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Abstract

This paper considers the problems of estimating bigram language mod-

els and of efficiently representing them by a finite state network, which can

be employed by an hidden Markov model based, beam-search, continuous

speech recognizer.

A review of the best known bigram estimation techniques is given to-

gether with a description of the original Stacked model. Language model

comparisons in terms of perplexity are given for three text corpora with

different data sparseness conditions, while speech recognition accuracy

tests are presented for a 10,000-word real-time, speaker independent dic-

tation task. The Stacked estimation method compares favorably with the

others, by achieving about 93% of word accuracy.

If better language model estimates can improve recognition accuracy,

representations better suited to the search algorithm can improve its speed

as well. Two static representations of language models are introduced:

linear and tree-based. Results show that the latter organization is better

exploited by the beam-search algorithm as it provides a 5 times faster

response with same word accuracy. Finally, an off-line reduction algorithm

is presented that cuts the space requirements of the tree-based topology

to about 40%.

The proposed solutions presented here have been successfully employed

in a real-time, speaker independent, 10,000-word real-time dictation sys-

tem for radiological reporting.
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1 Introduction

Most current Continuous Speech Recognition (CSR) systems perform the decod-

ing process, at least in a first stage, on a Finite State Network (FSN), represent-

ing a bigram Language Model (LM), through a beam-search based algorithm.

Hence, successive passes are performed on a reduced search space, e.g. a word

graph, and by exploiting a more powerful LM.

This work compares different ways of estimating bigram LMs and of repre-

senting them statically by an FSN, which is employed by a Viterbi based beam-

search, continuous speech, and speaker independent Hidden Markov Model

(HMM) recognizer.

After setting up the general framework of n-gram LMs, the two main com-

putation schemes for bigrams are introduced: backing-off and interpolation.

Within the interpolation scheme, several well known bigram estimation meth-

ods are introduced together with the original Stacked estimation which compares

favorably with the best performing ones. Comparisons based on perplexity were

performed on three text corpora providing different data sparseness conditions,

while speech recognition accuracy tests are presented for a 10,000-word speech

recognition task relative to the A.Re.S. (Automatic REporting by Speech) (An-

gelini et al., 1994a) 1 applicative domain. Recognition tests confirm a relevant

difference between “naive” bigram estimation methods and more refined ones,
1A.Re.S. is a real-time CSR system for radiological reporting developed at IRST in collab-

oration with the Radiological Department of S. Chiara Hospital, Trento.
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which instead perform very similarly to each other. The best LM achieved a

word accuracy of about 93%.

If better bigram estimates can improve beam-search accuracy, a suitable

organization of the search space can improve its speed as well. Two different

organizations of the search space were investigated: linear and tree-based. Both

representations exploit a factorization of the bigram probability, derived from

the interpolation scheme, and differ in that the latter uses a tree representation

for both the unigram and bigram distributions.

Results show that the tree-based representation is better suited to the beam-

search algorithm because it outperforms the linear one - it is almost 5 times

faster, without affecting recognition accuracy. This improvement permits real-

time response for the 10,000-word dictation task.

Response time speed-up comes at the cost of increased space requirements.

Hence, if the search space is represented statically and the complexity of the

recognition task grows, techniques for efficiently representing LMs become nec-

essary. An off-line reduction algorithm is presented that cuts the space require-

ments of the tree-based topology to about 40%.

The paper is organized as follows. Section 2 introduces the main concepts

of stochastic LMs and in particular n-gram LMs. The two main schemes for bi-

gram LMs are presented and several estimation techniques described: Bayesian,

adding-1, Good-Turing formula, absolute (or shift) discounting, and linear dis-

counting. In particular, among the linear discounting methods, the original
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Stacked estimation algorithm is presented. Section 3 introduces the beam-search

algorithm for CSR exploited here. In Section 4 the above two LM representa-

tions are described and the reduction process for the tree-based topology is

presented. Section 5 provides experimental results concerning the different LM

estimations and representations. After Section 6, with conclusions and indica-

tions about future work, four appendix sections follow that complete some of

the technical aspects discussed in Section 2.

2 Stochastic Language Models

Stochastic LMs are used extensively in many fields: automatic speech recogni-

tion, machine translation, spelling correction, text compression, etc (Brown et

al., 1994; Kukich, 1992; Witten & Bell, 1991).

The framework of stochastic LMs can be well represented by an information

theoretical model. A sequence of words W, generated by a source with proba-

bility Pr(W), is transmitted through a channel and transformed into a sequence

of observations Y with probability Pr(Y | W ). For instance, Y could represent

the acoustic signal produced by uttering W, the translation of W from Italian to

English, or a typewritten version of W, with possible mis-spellings. The prob-

lem is decoding the observation Y into the original form W: that is, finding Ŵ

that maximizes the a-posteriori probability Pr(W | Y ). After applying Bayes’
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rule

Pr(W | Y ) =
Pr(Y | W )Pr(W )

Pr(Y )

and eliminating the constant factor Pr(Y )−1, decoding is equivalent to find:

Ŵ = arg max
W

Pr(W )Pr(Y | W ).

Usually, the aim of the LM is to supply the decoding algorithm with the prob-

ability Pr(W ), or a score for it, for every word sequence W. The class of LMs

considered in this paper will be introduced now. Let W = w1 . . . wN , the prob-

ability Pr(W ) can be decomposed as

Pr(W ) = Pr(w1)
N∏

t=2

Pr(wt | w1 . . . wt−1).

The above product considers probabilities that quickly become difficult to es-

timate. A simplification can be introduced by conditioning the dependence of

each word (regardless of t) to the last n− 1 words:

Pr(W ) = Pr(w1 . . . wn−1)
N∏

t=n

Pr(wt | wt−n+1 . . . wt−1).

This n-gram approximation, which formally assumes a time-invariant Markov

process (Cover & Thomas, 1991), greatly reduces the statistics to be collected

in order to compute Pr(W), clearly at the expense of precision. However, even

a 3-gram (trigram) model may require a large amount of data (texts) for re-

liably estimating a large number of paramenters - e.g. a trigram LM with a

vocabulary of 1,000 words requires estimating about 109 parameters. Another
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important aspect that renders n-gram estimation a difficult task is the inherent

data sparseness of real texts. Experimentally most of the correct word sequences

can be considered rare events, as they generally occur only a few times, if ever,

even in very large text collections (corpora). In the next sections, trainable

n-gram models will be introduced that try to cope with these two problems: the

estimation of a large number of parameters and the data sparseness of texts.

Another important aspect regarding LMs concerns their assessment. In gen-

eral, LMs are evaluated with respect to their capability of predicting words

inside a text. The most used performance measure is the so called perplexity.

Perplexity is based on the following statistic:

ĤLM = − log PrLM (W )
N

where W = w1 . . . wN is a sufficiently long test sequence of the source and PrLM

is the probability of W computed by the LM. It can be shown (Cover & Thomas,

1991) that ĤLM is a consistent estimator of the source cross entropy:

HLM = lim
|N |→∞

− 1
N

∑

W

Pr(W ) log PrLM (W )

assuming that the Markov process obeys the law of large numbers. Hence, the

perplexity of LM is defined as:

PPLM = 2ĤLM .
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According to basic information theory principles, perplexity explains the pre-

diction task of the LM to be as difficult as predicting one of PPLM equally likely

words. The requirement of W being a test sequence (i.e. not used for training

the LM) permits the computation of a more correct statistic as unseen n-grams

are also included according to the data sparseness characteristics of the source.

(TABLE I ABOUT HERE)

2.1 Basic Bigram Estimation Methods

In the following, n-grams with n = 2 (bigrams) will be considered. In fact,

bigrams are still the most popular LM in speech recognition both in single-pass

systems and in the first stage of multi-pass systems. However, all the following

bigram schemes and estimation methods can be recursively extended to higher-

order n-grams with little effort. Given a bigram yz, the LMs treated here require

the estimation of the basic bigram probability Pr(z | y) from a training sample

W . In general, the above probability is computed by combining two compo-

nents: a discounting function and a redistribution function. The first function

is related to the zero-frequency estimation problem (Witten & Bell, 1991): that

is, a probability for all the bigrams that never occurred in W is computed by

discounting the bigram relative frequency f(z | y) = c(yz)
c(y) . The second function

redistributes the zero-frequency probability among the unseen bigrams. In gen-

eral, probability is redistributed either according to a less specific distribution

- e.g. the bigram distribution if trigrams are computed - or otherwise (e.g. for
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unigrams) uniformly. The discounting and the redistribution functions are gen-

erally combined according to two main schemes: backing-off (Katz, 1987) and

interpolation (Jelinek & Mercer, 1980).

In the backing-off scheme the bigram probability is computed by choosing

the most significant approximation according to the frequency countings:

Pr(z | y) =





f∗(z | y) if c(yz) > 0

Kyλ(y)Pr(z) otherwise

(1)

where f∗(z | y) denotes the discounted frequency distribution, λ(y) is the zero-

frequency probability, and Ky is an appropriate normalization constant such

that:

0 ≤ f∗(z | y) ≤ f(z | y)

∑
z

f∗(z | y) = 1− λ(y)

∑
z

Pr(z | y) = 1.

In the interpolation scheme the n-gram probability is computed as a weighted

sum of the discounted frequency and the redistributed zero-frequency probabil-

ity:

Pr(z | y) =





f∗(z | y) + λ(y)Pr(z) if c(y) > 0

Pr(z) otherwise

(2)
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In this work emphasis will be given to the latter scheme as it provides very ef-

ficient LM representations for speech recognition (see Section 4) and equivalent,

if not superior, performance.

Several frequency discounting methods as well as zero-frequency estimators

have been proposed in the literature of information theory, statistics, pattern

recognition, speech recognition, etc. Four of the best known techniques have

been considered here: the “Adding-1” formula, the Good-Turing formula, ab-

solute discounting, and linear discounting. In Table II a compendium of these

approaches is given.

Adding-1 (A1). This very simple estimator results from the Bayesian estima-

tion criterion (Vapnik, 1982) discussed in Appendix A. This method simply adds

a constant 1 to all the bigram counts and assigns a probability in proportion to

their number to all the never seen events. This estimator tends to over-estimate

the zero-frequency probability in presence of very sparse data.

Good-Turing (GT) formula (Good, 1953). The GT formula can be derived

(see Appendix B) by assuming the “symmetry” requirement -i.e. same frequen-

cies correspond to equal probability estimates. It must be noted that the GT

formula is indeed applied to the bigram counting function:

c∗(yz) = (c(yz) + 1)
dc(yz)+1

dc(yz)
.

and that discounting on f(z | y) occurs in proportion to c∗(yz)
c(yz) . The GT estima-

tor, introduced for backing-off n-gram estimation (Katz, 1987), must be used

carefully as there could easily be frequencies r, especially high frequencies, for
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which dr results equal to zero. The solution suggested by Katz is to compute a

new discounting function h′ such that h′ = 1 for bigrams occurring more than k

(e.g. k = 5) times, while h′ is linear in h for the other bigrams, and it provides

the same λ(y) values.

Absolute (or “shift”) discounting (Ney, Essen & Kneser, 1994; Witten &

Bell, 1991). Absolute or “shift” discounting methods subtract a small constant β

from all non-zero bigram counts. In the first proposed method (S1) all singletons

are deleted from the countings and treated as if they were novel events (β = 1).

In this case the backing-off condition in (1) c(yz) > 0 must be changed to

c(yz) > 1. The zero-frequency probability becomes directly proportional to

the number of different words occurring after the context y. Experimentally,

this method provides lower zero-frequency probabilities than the “adding-one”

method. Another advantage is that a significantly smaller amount of n-grams

have to be kept in storage, as most n-grams in real texts occur once or twice.

By assuming instead 0 < β < 1 and by applying the Leaving-one-out (LOO)

estimation criterion, a different solution (Sβ) was provided by Ney et al. (1994)

(see Table II). The same authors also claimed that no improvements were

seen by assuming β as a function of the context y. It is easy to see that with

this solution a smaller amount of probability is assigned to unseen events with

respect to the S1 method.

Linear discounting. Empirical frequencies are discounted in proportion to

their value. The first estimation method considered, here called Linear Simple
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(LS), assumes a simple discounting constant that can be estimated by assuming

either a Poisson process for new words occurring after a given context (Witten &

Bell, 1991), or by applying the LOO estimation method (Ney et al., 1994; Nadas,

1985). In both cases a good approximation of the so computed estimators yields

the GT estimator for novel bigrams:

c∗(yz)
d0

c
=

d1

d0

d0

c
=

d1

c
.

Another discounting method, here called Linear Empirical (LE), was de-

scribed by Witten & Bell (1991) and recently employed for LM estimation

(Placeway, Schwartz, Fung & Nguyen, 1993). The basic idea is to make the

zero-frequency probability λ(y) proportional to the number of “new events”

occurring after context y during the production of the text sample.

Finally, the Linear General (LG) formula provides the most general linear

discounting model. The estimation of the |V | parameters λ, for an interpolated

LM model (2), will be described in the next subsection.

(TABLE II ABOUT HERE)

2.2 LG Stacked Estimation

The interpolation scheme, which provides comparable, if not better, results than

the backing-off scheme (in terms of PP), permits very efficient LM representa-

tions for speech recognition (Section 4). In this section, a particular estimation

method for the LG interpolation model is presented that compares favorably
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with those reported in the literature.

In the LG interpolated model, n-gram conditional frequencies are smoothed

with the lower order frequencies. The basic bigram probability is expressed as

follows:

Pr(z | y) = (1− λ(y))f(z | y) + λ(y)Pr(z) (3)

where 0 < λ(y) ≤ 1 ∀y and λ(y) = 1 if c(y) = 0. According to the literature

(Derouault & Merialdo, 1986; Jelinek, Mercer & Roukos, 1992), estimation of

conditional frequencies needs simple counting over a text sample Wf , while

interpolation parameters are estimated on a second disjoint training sequence

Wλ by means of the following ML iterative estimator (Baum, 1972):

λn+1(y) =
1
|Sy|

∑

yz∈Sy

λn(y)Pr(z)
(1− λn(y))f(z | y) + λn(y)Pr(z)

∀y ∈ V (4)

where Sy is the set of all occurrences of bigrams of type y in Wλ. Moreover, to

avoid overfitting parameters, training can be supervised by evaluating perfor-

mance of the LM on a small cross-validation sequence Wcv after each iteration.

The drawback of this procedure is that the available data must be split into

three disjoint training samples Wf , Wλ and Wcv, which requires a lot of data.

Improvements can be introduced by employing the Delete Estimation or the

LOO method. This leads to maximizing the following log-likelihood:

LL =
∑

y

∑

yz∈Sy

log ((1− λ(y))f∗(z | y) + λ(y)Pr(z))
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where f∗(z | y) is the relative frequency computed on W after deleting an

occurrence of yz. Maximization can be computed by (4) after replacing f(z | y)

with f∗(z | y) (see Appendix D for details).

Even if this method does not require one training sequence, namely Wλ, it

still requires some strategy to avoid overtraining parameters. One simple low

cost technique is to stop iterations on one parameter as soon as its value stops

changing significantly (LG LOO estimation.) On the other hand, experiments

showed that a cross-validation sample Wcv is more advisable. This sample can be

obtained by deleting a random subsequence Wcv from the training sequence W .

With a cross-validation sample, iterations on each parameter λ(y) are stopped

as soon as its contribution to the likelihood of Wcv worsens.

An interesting way to reduce the disadvantage of deleting a cross-validation

set from the training data is provided by the stacked version of the LG model

(Federico, 1993).

The stacked method (Breiman, 1992) basically combines different predictors

estimated on the training data to improve prediction accuracy. Translated into

LMs, given m bigram estimates:

Pr1(z | y), P r2(z | y), . . . , P rm(z | y)

computed on a training sample (level zero data), compute a new LM by linearly

combining these estimates (level one data):
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m∑

i=1

αiPri(z | y) : ∀i αi ≥ 0 and
m∑

i=1

αi = 1

According to the LG stacked training algorithm, each LM is estimated on a

different random partition of the training data W into two sets of bigrams: a

frequency and parameter estimation sample Wf,λ, and a cross-validation sample

Wcv. Parameters are iteratively estimated by the LOO version of formula (4)

on Wf,λ and iterations on single parameters are stopped as soon as their contri-

bution to the likelihood of Wcv worsens. After parameter training, frequencies

are re-computed on W . When m of such LMs have been estimated they are

stacked together by a convex combination. The simplest combination is devised

by taking the average of the models. Hence, the following bigram LM results:

1
m

m∑

i=1

Pri(z | y; f, λi) =
1
m

m∑

i=1

(1− λi(y))f(z | y) +
1
m

m∑

i=1

λi(y)Pr(z).

The mixture of LMs guarantees to improve PP with respect to the average

performance of the single LMs. This is explained by the following property

which uses an equivalent but more convenient definition of perplexity:

Property 1 For any convex combination of m bigram LMs and for every text

sequence the following inequality holds:

m∑

i=1

αi

(
N∏

t=2

Pri(wt | wt−1)

)− 1
N−1

≥
(

N∏
t=2

(
m∑

i=1

αiPri(wt | wt−1)

))− 1
N−1

(5)

A proof of this inequality is given in Appendix C. Experimental evidence shows

that improvement is also achieved with respect to the best performing LM of
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the combination.

3 Beam-search

The network representation of an LM is a convenient way of integrating con-

straints in an HMM based recognizer, because HMMs themselves have a graph

structure. If a network is available that expresses LM constraints in terms of

word sequence probability, it is easy to expand it by substituting word-labeled

arcs with corresponding sequences of unit-labeled arcs, thus building a unit-

based LM, which can be searched with the Viterbi algorithm.

The Viterbi algorithm requires that at every time instant, all possible path

extensions are considered in order to update the scores of the network states

for the next time instant, which can be a very time consuming operation if the

network is large. On the other hand, it often happens that only a small fraction

of the network states have a high probability, while a large number of states

have a probability that compares very unfavorably with the best one, making it

very unlikely that they will be visited by the globally optimal path. The beam

search method (Ney, Mergel, Noll & Paeseler, 1992) exploits this fact to reduce

the amount of computation needed to find the optimal path. While decoding a

string, at every time instant the probability of the best path so far is computed,

and only those states are expanded whose probability exceeds the value given

by this probability times a predefined quantity. Discarding paths on the basis
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of such a simple criterion may obviously lead to the loss of the solution, but in

practice this rarely happens, while the number of states explored during search

is dramatically reduced. Moreover, by varying the threshold level it is possible

to find a good compromise between accuracy loss and speed gain.

The pruning criterion being based on a comparison between the probability

of a state and the probability of the best state, beam search becomes less effective

when a lot of states have probability similar to the best one. It turns out that

this problem can be alleviated by adopting suitable methods for mapping LM

into networks. A tree based representation is a well known approach for doing

this, and is adopted in this work which proposes network optimization as a

possibility for overcoming the memory requirement problem raised by this kind

of organization.

4 LM Representation

In speech recognition, searching is performed by matching the acoustic data with

knowledge represented through a finite state network, which contains acoustic

and linguistic constraints. Acoustic constraints are given by allowing only those

paths representing phoneme sequences that correspond to word transcriptions.

Linguistic constraints are imposed by associating bigram LM probabilities to

word pairs.

If better bigram estimates can improve the search engine accuracy, a suitable
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organization of the search space can improve its speed as well, as will be shown

in the following subsections.

4.1 Linear Representation

An interpolated bigram LM, expressed by:

Pr(z | y) = f∗(z | y) + λ(y)Pr(z)

with 0 ≤ λ(y) ≤ 1 and λ(y) = 1 when c(y) = 0, could be implemented with the

explicit representation of all the possible links between word pairs.

Placeway et al. (1993) showed how to represent only links between word

pairs that were seen within the training data by using a null node for the unseen

bigrams (see Figure 1). Each word x is linked to the null node by an arc with

probability λ(x). This represents the probability of the unseen events in context

x. Arcs go from the null node to each initial state of a generic word z with

the unigram probability Pr(z). Thus, for each pair (x, z) there is either the

straightforward link with which the probability estimated by (3) is associated,

when the pair was seen within the training data, or, at least, the two-links

path through the null node, when (x, z) was not seen. Note that if a pair was

observed, both paths connecting the two words exist, but the one-arc path is

more probable since f∗(z | y) > 0.

(FIGURE 1 ABOUT HERE)

By indicating with V the size of the vocabulary and with d the number of

different observed events, only d + 2|V | links connecting words are necessary if
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the null node is used. For large vocabularies (|V | > 1000), this number is much

less than the |V |2 required by the fully connected representation.

4.2 Tree-based Representation

The acoustic “similarity” of words is not taken into account in the linear rep-

resentation. As in a large vocabulary many words share the initial portion of

their phonetic transcription, the lexicon can be represented as a tree in which

common beginning phonemes of words are shared and each leaf corresponds to

a word.

Researchers at Philips laboratories reported advantages obtained by inte-

grating tree organization of the lexicon with the beam-search algorithm (Ney,

Haeb-Umbach, Tran & Oerder, 1992; Ney, 1993). They showed that 95% of

the state hypotheses were in the first two phonemes of words when the linear

representation is used.

This fact makes tree organization attractive since it may prevent repetition

of the same computations for active words that share the initial phoneme tran-

scription. Moreover, tree organization would permit savings on used memory

space with respect to linear organization. As an example, for the 10000-word

dictation A.Re.S. system, the ratio between the number of links required by

linear representation of the lexicon and tree organization is 2.69.

Unfortunately, unlike linear representation, in the lexicon tree the identity

of a word is only known at the leaf level: so, in order to integrate the bigram
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probability, a duplicate of the whole lexicon is necessary for each word and the

LM probability is applied at the end of the second word of each pair. Such a

network would require an unmanageable amount of memory, corresponding to

450 · 106 phoneme labeled links for the A.Re.S. system.

However, the computational efficiency provided by tree-based representation

justifies the efforts made by many research laboratories to overcome the problem

of its memory requirements.

(FIGURE 2 ABOUT HERE)

4.3 Static Tree-based Representation

To organize the search space in tree mode, it has been proposed either to dy-

namically build the portion of currently explored space (Ney et al., 1992; Odell,

Valtchev, Woodland & Young, 1994), or to adopt a static linear-tree mixture

approach (Murveit, Monaco, Digalakis & Butzberger, 1994).

Nevertheless, a static representation of the whole search space is attractive

mainly for two reasons: first, there is no overhead in building it during the

recognition process; and secondly, the network can be reduced off-line.

A novel network compression scheme is now presented. The idea is based

on also using the null node for the tree-based representation (see Figure 2). For

each word, the set of successor words that were seen in the training data is

organized as a tree. If y is an observed successor word of x, then the probability

P (y | x) is assigned to the arc connecting the leaf corresponding to y of the
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successor tree of x with the root of the successor tree of y. The null node is the

root of the whole lexicon tree. Each leaf of the lexicon tree corresponds to one

of the |V | words of the vocabulary and it is linked to the root of its successor

tree by an arc with the corresponding unigram probability Pr(y). Another arc,

with probability λ(y), links the root of the successor tree of y with the null

node. Within every tree, when word transcriptions are prefixes of other ones,

their last phoneme-arc is duplicated in order to have different word-end leaves.

In Figure 2 the left-most triangle represents the whole lexicon tree, while

small triangles represent successor trees (st(·)).

Using successor trees instead of |V | repetitions of the whole lexicon tree, the

static representation of the tree-organized network becomes effective. In fact,

the average size of successor trees depends on the number of observed bigrams,

and is usually much smaller than the size of the whole lexicon. Successor trees

can be further reduced by considering only a subset of the word pairs that were

seen during the training phase. Some techniques for choosing subsets of bigrams

are explained and compared in Murveit et al. (1994).

4.4 Factorization of Probabilities

Acoustic information, related to phoneme HMMs within trees, and linguistic

information, specified by the bigram probabilities of arcs among trees, are placed

in different regions of the tree-based network.

During the beam-search decoding, the sooner this twofold information is
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available the sooner unlikely hypotheses will be discarded from the beam. Lin-

guistic information provided by the bigram probabilities, weighting arcs out-

going from trees, can be used in advance by factorizing them within the trees.

When more words share a phoneme-arc, both in the lexicon tree and in successor

trees the upper-bound among their probabilities can be used (see Figure 4).

The algorithm summarized in Figure 3 performs factorization of probabilities

in a tree. It requires that probabilities of all arcs be equal to one, except those

of incoming-leaf arcs.

(FIGURE 3 ABOUT HERE)

Note that using upper-bounds is not an approximation. The correct LM

probability is assigned to a word candidate as soon as the word ceases to share

phoneme-arcs with other words.

Using LM scores before word-end leaves in a tree-based representation for

pruning purposes has been already exploited (Odell et al., 1994; Steinbiss, Tran

& Ney, 1994). In these papers, however, it was specified that the values were

calculated on-the-fly during recognition. In the second work, to avoid run-time

overload, the use of unigram upper-bounds was also proposed. On the contrary,

the factorization of bigram probabilities considered here is performed off-line.

This results in no run-time overload and in the application of correct upper-

bounds.

(FIGURE 4 ABOUT HERE)
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4.5 Tree-based Network Reduction

After factorization of the probabilities, empty arcs outgoing from leaves with

probability equal to one can be eliminated by collapsing states linked by them.

Moreover, many arcs of ending portions of words (Figure 4) still have an associ-

ated probability equal to one. This means that in the tree-based network there

are still redundant paths that can be merged to reduce network size.

In the following sub-sections, two possible network reduction algorithms will

be discussed.

4.5.1 Optimization

A first possibility is to optimize the network by using one of the available al-

gorithms for minimizing the number of states in a deterministic finite state

automaton. These algorithms are based on the indistinguishability property of

states (Linz, 1990). Let T1 and T2 be the automata derived from the initial

one by considering as initial states respectively S1 and S2. S1 and S2 are said

indistinguishable if the languages accepted by T1 and T2 are exactly the same.

The partitioning algorithm (Aho, Hopcroft & Ullman, 1974) can be used

for this purpose. It needs an initial partition of the automaton states and,

iteratively, refines the partition by considering the set of states whose next

state, given a symbol, is in one particular block of the current partition. Each

time a block is partitioned, the smaller generated sub-block is used for further

refining. The algorithm ends when, for each given (block, symbol) pair, all states
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that point to some state of the given block with an arc labeled with the given

symbol, are in the same block. Each block of the resulting partition consists of

states that are indistinguishable and can therefore be merged: the so obtained

automaton has the minimum number of states among those equivalent to the

starting one.

(FIGURE 5 ABOUT HERE)

The algorithm is given in Figure 5. The starting partition can be obtained

by partitioning the states into final and non-final states. The time complexity

is O(m n log n), where m is the number of different symbols labeling arcs, and

n the number of states of the starting network.

Note that symbols of the network of Figure 4 are pairs (phoneme, probability):

their number can be very large according to the network structure.

4.5.2 Subtree Isomorphism

The state optimization algorithm gives the greatest reduction of network size,

but it does not take advantage of the particular topology of the network.

An elegant way to exploit the tree topology is to use a quadratic algorithm

that is still based on the indistinguishability property of states. The algorithm

simply considers all possible pairs of states and marks those that result indistin-

guishable. At the end, such marked states are merged together and the optimum

automaton, with respect to the number of states, is obtained.

If the starting automaton is a tree, the indistinguishability property coin-
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cides with that of subtree isomorphism. In fact, in this case, two states are

indistinguishable if and only if their subtrees are isomorphic.

To apply this idea to the problem of reducing the size of the tree-based

network, a tree is built by starting from a new root node and connecting it to

the roots of all the successor trees and to the lexicon tree after the probability

factorization. The new connecting arcs are then labeled with new symbols that

are not already used within trees. Then, the algorithm depicted in Figure 6

is used by considering only non-leaves (internal) nodes, in such a way that the

final linking can be done according to the bigram LM.

(FIGURE 6 ABOUT HERE)

To reduce the number of isomorphism checks, it is convenient to introduce

some additional knowledge about a state, such as the length of the longest path

from it to a leaf node. In any case, the time complexity of the algorithm remains

O(n2).

5 Experiments

5.1 LM Comparison on Perplexity

Performance of each LM was evaluated on three text corpora presenting differ-

ent data sparseness conditions. Detailed figures about each corpus are given in

Table III. Among them the coverage-rate needs some explanation. This quan-

tifies the percentage of bigram occurrences inside the testing sample that occur
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at least once inside the training sample. In other words, the coverage-rate tells

how often an LM has to rely on the zero-frequency and unigram probabilities.

In fact, this gives an idea of the data sparseness conditions of each task. A brief

description of the content of each corpus follows.

(TABLE III ABOUT HERE)

The first corpus considered contains transcriptions of roughly 3,000 database

queries produced by 53 subjects and collected by means of Wizard of Oz sim-

ulations (Corazza, Federico, Gretter & Lazzari, 1993). The application domain

is an information desk (called “concierge”) able to answer spoken queries con-

cerning IRST’s organization, researchers’ interests, publication lists, etc. This

task was included in the experiments as small corpora are often used to model

speech understanding domains and because they present n-gram frequency dis-

tributions quite different from those of large corpora.

The second corpus contains computer-written radiological reports and was

collected during the A.Re.S. (Automatic Reporting by Speech) project (Angelini

et al., 1994a), currently developed at IRST. This corpus, which provides the best

estimation conditions, corresponds to a real application dictation task for which

speech recognition results will be given (see following section).

The third corpus is the English language texts collection issued by the Uni-

versities of Lancaster, Oslo and Bergen (LOB). The LOB corpus was designed

for linguistics purposes and contains excerpts of articles and books covering

several subjects and writing styles. Even if the LOB corpus is certainly not
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adequate for n-gram statistical language modeling purposes, as it contains over

1 million words for a vocabulary of about 50,000 words, it provides a benchmark

for across-site LM testing.

Comparison experiments have been performed for all estimation methods

with the interpolated bigram scheme defined in Section 2. Performance and rank

position of each LM are reported in Table IV. LM ranking has been assessed

by pairwise comparing the cross-entropies ĤLM (see Section 2) of all the LMs.

Given two LMs a and b, the employed statistical test (Johnson & Wichern, 1992)

considers the N differences dt = log Pra(wt/wt−1) − log Prb(wt/wt−1) over a

test set W = w1 . . . wN . Assuming the differences, dt, represent independent

observations from an N(δ, σ2
d) distribution, the variable

t =
d̄− δ

sd/
√

N
,

where d̄ and sd are respectively the mean and the standard deviation of the

sample d1, . . . , dN , has a t-distribution with N − 1 degrees of freedom. By

carrying out α-level tests (with α = 0.01) of H0 : δ = 0 versus H1 : δ 6= 0, the

ranking reported in Table IV resulted. In particular, only for the first corpus

differences are not very reliable, which is probably due to the small size of the

test set.

(TABLE IV ABOUT HERE)

Results show a considerable difference between the two naive methods, A1

and S1, and the other more refined methods. Interestingly, the Sβ method is the
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LM that performs best, showing the highest robustness against data sparseness

and frequency distribution noise. In fact, the GT-based LM, which performs

very well on the large data corpora, falls slightly behind on the smallest corpus

in which the frequency distribution di is probably not well approximated by

countings. LE performs well on the small corpus but worsens a little as corpus

size increases. This fact was also pointed out in Placeway et al. (1993). The

LG Stacked model performs slightly worse than the Sβ one and shows good

robustness. Finally, the LG Stacked model slightly surpasses the LG LOO one,

which does not make use of a cross-validation set.

5.2 Network Compiling

To compare different LM topologies, the LG Stacked bigram LM trained on

the 10,000-word A.Re.S. was mapped into three different networks: linear, tree-

based and optimized. Words were phonetically transcribed by means of 50 con-

text independent units. For each vocabulary entry, a little network for modeling

breaths, pauses, hesitations was introduced.

The linear representation was built using the description in Section 4.1.

The tree representation was built by applying the methods in Sections 4.2-

4.4. The lexicon tree required 43,600 arcs. The average number of arcs in

the successor trees was 73: so, the final network required only about 840,000

arcs against the almost 450 · 106 arcs needed by a full tree representation. The

optimized network was built by applying the optimization algorithm described
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in Section 4.5.1 to the tree-based one. The network contained about 136,000

different symbols (phoneme,probability). The optimization process required 35

hours of CPU time on a HP-735 workstation. The optimization algorithm was

implemented (Antoniol, Carli, Cettolo & Fiutem, 1992) to achieve a trade-off

between time and space requirements.

The sizes of the three networks are reported in Table V. Labeled and empty

arcs are counted separately, since they present a different computational cost

during the speech decoding process.

(TABLE V ABOUT HERE)

The reduction provided by the optimization step is remarkable: the final

number of labeled arcs is 2.6 times smaller than the first one.

The result confirms the importance of having explicitly represented the whole

search space through a network in such a way that it can be reduced by a

preprocess with acceptable time and space requirements.

The subtree isomorphism-based reduction gave only a slightly different re-

sult. The final size was 3% worse than that obtained by the optimization process.

This means that the redundancy within the starting network is mainly due to

the subtree isomorphisms. On the other hand, since time and space require-

ments of the two reduction algorithms are about the same, global optimization

remains preferable.
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5.3 Recognition Tests

5.3.1 System Description

Acoustic modeling uses a phonetic transcription of words with 50 context-

independent units. Unit HMMs have simple left-to-right topologies of three

or four states, depending on the average length of the corresponding units.

Distributions are Gaussian mixtures with a variable number of components, re-

sulting from a training process that initializes all mixtures with 24 components,

and then prunes less used Gaussians. The final configuration used in the experi-

ments reported includes a total of 2863 Gaussians grouped in 281 mixtures. The

signal processing front-end provides the recognizer with a 27-dimensional vector

every 10ms, consisting of 8 MEL scaled cepstral coefficients, the log-energy, and

their first and second time derivatives. The acoustic parameter vector is scaled

to ensure that all its elements have comparable ranges. In evaluating Gaus-

sian mixtures, instead of summing all the terms, the approximation of taking

the most likely term is made, since this allows a time gain without affecting

accuracy.

Acoustic models were trained with maximum-likelihood estimation on a set

of about 2000 sentences belonging to a phonetically rich database under collec-

tion at IRST (Angelini et al., 1994b). The sentences and the speakers in the

training set do not have any relation with the application domain.

The implementation of the decoding algorithm takes into account the fact
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that the network can be huge. Hence, in spite of the network being statically

represented, the memory used in intermediate computations is allocated on

demand with a simple caching strategy. Moreover, caching of distribution values

is performed, ensuring that each distribution is computed at most once in every

frame even if the same model appears on many arcs.

5.3.2 LM Comparison on Recognition Accuracy

All LMs were evaluated on the 10,000-word A.Re.S. task in terms of recognition

accuracy. Tests were performed on a set of 759 radiological reports, amounting

to 4 hours and 44 minutes of speech, recorded by 4 physicians (3 males and 1

female), only one of whom (enmo) had some experience in machine dictation.

The reports were chosen with the aim of stressing acoustic variability, trying to

include as many words as possible. This fact is reflected by the LM perplexities

which are higher (see column PP in Table VI) than on the “linguistic” ran-

domly chosen test set. Recognition results confirm the difference between the

naive methods, A1 and S1, and the refined ones, which exhibit almost equiv-

alent performance. The same statistical test of Section 5.1 was employed to

assess differences of recognition performance between pairs of LMs. By consid-

ering sentence by sentence differences of word accuracy (WA), 0.05-level tests

confirmed differences between A1 and the other LMs, between S1 and the other

LMs, between GT and LS, and between LE and LS.

(TABLE VI ABOUT HERE)
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5.3.3 Representation Comparison on Recognition Performance

Recognition tests were performed with the three different search space organiza-

tions: linear, tree-based, and optimized. Both acoustic framework and LM (LG

Stacked) were kept fixed, and the beam threshold was chosen to achieve real-

time response on an HP735 workstation. The results, reported in Table VII,

refer to the networks presented in Section 5.2.

(TABLE VII ABOUT HERE)

Word accuracy obtained with the linear representation is worse than that

of tree-based recognition, given the different impact of the beam threshold on

the two topologies. Moreover, due to the higher average number of hypotheses

per frame, the recognition is 5 times slower and the dynamic process size is

larger even though the linear network is the smallest one. As can be seen

from the table, the good properties of tree-based structure are preserved by the

optimization procedure, and the memory requirements for network storage are

drastically reduced. Recognition time, though considerably lower in the tree-

based networks, does not decrease proportionally with the average number of

active arcs per frame. This is because Gaussian evaluation is the most time

consuming operation in the recognition system, and the linear network benefits

from distribution values caching more than the tree-based networks do, since it

generates a higher average ratio between number of active arcs and number of

different active models.

(FIGURE 7 ABOUT HERE)
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In Figure 7 the evolution of the number of active arcs during the decoding

of a speech segment is shown. The upper window shows the speech waveform,

with the labeling and segmentation resulting from the decoding process. The

lines in the second window show how the number of active arcs in the network

varies with time: the dashed line refers to the linear network, while the solid

line refers to the tree-like network. The third window shows the same values,

but in a logarithmic scale, to highlight differences in low-valued regions. This

example reflects a qualitative behavior that was consistently observed in many

cases. As expected, the most ambiguous regions turn out to be between-word

transitions, both actual or potential. The peaks of ambiguity are much more

severe when using the linear net. In fact, the big difference between the two

representations is confined to these regions, since, as is evident from the log

plot, in the word-ending regions the number of active arcs may be lower for the

linear net. The within-word peaks correspond to potential word boundaries.

For example on the word persistenza (“persistence”), whose beginning parts per

and persiste are words by themselves (respectively, “for” and “persists”), peaks

in the number of active arcs arise in correspondence to their end times, marked

by arrows in the upper window of Figure 7.
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6 Conclusions

This work focused on the problem of estimating and representing the LM, which

constrains a Viterbi based beam-search HMM recognizer. In particular, several

bigram estimation techniques were considered as well as FSN representations of

them.

Concerning LM estimation, two basic bigram computation schemes were pre-

sented: backing-off and interpolation. These schemes differ mainly in the way

they combine two basic ingredients: the discounted bigram frequency distribu-

tion and the zero-frequency probability. Several methods for estimating such

components were described and tested within the interpolation scheme, both

on written corpora, presenting varying data sparseness, and on a 10,000-word

dictation task.

Experiments on corpora show that small but statistically significant differ-

ences appear among the best estimations, while the naive methods considered

here (“add-1” and “shift-1”) perform worse than these. A gap between these

two groups of LM estimations was also measured in the dictation experiments.

Among the best performing LMs is the one trained with the original Stacked

estimation algorithm, proposed in this paper.

If a beam-search algorithm is used in the decoding process, the topology of

the FSN representing the LM considerably influences the recognition time. The

interpolation scheme is shown to be better suited to a Viterbi-based search as it

provides a very efficient LM factorization. Two topologies have been evaluated:
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linear and tree-based. The former implements the simplest FSN exploiting the

above factorization, the latter is a refined version that adopts trees to represent

the lexicon and all the explicited bigrams. Without any loss in recognition

accuracy, the latter representation gives a 5-fold increase in recognition time.

On the 10,000-word applicative task, this results in reaching real-time response

on a HP-735, with 93% word accuracy.

If the search space is represented statically, FSN size becomes an important

factor when the task complexity grows. An off-line reduction of the static tree-

based network was presented as a viable method to overcome the problem of

memory size. In the above application, a 60% reduction was achieved in the

network size as well as in the dynamic size of the recognition process.

These results will be exploited for tasks with larger lexicons and perplexity,

in which a two stage process of word hypotheses generation will be adopted.
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A Bayesian Estimation

As both the Bayesian and the Good-Turing estimators are general techniques

applicable to any discrete distribution, a more general estimation problem is

considered here:

given a population V = {v1, . . . , vk} and a sample S = s1, . . . , sn of

n independent identically distributed (iid) random variables, find an

estimate of the distribution Pr(v) on V satisfying a suitable crite-

rion.

The Bayesian estimation method (Vapnik, 1982) considers the following

parametric statistics problem: find a distribution function π(v | S) on V in

a parametric family Pr(v; p), with p ∈ Rk, by means of sample S, which mini-

mizes the functional:

RB(π) =
∫

[Pr(v | p)− π(v | S)]2Pr(S | p) Pr(p) dv dp ds1 . . . dsn

where the a priori density Pr(p) is supposed to be known. It can be shown that

the minimum is attained for:

π∗(v | S) =
∫

Pr(v | p)Pr(p | S)dp

Note that the solution does not necessarily belong to Pr(x; p).
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By assuming that p = (p(v1), . . . , p(vk)) is uniformly distributed on the

simplex C = {p :
∑

v∈V p(v) = 1, p(v) ≥ 0}, it results that

π∗(v | S) =
c(v) + 1
n + k

A proof of this results follows now (Vapnik, 1982).

From the assumptions on p it follows that Pr(v | p) = p(v) and Pr(p) =

1
vol(C) . By applying Bayes’ rule

Pr(p | S) =
Pr(S | p)Pr(p)∫

C
Pr(S | p)Pr(p)dp

the solution becomes:

π∗(v | S) =

∫
C

Pr(v | p) Pr(S | p) Pr(p)dp∫
C

Pr(S | p)P (p)dp

By computing the above integrals separately, it follows that:

∫

C

Pr(S | p)Pr(p)dp =
∫

C

Pr(s1, . . . , sn | p)Pr(p)dp

=
1

vol(C)

∫

C

∏

v∈V

p(v)c(v)dp(v1) . . . dp(vk)

=
1

vol(C)
Γ(c(v1) + 1) . . . Γ(c(vk) + 1)
Γ(c(v1) + . . . + c(vk) + k)

and

∫

C

Pr(v | p)Pr(S | p)Pr(p)dp =
∫

C

Pr(v | p)Pr(S | p)Pr(p)dp

=
1

vol(C)

∫

C

p(v)
∏

v∈V

p(v)c(v)dp(v1) . . . dp(vk)

=
1

vol(C)
Γ(c(v1) + 1) . . . Γ(c(vk) + 1)(c(v) + 1)

Γ(c(v1) + . . . + c(vk) + k + 1)
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where Γ(n + 1) = n! if n is an integer. Hence, the Bayesian estimator easily

follows:

π∗(v | S) =
c(v) + 1

c(v1) + . . . + c(vk) + k
=

c(v) + 1
n + k

B Good-Turing’s Formula

This method was suggested to Good by Turing (Good, 1953) for the general

problem of estimating the probabilities of species in a mixed population from

sparse data. Given a population V = {v1, . . . , vk} and a sample S = s1, . . . , sn

of iid random variables, the distribution Pr(v) on V is estimated with the

assumption that same frequencies correspond to equal probabilities (symmetry

requirement).

The Good-Turing formula is:

π∗(v) =
c?(v)

n
=

1
n

(c(v) + 1)
dc(v)+1

dc(v)

where

dr =
∑

v∈V

δ(c(v) = r)

is the number of elements of V occurring exactly r times in the sample S.

The proof of this formula as given by Good (1953) follows. Let H =

H(p(v1), . . . , p(vk)) be a statistical hypothesis asserting that p(v1), . . . , p(vk)

are the population probabilities. The expected value of dr in a sample of size n
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is:

En(dr | H) =
∑

v∈V

En(c(v) = r | H) =
∑

v∈V

(n
r )p(v)r(1− p(v))n−r

The a-posteriori probability of a randomly chosen type v̂ given that r occur-

rences were observed in a sample of size n is now considered. Let qr be the

probability value taken by a word occurring r times in S. By assuming that all

p-s are different (also for very small values), and that v̂ was chosen randomly,

the desired a-posteriori probability can be expressed as follows:

Pr(qr = p(v̂) | r,H) =
Pr(c(v̂) = r | v̂, H) 1/k∑

v∈V Pr(c(v) = r | v,H) 1/k

The likelihood of r given type v̂ results:

Pr(c(v̂) = r | H, v̂) = (n
r )p(v̂)r(1− p(v̂))n−r

Hence the a-posteriori probability can be expressed as follows:

Pr(qr = p(v̂) | r,H) =
(n
r )p(v̂)r(1− p(v̂))n−r

∑
v∈V (n

r )p(v)r(1− p(v))n−r

=
p(v̂)r(1− p(v̂))n−r

∑
v∈V p(v)r(1− p(v))n−r

Now, the expected value of qr on a sample of size n is considered:

q̂r = En(qr | r,H) =
∑

v∈V

Pr(v | H)Pr(qr = p(v) | r,H)

=
∑

v∈V p(v)r+1(1− p(v))n−r

∑
v∈V p(v)r(1− p(v))n−r
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=
r + 1
n + 1

∑
v∈V (n+1

r+1 )p(v)r+1(1− p(v))(n+1)−(r+1)

∑
v∈V (n

r )p(v)r(1− p(v))n−r

=
r + 1
n + 1

En+1(dr+1 | H)
En(dr | H)

By assuming n large, the GT formula follows:

c?(r) = n ∗ q̂r =
n

n + 1
(r + 1)

En+1(dr+1 | H)
En(dr | H)

≈ (r + 1)
En(dr+1 | H)
En(dr | H)

≈ (r + 1)
dr+1

dr

C Proof of Property 1

Inequality 5 in Section 2 can be proved by application of the Jensen inequality

(Cover & Thomas, 1991) to the function:

f(X = x1, . . . , xn) =

(
n∏

k=1

xi

)− 1
n

which is shown to be convex in the region A = {X : X ≥ 0}. It is sufficient to

show that log f(X) is convex as the exponential function preserves convexity.

Convexity of log f(X) = 1
N

∑N
i=1− log xi easily follows from convexity of −logx

(see Cover & Thomas, 1991).
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D LG Interpolation Leaving-One-Out

Estimator

Training of LG interpolated LMs has been derived as a special case of the

forward-backward training algorithm for HMM (Baum, 1972; Jelinek et al.,

1992) or from the LOO estimation framework (Ney et al., 1994). A derivation

is provided here that directly follows from a theorem by Baum & Egon (1967).

An LG interpolated n-gram LM can be defined as follows:

Pλ(z | s) =
m∑

i=1

λi(y)fi(z | s)

satisfying the conditions:

m∑

i=1

λi(y) = 1, ∀y

λi(y) ≥ 0, ∀y, i = 1, . . . , m

where y is the Context Equivalence Class (CEC) of n-gram sz and fi are ap-

propriate (e.g. frequency based) approximations of Pr(z | s) - e.g. trigrams,

bigrams and unigrams conditional frequencies. A CEC class for a trigram xyz

could be for example y or an appropriate discrete function on xy (Jelinek et al.,

1992).

Let the n-gram conditional frequencies be already computed over a train-

ing sequence W , the aim is to find values for the array of parameters λ(y) =

{λi(y)} i = 1, . . . , m which maximize the leaving-one-out likelihood function:
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L(λ(y)) = Pλ(Sy) =
∏

sz∈Sy

(
m∑

i=1

λi(y)f∗i (z | s))
)

where Sy denotes the set of all occurrences of n-grams sz with CEC y and f∗i is

the i-th approximation computed on W after deleting an occurrence of sz. For

clarity, let y be considered implicit in the following.

It can be shown that the function L is a homogeneous polynomial of degree

|Sy| in its variables {λi} and that the following theorem (Baum & Egon, 1967)

can be applied.

Theorem. For any point λ = {λi} in the domain D defined by the condi-

tions (6), let τ(λ) = τ({λi}) denote the point of D whose i-th coordinate is

τ(λ)i =
λi

∂L
∂λi∑m

j=1 λj
∂L
∂λj

.

Then L(τ(λ)) > L(λ) unless τ(λ) = λ.

A proof of this theorem is given in (Baum & Egon, 1967).

It is worth noticing that the properties of map τ are maintained when log L

is taken in place of L, as only a common factor 1/L(λ) results on both sides of

the fraction. It follows that:

λi
∂ log L

∂λi
=

∑

sz∈Sy

λif
∗
i (z | s)∑m

j=1 λjf∗j (z | s)

and
m∑

k=1

λi
∂ log L

∂λi
= |Sy|.
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In this case:

τ(λ)i =
1
|Sy|

∑

sz∈Sy

λif
∗
i (z | s)∑m

j=1 λjf∗j (z | s)

The right most expression is equivalent to the iterative estimator presented in

Section 2. Besides, the factor 1/|Sy| can be omitted if a renormalization of the

new τ(λ)i is carried out after each iteration.
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Figure 1: Bigram representation by using the “Null Node”.
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Table I: Notation.

V vocabulary set

yz bigram

y any bigram starting with y

c(·) number of occurrences in a text

d(·) number of different occurrences

di(·) number of different i-time occurrences

c, di number of bigram occurrences and dif-

ferent i-time occurrences
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successor
trees

Figure 2: Tree-based Representation.
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Initialization:

Let T indicate the starting tree, r its root, S(a) the set of successor states of

state a, and p(a, b) the probability of the arc from a to b.

Algorithm:

Factorize(T)

∀ n ∈ S(r) UpDate(r,n)

UpDate(a,b)

if b is leaf of T then return

∀ s ∈ S(b) UpDate(b,s)

p̄ ← maxs∈S(b) p(b, s)

∀ s ∈ S(b) p(b, s) ← p(b, s)/p̄

p(a, b) ← p̄;

Figure 3: Algorithm for probability factorization in a tree.
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1

1

Pr(x|w) = p

(a,1) (a,r)

(e,1)

(c,1)(c,1)
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(d,1)
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y  = a b d
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r >  p > q
z  = a e

(b,p/r)

Pr(z|w) = r

Pr(y|w) = q

st(w) st(w)

(d,q/p)

Figure 4: Effect of probability factorization.
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Initialization:

Let ah, h = 0, · · · , m− 1, indicate the m symbols labeling links.

Let Π = {B[i], i = 0, · · · , n− 1} be an initial partition of states.

Let W = {(i, h) : i = 0, · · · , n− 1; h = 0, · · · , m− 1} be the set of all active

block-symbol pairs B[i] and ah.

Algorithm:

∀ pair (i, h) ∈ W until W 6= ∅

Remove (i, h) from W

Let I the set of states having an outgoing arc

labeled with ah to some state of block B[i]

∀ block B[j] such that B[j] ∩ I 6= ∅ and B[j] 6⊂ I

Create a new block B[n] ← B[j] ∩ I

Update B[j] ← B[j]−B[n]

∀ symbol ak

if (j, k) ∈ W

then add (n, k) to W

else if ‖B[j]‖ ≤ ‖B[n]‖

then add (j, k) to W

else add (n, k) to W

n ← n + 1

Figure 5: Partitioning algorithm.
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Initialization:

Let r indicate the root of the starting tree T , T (v) its subtree starting from

node v, and I(v) the set of internal nodes of T (v).

Algorithm:

∀s ∈ I(r)

∀v ∈ I(r) : v 6= s

if T (v) and T (s) are isomorph then

Identify v with s in T and remove T (v) from T

Figure 6: Sketch of the subtree isomorphism based algorithm.

6 6

Figure 7: Number of active arcs during the decoding of a speech segment with

two networks. See the text for a description.
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Table II: Estimators for the discounted function f∗(z | y) and the zero frequency

probability λ(y).

Discounting

Model

f∗(z | y) λ(y) Remarks

A1 δ(c(yz)) c(yz)+1
c(y)+|V |

d0(y )
c(y)+|V |

GT h(yz)f(z | y) 1−∑
z f∗(z | y) h(yz) = dc(yz)+1

dc(yz)

c(yz)+1
c(yz)

S1 max
{

c(yz)−1
c(y) , 0

}
d(y )
c(y)

Sβ max
{

c(yz)−β
c(y) , 0

}
β d(y )

c(y) β ≈ d1
d1+2d2

< 1.

LE c(y,z)
c(y)+d(y )

d(y )
c(y)+d(y )

LS (1− α)f(z | y) α α = d1
c .

LG (1− λ(y))f(z | y) λ(y)
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Table III: Statistics of the corpora used.

Corpora features Concierge Radiology English

Content queries reports generic texts

Vocabulary size 907 10,261 49,615

Corpus size 26,455 1,893,286 1,157,260

Training text size 18,030 1,417,285 866,980

Testing text size 8,425 476,001 290,280

Bigram coverage-rate 85% 94% 71%

Table IV: Perplexity measures and rankings of LMs with different texts.

Model Concierge A.Re.S. LOB

A1 57.587 45.478 7918

GT 20.833 17.522 4222

S1 23.056 18.557 4727

Sβ 20.471 17.501 4211

LE 20.531 17.573 4435

LS 21.635 18.146 4656

LG LOO 21.465 17.635 4414

LG Stacked 20.773 17.594 4313
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Table V: Linear, tree-based and optimized network sizes.

Topology #States #Labeled arcs #Empty arcs Total arcs

Linear 134,439 124,002 165,478 289,480

Tree-based 687,329 821,626 20,744 842,370

Optimized 195,012 311,129 15,659 326,788

Table VI: Speaker and average LM recognition performance in terms of WA.

Perplexity of the uttered sentences is also provided.

clfu enmo euma lube avg. PP

A1 81.48 90.28 90.13 84.91 86.70 61.13

GT 89.82 94.73 94.48 92.16 92.80 26.62

S1 88.91 94.13 93.87 91.15 92.01 28.35

Sβ 89.85 94.65 94.59 92.02 92.78 26.50

LE 89.97 94.67 94.98 92.66 93.07 26.32

LS 89.48 94.77 93.97 92.06 92.57 27.82

LGL 89.68 94.68 94.59 92.75 92.93 26.46

LGS 89.70 94.70 94.88 92.62 92.97 26.33
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Table VII: Comparison among linear, tree-based and reduced tree-based rep-

resentations in terms of Word Accuracy (WA), real-time ratio and recognition

process size.

Topology # Arcs WA RealTime Process

per Frame Ratio Size (Mb)

Linear 2350 90.80 4.93 70

Tree-Based 292 92.97 1.01 58

Optimized 285 92.97 1.01 23
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