Advanced Generator Techniques for
Embedded Compilers

Thilo S. GAUL" and Giinter SCHUMACHER
"Universitdt Karlsruhe, Institut fiir Programmstrukturen und Datenorganisation, Zirkel 2
76131 Karlsruhe, Germany, Tel: +49 721 608-7398, Fax: +49 721 608-9095
Email: gaul@ipd.info.uni-karlsruhe.de
Universitct Karlsruhe, Institut fiir Angewandte Mathematik,
Postfach 6980, 76128 Karlsruhe, Germany; Tel: +49 721 608-2841,
Fax: +49 721 6087669, Email: guenter.schumacher@math.uni-karlsruhe.de

Abstract: As regards competitiveness, flexibility to charfigem one target platform
to another is decisive for application developespecially in the area of embedded
systems. The Architecture Neutral Distribution Fatn{ANDF), developed and
evaluated within OMI (Open Microprocessor Systemiidtive) has turned out to
be a key technology to improve this flexibility. &vasic idea is to break compilers
into front-ends (for specific languages) and bac#ise(for specific microprocessors)
where both pieces easily could be replaced by ag-phd-play" compatible
component.

Recently, the ANDF technology has been appliedandard embedded application
domains and even to safety critical applicationsséveral ESPRIT-projects with
clearly visible benefits for developing time, coatsl code reliance. The availability
of compiler back-ends (installers) turned out tothe most crucial part of this
technology. During the OMI/SAFE and OMI/FAME profsca new generation of
compiler generator tools has been applied, whichress the generation of compiler
back-ends. With such a back-end generator toolveldped at the University of
Karlsruhe - an installer for a specific platforrmdae provided with much less effort
than before. This approach also allows to buildfigomable installers which is of
great importance for families of microprocessord tor DSPs.

In this paper we will show first practical resuttsthe OMI/SAFE and OMI/FAME
projects, with emphasis on measurements of humsourees on the one hand and
efficiency of the produced code on the other hand)pared to standard compilers.

1. Introduction

Although the term “ANDF” spells as “Architecture Neutral fiisution Format”, a
platform independent exchange format for program code, it summansks its title a
collection of high-quality development tools and, in fact, a whole developi@emtology.
The split into front-end and back-end compilation derives new possibilifiesode
management at the intermediate level, thus improving both code quality and portability.
With these abilities, ANDF turns out to be the key for embedded aatdevelopment.
While there are only few languages in use there exists ge laumber of different
microcontrollers. At least in principle, it is possible to simplyg in a new backend
(installer) into an existent tool chain in order to use a newetguatform. It has been
demonstrated by several industrial projects that the full theatdienefit can actually be
achieved. These evaluations have made available realistic perferrfigmes for ANDF
components along with indications on the possible financial benefits when using them.
Having identified the backend as the critical component, the use of leorgpnerating
tools seems to be mandatory. In fact, it has been demonstratedvéoal sargets that

automatic generation can reduce both the development costs and tisnbdokend by a
factor of 3 to 4. In addition, this technique improves long term maintenaog@orts
“generic” backends and it allows compiler verification.

Backend generators that provide the necessary level of qualithdoerhbedded market

| Producers for each programming language |

| ccw+ || Forran77 || Ada95 || DviAN || occam |

<~~~ T 7

ANDF
production

ANDF
installation

\

| 8086 | | MH’SL‘ | SP,:RC || Pov‘v'erPC | |RS;000 || §T10 || sT9 |

| Installers for each target platform |

(measured in code size and performance of the compiled code of thatger®ackends)
have just entered the market. University of Karlsruhe and its inalugtartners are
currently owing one of the most mature generators, called BEG M/J2iJe this tool has
already been successfully used to generate installers, a nesvagen of backend
generators is under development which uses graph rewriting technahes than tree
rewriting. With these novel approach additional features are possiltle as globally
optimising code generators or further support for object-oriented languages.

In the following we describe the latest technical achievememdsparformance figures
when using BEG in practice to generate ANDF backends.

2. ANDF Based Compiler Construction

Since the first release of ANDF, several activities haven bestablished to provide
components for the ANDF technology, i.e., producers, installers, validatices,setc. A
reasonable part of these activities have been funded under the E®RRI&mme.
Therefore, the ANDF technology must be considered as a real Europedopdem. At
times when standards become more and more important, a successful Euepesua $or
— generally spoken — real-time interfaces would bring greater focusimpéan providers
of respective technology. Although this is rather "psychological’ since AMDopen for
anyone, examples like Java demonstrate the existence of this effect.

ANDF was always said to be too big and complicated, too much pam@sagbn. This
is true in a compiler environment where only one language is ttaddla a small set of
target architectures; in this case the intermediate rapes® can be driven by the
features of the target machine. But the more programming langjhagye to be integrated
into this simple framework, the more general the intermediaiguge has to be. ANDF
was designed to be a most general exchange platform, architeetural in the sense that
it provides a real superset of most intermediate operators amdas/ parameterisable in
most architecture dependent language features. This allows building a caystiéen for a
lot of different source languages and target machines, which alwesg the same compiler
infrastructure. ANDF as am to » interface between the various combinationg:dfont-

ends and: back-ends assures, that a lot of code can be reused, espeaisligrinations
and optimisations on intermediate language level.

This most general approach usually implies a hard to maintain @mnfmimework
which results in huge costs. In this paper we will show, thatneigertheless possible to
handle a compiler framework with such a general intermediateseptation by using
modern generator technology, that eases maintenance and reduces development costs.

2.1 Generator Technology

Compiler construction is one of the best exploited areas of compigecsand a lot of
techniques and methods have been developed for the construction of fasandafe
optimising compilers. To transfer the theoretical results to thectipal software
engineering, it is necessary to integrate them into tools, to makeeit possible to use
them. Well known examples of such transfers to practical needdetgeministic finite
automatons for lexical analysis and stack automatons for the analysisntext-free
languages. Everyone who deals with language translations knows the correspoalding t
LEX and YACC (and derivatives) that use these techniques. The p@ctas, that the
mentioned techniques found their way into generator tools, which generate concteeté pa
a compiler from easy to maintain and extendible specifications. Nowaeaery
programming language description comes with a specification in EBNm ¥hich a
YACC specification can be derived easily. This is not the caseotfuer parts of the
compiler and most of industrial compiler systems are still hand-written.

In this paper we demonstrate a further step in the automation of leorognstruction.
Our focus lies on the construction of code-generators, in the caseAdRR-framework
this is the backend of the ANDF-tool-chain, the installer. In theeotifESPRIT-projects
OMI/SAFE and OMI/FAME we show, how new generator tools for codecteh can be
efficiently used to generate the whole code-selection phase of compiler backends.

2.2 The Compiler Framework

The compiler framework developed in OMI/SAFE was designed to maxireisse and

reliability. We achieve this goal by:

» the compiler is divided into well manageable phases

» the phases of the compiler are divided into language and architectureddepand
independent parts

» architecture depended and optimisation critical parts of the conapédegenerated from
specifications

According to the general ANDF approach, the compiler is divided cédlysioto a front-

end and a back-end where ANDF serves as the intermediate languages ibi only a

conceptual subdivision, but this is a concrete interface where diffieoat-ends and back-

ends can be exchanged — even dynamically. In a concrete development frartiesvork

reduces the number of front-end/back-end combinations fmbmto m+n and thus reduces

the costs for porting the compiler to new architectures or languadeBF Aprograms

produced by the front-end can also be saved as binary files, which cartribeitéid and

translated further with any ANDF-back-end, without any knowledge about tigeidge

they were produced from. The feature of being able to distribute binarg cagemediate

programs is similar to Java-Byte-Code, with the difference that latter is neither

independent of the source language nor architecture neutral.

In the rest of this paper we will concentrate us on the back-endipsidller) of such a

compiler and the generator techniques used here.

2.3 Back-End Architecture

The main aspects at the construction of compiler back-ends for embsystedhs are
retargebility and reliability [6]. Efficiency of the generated cosl@also an import point for
embedded systems, but unlike to code generation for high-performance wonlsstati
memory considerations are often more important. The generator approaghiruse
OMI/SAFE allows to optimise code generators for both — runtimeieficy and memory
consumption.

The ANDF approach defines a strict division into architecture rleaté architecture
dependent parts. We refined this approach for back-end purposes to a estepwis
transformation from ,high-level* ANDF to low-level machine code:

1. Linking architectural neutral ANDF code together with machine and tpgraystem
dependent ANDF libraries and application programming routines

Mapping types and data structures parameterised with target properties
Selecting target machine code

Instantiate code with concrete assembler mnemonics

Assemble and bind produced code to executable programs

arwON

ADA95 [C/C++] [Fortran77] [OCCAM]

Code-Selection

Jpgtglle_r ____________________________ Specification
- |
! 1
Task 1! ANDF-Reader I !
1 1 1
21 Preprocessing & Data-Mapping : v
! 1
! 1
3 CodeSelect CodeSelect : Q Back-End-
| O f eeeeeees a ' 5 Generator
4 Targetl Targetn ! 2 BEG
| ! o
! 1
5 Ass/Link 1 Ass/Linkn

Architectural
Code Parameters
Target!/

An implementation of task 1 (ANDF-Reader) can be reused at 100%deeitaloes not
depend on the target and is implemented architectural neutral. A ffexigné one is
available as a result of the OMI/SAFE project. The mapping pkdsighly parametrizable
with the target properties and is reused as a part of the baclkpeafication. The code
selection phase (task 3) performs the transformation of operatidihe tmrget machine
while trying to use target resources (time or memory consumption) alptin®bviously
this is — together with task 4 — the most tedious task to implenmehtoml support is
urgently required. Implementations are completely generated with tlkeebhdcgenerator,

you can find some measurements and numbers in chapter 3. Task 5 isdmualby tools
provided by the chip manufacturer.

2.4 The Back-End Generator Technology

There exist a variety of techniques that address the problem dfingatmachine code to
intermediate languages. Common methodology is to specify source and sagehade

terms, which are related by code selection rules annotated witk. doim those

specifications a cost controlled rewrite system is generatetl,irtidements the code
selector [1,2,7,8,10]. The mechanism assures that always the cost Intiodea memory

consumption or execution time - is selected. Efficient tree traesslac bottom up rewrite
systems achieve practicability [3,4,9]. The user of the generator dodgmvmtto bother
with the generated transducer system, he/she just has to assuttee Specified rule set is
complete with respect to the intermediate language and of courséhdhgihgle rules are
locally correct.

Most powerful machine instructions can be used not only to implement oneohtige
program tree but several nodes at the same time. In order tduthleelvantage of this
instruction set property the declarative specification of the cosleergtor describes
machine instructions by tree patterns. This is done by defining &de rule describes a
node pattern and the corresponding sequence of processor instructions, wihish thve
output for this pattern. In order to produce code for the entire expressmnthe code
generator picks out a suitable set of rules so all nodes are dowece. Now the tree is
traversed in a suitable order and for each rule of the set thesponding machine
instructions are emitted.

Many processors have an ample instruction set, which may lead tooa ddterent,
possible covers. These covers are all correct, but the resulthamaynot the same code
quality. In order to select the best cover, each rule is annotatéd thet previously
mentioned cost statement. The code generator computes the totabfceath possible
cover by adding the costs of all rules belonging to the cover. Then the coweniofal
cost is chosen and for this the code is produced.

|- RULE Content(X) -> Z
V+1 { loadw 7.(X) } COST 16
[|: RULE AdrOfs(X,Y) -> X

{ addw XY} COST 10

(Conten) ll: RULE LocBase »2
{ loadw Z,R;» } COST 10
RULE Plus(X,Y) -> X

V:
@ { addw XY} COST 10
V: RULE Offset.C->Z
{ loadw Z,4C } COST 12
@ VI|: RULE Content(AdrOfs(LocBase,Offset.C)) ->Z
{ loadw Z, #C(Rzp) } COST 28

The example shows a typical program expression (access to a loieddleran an
arithmetic expression), and a simple rule system for code seleaimn$implified) ANDF
expressions to ST9 instructions. It is obvious, that there are s@assibilities to cover
this simple program tree, the cost optimal strategy is to apply/iuie the content subtree
instead of applying the simpler rules LILIII,V. The situation mightiferent again, if we
add additional rules that i.e. specify cheaper address offset rules, ohailesrbine other
arithmetic operators at lower costs.

Several generators have been built in the recent years and are hadedninn compiler

toolboxes (BURG, IBURG/MBURG, PAGODE, BEG). Some of them madestée to
industrial relevance, from which the back-end generator BEG is thenitiolmost user
support and is complete in the sense, that it is possible to sgexifyhble code generation
process. BEG produces highly efficient code generators, includes sexpsétr allocators
and also generates instruction schedulers from specifications.

BEG was developed and used in ESPRIT-project COMPARE and is nawamad
and sold by H.E.l.-Informationstechnik, Germany. The commercial version csitimetull
support, a public domain version with less features is also availdi@epracticability has
shown up in several compiler projects (COMPARE, MOCKA, Satheraka-Byte-Code)
where code generators for different processors (VAX, 68k, Transputer-WBP&, Sparc,
PowerPC, Pentium) were produced. A lot of work has been done to improredididity
of compiler backends, especially in the context of optimizing codetselegenerated
from specifications [5,6].

3. Results and Experiences

To stress retargebility aspects, this paper also reports reanlls experiences of
implementing ANDF back-ends with the new generator approach. We wi gn
overview on human resources and technical results of the installerwithin the
OMI/SAFE and OMI/FAME projects.

A code generator consists of intermediate language specific and taaghine
dependent parts. The language part models the input representation and sperform
conditional compilation and optimisations on ANDF-terms. This part caedsed 100%
for a new compiler and is available in the public domain and also comatheas a result
of the OMI/SAFE project. The machine dependent part has of courseadapéed for a
new architecture, but the specification mechanism allows to coatentn the target
machine facilities. The compiler writer does not have to bother thieé transformation
process itself, but he can concentrate on single aspects and local transformations.

Table 1 gives an overview on the usage of human resources needed celated of
BEG-specification and C-code produced. It documents results of theSBNHE project,
only specific parts have to be redone for a new installer.

Architecture dependent means, that this part only depends on the talgtscture or
family, not on the concrete processor.

Man power Lines of Lines C-code

(% of 15MM) Specification (generated)

Reader + Pre-Evaluation
[0) _—

100% reuse 15% 17.000
ANDF-specific CG-part 0
100% reuse 40% 4800
Architecture dependent 30% 2200 120.000
Processor dependent 15% 900

Table 1 Human Resources

These results show, that on the one hand the specification mechamam powerful —
the relation from lines of spec. to lines of C-code is at lkastl5 — and on the other hand

that the biggest part can be reused for a new architecture or gwodamily. l.e. it is
possible to obtain a complete new compiler in 2-3 MM if retargetirg dimilar processor.
Let us stress again, that one obtains the whole family of comfiletise new architecture
or processor if the retargeting work is done.

4. Conclusions

Automatic backend generation completes in some sense the ANDF taphnmoterms of

efficiency and quality. Since software has become a key issue even in the embadds

ANDF has the potential to become a world-wide recognised standardND& based

products may become the state-of-the-art, an appreciable situation with onlysvinner

* The users may buy components from different suppliers. ANDF guasatiteesmooth
fit into an existing environment.

» Compiler developers may enter into new market segments by providingant$ of a
tool chain, e.g. front-ends with graphical user interface.

* In-circuit emulator suppliers may also supply installers for whitey can have better
integration into their own environments.

This list can easily be extended by advantages for other suppliedevelopment

components such as suppliers for schedulability analysis tools otimealoperating

systems. This paper demonstrates that reusability does not couthergerformance of

the resulting system. In contrary both goals can be achieved in dpesed ANDF

framework.

References

[1] Helmut Emmelmann, Code selection by reguladpteolled term rewriting. In R. Giegerich and S.L.
Graham, editorsCode Generation - Concepts, Tools, Techniques, Workshops in Computing. Springer-
Verlag, 1992, S. 3-29

[2] H. Emmelmann, F.W. Schroer, R. Landwehr: BEGGemerator for Efficient Back-Ends, Proceedings
of the Sigplan’89 Conference on Programming Languagsign and Implementation. Portland, Orgeon,
June 21-23, 1989, Sigplan Natices, Vol. 24, Nuneluly 1989

[3] Albert Nymer and Joost-Pieter Katoen. Code Gatien based on formal BURS theory and heuristic
search. Technical report inf 95-42, University afénte, 1996

[4] Todd A Proebsting. BURS automata generation. ADfnsactions on Programming Languages and
Systems, 17(3):461-486, May 1995

[5] Wolf Zimmermann and Thilo Gaul. On the Constron of Correct Compiler Back-Ends: An ASM
ApproachJournal of Universal Computer Science (JUCS), 3(5):504-567, 1997

[6] Wolfgang Goerigk and Axel Dold and Thilo GauldaGerhard Goos and Andreas Heberle and F. W.
von Henke and Ulrich Hoffmann and Hans LangmaackHwiger Pfeifer and Harald Ruess and Wolf
Zimmermann. Compiler Correctness and Implementafierification: The VERIFIX Approach,
International Conference on Compiler Construction, 1996, Linkoeping, Sweden.

[7] H.S. Jansohn: Automated Generation of OptimiZede. GMD-Bericht Nr. 154, R.Oldenbourg Verlag,
1985

[8] A.V. Aho, M. Ganapathi, S.W. Tjiang: Code Gertara Using Tree Matching and Dynamic
Programming. 1987

[9] A. Balachandran, D.M. Dhamdhere, S.Biswas: k#fit Retargetable Code Generation Using Bottom-up
Tree Pattern Matching, Computer Languages, 15@90,1S. 127-140

[10] R.S. Glanville: A Machine Independent AlgoritHor Code Generation and its Use in Retargetable
Compilers, PhD Thesis, University of California,rBeley, 1978

