ATLaS: a Turing-Complete Extension of SQL
for Data Mining Applications and Streams

Haixun Wang
IBM T.J. Watson Research Center
Hawthorne, NY 10532
haixun@us.ibm.com

1. INTRODUCTION

ATLaS is a powerful database language and system that en-
ables users to develop complete data-intensive applications
in SQL—by writing new table functions and aggregates in
SQL, rather than in procedural languages as in current O-R
systems. As a result, ATLaS is Turing-complete [12], and
very suitable for advanced data-intensive applications, such
as data mining and stream queries [10]. The first ATLaS
system and application suite is available for downloading
from [1]. The suite includes several data mining functions
coded in ATLaS’ SQL that run with only a modest (20-40%)
performance overhead with respect to the same applications
written in C/C++. We are now developing an extension
of ATLaS for streams. Our proposed ACM SIGMOD 2003
demo will illustrate the key features and applications of AT-
LaS. In particular, we will demonstrate how to:

e write new aggregates and table functions in SQL,

e define count-based and time-span based windows on
streams,

e perform efficient delta-based maintenance of aggregates
on such windows,

e use these constructs to code concisely complex appli-
cations, including, data mining functions, approximate
queries, and classifiers maintained over data streams.

2. DATABASE APPLICATIONS IN ATLAS

User Defined Aggregates (UDAs) are important for decision
support, stream queries and other advanced database ap-
plications [9, 2, 4]. ATLaS adopts from SQL-3 [6] the idea
of specifying a new UDA by an initialize, an iterate, and a
terminate computation; however, ATLaS let users express
these three computations by a single procedure written in
SQL [8]— rather than three procedures coded in procedural
languages as in SQL-3'.

! Although UDAs have been left out of SQL 1999 specifi-
cations, they were part of early SQL-3 proposals, and sup-
ported by some commercial DBMS.

Carlo Zaniolo Richard C. Luo
Computer Science Department, UCLA
Los Angeles, CA 90095

{zaniolo|lc}@cs.ucla.edu

Example 1 defines an aggregate equivalent to the standard
avg aggregate in SQL. The second line in Example 1 de-
clares a local table, state, where the sum and count of the
values processed so far are kept. Furthermore, while in this
particular example, state contains only one tuple, it is in
fact a table that can be queried and updated using SQL
statements and can contain any number of tuples. These
SQL statements are grouped into the three blocks labelled
respectively INITIALIZE, ITERATE, and TERMINATE. Thus,
INITIALIZE inserts the value taken from the input stream
and sets the count to 1. The ITERATE statement updates
the tuple in state by adding the new input value to the sum
and 1 to the count. The TERMINATE statement returns the
ratio between the sum and the count as the final result of the
computation. This is done by the ‘INSERT INTO RETURN’
statement that, in the example, returns a single value but,
in general, could return several values?.

EXAMPLE 1. Defining the standard aggregate average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);
INITIALIZE :
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {
UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {
INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}

Observe that the SQL statements in the INITIALIZE, ITER-
ATE, and TERMINATE blocks play the same role as the ex-
ternal functions in SQL-3 aggregates. But here, we have
assembled the three functions under one procedure, thus
supporting the declaration of their shared tables (the state
table in this example). This table is allocated just before
the INITIALIZE statement is executed and deallocated just
after the TERMINATE statement is completed.

This approach to aggregate definition is very general. For
instance, say that we want to support online aggregation [5],
an important concept not considered in SQL-3. Since aver-
ages converge to a final value well before all the tuples in the

2To conform to SQL syntax, RETURN is treated as a virtual
table; however, it is not a stored table and cannot be used
in any other role

set have been visited, we can have an online aggregate that
returns the average-so-far every, say, 200 input tuples. In
this way, the user or the calling application can stop the com-
putation as soon as convergence is detected. Then we can
write the UDA of Example 2, where the RETURN statements
appear in ITERATE instead of TERMINATE. The UDA on-
line_avg, so obtained, takes a stream of values as input and
returns a stream of values as output (one every 200 tuples).
While each execution of the RETURN statement produces
here only one tuple, in general, it can produce (a stream of)
several tuples. Thus UDAs operate as general stream trans-
formers. Observe that the UDA in Example 1 is blocking,
while that of Example 2 is nonblocking. Thus, nonblocking
UDAs are easily expressed in ATLaS, and clearly identified
by the fact that their TERMINATE clauses are either empty
or absent.

The typical default semantics for SQL aggregates is that the
data is first sorted according to the GROUP-BY attributes:
thus the very first operation in the computation is a blocking
operation. Instead, ATLaS uses a (nonblocking) hash-based
implementation for the GROUP-BY calls of the UDAs®. This
default operational semantics lead to a stream oriented ex-
ecution, whereby the input stream is pipelined through the
operations specified in the INITIALIZE and ITERATE clauses:
the only blocking operations (if any) are those specified in
TERMINATE, and these only take place at the end of the
computation.

EXAMPLE 2. Online averages

AGGREGATE online_avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {
UPDATE state
SET tsum=tsum-+Next, cnt=cnt+1;
INSERT INTO RETURN
SELECT sum/cnt FROM state
WHERE cnt % 200 = 0;

'}I'ERMINATE :{ }
}

UDAs are called as any other builtin aggregate. For in-
stance, given a database table employee(Eno, Name, Sex, Dept,
Sal), the Example 3 computes the average salary of employ-
ees in department 1024 by their gender. The first two lines in
Example 3 illustrate that ATLaS can access tables stored in
external sources, such as Berkely DB files [7]. The next two
lines of Example 3 filter the tuples from the employee table
using the condition Dept= 1024; the tuples that survive the
filter are then pipelined to the aggregate online_avg.

EXAMPLE 3. UDAs and Tables in ATLaS
TABLE employee(Eno Int, Name Char(18), Sal Real,
Dept char(6)) source ’C:\mydb\employees’;
SELECT Sex, online_avg(Sal)
FROM employee WHERE Dept=1024 GROUP BY Sex;

In Example 4, we define a minpairs aggregate that returns
the point where a minimum occurs along with its value at
the minimum.

3However, sort-based UDAs can also be specified in ATLa$S,
e.g., using ORDER BY clauses [10]

EXAMPLE 4. Define minpairs in ATLaS

AGGREGATE minpairs(iValue Int, iTime Timestamp)
: (mValue Int,mTime Timestamp)
{ TABLE mvalue(value Int);
TABLE mpoints(pointsint);
INITIALIZE: {
INSERT INTO mvalue VALUES (iValue);
INSERT INTO mpoints VALUES(iTime);

}
ITERATE: {
UPDATE mvalue SET value = iValue
WHERE iValue < value;
DELETE FROM mpoints WHERE SQLCODE = 0;
INSERT INTO mpoints
SELECT iTime FROM mvalue
WHERE iValue =mvalue.value;

}
TERMINATE: {
INSERT INTO RETURN
SELECT value, pointFROM mpoints, mvalue;

We use two tables: the mvalue table holds, as its only entry,
the current min value, while points holds all the points in
time where this value occurs. In the ITERATE statement we
have used the SQLCODE to ‘remember’ if the previous state-
ment updated mvalue, since if the old value was larger than
the new one then the old points must be discarded. Indeed,
SQLCODE is a convenient labor-saving device of standard
SQL that is set to 0 if the last SELECT, UPDATE, or DELETE
statement was successful—i.e., if more than zero tuples were,
respectively, selected, updated, or deleted by its execution.
Then, the last statement in ITERATE adds the new iTime
to mpoints if the input value is equal to the current min
value. Observe that the formal parameters of the UDA func-
tion are treated as constants in the SQL statements. Thus,
the INSERT statement in ITERATE adds the constant iTime
into the mpoints relation, provided that iValue is the same
as the value in mvalue. Therefore, the FROM and WHERE
clauses operate here as conditionals. The RETURN state-
ment in TERMINATE returns the final list of min pairs as a
stream.

ATLaS also supports the definition of table functions in
SQL, which have proven very useful in many applications [9,
10]. Because of space limitations, however, we will cut their
discussion short, and instead concentrate on the novel ways
in which ATLaS UDAs deal with streams and windows.

3. STREAM APPLICATIONS IN ATLAS

There is much current research on stream queries, which
use approximate aggregates, synopses, and sliding windows
[2, 11, 3]. ATLaS supports windows in the FROM clause
along the lines proposed in [2]. Thus, a window specification
consists of:

1. an optional partitioning clause, which partitions the
data into several groups and maintains a separate win-
dow for each group,

2. a window size, using either the count of the elements
in the window, or the range of time covered by the
window (i.e., its time-span).

3. an optional filtering predicate.

In a stream of of telephone calls records [2], we want to
compute the average call length, but considering only the
ten most recent long-distance calls placed by each customer.
Then we can write the following query [2]:

ExaMPLE 5. Count-Based Window on a Stream

STREAM calls(customer_id Int, type Char(6), minutes Int,
Tstamp: Timestamp) SOURCE mystream;
SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id
ROWS 1000 PRECEDING
WHERE S.type = 'Long Distance’]

where the expression in braces defines a sliding window on
the stream of calls. The meaning of this query is that for
each new long-distance tuple coming in the stream, the av-
erage of this and the previous 999 tuples is computed and
returned to the user. Thus this query receives a stream as
input and generates a stream as output. The input stream is
specified in ATLaS using the SOURCE constructor; then the
system adds to each tuple in the input stream a (transac-
tion time) timestamp, under the attribute Tstamp. These
timestamps are used to support time-span based windows,
which can be specified as in the following example [2]:

EXAMPLE 6. Timestamp-based window

STREAM calls(customer_id Int, type Char(6), minutes Int,
Tstamp: Timestamp) SOURCE mystreams;
SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id
RANGE 5 MINUTES PRECEDING
WHERE S.type = ’Long Distance’]

Here the window for computing averages is 5 minutes. Thus
when a new tuple arrives with timestamp ¢, all tuples with
timestamp less than ¢ — 5 minutes are dropped from the
buffer (a queue), and then the average is recomputed on the
new set of tuples so derived, and the result is appended to
the output stream. Recomputing the aggregate on all values
in the window is useful to specify the semantics of windows,
but is too inefficient for a concrete semantics. Indeed, for a
window of size 1000, we do not have to recompute the av-
erage of all 1000 tuples for each new tuple streaming in: it
suffices to add to the old total the value in the new tuple,
subtract the values of the expired tuples, and return the re-
sult divided by the current count (which remains constant in
a count-based window, but can change in a time-span based
window). This delta-based computation of aggregates on
windows is fully supported by ATLaS, as shown in Exam-
ple 7. UDAs on windows are defined using the three states
INITIALIZE, ITERATE, and REVISE (which replaces TERMI-
NATE). The first two states are active in the transient situa-
tion, when the query is first started on the stream, and the
boundary of the window have not yet been reached. Once
the boundary of the window have been reached, then IT-
ERATE is no longer true, and every new incoming tuple is
processed by REVISE. In this state, the system maintains
the table EXPIRED holding the input tuples that just ex-
pired (one for count-based windows, zero, one, or many for
time-span based windows). This table has the same schema
as the input tuples, (i.e., EXPIRED(Next Int) for Example
7), and it is updated automatically by the system. Thus,

EXAMPLE 7. Defining myavg on windows

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {
UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
REVISE : {
UPDATE state SET
tsum=tsum + Next -
sum(SELECT Next FROM EXPIRED),
cnt=cnt+1-count(SELECT * FROM EXPIRED);
INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}

the sum and the count of the tuples in EXPIRED can now
be used to update the sum and the count, and then return
the average value of the window. The presence of REVISE
defines myavg in Example 7 as a window aggregate. Thus,
when myavg is applied to tuples of a FROM clause with win-
dow, such as in Examples 5 and 6, ATLaS uses the UDA of
Example 7; otherwise it uses that of Example 1.

The suggested delta-based extension of UDAs for windows is
general and powerful. For instance, to extend the minpairs
aggregate of Example 4 to handle windows we can write:

EXAMPLE 8. minpairs for windows

AGGREGATE minpairs(iValue Real, iTime Timestamp):
(mValue Int, mTime Timestamp)
{ TABLE dpairs(dValue Int, dTime Timestamp);
INITIALIZE: {
INSERT INTO dpairs VALUES (iValue, iTime);

}
ITERATE:
DELETE FROM dpairs
WHERE iValue < dValue;
INSERT INTO dpairs VALUES (iValue, iTime);

}
REVISE: {
DELETE FROM dpairs WHERE
iValue < dValue OR
(dValue, dTime) IN (SELECT * FROM EXPIRED);
INSERT INTO dpairs VALUES(iValue, iTime);
INSERT INTO RETURN
SELECT minpairs(dValue, dTime)
FROM dpairs;

}

Thus, we use dpairs to hold the dominant pairs—i.e., those
for which there is no younger tuple in the stream with a
smaller value. Then, it can be shown that, on the average,
dpairs contains log2(N) tuples, where N is the number of
tuples in the window; thus, our window version of minpairs
is quite efficient. Moreover, with no window specified in
its FROM clause, Example 8 calls minpairs of Example 4 to
perform the actual computation on table dpairs. The two
examples are actually compiled as different UDAs; thus, no
real recursion is involved here.

Besides windows, a wide range of aggregate modifiers is use-
ful in dealing with the continuous aggregates used in stream

computations. On line UDAs, often fall into this group. For
instance, we can easily modify Example 2 to make it work on
streams. For example, if we want the average of the last 200
values returned every 200 tuples, we only need to reset to
zero cnt and tsum in the ITERATE statement. If instead we
want an effect similar to a window, but in more gradual man-
ner, is sufficient to combine the last average with the new
incoming value, assigning to this a slightly larger weight. In
a nutshell, ATLaS makes available to users the wide variety
of approximate, and application-specific aggregates needed
for stream applications. Due to space limitations, here we
have only discussed simple application examples, but com-
plex applications, including decision tree classifiers, associa-
tion rules, and other data mining functions can be concisely
written and efficiently implemented in SQL using ATLaS [8,
9, 10].

4. THE ATLAS SYSTEM

The ATLaS system consists of two main components: (a) the
database storage manager, and (b) the language processor.
The database storage manager consists of:

1. The Berkeley DB library [7] that ATLaS uses to sup-
port access methods such as the B¥Tree, and Ex-
tended Linear Hashing on disk-resident data, and

2. access methods including in-memory tables, R*-trees,
and sequential text files, which we added keeping the
same APIs as Berkeley DB. While R"-trees are handy
with spatio-temporal queries, in-memory tables are crit-
ical for implementing efficiently in ATLaS tries, prior-
ity queues, and other in-memory structures used in
a variety of algorithms—including data-mining, and
graph-optimization algorithms [10]

The main data structure used in the language processor
is the query graph; the nodes of the query graph repre-
sent operations, such as SELECT, INSERT and DELETE, and
the arcs represent parent nodes consuming the data streams
produced by their children nodes. After the parser builds
the initial query graph, this is transformed by a rewriter
module which performs various optimization steps, such as
predicate push-up/push-down, UDA optimization, index se-
lection, and in-memory table optimization. While ATLaS
performs sophisticated local query optimization, it does not
attempt to change the global execution plan, which therefore
remains under programmer’s control. After the rewriting,
the code generator translates the query graphs into C++
code, which is then compiled and linked with the database
storage manager and external library and user-defined func-
tions.

The runtime model of ATLaS is based on data pipelining.
All UDAs, including recursive UDAs, are pipelined, and tu-
ples inserted into the RETURN relation during the INITIAL-
IZE/ITERATE steps are returned to their caller immediately.
Therefore, local variables (temporary tables) declared in a
UDA can not reside on the stack. Instead, they are kept in
an internal structure which retains the values of local vari-
ables between successive INITIALIZE/ITERATE/TERMINATE
calls.

ATLaS hash-based implementation of UDAs works well for
the PARTITION construct in windows. However, in imple-

menting the window construct for streams, the cost of stor-
ing the window tuples, and computing those just expired
raised serious concerns. Our approach is to manage records
in active windows using disk files, where the extents of the
logical windows are maintained as disk offsets. A PARTI-
TION clause denotes multiple logical windows, one for each
partition key, an thus, it can be expensive to support when
the key has many values. Therefore, we cluster records for
partitioned windows by their keys, and store them in the
same disk file.

ATLaS supports data sharing among multiple queries that
access the same external data stream concurrently. A sin-
gle procedure is responsible for reading the data from the
external stream and delivering them to the disk buffers of
each individual query. Furthermore, window specifications
of different queries can share disk buffers if they have the
same filtering predicates and PARTITION clause.

The most recent version of ATLaS, and reports on current
developments, can be downloaded from [1].

5. REFERENCES

[1] ATLaS home: http://wis.cs.ucla.edu/atlas

[2] Brian Babcock, Shivnath Babu, Rajeev Motwani,
Jennifer Widom. Models and Issues in Data
Streams, PODS 2002, 1-16.

[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
internet databases. ACM SIGMOD 2000, 379-390.

[4] P. Domingos and G. Hulten: Mining high-speed
datastreams. In Proc. of the 2000 ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data
Mining, 71-80.

[5] J. M. Hellerstein, P. J. Haas, H. J. Wang: Online
Aggregation. SIGMOD, 1997.

[6] ISO/IEC JTC1/SC21 N10489, ISO//IEC 9075:
Committee Draft (CD), Database Language SQL,
July 1996.

[7] Sleepycat Software, “The Berkeley Database
(Berkeley DB)”, http://www.sleepycat.com.

[8] Haixun Wang and Carlo Zaniolo: Using SQL to
Build New Aggregates and Extenders for
Object-Relational Systems. VLDB 2000.

[9] Haixun Wang, Carlo Zaniolo: Extending SQL for
Decision Support Applications. DMDW 2002.

[10] Haixun Wang, Carlo Zaniolo: ATLaS: A Native
Extension of SQL for Data Mining and Stream
Computations UCLA CS Dept, Technical Report,
http://wis.cs.ucla.edu/publications.html.

[11] Sam Madden, Mehul A. Shah, Joseph M.
Hellerstein, Vijayshankar Raman: Continuously
Adaptive Continuous Queries over Streams.
SIGMOD 2002, 49-61.

[12] Yan-Nei Law, Haixun Wang, Carlo Zaniolo:
Blocking, Monotonicity, and Turing Completeness
in a Database Language for Sequences and Streams,
UCLA CS Dept. Technical Report,
http://wis.cs.ucla.edu/publications.html.

