
Digital Watermarking

Michael Stumpfl

Dept. of Electronics and Computer Science
University of Southampton

e-mail: ms601@soton.ac.uk

Abstract
As more and more analogue systems are replaced by digital ones, the question of how to deal with piracy of
copyrighted digital content is turning into a serious problem. For example, the speed with which the “Content
Scrambling System” – the encryption standard used for DVD video – was broken, clearly shows, that encryp-
tion on its own is insufficient for many systems in protecting copyrighted material from misuse. Digital Water-
marking, on the other hand, relies on the shortcomings of the “human visual system” (HVS) and is about em-
bedding copyright information in a way that it is imperceivable by humans, while still being resistant to modifi-
cations of the cover media. Thus, digital watermarking can be considered to be a supplementary technique to
well established encryption schemes.

1 Introduction
Along with the explosive growth of the Internet not only desirable new possibilities - like publicly avail-
able access to information databases around the world, distributed project work across different coun-
tries, or fast and reliable means of electronic communication - emerged, but the ease with which digi-
tal media can be duplicated and modified, or the fact that legislation is seemingly unable to cope with
its rapid rate of change makes it also very attractive to people with dishonourable motives.

With these drawbacks of the “digital age” in mind, creators of multimedia content may wish for a digi-
tal analogy to the watermarks that have been used in bookmaking since the 13th Century [Kutt01].
This need for methods and tools to protect ones intellectual property rights initiated the relatively new
research field of “digital watermarks”. Someone familiar with encryption techniques might be tempted
to ask why there is such an amount of interest in the research community to develop robust water-
marking techniques, if numerous secure encryption algorithms are readily available. There are several
reasons for this:

• Encryption alone often is insufficient to protect digital content, since unconsidered and erroneous

usage by human operators often renders it useless.
• If somebody breaks the encryption (e.g. breaking the “content scrambling system” used on DVDs

with tools like “DeCSS”, “VobDec” or “SmartRipper”), copyright infringements can still be proven
using the embedded watermark.

• The decryption process usually depends on the data being unmodified.
• Since rightful owners are to be allowed to access the data they paid for, the encryption needs to

be undone at some point. As the unencrypted data is normally being held in the main memory of
computers, it’s not too difficult to devise tools for storing it onto a local hard disk (e.g. many DVD
players for the Windows OS use DirectShow for video output. This proves to be useful for multi-
angle DVDs, where applications like “DeCSS” fail. By using tools that implement appropriate Di-
rectShow filters to write the decoded images to a user-specified file instead of displaying them on
the screen (e.g. “DVDRip”), the raw video data is still accessible.

Because of these shortcomings, digital watermarking is sometimes referred to as being “the last line
of defence”. Consequently, an effective watermark should normally have several properties, whose
importance will vary depending upon the application [Kutt01]:

• Robustness

o Fragile Watermarks are highly sensitive to any modifications, their sole purpose be-
ing to prove the authenticity of a document.

o Robust Watermarks should be embedded in a way, that they cannot be removed
from the data without introducing noticeable defects.

• Perceptibility
o Visible Watermarks are added as a perceivable additional layer to the original data
o Invisible Watermarks should not be perceivable by human senses.

• Security Unauthorized parties should not be able to read or alter the watermark, even if they
have detailed knowledge about the used algorithms (Kerckhoffs’s maxim).

• Multiple Watermarks Does the watermarking algorithm allow for multiple watermarks to be de-
tected independently of each other?

• Speed In video distribution systems it may be necessary to use asymmetric algorithms, which
offer very fast embedding methods, whereas watermark detection can take arbitrarily longer.

While encryption often is the best solution for establishing a secure communications channel, it can
have the disadvantage of unintentionally raising the suspicion of third parties. Steganography, on the
other hand, doesn’t rely on encryption techniques, but tries to conceal the very existence of an ongo-
ing communication. Consequently, a successful attack consists in detecting any covert communica-
tion. Although watermarking is conceptually equivalent to steganography, it usually has the additional
requirement of being robust against possible attacks [Kutt01].

Digital watermarking is still a very young research area, with its first academic conference held in
1996 [Ande99]. Numerous algorithms have been proposed and dismissed since then. Therefore, this
paper aims at describing one popular watermarking technique in detail (“Spread Spectrum Water-
marking”), rather than providing a short and unsatisfactory explanation of a larger number of different
methods.

2 Spread Spectrum Watermarking

Pickholtz et al. [Ruan97] define spread spectrum communication as follows:

Spread spectrum is a means of transmission in which the signal occupies a bandwidth in
excess of the minimum necessary to send the information; the band spread is accom-
plished by a code, which is independent of the data, and a synchronized reception with
the code at the receiver is used for despreading and subsequent data recovery.

When used in digital image watermarking, this translates to inserting the watermarking bits at more
than one location in the image. Thus, even if subsequent image operations may remove the water-
mark in some parts of the image, it is very likely that the embedded copyright is still detectable.

2.1 Variant 1

There are several variants of spread spectrum watermarking. Possibly the easiest way to embed
copyright bits into an image is to add them in the spatial domain without the need to do costly pre-
and post-processing steps like cosine-, Fourier- or Wavelet transformations.

2.1.1 Embedding

The first step is to assign –1 and +1 to the watermarking bits 0 and 1 respectively. The resulting bit
stream is then arranged either in rows, columns or tiles across the whole image (Figure 1, “key2”:
logical ‘0’: white areas, logical ‘1’: black areas; each tile corresponds to one bit in the watermark).

To accomplish the band spread, “key2” is then multiplied by the output of a “pseudo-noise generator”
like a “linear feedback shift register” (LFSR) or other random generators.

Lastly, the values of the watermark are adjusted by multiplying them with a “rescaling factor” and
added to the original image in a pixel wise manner. The “rescale factor” determines the strength with
which the watermark is embedded (usually depending on the characteristics of different parts of the
image, e.g. some parts of the image might allow for a rescale factor of 5 or more, while others suffer a
visible degradation in image quality even if the rescale factor is reduced to 1).

Figure 1: Embedding a spread spectrum watermark

2.1.2 Detection

The obvious problem in the watermark detection step is how to retrieve the embedded watermark
from a (possibly) watermarked image. There are several approaches to this problem:

• “private/non-blind watermarking”: The embedded watermark is recovered by subtracting the

original image
• “semi-blind watermarking”: The detector requires access to the published/unmodified water-

marked image
• “public/blind watermarking”: The embedded watermark can be detected without the original

image

The described watermark is an example for a public/blind watermarking scheme, because the em-
bedded copyright can be retrieved without the original image by taking advantage of the specifics of
the algorithm described in 2.1.1. Since the watermark is added as a pseudo-noise sequence having a
high spatial frequency, it can be recovered by applying a high-pass filter such as the following convo-
lution mask:
















−⋅

111
181
111

5
1

 :filter pass-high

To calculate the filtered image, the convolution mask is shifted over the whole image. In each step the
pixel below the “-8” is replaced by the inner product of the convolution mask and the underlying pixel
values. The resulting image is then multiplied by password-dependent pseudo-noise sequence “key1”
to get the “correlation image”. After summing the values of the correlation image for each copyright
bit, the actual bit values (key2) are finally recovered using the following formula (see Figure 2):








+=

=
=

 else ... faileddetection
hresholddetectionT)qare[i][j]avg(corrSu ... 1

Threshold-detection)qare[i][j]avg(corrSu ... 0
: [i][j])corrSquareOutputBit(

*

original image

watermark bits (key2)

watermark password (key1)

+

rescale
factor

watermarked image

pseudo-noise sequence

watermark

modulation

addition

Figure 2: Detection of a spread spectrum watermark

2.2 Variant 2

Many of today’s predominant video and image compression algorithms make use of the “Discrete Co-
sine Transformation” (DCT, see Equation 1) to transform a signal from the spatial- into the frequency
domain, where compression can be gained by quantizing the DCT coefficients and applying a Huff-
man- or arithmetic code to the result.

() ()

() () 



 ==







 π⋅⋅+⋅

⋅





 π⋅⋅+⋅

⋅⋅⋅⋅=







 π⋅⋅+⋅

⋅





 π⋅⋅+⋅

⋅⋅⋅⋅=

∑∑

∑∑

= =

= =

otherwise 1

0 vu,for
2

1
C ,C where

16
v1y2

cos
16

u1x2
cosSCC

4
1

s

16
v1y2

cos
16

u1x2
cossCC

4
1

S

vu7

0u
uvv

7

0v
uyx

7

0x

7

0y
yxvuuv

Equation 1: DCT/IDCT as defined in the JPEG standard

The calculated DCT coefficients give a measure for the correlation between the original 8x8 block and
the respective DCT basis image i.e. they represent the amplitudes of all cosine waves necessary to
synthesize the original signal in the inverse process (see [Smit97] for further information).

A variant of the algorithm presented in the last section that fits into this framework, works in exactly
the same way, except the watermarking bits are only embedded at certain locations in each 8x8 DCT-
block (see Figure 3).

DC AC01 AC02 W W W W AC07

AC10 AC11 W W W W AC16 AC17

AC20 W W W W AC25 AC26 AC27

W W W W AC34 AC35 AC36 AC17

W W W AC43 AC44 AC45 AC46 AC47

W W AC52 AC53 AC54 AC55 AC56 AC57

W AC61 AC62 AC63 AC64 AC65 AC66 AC67

AC70 AC71 AC72 AC73 AC74 AC75 AC76 AC77

Figure 3: DCT block: ‘W’ depicts suitable coefficients for the watermarking process [Jeon01]

watermarked image

*

correlation image

watermark password (key1)

high-pass filter

summation /
thresholding

recovered water-
mark bits (key2)

demodulation

pseudo-noise sequence

The range of suitable DCT coefficients is limited by two constraints [Jeon01]:

(i) The human eye is especially sensitive to changes in lower frequency components
(ii) Higher frequency components are unsuitable for watermarking due to quantization

Therefore, the only coefficients that should be used in the watermarking process are those depicted
by a ‘W’ in Figure 3 (the middle-frequency range).

2.3 Variant 3

The algorithms presented so far suffer from one deficiency: although spread spectrum watermarks
are robust against various filtering and compression techniques, they are easily defeated by opera-
tions involving scaling or rotation. To overcome this limitation the Discrete Fourier Transform can be
used, which provides a very elegant way to make an embedded watermark RST-invariant
(RST…rotation, scale, translation).

As opposed to the DCT, which composes a signal solely of cosine waves with different frequencies
and amplitudes, the Fourier Transform uses both sine and cosine waves to decompose a given sig-
nal. Of the 4 different kinds of Fourier Transforms listed in Table 1, only the Discrete Fourier Trans-
form (DFT) is commonly used with Computers, i.e. when working with discrete signals [Smit97]:

Type of Transform Used for signals that
Fourier Transform … are continuous and aperiodic
Fourier Series … are continuous and periodic
Discrete Time Fourier Transform … are discrete and aperiodic
Discrete Fourier Transform … are discrete and periodic

Table 1: Different types of Fourier Transforms

There are two different sub-types of the Discrete Fourier Transform [Smit97]:

a.) The real DFT transforms a time-domain signal consisting of N points (x0 to xN-1) into two fre-

quency-domain signals consisting of 12
N + points, according to the following formulas:







 ⋅⋅π⋅

⋅+





 ⋅⋅π⋅

⋅=

=

=





 ==

=







 ⋅⋅π⋅

⋅⋅=







 ⋅⋅π⋅

⋅⋅=

∑

∑

∑

=

−

=

−

=

N
ik2

sinb
N

ik2
cosa x:DFT Inverse

2
N

 ..., 0, k

 N
2C

 elseN
2

2
Nior 0i forN

1
C

 where

N
ik2

sinxCb

N
ik2

cosxCa
 :DFT Forward

k

2/N

0k
ki

b

a

1N

0i
ibk

1N

0i
iak

b.) The complex DFT takes a N point complex signal (i.e. having a real and an imaginary part) and

transforms it into two N point signals with the first 12
N + coefficients being equal to ai and bi.

The calculation is usually performed using a method known as the Fast Fourier Transform (FFT).
It is important to note, that most FFT algorithms require the input signal to have a length N=2p
where p∈Õ, otherwise the input signal has to be padded with zeros.

Although the real DFT looks simpler at first, most imaging programs use the FFT for one simple rea-
son: The algorithm in a.) has a computational complexity of O(N2) whereas the FFT is of O(N.log(N)).
As it is rather complicated to derive the algorithm, this is left to books dealing specifically with Digital
Signal Processing (DSP) such as [Smit97]. While these formulas apply to the one-dimensional case
only, they can be used for images as well by first transforming all rows, followed by a transformation
of all columns, or vice versa (if you are interested in implementing any of these algorithms, the rou-
tines in Appendix A may serve as a good starting point for further experiments).

If the result of a Fourier Transformation has to be displayed on a computer screen, the information
contained in the amplitude values (“rectangular notation”) is often converted into polar form where the
coefficients are represented using a “Magnitude” and a “Phase”:

()
()kkk

k

k
kkk

kkk
2
k

2
kkkk

sinmb)
a
b

arctan()b,a(Phase

cosmaba)b,a(Magm

ϕ⋅===ϕ

ϕ⋅=+==

Equation 3: Rectangular to polar conversion and vice versa

For example, if the FFT is applied to Figure 4, the Magnitude of the spectrum in polar form will look
like Figure 5b with the white corners corresponding to low frequencies and the black centre corre-
sponding to high frequencies.

Figure 4: 500x500 image of a Mandrill [Ruan97]

At this point it is important to remember, that the sine and cosine functions are periodic. Therefore,
the spectrum is also repeated infinitely in all directions (although only N points in this spectrum are ac-
tually sampled by the FFT, Figure 5b). This gave rise to the common convention of shifting the spec-

trum by 2
N horizontally and vertically, hence placing the zero frequency in the centre (Figure 5c)

and displaying it without the phase information (which is the case for all pictures in Figure 5):

Figure 5: Frequency spectrum of Figure 4 displayed in polar form

a.) continuous
spectrum as a
result of the pe-
riodic nature of
sine and cosine
waves

b.) spectrum, as calcu-
lated in polar form

c.) spectrum, as normally
displayed to the user

-N / -2π 0 N-1 / 2π
0

N-1 / 2π
-N/2 / -π +N/2 / +π

+N/2 / +π

+(N-1) / +2π

+(N-1) / +2π

2.3.1 Embedding

Most watermarking algorithms that claim to be invariant with respect to some transformations, reach
this goal by transforming the original image into a space that has the sought invariants, inserting the
watermark in this space and inversing the process to get the watermarked image. To reach a RST-
invariant space for the Fourier Transform, it is necessary to look at the properties of frequency spectra
in polar form [Ruan97]:

Operation in the spatial (time) domain Result in the frequency domain
Circular Translation Only the phase component is affected. If the translation is

not circular, this adds a cropping operation
Scaling Inverse Scaling
Rotation Rotation with same angle

Table 2: Effects of different imaging operations in the time domain

If the watermarking process relies solely on the magnitude component, only scaling and rotation need
further attention. Fortunately, these operations can be reduced to translations by changing the coordi-
nate system through a Log-Polar Mapping (LPM, Equation 4) [Ruan97]:

()
()

() () ()()
() 























 +
⋅=

θ⋅θ⋅=θµ
⇔

π⋅<θ≤
ℜ∈µ

θ⋅=
θ⋅=

µµ

µ

µ

x
y

atan ,
2

yx
ln

2
1

Fy,xf

sine ,cosef,F

20
 where

siney
cosex 22

Equation 4: Log-Polar Mapping (LPM)

Figure 6 gives an example where a LPM has been applied to Figure 4. The process of applying a
Fourier-Transform followed by a LPM is commonly referred to as a “Fourier-Mellin Transform”.

Figure 6: Log-Polar map of Figure 4 [Ruan97]

In the last step, the resulting Log-Polar map is transformed by another FFT to defeat any translations
caused by rotation or scaling operations. As a result, any watermark that is embedded in the magni-
tude of the resulting spectrum will not be harmed by RST operations.

It is important to note, that the resolution of the LPM is not required to match the size of the original
image. This simplifies the watermarking process immensely, because the resolution of the LPM can
be kept the same for all images. On the other hand, the coordinate mapping introduces the problem of
sampling pixel values between the original grid lines. To prevent a visible degradation of the final im-
age, it is usually advantageous to use algorithms similar to “Bilinear Interpolation” rather than simple
methods like “Nearest-Neighbour” etc. (see Figure 7)

Magnitude

x

y

242 243

 57

 58

0

182

214

197

131

242.6

 57.4

() ()
() () 36.1724.04.1518.2034.1514.0)(

8.2036.0214197214h ,4.1516.0182131182

121

21

=⋅−+=⋅−+=

=⋅−+==⋅−+=

hhhMagnitude

h

o

Bilinear Interpolation:

Magnitude of the transformed image, calculated through
the following processing steps:

input image FFT LPM FFTMag Mag

ϕ=0

ϕ=π/2

ϕ=π

ϕ=3π/2

.

.

.

.

.

.

.

.

ϕ=2π

Because the exact values of the Magnitude are only known at certain locations in
the grid (small white circles), a LPM is usually done by using "Bilinear Interpolation"
or similar methods

Figure 7: Log-Polar Mapping and Bilinear Interpolation

Conclusions
After stating the requirements for digital watermarks, 3 variations on the “Spread Spectrum” water-
marking scheme were presented. Specifically the last method showed, how such watermarks can be
tailored to be resistant against a pre-chosen set of attacks. However, there are still many research
problems to solve until attributes like security or robustness can be ascribed to any of the existing wa-
termarking techniques and according the authors of the freely available watermark-attacking tool
“Stirmark”a, it is questionable if any such algorithm can exist, provided the distortion attack is chosen
appropriately.

Bibliography
[Ande99] “Information Hiding–A survey”, Ross J. Anderson, Markus G. Kuhn, Fabien A. P.

Petitcolas, Proceedings of the IEEE, special issue on protection of multimedia content,
87(7):1062-1078, July 1999

 http://www.cl.cam.ac.uk/~fapp2/publications/ieee99-infohiding.pdf
[ISO93] “Information Technology–Digital Compression and Coding of continuous-tone still im-

ages–Requirements and Guidelines”, ISO/IEC 10918-1, CCITT Recommendation T.81,
Description of the full JPEG Standard, 1993

 http://www.wotsit.org/search.asp@page=6&s=graphics
[Kutt01] “Digital Watermarking Frequently Asked Questions”, Martin Kutter, 2001

http://www.watermarkingworld.org/faq.html
[Jeon01] “Dual Detection of a Watermark Embedded in the DCT Domain”, Sangoh

Jeong, Kihyun Hong, EE368A Project Report, Stanford University
 http://www.stanford.edu/class/ee368a/dropbox/project06/
[Ruan97] Rotation, Scale and Translation Invariant Digital Image Watermarking, Joseph J.K. Ó

Ruanaidh, Thierry Pun, Centre Universitaire d'Informatique, Universeté de Genéve,
Switzerland

[Smit97] “The Scientist and Engineer's Guide to Digital Signal Processing”, Steven W. Smith,
California Technical Publishing, ISBN 0-9660176-3-3, can be downloaded at:

 http://www.dspguide.com/
[Su98] “Data Embedding and Digital Watermarking”, Jonathan K. Su, Telecommunications

Laboratory I, University of Erlangen-Nuremberg, 1998

a Download Address: http://www.cl.cam.ac.uk/~fapp2/software/StirMark_3_1_79.zip

[Su99] "Digital Watermarking of Text, Image, and Video Documents", Jonathan K. Su, Frank
Hartung, Bernd Girod, Telecommunications Laboratory, University of Erlangen-
Nuremberg

 http://www.cg.cs.tu-bs.de/v3d2/pubs/diwa-shg98.pdf

All URLs were last checked on October 4, 2001 and found to be valid!

Appendix A

The following C++ code can be used to calculate the (Cooley-Tukey-)FFT and its inverse [Smit97]:

int FFT1D (float *re_x, float *im_x, int sigLen)
{ double re_temp, im_temp;
 int i, j, k, l, N;

 // N <= 1?
 if ((N=sigLen) < 2)
 return (0);

 // N = 2^p?
 int exp = (int)(log(N+0.5)/log(2));

 if ((1 << exp) < N)
 return (-1);

 // bit reversal sorting:
 int Nd2 = N >> 1;

 for (i=1, j=Nd2; i < N-1; i++)
 {
 if (i < j)
 {
 re_temp = re_x [j];
 im_temp = im_x [j];

 re_x [j] = re_x [i];
 im_x [j] = im_x [i];

 re_x [i] = (float)re_temp;
 im_x [i] = (float)im_temp;
 }

 k = Nd2;

 while (j >= k)
 {
 j -= k;
 k >>= 1;
 }

 j += k;
 }

 // loop for each stage:
 double re_u, im_u, cwav, swav;

 for (l=2; l <= N; l <<= 1)
 {
 re_u = 1.0;
 im_u = 0.0;

 cwav = +cos (PI2/l);
 swav = -sin (PI2/l);

 // loop for each sub DFT:
 for (j=0; j < (l>>1); j++)
 {
 k = (l>>1) + j;

 // loop for each butterfly:
 for (i=j; i < N; i+=l, k+=l)
 {
 // butterfly calculcation:
 re_temp = re_x [k]*re_u - im_x [k]*im_u;
 im_temp = re_x [k]*im_u + im_x [k]*re_u;

 re_x [k] = (float)(re_x [i] - re_temp);
 im_x [k] = (float)(im_x [i] - im_temp);

 re_x [i] += (float)re_temp;
 im_x [i] += (float)im_temp;
 }

 re_temp = re_u;
 re_u = re_temp*cwav - im_u*swav;
 im_u = re_temp*swav + im_u*cwav;
 }
 }

 // FFT calculated successfully:
 return (0);
}

int IFFT1D (float *re_x, float *im_x, int sigLen)
{ int N, iRetVal;

 // N <= 1?
 if ((N=sigLen) < 2)
 return (0);

 // N = 2^p?
 int exp = (int)(log(N+0.5)/log(2));

 if ((1 << exp) < N)
 return (-1);

 // change the sign of 'imag[]':
 for (int k=0; k < N; k++)
 {
 im_x [k] = -im_x [k];
 }

 // calculate the forward FFT:
 iRetVal = FFT1D (re_x,im_x,N);

 // divide the time domain by 'sigLen':
 for (int i=0; i < N; i++)
 {
 re_x [i] = +re_x [i] / sigLen;
 im_x [i] = -im_x [i] / sigLen;
 }

 return (iRetVal);
}

