can' t play 20 questions with nature
and win. In W. G. Chase (Ed.), Visua Information
Processing: Academic Press, 1973.

[27]Newell, A.: Unified theories of cognition.
Cambridge, MA: Harvard University Press, 1990.
[28] Pew, R. W., and Mavor, A. S. (Eds): Modding
human and organizational behavior. Washington,

D.C: Nationa Academy Press, 1998.

[29] Mertens, H., W, and Callins, W., E.: The effects of
age, deep deprivation, and altitude on complex
performance. Human factors, Vol. 28, pp. 541-551,
1986.

[30]Quigley, K. S., Barret, L. F., and Weingtein, S.:
Cardiovascular patterns associated with threat and
chalenge appraisas. Individua responses across
time. Psychophysiology, in press.

[31] Ritter, F. E., Avraamides, M. N., Councill, 1., van
Rooy, D., Quigley, K. S., Klein, L. C., McNeese, M.

D., Stine, M. M., and Rodrigues, I. M.: Pretask
appraisal and caffeine; An architectural overlay for
ACT-R. In Air Force Workshop on ACT-R Modes
of Human-System Interaction, Mesa, AZ, January
2002.

[32] Ritter, F. E., Quigley, K. S., Klein, L. C., McNeese,
M. D., Rooy, D. V., Councill, I., Avraamides, M. N.,
Stine, M. M., and Rodrigues, I. M.: Including the
effects of pretask appraisal and caffeine in the ACT-
R cognitive architecture: Creating a dynamic
architectural overlay, submitted.

[33] Ritter, F. E., Shadbalt, N. R., Elliman, D., Young, R.,
Gobet, F., and Baxter, G. D.: Techniques for
modeling human  performance in  synthetic
environments. A supplementary review. Wright-
Patterson Air Force Base, OH: Human Systems
Information Analysis Center, (in press).

[34] Ritter, F. E., & Young, R. M.: Embodied models as
simulated users: Introduction to this specia issue on
using cognitive models to improve interface design.
International Journal of Human-Computer Studies,
Vol. 55, pp. 1-14, 2001.

[35] Tambe, M., Johnson, W. L, Jones, R., M, Koss, F., V,
Laird, J., E, Rosenbloom, P. S, and Schwamb, K., B.:
Intelligent agents for interactive simulation
environments. Al Magazine, Vol. 16, pp. 15-39,
1995.

[36] Tomaka, J., Blascovich, J, Kesey, R. M., and
Leitten, C. L.: Subjective, physiologica, and
behavioral effects of threat and challenge appraisal.
Journal of Personality and Social Psychology, Val.
65, pp. 248-260, 1993.

[37]Van Dijk, F., Souman, A., and de Vries, F.: Non-
auditory effects of noise in industry.VI . A final field
study in industry. International Archive of
Occupational Environmental Health, Vol. 59, pp.
133-145, 1987

[38] Webb, W. B, and Lew, C., M.. Age, deep
deprivation and performance. Psychophysiology,
Vol. 19, pp. 272-276, 1982.

[39] Webb, W. B.: A further analysis of age and deep
deprivation effects. Psychophysiology, Vol. 22, pp.
156-161, 1985.

[40] Williams, P. S.: Processing demands, training, and
the vigilance decrement. Human Factors, Vol. 28, pp.
567-579, 1986.

Acknowledgements

This project was supported by the US Office of Navy
Research, award number N000140110547 and by the
Space and Naval Warfare Systems Center, San Diego.
The views expressed in this article do not necessarily
reflect the positions or the policies of the U.S.
Government, and no official endorsement should be
inferred. Discussions with Roman Belavkin, Wayne Gray,



John Anderson, and our colleagues on this project,
McNeese, Klein, and Quigley, have greatly benefited our
work.

Author Biographies

DR FRANK E. RITTER is one of the founding faculty
of the School of Information Sciences and Technology, a
new interdisciplinary academic unit at Penn State to study
how people process information using technology and to
train leaders for the digital economy. Ritter works on the
deve opment, gpplication, and methodology of cognitive
models, particularly as applied to interfaces and emotions.
Ritter is a member of the editorial board of Human
Factors, and is on the board of the UK' s Society for the
Study of Al and Simulation of Behaviour (AISB). His
review (with others) on applying models in synthetic
environments will be published as a book this year by
HSIAC as a State of the Art Report.

MARIOS AVRAAMIDES is a doctoral candidate in
Cognitive Psychology and a research assistant for the
School of Information Sciences and Technology at the
Pennsylvania State University. He has previousy

obtained an MS in Cognitive Psychology from Penn
State, and a BA in Psychology from the University of
Texas & Austin. His current research examines how
peopl e update spatia information provided in texts. In the
School of IST, Avraamides has worked on severa
projects building and supporting cognitive models,
including helping update the Soar FAQ.

ISAAC COUNCILL is a doctora student and research
assistant in the School of Information Sciences and
Technology at the Pennsylvania State University. He has
previoudy received a BA in Psychology from the
University of North Carolina a Asheville. Currently, he
is developing methodologies that will alow agents
created within the Soar architecture to be articulate
regarding the reasons for their decisions. Councill is the
author of the ACT-R/A/C serial subtraction modd and
user interface.



Behavior M oderator

Background Noise

Intermittent Noise

Dehydration

Expertise Level

Anxiety

Sleep deprivation

Altitude

Age

Appendix
Effect on cognition/behavior

Reduces vigilance and deteriorates attention [ 37]

Increases sensitivity in vigilance tasks ( [21]; see [20] for an evaluative review).

Impairs perceptive discrimination, psycho-motor skills, and short-term memory
[7]

Correlates with ability to perform mental what-if simulations, ease of adopting
multiple perspectives, ability to extract relevant information ([10]; Deckert et al.,
1994, cited in [28]; Badre, 1978, cited in [28]; see[12] for an el aborate
discussion on expertise-level differences).

Narrows the focus of attention, biases interpretation of ambiguous stimuli as
threatening [40]. Reduces working memory span and harms performance on
math-related tasks [4].

Reduces performance on the Civil Aeromedical Institute’'s Multiple Task
Performance Battery (M TPB), which includes tracking, monitoring of warning
stimuli, mental arithmetic, target i dentification and problem-solving [30].
Interacts with sleep deprivation to harm performance on the MTPB. The effects

of sleep deprivation are exaggerated in higher altitudes [30].

Interacts with sleep deprivation to affect performance on psychological tasks.

Sleep deprivation effects are exaggerated in older popul ations [38, 39]



