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Abstract depends upon complex restrictions on the sharing in these
structures. To illustrate this problem, and our approach to

In joint work with Peter O’Hearn and others, based on its solution, consider a simple example. The following pro-
early ideas of Burstall, we have developed an extension ofgram performs an in-place reversal of a list:
Hoare logic that permits reasoning about low-level impera-
tive programs that use shared mutable data structure. j:=mil; whilei # nil do

The si_mple imperative programming language i_s ex- (ki=[i4+1];[i+1]:=j;j:=i;i:=k).
tended with commands (not expressions) for accessing and
modifying shared structures, and for explicit allocatioma. ~ (Here the notatioffe] denotes the contents of the storage at
deallocation of storage. Assertions are extended by intro- address:.)
ducing a “separating conjunction” that asserts that its sub The invariant of this program must state thaindj are
formulas hold for disjoint parts of the heap, and a closely lists representing two sequencesind 3 such that the re-
related “separating implication”. Coupled with the induc- flection of the initial valuex, can be obtained by concate-
tive definition of predicates on abstract data structurb& t  nating the reflection oft onto 3:
extension permits the concise and flexible description of
structures with controlled sharing. Ja, B. listaiAlist BjA ag =at.g,

In this paper, we will survey the current development of
this program logic, including extensions that permit unre- where the predicathist o i is defined by induction on the
stricted address arithmetic, dynamically allocated asay length ofa:
and recursive procedures. We will also discuss promising

. . . . def . . . . def . . . . .

future directions. listei = i = nil list(a-a)i = Jj. i< a,jAlista]

(and— can be read as “points to”).
Unfortunately, however, this is not enough, since the pro-
gram will malfunction if there is any sharing between the

) listsi andj. To prohibit this we must extend the invariant to
The use of shared mutable data structures, i.e., of struc-assert that onlwil is reachable from bothandj:

tures where an updatable field can be referenced from more

than one point, is widespread in areas as diverse as systems (3o 4. list avi A list 8] A 045 =al-p)
programming and artificial intelligence. Approachestorea : . .
soning about this technique have been studied for three A (k. reach(i, k) A reach(j, k) = k = nil)
decades, but the result has been methods that suffer from ei;

1. Introduction

1)

ther limited applicability or extreme complexity, and sal where

poorly to programs of even moderate size. (A partial bibli- reach(), j) def 5. > 0. reach, (i, ])

ography is given in Reference [28].) ' - '
The problem faced by these approaches is that the cor- reachy (i, ]) def =]

rectness of a program that mutates data structures usually

..y def . .
- o reach,,;(i,]) = Ja,k.i— a, k Areach,(k,]).
*Portions of the author's own research described in thisesuwere
supported by National Science Foundation Grant CCR-9804add by . .
the Basic Research in Computer Scienoet(p: / / wwv. bri cs. dk/) Even worse, suppose there is some otherxjstepre-

Centre of the Danish National Research Foundation. senting a sequenceg that is not supposed to be affected by



the execution of our program. Then it must not share with integers which refer to individual fields [24, 30, 29]. Itis

eitheri or j, so that the invariant becomes this form of the logic that will be described and used in
_ o _ ; _ most of the present paper. We will also describe O’'Hearn’s
(Be, 8. listai Alist B A g = al-B) Alisty x frame rule [24, 35, 34, 19], which permits local reasoning
A (Vk. reach(i, k) A reach(j, k) = k = nil) about components of programs.
- ey @ Since these logics are based on the idea that the struct
A (Vk. reach(x, k) A (reach(i, k) V reach(j, k)) ince these logics are based on the idea that the structure

of an assertion can describe the separation of storage into

disjoint components, we have come to use the teepa-

Even in this trivial situation, where all sharing is prohié, ration logics both for the extension of predicate calculus

it is evident that this form of reasoning scales poorly. with the sgparatlon opera_ltors and th_e resulting extendion o
The key to avoiding this difficulty is to introduce a novel Hoare logic. A more precise name mightdierage separa-

logical operationP * (, calledseparating conjunctiofor Flon logics sinceitis pecommg apparent thatthe u_nderlymg

sometimesndependentr spatialconjunction), that asserts |Qea can be generalized to describe the separation of other

that P and @ hold for disjoint portions of the addressable Kinds of resources 3, 11, 12, 9, 10].

storage. In effect, the prohibition of sharing is built irlis

operation, so that Invariant (1) can be written as

= k = nil).

2. The Programming Language
(3, B. listai * list 3j) Ao} = al-3, (3)

and Invariant (2) as The programming language we will use is the simple im-
perative language originally axiomatized by Hoare [16, 17]
extended with new commands for the manipulation of mu-

d table shared data structures:

(Ja, B. listai * list ] * listyx) /\ag =af-8. (4)

In fact, one can go further: Using an inference rule calle
the “frame rule”, one can infer directly that the program
does not affect the list from the fact that assertions such as (comm) ::= .-

(3) do not refer to this list. | (var) := cons((exp), ..., (exp)) allocation
The central concept of a separating conjunction is im-

plicitin Burstall's early idea of a “distinct nonrepeatitrge | {var) := [{exp)] lookup

system” [2]. In lectures in the fall of 1999, | described the | [(exp)] := (exp) mutation

concept explicitly, and embedded it in a flawed extension of | dispose (exp) deallocation

Hoare logic [16, 17]. Soon thereafter, an intuitionistigio
based on this idea was discovered independently by Ishtia
and O’Hearn [19] and by myself [28]. Realizing that this
logic was an instance of the logic of bunched implications
[23, 26], Ishtiaq and O’Hearn also introducedeparating

OSemanticaIIy, we extend computational states to contain
two components: a store (or stack), mapping variables into
values (as in the semantics of the unextended simple imper-

implication P — Q. ative language), and a heap, mapping addresses into values

The intuitionistic character of this logic implied a mono- (and representing the mutable structures).
tonicity property: that an assertion true for some portibn o~ In the early versions of separation logic, integers, atoms,
the addressable storage would remain true for any extensior@nd addresses were regarded as distinct kinds of value,
of that portion, such as might be created by later storage al-and heaps were mappings from finite sets of addresses to
location. nonempty tuples of values:

In their paper, however, Ishtiag and O’Hearn also pre-
sented a classical version of the logic that does not impose Values = Integers U Atoms U Addresses
this monotonicity property, and can therefore be used to rea
son about explicit storage deallocation; they showed that
this version is more expressive than the intuitionistiddépg Heaps = J ¢ (A — Values™).
since the latter can be translated into the classical logic. AC Addresses

In both the intuitionistic and classical version of the
logic, addresses were assumed to be disjoint from inte- To permit unrestricted address arithmetic, however, in
gers, and to refer to entire records rather than particularthe version of the logic used in most of this paper we will
fields, so that “address arithmetic” was precluded. More assume that all values are integers, an infinite number of
recently, | generalized the logic to permit reasoning about which are addresses; we also assume that atoms are inte-
unrestricted address arithmetic, by regarding addresses agers that are not addresses, and that heaps map addresses

where Integers, Atoms, and Addresses are disjoint



into single values:
Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint

Heaps = U fin (A — Values).
A C Addresses
(To permit unlimited allocation of records of arbitrary sjz
we require that, for ath > 0, the set of addresses must con-
tain infinitely many consecutive sequences of lengtior
instance, this will occur if only a finite number of positive
integers are not addresses.) In both versions of the logic, w

assume
nil € Atoms

Storesy = V' — Values

Statesy = Storesy x Heaps,

e terminal A state(s, h) orabort.

We writey ~* +' to indicate that there is a finite sequence
of transitions fromy to v/, and~ 1 to indicate that there is
an infinite sequence of transitions beginning wjth

In this semantics, the heap-manipulating commands are
specified by the following inference rules:

e Allocation

(v:=cons(ey,...,e,), (s, h))

~ ([s]vl],[h]l]er] s | -] K—l—n—l:[[en]]exps]),

3 exp
wherel, ..., ¢ +n — 1 ¢ Addresses — dom h.

Lookup
Whenle],, s € dom h:

= |e é L)) é nje é , N
whereV is a finite set of variables. (=l (s~ (L fo el )] )
Our intent is to capture the low-level character of ma- When[[e]]exps ¢ dom h:
chine language. One can think of the store as describing the
contents of registers, and the heap as describing the con- (v:=e], (s, h)) ~ abort.
tents of an addressable memory. This view is enhanced by
assuming that each address is equipped with an “activity ¢ Mutation
bit”; then the domain of the heap is the finite setagtive When[e],.. s ¢ dom h:
addresses. exp
The semantics of ordinary and boolean expressions is the
same as in the simple imperative language: (le] =€, (s,h)) ~ (s,[ ] [e]exp st [€']exps D)
[e € (exp)]eyp € (U ain Storesy ) — Values Whenl[e],, s ¢ dom h:
V DFV(e)
[ € (boolexp)] e, € ([e] :== €', (s, h)) ~ abort.
U ¢ Storesy ) — {true, false}
V2FV(b) ¢ Deallocation

(whereFV(p) is the set of variables occurring free in the
phrasep). In particular, expressions do not depend upon the

heap, so that they are always well-defined and never cause

side-effects.
Thus expressions do not contain notations, suctvas
or [-], that refer to the heap. It follows that none of the new

heap-manipulating commands are instances of the simple

assignment commargar) := (exp) (even though we write
them with the familiar operatar=). In fact, they will not
obey Hoare’s inference rule for assignment. However, since
they alter the store at the variable we will say that the
commands := cons(---) andv := [¢], as well av := ¢

(but not[v] := e or dispose v) modifyv.

A simple way to define the meaning of the new com-
mands is by small-step operational semantics, i.e., by-defin
ing a transition relation» betweenconfigurationswhich
are either

¢ nonterminal A command-state paif, (s, h)), where
FV(c) C doms.

Whenl[e],, s € dom h:

(dispose ¢, (s, h)) ~ (s,h](dom h — {[e]

exp®

H);

Whenl[e].. s ¢ dom h:

exp

(dispose ¢, (s, h)) ~ abort.

(Here[ f | z:a] denotes the function that mapsinto a
and all other argumenigin the domain off into fy. The
notationf1.S denotes the restriction of the functigito the
domainS.)

The allocation operation activates and initializesells
in the heap. Notice that, aside from the requirement that
the addresses of these cells be consecutive and previously
inactive, the choice of addresses is indeterminate.

The remaining operations all cause memory faults (de-
noted by the terminal configuraticibort) if an inactive
address is dereferenced or deallocated.



An important property of this language is the effect of andp, — p; asserts that, if the current heap is extended
restricting the heap on the execution of a command. Essenwith a disjoint part in whichpy holds, therp; will hold in
tially, if the restriction removes an address that is darefe the extended heap:
enced or deallocated by the command, then the restricted
execution aborts; otherwise, however, the executions are [po —* p1],s b iff
similar, except for the presence of unchanging extra heap R N
cells in the unrestricted execution. VA (0L hand[po]g,s ') implies

To state this property precisely, we writggy | hy to [p1],eres (h-R').
indicate that the heapls, and h; have disjoint domains,

andhyg - h to indicate the union of such heaps. Then, when When this semantics is coupled with the usual interpratatio
ho C h, of the classical connectives, the result is an instanceeof th

“resource semantics” of bunched implications as advanced

e If (¢, (s,h)) ~* abort, then{c, (s, hg)) ~* abort. by David Pym [23, 26],

o If (¢, (s,h)) ~* (s',h') then(c, (s, hg)) ~* abort It is useful to introduce several more complex forms as
or {c, (s, ho)) ~* (s, hy), whereh, L hy andh’' = abbreviations:
hg - ha.

_def o / ! ;
e If (c,(s,h)) 1 then either{c, (s, hg)) ~* abort or ¢~ = 3zl.ea’ wherez’ notfreeine

)
<(3, (57 hU)) T

) def ’
e—e = e e x true

3. Assertions and their Inference Rules

e e,...,ey
" . def
In addition to the usual formulae of predicate calculus, Teme k- xetn—leoe,
including boolean expressions and quantifiers, we intreduc
four new forms of assertion that describe the heap: € €1, s6n
(assert) = --- e s % xetn—1e,
| emp empty heap iff e —>eq,...,en, * true.
| {exp) = (exp) -smgleto-n heép By using—, —, and the two forms of conjunction, it is
| (assert) * (assert) separating conjunction  easy to describe simple sharing patterns concisely:
| (assert) —« (assert) separating implication

1. x — 3,y asserts thak points to an adjacent pair of
Because of these new forms, the meaning of an assertion  cells containing3 andy (i.e., the store maps andy

(unlike that of a boolean expression) depends upon both the into some valuea andg, « is a address, and the heap

store and the heap: mapsa into 3 anda + 1 into J):
[p € (assert)], .., € )
(U s Storesy ) — Heaps — {true, false}.

VIFV(p)

Specifically,emp asserts that the heap is empty:

[emp], . sh iff domh={}, 2.y — 3,x asserts thag points to an adjacent pair of

e — ¢’ asserts that the heap contains one cell, at address cells containing} andx:

with contents’:
[e > €], 5 h iff y
X

dom h = {[e],,, s} andh([e].,,s) = [€'].,,5;
po * pp asserts that the heap can be split into two disjoint 3. x5 3.y * y s 3,x asserts that situations (1) and (2)
hold for separate parts of the heap:

parts in whichpg andp; hold respectively:

[[po * p]]]asrtSh iff

3hg, h1. hg L hy andhg - hy = h and X »‘ y
[P0l ho @NA[D1 ], epe o, A



4. x = 3,y Ay — 3,x asserts that situations (1) and (2)
hold for the same heap, which can only happen if the
values ofx andy are the same:

5. x = 3,y Ay — 3,x asserts that either (3) or (4) may
hold, and that the heap may contain additional cells.

There are also simple examples that reveal the occasionall
surprising behavior of separating conjunction. Suppose
andsy are distinct addresses, so that

hi = {{sx,1)} and  ho = {(sy,2)}
are heaps with disjoint singleton domains. Then

If pis: then[p],.. s his:
x 1 h = h
yl—)2 h/:h2
X’—)l*yHQ h:h]'hg
x—=1*xx—=1 false
Xl—)l\/yi—)Q h =hyorh = hy
x—= 1% (x—=>1Vy—2) h=h h
x—1Vym—2)

* (x> 1Vym2) fo= -
x—1xy—2

¥ (x—1Vy—2) false
x 1 % true hy C
x—=1x-x—1 hi1 Ch

as

To illustrate separating implication, suppose that an
sertionp holds for a store that maps the variakléto an
addressy and a heap that mapsy into 16. Then

(x — 16) = p

holds for the same store and the hdggdomh — {a})
obtained by removing from the domain of., and

x> 9 x ((x = 16) — p)

holds for the same store and the h¢ap «:9] that differs
from h by mappingy into 9. (Thus, anticipating the concept
of partial-correctness specification introduced in thetnex
section{x — 9 * ((x = 16) — p)} [x] := 16 {p}.)

The inference rules for predicate calculus remain sound
in this enriched setting. Before presenting sound rules for

the new forms of assertions, however, we note two rules that

fail. Takingp to bex — 1 andq to bey — 2, one can see

that neither contractiomy = p * p, nor weakeningp *
q = p, are sound. Thus separation logic is a substructural
logic. (Itis not, however, a species of linear logic, since i
linear logicP = @) can be writter(!P) — @, so the rule of
dereliction gives the validity of P —x @) = (P = (). But
in a state where — 1 is true,(x — 1) —« false is true but
(x = 1) = false is false [19].)

Sound axiom schemata for separating conjunction in-
clude commutative and associative laws, the fact ¢map
is a neutral element, and various distributive and semidis-

)}ributive laws:

p1 * P2 <= p2 * p1
(p1 * p2) * ps & p1 * (P2 * D3)

p x emp < p

(pLVp2) x g (p1 x q)V(p2 * q)

(pr Ap2) *x ¢ = (p1 * a) A (p2 * q)
(3z.p) *x ¢ & Jz. (p * q) whenz not free ing
(Vz. p) * ¢ = Vz. (p * q¢) whenz not free ing.

There is also an inference rule showing that separating con-
junction is monotone with respect to implication:

p1 = p2 a1 = q2

P1 * 1 = P2 * (2,

and two further rules capturing the adjunctive relatiopshi
between separating conjunction and separating implisatio

P1 * P2 = D3 P = (p2 —* p3)

p1 = (p2 —* p3) p1 * P2 = P3.

There are several semantically defined classes of asser-
tions that have useful special properties, and contain g&n ea
ily defined syntactic subclass.

An assertion is said to beureif, for any store, it is in-
dependent of the heap. Syntactically, an assertion is pure i
it does not contaiemp, —, or —. The following axiom
schemata show that, when assertions are pure, the distinc-
tion between the two kinds of conjunctions, or of implica-

tions, collapses:

p1Ap2 = p1 * P2 whenp; or p, is pure
D1 * P2 = p1 A P2 whenp, andp, are pure
(pANq) xrepA(q*T) whenp is pure
(p1 —* p2) = (p1 = p2) whenp; is pure
(p1 = p2) = (p1 = p2)

We say that an assertign is intuitionistic iff, for all
storess and heapé andh':

whenp; andp, are pure

h C h" and[p],.,. (s, k) implies[p],., (s, h').



One can show that * true is the strongest intuitionistic ~ (Regrettably, these are far from complete.)
assertion weaker than and thatrue — p is the weakest

intuitionistic assertion stronger than Syntactically, Ifp e1 > efNexd ey e el Nep =exNep = ey
andq are intuitionistic assertionsg, is any assertion, ane

, ; ) oL Gl €1 €] xea el =>e £ e
ande’ are expressions, then the following are intuitionistic

assertions: emp & V. =(z — —).
Any pure assertion e—e Both the assertion language developed in this section and
r % true true — r t_he programming language develope_d in the previous sec-
tion are limited by the fact that all variables range over the
pAg pVy integers. Later in this paper we will go beyond this limi-
You. p Ju. p tation in ways that are sufficiently obvious that we will not

formalize their semantics, e.g., we will use variables deno

L L ing abstract data types, predicates, and assertions irsthe a
For intuitionistic assertions, we have sertion language, and variables denoting procedures in the
programming language. (We will not, however, consider
(p * true) = p whenp is intuitionistic assignment to such variables.)

p = (true —x p) whenp is intuitionistic o .
4. Specifications and their Inference Rules

It should also be noted that, if we define the operations
We use a notion of program specification that is similar

i p def 4 e % (—p) to that of Hoare logic, with variants for both partial anddiot
. def correctness:
1 €
p=q = true — (p = q)
» & q def 4 oy (p & ) (spec) ::= {(assert)} (comm) {(assert)} partial
‘ | [ {assert) ] (comm) [ (assert) ] total

then the assertions built from pure assertions ang ¢/,

using these operations and v, ¥, 3, %, and— form the L€tV =FV(p) UFV(c) UFV(q). Then

image of Ishtiag and O’Hearn’s modal translation from in-

tuitionistic separation logic to the classical version][19
Yang [33, 34] has singled out the classatiictly exact = (c, (s, h) ~" abort)

assertions; an assertigtis strictly exact iff, for alls, b, and and(V(s', h') € Statesy .

B, 14, sh @and[q],.,. sh' impliesh = h'. Syntactically,

assertions built from expressions usirgand * are strictly

exact. The utility of this concept is that and

{p} ¢ {q} holds iffV(s, h) € Statesy. [p],.s h implies

¢, (s,h) ~* (s',h') implies[q] s 1)

(¢ x true) Ap=q x (¢ —xp) whengq is strictly exact. [p] c[q]holdsiffV(s, h) e Statesy. [p], s h implies
. . - (¢, (s, h) ~* abort)

Strictly exact assertions also belong to the broader class

of domain-exacassertions; an assertigns domain-exact and — (c, (s,h) 1)

iff, for all s, h, and ', [q],,.sh and[q],.sh' implies and(Y(s', h') € Statesy .
domh = domA'. Syntactically, assertions built from ex-
pressions using—, *, and quantifiers are domain-exact.
Wheng is such an assertion, the semidistributive laws given Notice that specifications are implicitly quantified ovettbo
earlier become full distributive laws: stores and heaps, and also (since allocation is indetermi-
nate) over all possible executions. Moreover, any exenutio
giving a memory fault falsifies both partial and total speci-

¢, (5,h) ~* (s, b') implies[q],....s' ).

(D1 * )N (p2 x @) = (p1 Ap2) * ¢

wheng is domain-exact fications.
As O’Hearn [19] paraphrased Milner, “Well-specified
Va. (p x q) = (Vz.p) * ¢ programs don’t go wrong.” As a consequence, during the
whenz not free ing andg is domain-exact execution of programs that have been proved to meet their

specifications, it is unnecessary to check for memory faults
Finally, we give axiom schemata for the predicate or even to equip heap cells with activity bits (assuming that



programs are only executed in initial states satisfying the
relevant precondition).

Roughly speaking, the fact that specifications preclude
memory faults acts in concert with the indeterminacy of al-
location to prohibit violations of record boundaries. But

sometimes the notion of record boundaries dissolves, as in

the following valid specification of a program that tries to
form a two-field record by gluing together two one-field
records:

{x—= —xy— -}
if y = x + 1 then skip else
if x=y+ 1 then x:=y else
(dispose x ; dispose y ; x := cons(1, 2))
{x— —, -}

In our new setting, the command-specific inference rules
of Hoare logic remain sound, as do such structural rules as

e Consequence
{p} c{d}
{p'} c{d'}.
¢ Auxiliary Variable Elimination
{p} c{d}
{3v. p} ¢ {3v. g},

wherev is not free inc.

p'=p 7=q

e Substitution
{p} e {a}
({p} c{a)/vi = e, ...

whereu, ..., v, are the variables occurring freejin
¢, orq, and, ifv; is modified bye, thene; is a variable
that does not occur free in any othst

7'Un _)en:

(All of the inference rules presented in this section are the
same for partial and total correctness.)

An exception is what is sometimes called the “rule of
constancy” [27, Section 3.3.5; 28, Section 3.5]:

{p} c{a}
{pAr}e{gnr},

where no variable occurring free inis modified byc. It

has long been understood that this rule is vital for scalabil
ity, since it permits one to extend a “local” specification of
¢, involving only the variables actually used by that com-
mand, by adding arbitrary predicates about variables that
are not modified by and will therefore be preserved by its
execution.

Unfortunately, however, the rule of constancy is not
sound for separation logic. For example, the conclusion of
the instance

{x—= -} [x]:=4 {x— 4}

{x—= —Ay—=3}x:=4{x—=> 4Ny~ 3}

is not valid, since its precondition does not preclude the
aliasing that will occur itk = y.

O’Hearn realized, however, that the ability to extend lo-
cal specifications can be regained at a deeper level by using
separating conjunction. In place of the rule of constaney, h
proposed thérame rule

e Frame Rule

{p} ¢ {q}

{p * r}c{q * r},
where no variable occurring free inis modified byc.

By using the frame rule, one can extend a local specifica-
tion, involving only the variables angiarts of the heaphat

are actually used by (which O’Hearn calls théootprint of

¢), by adding arbitrary predicates about variables and parts
of the heap that are not modified or mutatedcbyrhus, the
frame rule is the key to “local reasoning” about the heap:

To understand how a program works, it should
be possible for reasoning and specification to be
confined to the cells that the program actually ac-
cesses. The value of any other cell will automati-
cally remain unchanged [24].

Every valid specificatiofp} ¢ {¢} is “tight” in the sense
that every cell in its footprint must either be allocated by
c or asserted to be active hy “locality” is the opposite
property that everything asserted to be active belongsgto th
footprint. The role of the frame rule is to infer from a local
specification of a command the more global specification
appropriate to the larger footprint of an enclosing command

To see the soundness of the frame rule [35, 34], assume
{p} c {q}, and[p = r],,.sh. Then there aré, andh,
such thaho 1L A1, h = hg- hy, II])]]S ho andlIT]]S hy.

e Supposéc, (s, h)) ~* abort. Then, by by the prop-
erty described at the end of Section 2, we would have
(c, (s, hg)) ~* abort, which contradictp} ¢ {q}
and[p]s ho.

, As in the previ-
ous case,c, (s, hg)) ~* abort would contradict
{p} ¢ {q} and[p]s ho, so that, by the property at
the end of Section 2(¢, (s, hg)) ~* (s', hy), where
hy L hy andh’ = by - hy. Then{p} ¢ {q} and[p]s hq
implies that[q]s'hy. Moreover, sincéc, (s, h)) ~*
(s',h"), the storess and s’ will give the same value

Supposel(c, (s, h)) ~* (s',h').



to the variables that are not modified &yThen, since
these include all the free variablesiofr]s k, implies
that[r]s'hy. Thus[g = ]s'h'.

Yang [35, 34] has also shown that the frame rule is com-
plete in the following sense: Suppose that all we know
about a command is that some partial correctness speci-
fication {p} ¢ {¢} is valid. Then, whenever the validity of
{p'} ¢ {¢'} is a semantic consequence of this knowledge,
{p'} ¢ {q'} can be derived fror{p} ¢ {¢} by use of the
frame rule and the rules of consequence, auxiliary variable
elimination, and substitution.

Using the frame rule, one can move from local versions
of inference rules for the primitive heap-manipulating com
mands to equivalent global versions. For mutation, for ex-
ample, the obvious local rule

e Mutation (local)

{e— —}e]:=¢ {e— €'}
leads directly to

¢ Mutation (global)

{le—= =) xr}[e]:=¢€¢ {(e—¢€) x r}.

(One can rederive the local rule from the global one by tak-
ing r to beemp.) Moreover, by taking- in the global
rule to be(e — €') — p and using the valid implication

g * (¢ — p) = p, one can derive a third rule for mutation
that is suitable for backward reasoning [19], since one can
substitute any assertion for the postcondifion

e Mutation (backwards reasoning)

{lem ) (e e) =)} []i=¢ {n}.

(One can rederive the global rule from the backward one by
takingp to be(e + ¢’) * r and using the valid implication
(pxr)=(p* (¢ (qg*r)))

A similar development works for deallocation, except
that the global form is itself suitable for backward reason-

ing:

e Deallocation (local)

{e = —} dispose ¢ {emp}.

¢ Deallocation (global, backwards reasoning)

{(e> =) x r} dispose e {r}.

In the same way, one can give equivalentlocal and global
rules for “noninterfering” allocation commands that mgdif
“fresh” variables. Here we abbreviate e, bye.

¢ Allocation (noninterfering, local)

{emp} v := cons(€) {v — €},
whereuv is not free ine.

¢ Allocation (noninterfering, global)

{r} v:=cons(€) {(v—€) * r},
whereuv is not free ine or r.

However, to avoid the restrictions on occurrences of the
assigned variable, or to give a backward-reasoning rule,
or rules for lookup, we must introduce and often quantify
additional variables. For both allocation and lookup, we
can give equivalent rules of the three kinds, but the rele-
vant derivations are more complicated than before since one
must use auxiliary variable elimination, properties of qua
tifiers, and other laws.

In these rules we indicate substitution by priming meta-
variables denoting expressions and assertions, e.g., it wr
el fore;/v — v’ andr’ for r/v — v'. We also abbreviate
e1,...,en byeande],... e/ bye'.

¢ Allocation (local)

{v="1v"Aemp} v:=cons(e) {v— e},
wherev’ is distinct fromw.

Allocation (global)

{r} v:=cons(e) {F'. (v—>¢€) * r'},

wherev' is distinct fromv, and is not free irg or r.

Allocation (backwards reasoning)

{W'. (v =€) —x p'} v:= cons(e) {p},
wherev' is distinct fromw, and is not free ire or p.

e Lookup (local)

3

{v=v'Ale—v")}vi=le]{fv=0v"A( »v")}
wherev, v', andv” are distinct.

Lookup (global)

{I". (e = ") x (r/v' = v)} v:=]e]

{I'. (' »v) * (r/v" = v)}

3

wherewv, v', andv” are distinctp’ andv’’ do not occur
free ine, andv is not free inr.



¢ Lookup (backwards reasoning) ¢ ¢ for the empty sequence.

e [z] for the single-element sequence containingWe
{3 (e= ') x (e ) = p)}v:=[e] {p}, will omit the brackets when is not a sequence.)

wherev’ is not free ine, nor free inp unless it isv. e «-f3 for the composition oé followed by 3.

Finally, sincee > o' is strictly exact, it is easy to obtainan ~ ® @' for the reflection ot.

equivalent but more succinct rule for backward reasoning 4 4 for the length ofa.

about lookup:
¢ q; for theith component of.

Lookup (alternative backward reasonin . . . .
¢ P( 9) The simplest list structure for representing sequences is

the singly-linkedlist. To describe this representation, we
{3 (e =) Ap'}vi=[e] {p}, write list « (i, ]) when there is a list segment frainto j rep-
resenting the sequeneoe

o]
:

It is straightforward to define this predicate by induction o

the structure of:

wherev’ is not free ine, nor free inp unless it isv.

aq
For all four new commands, the backward reasoning forms
give complete weakest preconditions [19, 34]. = =
As a simple illustration, the following is a detailed proof
outline of a local specification of a command that uses allo-
cation and mutation to construct a two-element cyclic struc

ture containing relative addresses: list € (i, ) def empAi=]j

{emp} lista-a (i,k) % 3. i a,j * lista(j, k),
x:=cons(a,a) ; and to prove some basic properties:

{x=a,3) lista(i,j) < i a,]

y :=cons(b,b) ; i . - o ’ .

{(x—2,2)  (y > b,b)} ista-B(i,k) & Jj. list a (i) * list 8(j, k)

(x> 2 ) * (yrs b, )} list a-b (i, k) < 3j. lista(i,j) = j — b, k.

[x+1]:=y —x; (The second property is a composition law that can be

proved by structural induction om.)

(= ay=x) « (y = b, )} In comparison with the definition ofist in the intro-
ly+1]:=x-y; duction, we have generalized from lists to list segments,
{(x=a,y —x) * (y—=b,x—y)} and we have used separating conjunction to prohibit cycles
within the list segment. More precisely, whist oy - - - - -

{Jo. (x> 2,0) * (x+ 0> b, —0)}. an (i0,in), We have

5. Lists it in.
(io — Oé],i]) * (I] — Oég,ig) L JEEEEE 3 (in,] — Ozn,in).
To specify a program adequately, it is usually necessarythysi,, ... ,i, , are distinct, but,, is not constrained, so
to describe more than the form of its structures or the shar-p 4t jist a1 - - - an (i,i) may hold for anyn > 0.

ing patterns between them; one must relate the states of the Thus the obvious properties
program to the abstract values that they denote. To do so, it
is necessary to define the set of abstract values algebyaical lista(i,j) = (i=mnil = (a =€ Aj = nil))
or recursively, and to define predicates on the abstract val- . . ..
ues by structural induction. Since these are standard meth- lista(ij) = (i#j=ase
ods of definition, we will treat them less formally than the do not say whethet is empty when = j # nil. How-
novel aspects of our logic. ever, there are some common situations that insurentlist

For lists, the relevant abstract values are sequences, foempty when = j # nil, for example, wherj refers to a
which we use the following notation: When and 3 are heap cell separate from the list segment, or to the beginning
sequences, we write of a separate list:



lista(i,j) xjo> —=>(i=jea=¢)

lista (i,j) * list 3(j,nil) = (i=j < a=%¢).

On the other hand, sometimés= j simply does not de-

termine emptiness. For example, a cyclic buffer containing

« in its active segment and in its inactive segment is de-
scribed bylist « (i, j) * list 8 (j,i). Here, the buffer may be
either empty or full when = j.

The use ofist is illustrated by a proof outline for a com-
mand that deletes the first element of a list:

{list a-a (i, k) }
{3j.i—a,j * lista (j,k)}
{impax*x3.i+1l—jxlista(jk)}
je=li+ 1]
{impaxi+l—jxlista(,k)}
disposei;
{i+1—j * lista(j,k)}
disposei+1;
{list « (j, k) }
=]
{list a (i, k) }

A more complex example is the body of the while command

in the list-reversing program in the Introduction; here the
final assertion is the invariant of the while command:

{3, 8. (list « (i, nil) * list 3 (j, nil))
/\ag =al-BAi# nil}

{Fa,a, . (list a-« (i, nil) * list 3 (j, nil))
Naf = (aa)l-B)

{Fa,a,8,k. (i a,k % list « (k, nil) * list 3 (j, nil))
Nab = (aa)l-B)

k:=[i+1];

{Fa,a,p. (i— a,k x list a (k,nil) * list 8 (j, nil))
/\048

a,B. (i— a,j * list a(k,nil) % list § (j, nil))
Aah = (a-a)t6)
{3a,a, B. (list a (k, nil) * list a-g (i, nil))
Aof =atap}
{3a, 8. (list & (k, nil) * list 3 (i, nil)) A af = -8}
ji=i;i:=k
{3, B. (list a (i, nil) * list 8 (j, nil)) A o) = -8}
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A more elaborate representation of sequences is
provided by doubly-linked lists. Here, we write
dlist « (i,i',j,j') whena is represented by a doubly-linked
list segment with a forward linkage (via second fields) from
i to j, and a backward linkage (via third fields) frghto i’

The inductive definition is
dlist e (i,i",j,j') & emp Ai=jA i = '
dlista-a (i, i, k, k') 2 3. i > a,j, i’ = dlista(j,i,k, k'),
from which one can prove the basic properties:
diista (i,i",j,j') & i a,j,i'Ai=]

dlist a8 (i, 1", k, k') &
35, dlist a i, ', j,J') * dlist 8 (,j', k, k')

dlist a-b (i, i, k, k') <
3. dlist a (i, i', k', j') * k' = b, k,j".

The utility of unrestricted address arithmetic is illus-
trated by a variation of the doubly-linked list, in which the
second and third fields of each record are replaced by a sin-
gle field giving the exclusiver of their contents. If we
writexlist « (i, 1", j,j') whena is represented by such &or-
linkedlist:

we can define this predicate by
xliste (i,i',j,j") < empAi=jAi =]

. . def
xlista-a (i,i', k, k') =

Jj.ia, (joi) * xlista(,ik k).

The basic properties are analogous to thoselfist [24].

Finally, we mention an idea of Richard Bornat's [1], that
instead of denoting a sequence of data items, a list (or other
structure) should denote the sequence (or other colléction
of addresses at which the data items are stored. In the case
of simply linked lists, we writdistN o (i,j) when there is



a list segment froni to j containing the sequeneeof ad- tree a (i) iff empAi=a

dresses: -
tree (1 - 12) (2) I
0--1 0-2 U”l ( ] . 2-) ( )~ . . . .
321,22. 111,12 x tree T (Z]) *x tree 7 (22)

daga (i) iff i=a

dag (m - 12) (3) iff
This view leads to the definition Jiy,i0. i i1,i0 x (dag 7 (i1) A dag 72 (i2))-

Here, sincemp is omitted from its definitiondag a (i) is
pure, and therefore intuitionistic. By induction, it is égs
listN 1o (i,k) € 1=iATj.i+1— ] * listNo (j, k). seen thatlag 71 is intuitionistic for all 7. In fact, this is
vital, since we wantlag 7, (i1) A dag 72 (i2) to hold for a
Notice thatlistN is extremely local: It holds for a heap con- heap that contains the (possibly overlapping) sub-dags, bu
taining only the second cell of each record in the list struc- not to assert that the sub-dags are identical.
ture. To express simple algorithms for manipulating trees, we
The reader may verify that the body of the list-reversing Must introduce recursive procedures. However, to avoid
program preserves the invariant problems of aliased variables and interfering procedures,
we will limit ourselves to first-order procedures without
30,6. (listN o (i, nil) = listN 6 (j, nil)) A ot = ot.6. global variables (except, in the case of recursion, the name
' ’ ' 0 ' of procedure being defined), and we will explicitly indi-
wherea is the original sequence of addresses of the dataCat® which formal parameterslgre quified by the procedure
fields of the list ati. In fact, since it shows that these ad- P°dY- Thus a procedure definition will have the form

dresses do not change, this invariant embodies a stronger

listN e (i,]) & emp Ai =

; ) k ; h AN ; AR =c,
notion of “in-place algorithm” than that given before. (@1, 2mi yn) = ¢
whereyy, - - -, y, are the free variables modified lay and
x1,- -, T, are the other free variables afexcepth.

6. Trees and Dags
9 We will not declare procedures at the beginning of

blocks, but will simply assume that a program is reasoned
When we move from list to tree structures, the possible about in the presence of procedure definitions. In this set-
patterns of sharing within the structures become richer. ting, an appropriate inference rule for partial correctniss
In this section, we will focus on a particular kind of ab-

stract value called an “S-expression” in the LISP commu- ® Procedures

nity. The set S-exps of these values is the least set suchthat  Whenh(z1, -, Zm;y1, -, yn) = ¢,
TGS'eXpSiﬁ {p} h(xlz"':wm;ylz"':yn) {q}
7 ¢ Atoms :
orT = (1 - 7») wherer;, 7, € S-exps {p} ciq}

o _ _ e {p} h(zr, - xmiyn, o yn) {a}
(Of course, this is just a particular, and very simple, aiti

algebra. We could take carriers of any anarchic many-sortedin essence, to prove some specification of a call of a pro-
initial algebra to be our abstract data, but this would com- cedure in which the actual parameters are the same as the
plicate our exposition while adding little of interest.) formal parameters in the procedure definition, one proves a
For clarity, it is vital to maintain the distinction between  similar specification of the body of the definition under the
abstract values and their representations. Thus, we Will ca recursion hypothesighat recursive calls satisfy the specifi-
abstract values “S-expressions”, while calling represent cation being proved.
tions without sharing “trees”, and representations witiarsh Of course, one must be able to deduce specifications
ing but no loops “dags” (for directed acyclic graphs). about calls in which the actual parameters differ from the
We writetree 7 (i) (or dag 7 (4)) to indicate that is the formals. For this purpose, however, the structural infeeen
root of a tree (or dag) representing the S-expressiddoth rule for substitution suffices, if one takes the variablesimo
predicates are defined by induction on the structure of ified by A(z1, -, Zm; Y1, -, yn) tOo beyy, - y,. Note
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that the restrictions on this rule prevent the creation of To obtain the specifications of the recursive calls in this

aliased variables or expressions.

proof outline from the recursion hypothesis (5), one must

For example, we would expect a tree-copying procedure use the frame rule to move from the footprint of the recur-
sive call to the larger footprint of the procedure body. In

copytree(i;j) =
if isatom(i) then j:=i else
newvar iq,is,j1,jo in
(i] =]l = +1];
copytree(i1; j1) ; copytree(iz;j2) ;
ji= cons(jl,jg))
to satisfy

(5)

The following is a proof outline of a similar specification of
the procedure body:

{tree 7(i)}

if isatom(i) then

{tree 7(i)} copytree(i;]) {tree 7(i) * tree 7(j)}.

{isatom(7) Aemp Ai =T}
{isatom(7) A ((emp Ai=7) * (empAi=r1))}
ji=i
{isatom(7) A ((emp Ai=7) * (empAj=71))}
else
{3r, 7. 7=(11-m2) Atree (11 - 72)(i) }
newvar iy, i, ji,Js in
(=[] 5i0e=[i+1];
{3n, 7. 7=(11-12) A(i > ig,ip *
tree 7y (i) * tree 1o (i2))}
copytree(ii;ji) ;
{3r, 7. 7= (11 -12) A(i > ig,ip *
tree Ty (i1) * tree 1y (ia) * treemy (j1))}
copytree(iz; ) ;
{3, 7. 7=(11-T72) A
(i = i1,i0 x tree 7y (i) * tree 7y (ia) *
tree 1y (j1) * tree s (j2))}
j:=cons(j1,]j2)
{3, 7. 7=(11-72) A
(i = i1,i0 x tree 7y (i1) * tree 1y (ia) *
jrrii,je ® treemy (1) * tree s (j2))}
{3, 7. 7=(11-72) A
(tree (11-m3) (i) * tree (11-7) ())})
{tree 7(i) * tree 7(j)}.

12

more detail, the specification of the first recursive calhia t
outline can be obtained by the inferences

{tree (i)} copytree(i;j) {tree 7(i) * tree 7(j)}

{tree 71 (i1)} copytree(ir;j1) {tree i (i) * tree 71 (j1)}
{(t=(11 1) ANirrip,ia) *

tree 1 (i) * tree 7 (i)}

copytree(ii;ji1) ;
{(t=(11 1) Nirrip,ig) *

tree 1 (i) * tree 7o (iz) * treey (j1)}

{T=(n -m)A(iri,is *
tree 11 (i1) * tree 7 (i2))}

copytree(ii;j1) ;

{T=(n -m)A(imi,is *

tree 71 (i1) * tree 72 (i2) * tree 7y (1))}

{3n, 7. 7= (11 -12) A(i—>i1,ip *

tree 1 (i) * tree 7 (iz))}
copytree(ii;ji) ;
{3n, 7. 7= (11 -12) A(i—>i1,ia *

tree 1y (i) * tree 7o (i2) * treem (1))},

using the substitution rule, the frame rule, the rule of con-
sequence (with the axiomthgiAq) x r < pA (g * r)
whenp is pure), and auxiliary variable elimination.

What we have proved aboubpytree, however, is not as
general as possible. In fact, this procedure is insenditive
sharing in its input, so that it also satisfies

{dag 7(i)} copytree(i;j) {dag (i) * tree7(j)}. (6)
But if we try to prove this specification by mimicking the
previous proof, we encounter a problem: For (say) the first
recursive call, at the point where we used the frame rule, we
must infer

{(-++) * (dag 7i(i1) Adag m2(i2)) }
copytree(iy; j1)
{() * (dagﬁ(il)/\dang(ig)) * treeﬁ(j])}.

Now, however, the presence afinstead ofx prevents us

from using the frame rule — and for good reason: The re-
cursion hypothesis (6) is not strong enough to imply this
specification of the recursive call, since it does not imply
that copytree(is;j1) leaves unchanged the portion of the



heap shared by the dags representingand ». For ex- introducing an allocation command where the number of
ample, suppose consecutive heap cells to be allocated is specified by an
operand. It is simplest to leave the initial values of these

m=((3-4)-(5-6)) = (5-6). cells indeterminate. We will use the syntax

Then (6) would permitopytree(ii;ji) to change the state (comm) ::= - - | (var) := allocate (exp)
from

with the operational semantics
(v:=allocate e, (s,h)) ~ ([s | v:£],h-}")
whereh L b anddomh' = {i [ £ <i</l+[e], s}

To describe such arrays, it is helpful to extend the con-
cept of separating conjunction to a construct that iterates
over a finite consecutive set of integers. We use the syntax

3 ]
1
5 |
6

into - -
5 3 (assert) ::= - - - | @Eszf;:(exw (assert)
i 16 I | 4] with the meaning
? ? [[@Z:e p]]asrt (57 h) =
™ —] let m = = [¢
4 6 et m = [[e]]exps, n=e ]]exps,

I={ilm<i<n}in
wheredag 7 (i2) is false.

One way of surmounting this problem is to extend asser- 3H e I — Heaps.

tions to contairessertion variablesand to extend the sub- Vi,jel. i+ jimpliesHi L Hj
stitution rule so that the;’s include assertion variables as o

well as ordinary variables, with assertions being subtgtitu andh = J{Hi|iel}

for these assertion variables. andVi e 1. [p],..([s | v:i], Hi).

Then we can use an assertion variaph® specify that
every property of the heap that is active before executing The following axiom schemata are useful:
copytree(i; j) remains true after execution:
m>n = (@?:m (i) & emp)
{p Adag 7(i)} copytree(i;j) {p * tree7(j)}. (7)

_ _ m=n= (@?:m p(i) & p(m))
We leave the proof outline to the reader, but show the infer-

ence of the specification of the first recursive call fromthe £t <m<n+1=
recursion hypothesis, using the substitution rule andlauxi n . m—1_,. n .
iary variable elimination: (OLpli) & (O 2() * OL,2()))

{p Adag 7(i)} copytree(isj) {p * tree 7(j)} O, (i) & O p(i + k)
{(r=(n-m)ApAdagm (i2)) Adag 7 (i1)} m<n=
copytree(iiji) ; (O p() * ¢ & OL.(0(0) * 0))
{(T = (T] . 7'2) ApA dag T2 (Ig)) *x tree 7y (J])} Whenq is pure

{E|T1,T2. (T:(Tl'TQ)/\p/\dagTQ (i2))/\dag7'1 (Il)} ] n ] ]

copytres(is:i) : m<j<n= ((OL,.p)= () * true)).

{3,719 (1= (11 -T) ApAdagm (ia)) * treer (1)} A simple example is the use of an array as a cyclic buffer.
We assume that am-element array has been allocated at

7' Arrays and |terated Separatlng Conjunctlon addreS$, e.g., byl :— allocate n, and we use the variables

m number of active elements
It is straightforward to extend our programming lan- i address of first active element
guage to include heap-allocated one-dimensional arrgys, b j address of first inactive element
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Then when the buffer contains a sequencé should sat-  To capture the sharing structure, however, we use iterated
isfy the assertion separating conjunction to defid&(3) to assert that the last
, . element ofj is the empty list, while every previous element
Osm<nAl<i<i+nAl<j<li+nA consists of a single integer cons’ed onto some later element
j=i®dm A m=#a A of 3:

m—1. n—m—1.
_g 1Bk a * _ ek——)),
h (O k+;> | <®kd0 j ) R(3) % (32 — nil A omp) *
wherex ® y =z + y modulon, andl <z &y < |+ n. #6-1 . _
Somewhat surprisingly, iterated separating conjunction O [k i<k<#5AFi— 2 Bo).

is useful for making assertions about structures that do noty o e the heap described by each component of the iteration
involve arrays. For example, the connection between our .,naing a single cons-pair, so that the heap described by
list and Bornat'distN is given by R(f) contains#/ — 1 cons-pairs. Finally, the full specifi-

list (i, ]) < cation ofc is
do. o = Fra A (listN o (i) * @fﬁ:al O > Q). {list & (i, nil) }
A more elaborate example is provided by a program that ~ subseq
accepts a list representing a sequeneeof integers, and {30, 5. SS(aT, o) A (list 8 (j,nil) x (Q(o, 8) A R(8)))}.

produces a listof lists representing all (not necessarily con-
tiguous) subsequences®f This program is a variant of a  Here the heap described bist 3 (j, nil) contains# 3 cons-
venerable LISP example that has often been used to illus-pairs, so that the entire heap described by the postconditio
trate the storage economy that can be obtained in LISP bycontaing2 x #3) — 1 = (2 x 2#%) — 1 cons-pairs.

a straightforward use of sharing. Our present interest is in
using iterated separating conjunction to specify the sigari
pattern in sufficient detail to show the amount of storage

that is used. - L . .
First, given a sequenceof sequences, we defiret,o The most ambitious application of separation logic has

to be the sequence of sequences obtained by prefixing th@€€n Yang's proof of the Schorr-Waite algorithm for mark-
integera to each sequence in ing structures that contain sharing and cycles [33, 34]s Thi

proof uses the older form of classical separation logic [19]

8. Proving the Schorr-Waite Algorithm

Hext,o def #o in which address arithmetic is forbidden and the heap maps
def addresses into multifield records — each containing, in this
(exty0); = a0;. case, two address fields and two boolean fields.

Several significant features of the proof are evident from

Then we defines(a, o) to assert that is a sequence of the . L S
its main invariant:

subsequences of (in the particular order that is produced

by an iterative program): noDanglingR A noDangling(t) A noDangling(p) A
ss(e, 0) def 5 = [€] (IistMarkedNodesR(stack, p) *
ss(a-a,0) ¥ 30", ss(a,0') Ao = (extso’) o' (restoredListR(stack,t) — spansR(STree, root))) A

(To obtain the different order produced by a simple recur- (markedR * (“”markedR A (VX- allocated(x) =

sive program, we would remove the reflectidi ¢perator (reach(t, x) V reachRightChildInList(stack, x))) ))
here and later.) Next, we defirig(c, 3) to assert thap is

a sequence of lists whose components represent the compoFhe heap described by this invariant is the footprint of the

nents ofo: entire algorithm, which is exactly the structure that isctea
dof 44 . . able from the addressot. Since addresses now refer to en-
Q(o,8) = #B = #0 AV (list i (f;; nil) * true). tire records, it is easy to assert that the record lzas been
At this stage, we can specify the abstract behavior of the allocated:
subsequence prograsubseq by def

allocated(x) = x = —, —, —, —,
{list (i, mil) }
subseq
{30, 8. ss(at,o) A (list B (j,nil) * (Q(o,)))}. markedR & Vx. allocated(x) = x < —, —, —, true,

that all active records are marked:

14



thatx is not a dangling address: to a collection of assertions, called verification conditip

whose validity will insure the original specification. Thus
def

noDangling(x) = (x = nil) V allocated(x), the central question for computability and complexity is to
decide the validity of assertions in separation logic.
or that no active record contains a dangling address: Yang [8, 34] has examined the decidability of classical
. def separation logic without arithmetic (where expressiors ar
noDanglingR = Vx,l,r. (x = Lr,—, —) = variables, values are addresseailf and the heap maps ad-
noDangling(l) A noDangling(r). dresses into two-field records). He showed that, even when

the characteristic operations of separation logimp, +—,

(Yang uses the helpful convention that the predicates with %, and—*, but not—) are prohibited, deciding the validity
names ending inR” are those that are not intuitionistic.) of an assertion is not recursively enumerable. (As a con-

In the second line of the invariant, the subassertion sequence, we cannot hope to find an axiomatic description
listMarkedNodesR(stack, p) holds for a part of the heap of —.) On the other hand, Yang and Calcagno showed that
called thespine which is a linked list of records from if the characteristic operations are permitted but quamsfi
root to the current address in which the links have  are prohibited, then the validity of assertions is algariih
been reversed; the variabteack is a sequence of four- cally decidable.

tuples determining the contents of the spine. In the next  For the latter case, Calcagno and Yang [8] have investi-

line, restoredListR(stack,t) describes what the contents gated complexity. Specifically, for the languages tabalate

of the spine should be after the links have been restored below they considered

andspansR(STree, root) asserts that the abstract structure

STree is a spanning tree of the heap. MC The model checking problem: Dogs], ., sh hold for
The assertiorspansR(STree, root) also appears in the a specified statés, h)?

precondition of the algorithm. Thus, the second and third

lines of the invariant use separating implication elegatatl  \/o| The validity problem: Doegp]

assert that, if the spine is correctly restored, then thephea stateg(s, h)?

will have the same spanning tree as it had initially. (In fact '

the proof goes through #pansR(STree, root) is any predi- | gach case, they determined that the problem was com-

cate that is independent of the boolean fields in the records;

X plete for the indicated complexity class:
spanning trees are used only because they are enough to de-

sh hold for all

asrt*

termined the heap, exgept for the boplean fiel_ds.) To the Language MC VAL
author’s knowledge, this part of the invariant is the only
conceptual use of separating implication in a real proof (as £ P:=E~EE|-E< —,— P coNP
opposed to its formal use in expressing weakest precondi- | E=E | E # E | false
tions). | PA\P|PVP|emp

In the rest of the invariant, the heap is partitioned into - P
marked and unmarked records, and ifis apsserted that ev- £ PusL|P+P P .
ery active unmarked record can be reached from the vari- £ PusL|=P[P+P PSPACE
ablet or from certain fields in the spine. However, since £ P:=L|P =P PSPACE
this assertion lies within the right operand of the separat- ,-+«— p.._ p |=P|P % P|P—P PSPACE

ing conjunction that separates marked and unmarked notes,
the paths by which the unmarked records are reached must )
consist of unmarked records. Anyone (such as the authorl0. Garbage Collection
[27, Section 5.1]) who has tried to verify this kind of graph
traversal, even informally, will appreciate the extraowaty

. X L . Since our logic permits programs to use unrestricted ad-
succinctness of the last two lines of Yang'’s invariant.

dress arithmetic, there is little hope of constructing any
general-purpose garbage collector. On the other hand, the
9. Computability and Complexity Results situation for the older logic, in which addresses are digjoi
from integers, is more hopeful. However, it is clear thas thi
The existence of weakest preconditions for each of our logic permits one to make assertions, such as “The heap
new commands assures us that a central property of Hoargontains two elements” that might be falsified by the exe-
logic is preserved by our extension: that a program spec-cution of a garbage collector, even though, in any realistic
ification annotated with loop invariants and recursion hy- sense, such an execution is unobservable.
potheses (and, for total correctness, variants) can beegdu The present author [28] has given the following example
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(shown here as a proof outline):

{true}
x:=cons(3,4) ;
{x = 3,4}

{3x. x = 3,4}
x := nil

{3x. x — 3,4},

where the final assertion describes a disconnected piece of

structure, and would be falsified if the disconnected piece
were reclaimed by a garbage collector. In this case, the as
sertions are all intuitionistic, and indeed it is hard to €on
coct a reasonable program logic that would prohibit such a
derivation.

Calcagno, O’'Hearn, and Bornat [7, 6, 5, 4] have explored
ways of avoiding this problem by defining the existential
guantifier in a nonstandard way, and have defined a rich
variety of logics that are insensitive to garbage collattio
Unfortunately, there is no brief way of relating these lagic
to those discussed in this paper.

11. Future Directions
11.1. New Forms of Inference

In Yang’s proof of the Schorr-Waite algorithm, there are
thirteen assertions that have been semantically validated
do not seem to be consequences of known inference rule
and are far too specific to be considered axioms. This su
prising state of affairs is likely a consequence of the novel
character of the proof itself — especially the quantificatio

over all allocated addresses, and the crucial use of sepa-

rating implication — as well as the fact that the algorithm
deals with sharing in a more fundamental way than others
that have been studied with separation logic.

The generalization of such assertions may be a fertile
source of new inference rules. For example, supppise
intuitionistic, and lefp beVz. allocated(z) = p. Then

emp = p
(EZL‘ (w'_)_a_a_:_)/\ﬁ) =p
(p * p) = p.

For a more elaborate example, suppose we say that two

assertions aranmiscibleif they cannot both hold for over-
lapping heaps. More precisely,andq are immiscible iff,
for all storess and heaps: andh' such thath U &' is a
function, if [p], ., sh and[q], ., sh’ thenh L h'.

On the one hand, itis easy to find immiscible assertions:
If p andg are intuitionistic angh A ¢ = false is valid, then

Vz. allocated(z) = p and  Vz. allocated(z) = ¢
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are immiscible. Moreover, if' andq’ are immiscible and
p = p' andq = ¢ are valid, therp andq are immiscible.
On the other hand, if andq are immiscible, then

(p *x true) A (g x r) = q * ((p * true) Ar)

is valid.

Both of these examples are sound, and useful for at least
one proof of a specification of a real program. But they
may well be special cases of more generally useful rules or
ther inference mechanisms. O’Hearn suspects that there
are good prospects to find a useful proof theory for separa-
tion logic using “labeled deduction” [13, 14].

It should also be noted that Yang’s proof depends criti-
cally on the fact that the Schorr-Waite algorithm performs
an in-place computation. New problems may arise in trying
to prove, say, a program that copies a reachable structure
while preserving its sharing patterns — somehow, one must
express the isomorphism between the structure and its copy.

Beyond these particulars, in its present state separation
logic is not only theoretically incomplete, bptagmatically
incomplete: As it is applied in new ways, there will be a
need for new kinds of inference.

11.2. Taming Address Arithmetic

When we first realized that separation logic could be
generalized and simplified by permitting address aritheeti
it seemed an unalloyed benefit. But there are problems. For
example, consider the definition dfg given in Section 6:

r?’rhe assertiomag ((1-2) - (2 - 3)) (i) holds in states where

two distinct records overlap, e.g.
i o
o,

Similarly, iff one were to try to recast the Schorr-Waite
proof in the logic with address arithmetic, it would be dif-
ficult (but necessary) to assert that distinct records do not
overlap, and that all address values in the program denote
the first fields of records.

These problems, of what might be callddewed sharing
become even more difficult when there are several types of
ecords, with differing lengths and field types.

A possible solution may be to augment states with a map-
ping from the domain of the heap into “attributes” that could
be set by the program, described by assertions, and perhaps
tested to determine whether to abort. These attributesdvoul
be similar to auxiliary variables (in the sense of Owicki and
Gries [25]), in that their values could not influence the val-
ues of nonauxiliary variables or heap cells, nor the flow of
control.

1
2
3




To redefinedag to avoid skewed sharing, one could, at The basic idea is that, just as program variables are syn-
each allocation: := cons(eq, e2) that creates arecord ina tactically partitioned into groups owned by different pro-
dag, givez (but notz + 1) the attributedag-record Then cesses and resources, so the heap should be similarly par-
the definition of a non-atomic dag would be changed to titioned by separating conjunctions in the proof of the pro-

gram. The most interesting aspect is that the partition of

dag (71 - 72) (i) iff is-dag-record(i) A the heap can be changed by executing critical regions as-
Fiy,i0. 1 iy,00 * (dag T (i1) A dag 72 (i2)). sociated with resources, so that ownership of a particular
address can move from a process to a resource and from

In a version of the Schorr-Waite proof using address there to another process.
arithmetic, one might give the attributecord to the ad- Thus, for example, one process may allocate addresses
dress of the beginning of each record. Then one would addand place them in a buffer, while another process removes

. the addresses from the buffer and deallocates them. Simi-
Vx. is-record(x) = 3l r,c,m. x = I,r,¢;m larly, in a concurrent version afuicksort, an array segment
A (is-record(l) V | = nil) A (is-record(r) V r = nil) might be divided between two concurrent recursive calls,
and reunited afterwards.

Unfortunately, at this writing there is no proof that
to the invariant, and use the assertismecord(z) in place ~ O'Hearn's inference rules are sound. The difficulty is that,
of allocated(z). in O’Hearn’s words, “Ownership is in the eye of the as-

There is a distinct flavor of types in this use of attributes: Serter’, i.e., the changing partitions of the heap are net de
The attributes record information, for purposes of proof, termined by the program itself, but only by the assertions in
that in a typed programming language would be checkedits proof. S _
by the compiler and discarded before runtime. An alterna- !N concurrent programming, it is common to permit sev-
tive, of course, would be to move to a typed programming €ral processes to read the same variable, as long as no pro-
language, but our goal is to keep the programming languagec€ss can modify its value simultaneously. It would be natu-
low-level and, for simplicity and flexibility, to use the b~ ral and useful to extend this notionpéssivityto heap cells,

A is-boolear(c) A is-boolear{m)

portion of the heap is evaluated but never mutated, alldcate
11.3. Concurrency or deallocated by the process. (This capability would also

provide an alternative way to specify the actiorcopytree

. . ~on dags discussed in Section 6.) Semantically, this would
In the 1970's, Hoare and Brinch Hansen argued persua likely require activity bits to take on a third, intermediat

sively that, to prevent data races where two processes at- M Y
. . value of “read-only”".
tempt to access the same storage without synchronization, o
Concurrency often changes the focus from terminating

concurrent programs should be syntactically restricted to
programs to programs that usefully run on forever — for

limit process interference to explicitly indicatedtical re- : 2 .
gions In the presence of shared mutable structures hOW_whlch Hoare logic is of limited usefulness. For such pro-
f grams, it might be helpful to extend temporal logic with

ever, processes can interfere in ways too subtle to be de- :
tected syntactically. separating operators.
On the other hand, when one turns to program verifica- ]
tion, it is clear that separation logic can specify the absen 11.4. Storage Allocation
of interference. In the simplest situation, the concuresat
ecutione; || ¢o of two processes that do not interfere with Since separation logic describes a programming lan-

one another is described by the inference rule guage with explicit allocation and deallocation of storage
without any behind-the-scenes garbage collector, it shoul
{p1} er {au} {p2} c2 {g2} be suitable for reasoning about allocation methods them-
% D ‘ % 0. selves.
e mpalletn « ek A challenging example is the usemfjions in the sense
where no variable free ip; or ¢; is modified byes, or vice- of Tofte et al [31]. To provided an explicitly programmable
versa. region facility, one must program an allocator and dealoca

Going beyond this trivial case, O'Hearn [22, 21] has ex- tor for regions of storage, each of which is equipped with its
tended the Hoare-like logic for concurrency devised by Ow- own allocator and deallocator. Then one must prove that the
icki and Gries [25] (which is in turn an extension of work program using these routines never deallocates a region un-
by Hoare [18]), to treat critical regions in the framework of less itis safe to deallocate all storage that has been &didca
separation logic. from that region.
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Although separation logic is incompatible with general- (heap type) ::= emp

purpose garbage collection (at least when unrestricted ad- | (address variable) — (value type), ..., (value type)
dress arithmetic is permitted), it should be possible to-con

struct and verify a garbage collector for a specific program.
In this situation, one should be able to be far more aggres-¢
sive than would be possible for a general-purpose garbage
collector, both in recovering storage, and in minimizing th It is straightforward to translate state types in this syste
extra data needed to guide the traversal of active structureiNto assertions of classical separation logic (in the fdemu

| (heap type) * (heap type)

state type) ::= (store type) ; (heap type)

For example, for the representation describeddwyin Sec-  tion without address arithmetic) or into alias types.
tion 6, it would be permissible for the collector to increase [t may well be possible to devise aricher type system that
the amount of sharing. accommodates a limited degree of address arithmetic, per-

mitting, for example, addresses that point into the interio
of records, or relative addresses.

Basically, however, the real question is whether the di-
viding line between types and assertions can be erased.

The key here is that a correct garbage collector need only
maintain the assertion that must hold at the point where the
collector is called, while preserving the value of certain i
put variables that determine the abstract values being com
puted. (In addition, for total correctness, the collectarsin
not increase the value of the loop variants that insure termi
nation.) For instance, in the list-reversal example in Bect

11.6. Embedded Code Pointers

5, a collector called at the end of tihile body would be Even as a low-level language, the simple imperative lan-
required to maintain the invariant guage axiomatized by Hoare is deficient in making no pro-
vision for the occurrence in data structures of addressds th

Ao, 8. (list o (i, nil) * list 4 (j, nil)) A of = ot -3, refer to machine code. Such code pointers appear in the

compiled translation of programs in higher-order langisage
such as Scheme or SML, or object-oriented languages such
as Java or € Moreover, they also appear in low-level
programs that use the techniques of higher-order or object-
oriented programming.

Yet they are difficult to describe in the first-order world
of Hoare logic; to deal with embedded code pointers, we
must free separation logic from both Hoare logic and the
simple imperative language. Evidence of where to go
comes from the recent success of type theorists in extend-
ing types to machine language (in particular to the output
of compilers) [20, 32]. They have found that a higher-order
11.5. The Relationship to Type Systems functional language (with side-effects) comes to reserable

low-order machine language when two restrictions are im-

Although types and assertions may be semantically sim-Posed:

ilar, the actual development of type systems for program- Continuation-passing style (CPS) is used, so that func-

ming languages has been quite separate from the develop- o5 receive their return addresses in the same way as
ment of approaches to specification such as Hoare logic, re- they receive other parameters.

finement calculi, or model checking. In particular, the idea

that states have types, and that executing a command may e Free variables are prohibited in expressions that denote
change the type of a state, has only taken hold recently, in functions, so that functions can be represented by code
the study of type systems for low-level languages, such as pointers, rather than by closures that pair code pointers
thealias typeslevised by Walker and Morrisett [32]. with data.

| dSer()jararLlnqn logic is cI(I)_ser relited to SUCE type E?’Stgms'ln fact, this restricted language is formally similar to am-i
ndeed, their commonality can be captured roughly by a o a1ive language in which programs are “flat’, i.e., cohtro

simple type system: paths never come together except by jumping to a common

while preserving the abstract inpat, and not increasing
the variant, which is the length of.

It is interesting to note that the garbage collector is re-
quired to respect the partial equivalence relation deteechi
by the invariant, in which two states are equivalent when
they both satisfy the invariant and specify the same values
of the input variables. Considering the use of partial equiv
alence relations to give semantics to types, this reinfrce
the view that types and assertions are semantically similar

label.
(value type) ::= integer | (address variable) This raises the question of how to marry separation logic
with CPS (with or without the prohibition of free variables
(store type) ::= in function expressions, which appears to be irrelevamhfro
(variable): (value type), ..., (variable): (value type) a logical point of view).

18
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