
CS-1993-24Implementing Polymorphi
 Typing in aLogi
 Programming LanguageKeehang KwonGopalan NadathurDebra Sue Wilson
Department of Computer S
ien
eDuke UniversityDurham, North Carolina 27708{0129September 1993

Implementing Polymorphi
 Typing in aLogi
 Programming Language�Keehang Kwon, Gopalan Nadathur and Debra Sue WilsonDepartment of Computer S
ien
eDuke University, Durham, NC 27706Abstra
tIntrodu
ing types into a logi
 programming language leads to the need for typed uni�
ationwithin the
omputation model. In the presen
e of polymorphism and higher-order features,this aspe
t for
es analysis of types at run-time. We propose extensions to the Warren Abstra
tMa
hine (WAM) that permit su
h analysis to be done with reasonable eÆ
ien
y. Mu
h informa-tion about the stru
tures of types is present at
ompile-time, and we show that this information
an be used to
onsiderably redu
e the work during exe
ution. We illustrate our ideas in the
ontext of a typed version of Prolog. We des
ribe a modi�ed representation for terms, newinstru
tions and additional data areas that in
onjun
tion with existing WAM stru
tures suÆ
eto implement this language. The nature of
ompiled
ode is illustrated through examples, andthe kind of run-time overheads that are in
urred for pro
essing types is analyzed, espe
ially inthose
ases where others have shown that type
he
king
an be eliminated during exe
ution.The ideas presented here are being used in an implementation of the higher-order language
alled �Prolog.Key Words: Logi
 programming, typing, run-time type
he
king, implementation.1 Introdu
tionThere have been two di�erent views of types in logi
 programming, manifest in the notions ofpres
riptive and des
riptive typing [23℄. The former notion
orresponds to the use of a typedlogi
 for programming, whereas the latter notion en
apsulates an understanding of given (untyped)programs without
hanging the language used. At a pragmati
 level, the �rst view of typingleads to languages with greater expressiveness while the se
ond view
orresponds to atta
hinginformation with programs that does not a�e
t their meaning but that might be useful, for example,in improving their exe
ution eÆ
ien
y. Our interest in this paper is in the situation where a regimen� This paper has been a

epted for publi
ation in Computer Languages. Comments on its
ontents are wel
omeand may be sent to the authors at the indi
ated addresses or, ele
troni
ally, at the addresses kwon�
s.duke.edu,gopalan�
s.duke.edu or dsw�
s.duke.edu. 1

of pres
riptive typing is adopted and, in parti
ular, in the new implementation problems that arisein this
ontext.The main motivation for the work presented here is that of providing a good implementationfor the higher-order logi
 programming language
alled �Prolog [19℄ that, amongst other things,in
orporates su
h a notion of typing [20℄. Numerous appli
ations have been dis
overed for thislanguage over the last few years (e.g., see [4, 5, 7, 14, 22℄), stressing the importan
e of this
on
ern.In providing a robust and eÆ
ient implementation for �Prolog, three aspe
ts that are novel to thislanguage have to be dealt with: its higher-order features, its new sear
h primitives and its typingregimen. The ideas dis
ussed in this paper
omplement work pertaining to the �rst two aspe
ts[10, 16, 17, 18, 21℄ and play a
entral role in an implementation that is being developed for thislanguage. Despite the spe
i�

ontext of interest, we fo
us in this paper on a (typed) �rst-ordersublanguage of �Prolog. We make this
hoi
e so as to simplify the presentation, the higher-orderfeatures of the language being an aspe
t deserving treatment in their own right. The simpli�
ationnevertheless permits all the important aspe
ts of an implementation to be dis
ussed, and the ideaswe present here are in fa
t used dire
tly in an abstra
t ma
hine that we have designed for thehigher-order language [11℄. We also note that the �rst-order language that is
onsidered is itself ofsome interest, being
losely related to typed versions of Prolog that have been proposed re
ently[8, 13, 15℄. Finally, our work is also pertinent to languages with a di�erent typing regimen | su
has the one based on order-sorting [24℄ | and we believe that this relevan
e is more
learly exposedthrough the fo
us on a �rst-order language.Typing is generally viewed as a devi
e for providing information about the
orre
tness of pro-grams during
ompilation. One may therefore wonder why the use of types in logi
 programmingwould require any new me
hanisms at run-time. However, the possibility that types might have tobe examined during exe
ution
an be appre
iated if one re
e
ts on the fa
t that it is a typed logi
that is now being used for programming. An immediate
onsequen
e of this
hange in language isthat the
omputation pro
ess must use a form of typed uni�
ation. If a simplisti
 typing s
heme isused, the new
omputation model
an a
tually be implemented relatively easily by `bundling' thetype information into the names of symbols. Unfortunately, a useful type system must in
orporatesome form of polymorphism within it, and the spe
i�
 type instan
es of symbols that are usedin a
omputation
an usually only be determined during exe
ution. Further, pre
ise knowledgeof these type instan
es may be needed for several reasons. First, if the type system permits adho
 polymorphism, the relevant de�nition for the pro
edure being invoked is dependent on thisinformation. Se
ond, in
ertain
ontexts, su
h as in �Prolog, the uni�ers for terms are determinedby their types. Finally, the
orre
t presentation of answers to queries requires not only the bindingsfor variables to be displayed, but also the right types.The fa
t that the use of types within logi
 programming
ould lead to a need for examining2

them has been re
ognized previously. However, the emphasis has been on des
ribing
onditionsunder whi
h type analysis
an be avoided at run-time. (A notable ex
eption is the work in [2℄ foran order-sorted language.) The general approa
h has been to identify situations in whi
h su

essor failure in typed uni�
ation is not dependent on type annotations. One su
h situation, �rstpresented in [15℄ and labeled in [8℄ as type generality, e�e
tively amounts to banishing ad ho
polymorphism.1 A generalization of this
riterion is also des
ribed in [9℄. While identifying su
h
riteria is useful, this does not provide a s
heme for dealing with situations in whi
h the
riteriades
ribed are not met. Further, the usual
riteria presented for eliding types at run-time depend ona
ru
ial property of a �rst-order language: types play a role in determining uni�ability but do notin
uen
e the stru
ture of uni�ers. This property may not extend to other languages. In parti
ular,it does not hold for a higher-order language su
h as �Prolog. The spe
i�

omputations that areperformed in this language are intimately related to the types atta
hed to the atomi
 symbols.Consequently, me
hanisms are needed in su
h a language for determining and maintaining thesetypes at run-time.We
onsider in this paper additions to the usual ma
hinery employed for implementing (un-typed) Prolog for the purpose of providing an adequate treatment of types. The starting pointfor our implementation
onsiderations is one that needs little justi�
ation: the basi
 paradigms of
omputation in the typed and untyped languages are very similar, the only di�eren
e being thattyped uni�
ation must be a

ommodated. Our spe
i�
 proposals are presented as modi�
ations tothe Warren Abstra
t Ma
hine (WAM) [26℄. For the immediate purpose of this paper, this
hoi
eis largely to provide a
on
reteness to the dis
ussion. However, there is a de�nite reason for thispreferen
e in the
ontext of a higher-order language. The
hoi
e is in a sense between a stru
turesharing and a stru
ture
opying approa
h, and eÆ
ien
y in higher-order redu
tion di
tates thelatter. (The exa
t reasons are too detailed to des
ribe here.) There is, of
ourse, the question ofwhether any modi�
ation is needed to the basi
 s
heme for the untyped language. As we shallsee presently, a naive approa
h that
an be adopted at least in the �rst-order
ontext is to leavethe usual ma
hinery un
hanged and to in
lude types as an extra argument with fun
tion termsand pro
edure
alls. However, this solution
an be improved
onsiderably by utilizing the type
he
king that is done during the
ompilation phase. In parti
ular,
orresponding to the type ofevery symbol a `skeleton'
an be identi�ed that need never be
he
ked or generated at run-time.Using this observation, a s
heme
an be devised that works
orre
tly in all situations and exertsvery little extra e�ort in the
ases where others have shown that run-time type
he
king
an beavoided.The rest of this paper is organized as follows. In the next se
tion we present a Prolog-like1A
tually, the ex
lusion of ad ho
 polymorphism alone is not suÆ
ient. A further restri
tion on fun
tion symbolsis ne
essary | these symbols must be type preserving in the sense of [8℄.3

language that in
orporates a form of typing. We use this language to argue for the need for run-time type analysis in Se
tion 3. In the following two se
tions, we des
ribe enhan
ements to theWAM for implementing this language. Se
tion 6 presents examples to illustrate the overall natureof our ma
hine and o�ers some analysis of the s
heme developed. Se
tion 7
on
ludes the paper.2 A Typed Version of PrologThe language of interest to us is based on a variant of Horn
lauses [25℄ that in
orporates a typesystem similar in some ways to the one used in ML [6℄. There are two
omponents of this languagethat need to be des
ribed: the types and the terms and programs. The types of the language are
onstru
ted from a set S of sorts, a set C of type
onstru
tors, ea
h member of whi
h is spe
i�edwith a �xed arity, and an in�nite supply of type variables. The set S initially
ontains o, the type ofpropositions, and int, the type of integers, and C similarly
ontains the unary list type
onstru
torlist. The user may add to these
olle
tions by using de
larations of a kind we do not further spe
ifyhere. Type variables are distinguished by the usual Prolog
onvention for variables, i.e. they aredenoted by tokens starting with an upper
ase letter. The types are
ategorized into the atomi
types,
orresponding to sets of individual obje
ts, and the types of fun
tions and predi
ates. Theatomi
 types
onsist of the sorts, the type variables and expressions of the form (
 �1 : : : �n) where
 is an n-ary type
onstru
tor and the �is are atomi
 types. The types of fun
tions are given byexpressions of the form �1! : : :!�n!�, where � is an atomi
 type and ea
h �i is an atomi
 typeother than o. Types �1; : : : ; �n are referred to as the argument types of the fun
tion and � is
alledits target type. In the
ase when the target type is o, the type in question is that of a predi
ate orpro
edure. We observe that a type has the stru
ture of a �rst-order term. We make impli
it use ofthis fa
t below.The language of terms and programs is for the large part identi
al to that of Prolog withthe ex
eption that every expression now has an asso
iated type. These types are obtained fromasso
iating, at the very lowest level, an atomi
 type with every
onstant and variable, a fun
tion typewith every fun
tion symbol and a predi
ate type with ea
h predi
ate symbol. The asso
iations for
onstants and for fun
tion and predi
ate symbols are obtained, �rst of all, through a de�ned type forthe symbol that may be provided by de
larations su
h as in �Prolog [20℄. Parti
ular o

urren
es ofthese symbols may then assume instan
es of the de�ned types as their types. The types of variablesmay be spe
i�ed by an annotation su
h as X : type at one of the o

urren
es of the variable inthe expression; all the o

urren
es of the variable in the given expression must then adopt thespe
i�ed type. Given an asso
iation of types with o

urren
es of atomi
 symbols, an expressionsu
h as f(t1; : : : ; tn) is
onsidered to be well-formed and to have the type �0 just in
ase the typeasso
iated with (the o

urren
e of) f is �1! : : :!�n!�0 and, for 1 � i � n, ti is a well-formed4

expression of type �i. To provide an illustration, let us assume that the de�ned type of 1 and 2 is int,of
ons is A!(list A)!(list A), of nil is (list B) and of append is (list C)!(list C)!(list C)!o.Then the o

urren
e of append and the two o

urren
es of
ons in the expressionappend(
ons(1;
ons(2; nil)); (X : (list int)); (Y : (list int)))
an have the types (list int)!(list int)!(list int)!o and int!(list int)!(list int), respe
tively.Further, if they do have these types, then the expression in question is well-formed and has thetype o. However, if the type asso
iated with the o

urren
e of the variable Y in the expression is
hanged to (list (list D)), then the expression would not be well-formed.Type variables result in a form of polymorphism in our language. A type that
ontains variablesin reality stands for the in�nite
olle
tion of types that are obtained by repla
ing the variables byground types. This form of `quanti�
ation' extends to a
onstant, variable, fun
tion symbol orpredi
ate symbol that has the type asso
iated with it. For instan
e, assume, as before, that nilis a
onstant whose de�ned type is (list A). Then it stands in reality for an in�nite
olle
tion of
onstants ea
h of whi
h have the name nil but whose asso
iated types are (list int), (list (list int)),and so on. Parti
ular o

urren
es of
onstants, fun
tion symbols and predi
ate symbols may`re�ne' the quanti�
ation impli
it in their de�ned type. Thus, if an o

urren
e of nil has the type(list (list A)) asso
iated with it, then it stands for a
olle
tion that in
ludes a
onstant with thetype (list (list int)) but not one of type (list int).The impli
it quanti�
ation provided for by type variables extends in a natural fashion to anyterm in whose type these variables might o

ur. Su
h an expression represents every well-formedexpression that
an be obtained by repla
ing ea
h atomi
 symbol appearing in it by one that itrepresents; we note that the repla
ement for variables must be done in a
onsistent fashion. Aparti
ular kind of expression to whi
h su
h a quanti�
ation applies is a program
lause. Thus,
onsider the following
lauses de�ning the append predi
ate in whi
h the o

urren
es of append,
ons and nil have the types (list A)!(list A)!(list A)!o, A!(list A)!(list A) and (list A)respe
tively:append(nil; (L : (list A)); L):append(
ons((X : A); (L1 : (list A))); (L2 : (list A));
ons(X; (L3 : (list A)))):- append(L1; L2; L3):Ea
h of these
lauses represents an in�nite
olle
tion of
lauses, the elements of these
olle
tionsbeing obtained, e�e
tively, by instantiating the type variable in the
lause with a ground type.Viewed di�erently, the
lauses a
tually de�ne a polymorphi
 pro
edure that is
apable of appendingany two lists all of whose elements are of the same (ground) type. It is interesting to note thatthe polymorphism that is manifest in this example is parametri
: the de�nition of appending listsremains the same regardless of the type of the elements of the list.5

(1) G1; : : : ; Gi�1; p(t1; : : : ; tn); Gi+1; : : : ; Gm)'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn);'(A1); : : : ; '(Al); '(Gi+1); : : : ; '(Gm),if p0(s1; : : : ; sn) :- A1; : : : ; Al is a variant of a program
lause in P whose free variablesare
hosen so as not to appear in the left-hand side of the rule, p and p0 are identi
alex
ept for their types and these types are uni�able and have ' is a most general uni�er.(2) G1; : : : ; Gi�1; p(t1; : : : ; tn); Gi+1; : : : ; Gm)'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn); '(Gi+1); : : : ; '(Gm),if p0(s1; : : : ; sn) is a variant of a program
lause in P whose free variables are
hosenso as not to appear in the left-hand side of the rule, p and p0 are identi
al ex
eptfor their types and these types are uni�able and have ' as a most general uni�er.(3) G1; : : : ; Gi�1; f(t1; : : : ; tn) = f 0(s1; : : : ; sn); Gi+1; : : : ; Gm)'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn); '(Gi+1); : : : ; '(Gm),if f and f 0 are identi
al ex
ept for their types and these types are uni�able and have' as a most general uni�er.(4) G1; : : : ; Gi�1;
 =
;Gi+1; : : : ; Gm) G1; : : : ; Gi�1; Gi+1; : : : ; Gm.(5) G1; : : : ; Gi�1;X = t;Gi+1; : : : ; Gm) '(G1); : : : ; '(Gi�1); '(Gi+1); : : : ; '(Gm),provided t is identi
al to X or X does not appear in t and ' represents thesubstitution of t for X.(6) G1; : : : ; Gi�1; t = X;Gi+1; : : : ; Gm) '(G1); : : : ; '(Gi�1); '(Gi+1); : : : ; '(Gm),provided t is identi
al to X or X does not appear in t and ' represents thesubstitution of t for X.Figure 1: State transition rules in the
ontext of a given program P
6

A query in the language being
onsidered
onsists, as in Prolog, of a list of atoms. Answeringsu
h a query amounts, roughly, to �nding a instan
e of these atoms that is satis�ed by the givenprogram. In de�ning the notion of
omputation pre
isely, some
are must be exer
ised due to thepresen
e of types. We provide a formal presentation of this notion by means of a transition system.The states of this transition system
onsist of lists of atoms or equations of the form t1 = t2,where t1 and t2 are terms in our typed language. Transitions between states are dependent on aparti
ular program
ontext and are given by the rules shown in Figure 1. The following tokens areused in these rules, perhaps with subs
ripts and supers
ripts, as s
hema variables for the indi
atedsynta
ti

ategories: G for atoms or equations between terms, A for atoms, s and t for terms, p forpredi
ate symbols, f for fun
tion symbols,
 for
onstants and X for variables. A rule of the forml) r that appears in this �gure is appli
able to a state if it is an instan
e of l and if the provisoson the rule are met. The appli
ation of su
h a rule results in a transition to the state that is the
orresponding instan
e of r. In obtaining the new state, it may be ne
essary to make substitutionsfor some of the type or `term' variables in a term, atom or equation. This is depi
ted in ourtransition rules by an expression of the form '(t) or '(G), where ' represents the substitution. If' is a substitution for type variables, then its appli
ation
onsists of suitably modifying the typesof the atomi
 symbols appearing in that expression.We
all a sequen
e of state transitions that start from a given query a derivation, and we depi
tit by listing the states that arise in the
ourse of the transitions. Su
h a derivation is su

essful if itends in a state given by the empty list. A su

essful derivation determines an instantiation for thevariables in the original query and this is viewed, as usual, as an answer to the query. With respe
tto type variables in the query, this interpretation amounts to viewing them as being existentiallyquanti�ed. An alternative des
ription of this viewpoint that is in line with the earlier dis
ussion oftype variables is the following: A query in whi
h type variables o

ur represents an in�nite set ofqueries ea
h member of whi
h
orresponds to instantiating these variables with ground types. Ananswer to any one of these instan
es is then also an answer to the overall query.The obje
tive is ultimately to �nd answers to queries. The notion of
omputation that isof interest may thus be des
ribed as a sear
h for su

essful derivations. In stru
turing su
h asear
h, we need a method for determining whi
h of several existing derivations to extend at agiven point and for
hoosing between di�erent transition rules that
ould be used to extend thesele
ted derivation. The strategy that underlies the implementation des
ribed in this paper is thefollowing. The sear
h pro
eeds by always trying to extend a given derivation. This derivation maybe
hara
terized by the last state in it, whi
h is referred to as the
urrent state. In attemptingto extend the derivation, only those rules are
onsidered that pertain to the �rst element of the
urrent state. If this is an atom, a program
lause must be used to `simplify' it. The rule that isused in this
ase is determined by the sequen
e in whi
h these
lauses appear in the program. A7

situation may, in general, be rea
hed where all the rules that apply to the
urrent state under thedes
ribed restri
tions have been exhausted. In this
ase, the sear
h pro
eeds by retra
ting �nalsegments of the existing derivation until a derivation is found whose last state
an be transformedby some untried rule. If su
h a derivation is found, then the untried alternative is attempted.Otherwise the sear
h ends in failure. The sear
h pro
edure that results from adopting the strategydes
ribed is similar in stru
ture to that underlying Prolog. The main di�eren
e is that it also takesinto a

ount the typed nature of our language.We have assumed up to this point that the types of the various symbols that o

ur in a programare provided by the user. In reality this is not ne
essary. Given the de�ned types of
onstants,fun
tion symbols and predi
ate symbols and possibly the types of some o

urren
es of variables, amost general typing
an be determined for all the symbols that o

ur in a given expression. We shallassume su
h a typing in the dis
ussions that follow. In addition, the de�ned types of
onstants,fun
tion symbols and predi
ate symbols
an themselves often be inferred in the form intended bythe programmer by the pro
ess of re
onstru
tion des
ribed in [20℄. However, the details of typere
onstru
tion are not very relevant to this paper. The notion of
omputation that is of interestrequires a full knowledge of types at the points where the
ompilation and exe
ution of programsare
onsidered, and we shall assume that this is available in the remainder of this paper.3 The Need for Run-Time Type AnalysisThe model of
omputation for our language di�ers from that for Prolog mainly in that it uses a formof typed uni�
ation. To understand some of the impli
ations of this di�eren
e, let us assume thatft is a fun
tion symbol with de�ned type A!B!int and
onsider the task of unifying the termsft(X;Y) and ft(1; 2). To begin with, we observe that it makes sense to try to unify these termsonly be
ause they have the same types. Now, the existen
e of a uni�er for these terms dependson the argument types of the o

urren
e of ft in the �rst term. If these types are int, then thetwo terms have a uni�er that is similar to the one obtained by ignoring the types. If the types arei instead | we assume here and elsewhere in the paper that i is a sort distin
t from int that isintrodu
ed by the programmer | then the terms are not uni�able. The types of symbol o

urren
esthus appear to a�e
t the question of uni�ability in an intrinsi
 way, indi
ating a possible need forthe run-time pro
essing of types.22The reader familiar with the language ML might wonder why a similar problem does not arise in that
ontext.The reason for this is that in ML the variables X and Y in an expression su
h as ft(X; Y)
annot assume a type morerestri
tive than the de�ned argument types of ft; in one sense, this is a
onsequen
e of the linearity restri
tion onpatterns and the groundness requirement on expressions being evaluated. Thus, uni�
ation (or, more appropriately,mat
hing) be
omes independent of the spe
i�
 types. A similar e�e
t is obtained in the logi
 programming
ontextby the type generality and type preserving
onditions [8℄, but these restri
tions have, in our opinion, less independentjusti�
ation. 8

In a situation where only ground types are present, it is possible to bundle the type into thenames of symbols, thereby eliminating the ne
essity to look at these expli
itly during exe
ution.Thus, in the
ase above, we may distinguish the fun
tion symbol ft that has type i!i!int fromthe fun
tion symbol with the same `name' but type int!int!int, and this distin
tion may be usedto determine the question of uni�ability. However, the presen
e of polymorphism makes this kindof
ompile-time analysis insuÆ
ient in general. Sin
e variables may o

ur in types, it is ne
essaryto unify types, as opposed to merely
he
king for identity. The values that are thus determined fortype variables may have a two-fold impa
t: they may be needed for understanding the answers thatare found and also for determining whi
h of several pro
edures are relevant for solving a subsequentgoal.To illustrate the latter possibility, we
onsider the following sequen
e of
lauses assuming thatthe de�ned type of print is A!o, the de�ned type of print list and print list aux is (list A)!oand the de�ned types of
ons and nil are as indi
ated in the previous se
tion:print(X : int) :- write(X).print(X : (list A)) :- print list(X)....print list aux(nil).print list aux(
ons(X;L)) :- write(';'); print(X); print list aux(L).print list(nil) :- write('[℄'):print list(
ons(X;L)) :- write('['); print(X); print list aux(L); write('℄'):The above de�nition of print exhibits a form of ad ho
 polymorphism: the two
lauses shownpertain to displaying integers and lists respe
tively and the elided part presumably
ontains
lausespertinent to displaying other kinds of obje
ts. On the other hand, the de�nitions of print list andprint list aux are polymorphi
 in a parametri
 sense. The interesting aspe
t of these de�nitionsis that they require type information to be available at run-time to ensure the
orre
t pro
essingof queries. Thus, the type of the obje
t to be printed must be available during exe
ution for thepurpose of determining whi
h of the several
lauses for print is to be used. Noti
e that this alsorequires parametri
ally polymorphi
 de�nitions to pro
ess types. Thus
onsider the queryprint list(
ons(1;
ons(2;
ons(3; nil)))):This query will in due
ourse invoke print list aux. The latter pro
edure must determine that thetype of the elements of the list that is being displayed is int and must pass this information on toprint when it invokes that pro
edure.The general observation in the examples above is that types are needed to determine the ex-isten
e of uni�ers and hen
e also the appli
ability of
lauses. In the �rst-order
ontext, typesin
uen
e only the existen
e of uni�ers and not their stru
ture. It has therefore been suggested that9

analysis of types during exe
ution may be eliminated in situations where the question of uni�abilityis itself independent of type information [9℄. While this is of interest as an optimization te
hnique,this is
ertainly not
omprehensive enough to be an implementation strategy even for the �rst-order
ase. Moreover, the underlying assumption does not generalize to other
ontexts of interest, su
h asthat of a higher-order language. In su
h
ontexts the stru
tures of uni�ers may also be dependenton typing. For example, let F be a fun
tion variable and
onsider unifying the terms a and F (X)in a language su
h as �Prolog. Assume a has the type i. Now, if F has the type int!i, the mostgeneral uni�er is given by the substitution for F of the
onstant fun
tion whi
h returns a, i.e. thelambda term (�y a). If the type of F is i! i instead, there are two in
omparable solutions. One ofthese binds F to a
onstant fun
tion similar to that above (but with a di�erent type), and the otherbinds X to a and F to the identity fun
tion (�y y) on obje
ts of type i. The
hoi
e of solutionsis thus dependent on the type of F and
an be made
orre
tly only if this type is present during
omputation.3Typed uni�
ation
an be rendered into untyped uni�
ation at least in the �rst-order
ontextby in
luding the type of fun
tion terms as an extra argument. Returning to the example atthe beginning of the se
tion and assuming that the types of X and Y are i, the attempt tounify the typed terms ft(X;Y) and ft(1; 2) may be re
ast into an attempt to unify the untypedterms ft(i!i!int;X; Y) and ft(int!int!int; 1; 2). It may thus appear that any regular Prologimplementation would suÆ
e for our typed language as well. There are, however, at least twodrawba
ks with this proposal. First, it does not generalize to the higher-order
ontext for reasonsmentioned earlier, and this is the
ontext we are ultimately interested in. The se
ond problem,and one that applies even to the �rst-order language under immediate
onsideration, is that thisapproa
h performs at run-time work that has already been performed during
ompilation. From thetype de
larations available at
ompile-time, it is known, for instan
e, that the type of any o

urren
eof ft must have the stru
ture A!B!int. During exe
ution it is therefore only ne
essary to
he
kthe instantiations for A and B in determining whether parti
ular o

urren
es of this fun
tionsymbol are (or
an be made) identi
al. The ideas that we present in the following se
tions utilizethis observation to redu
e the e�ort in pro
essing types during the exe
ution of the program.4 A Ma
hine Model Based on the WAMAn implementation of our language must in
lude type information in the representation of terms.Further, spa
e must be provided for
reating new type expressions during exe
ution and new me
ha-3A stronger statement
an in fa
t be made: the kind of uni�
ation problem
onsidered here
an meaningfully besolved only in the presen
e of types. Thus, types in �Prolog are not merely a devi
e for indi
ating program
orre
tnessduring
ompilation. They are in a sense ne
essary even for the existen
e of the language. We refer the reader to [20℄for a fuller appre
iation of this fa
t. 10

nisms are needed for performing the uni�
ation of types. We des
ribe in this se
tion the stru
turesthat must be added to the usual ma
hinery employed for implementing logi
 programming lan-guages for the purpose of a

ommodating these requirements. We base our dis
ussions on oneparti
ular model, that of the WAM. The pre
ise nature of the
hanges to this model depends onthe
hoi
e of representation for types. In the �rst subse
tion below, we present a representationthat follows up on the dis
ussions in Se
tion 3. We then des
ribe the ma
hinery that must be addedto the WAM for the pro
essing of types in light of this representation. We assume familiarity inthese dis
ussions with the basi
 issues pertaining to the WAM.4.1 Representation of Typed TermsOur representation of terms stores types only with o

urren
es of
onstants, variables and fun
-tion symbols. This information uniquely determines the types of all terms and is suÆ
ient forimplementing the
omputation model des
ribed in Se
tion 2. From the latter perspe
tive, it isunne
essary even to store types with
onstants and variables: by the time uni�
ation `des
ends'to
onstants or variables, types must have be
ome identi
al. (It is as a result of this that typesare not examined in rules (4){(6) of Figure 1.) However, this information is maintained withinthe s
heme we des
ribe so as to permit the type of any arbitrary term to be determined in the
ourse of exe
ution. This ability is useful if, for instan
e, we wish to display the types of terms tothe programmer. More importantly, this information is needed in the extention of our s
heme to ahigher-order language: types of variables and
onstants play a
ru
ial role in a phase of higher-orderuni�
ation that o

urs after the analysis of the `�rst-order' stru
ture of terms
ontained in rules(3){(6) in Figure 1.In determining a suitable representation of types, it is useful to
onsider the manner in whi
hthese will be used. To understand this aspe
t, we return to the append predi
ate of Se
tion 2 whosede�nition, with the typing of various symbols being left impli
it, is reprodu
ed below:append(nil; L; L):append(
ons(X;L1); L2;
ons(X;L3)) :- append(L1; L2; L3):Consider now some of the tasks involved in evaluating a query su
h asappend(
ons(1; nil);
ons(2; nil); R):Only the se
ond
lause is appli
able in solving this query. In attempting to use it, it is ne
essary tounify the term
ons(1; nil) with
ons(X;L1). This task also involves
he
king if the type of
ons inthe �rst term is
ompatible with the expression A!(list A)!(list A). This `type
he
king' aspe
tmust be made expli
it in any
ompiled
ode that is generated for the se
ond
lause. In a similarfashion the term
ons(X;L3) must be `
onstru
ted' and the variable R bound to it. Constru
ting11

this term also involves pro
essing types. For instan
e, it is ne
essary to
onstru
t the expressionA!(list A)!(list A) with a suitable binding for A and to make this the type of the new instan
eof
ons that is
reated. On
e again the
ompiled
ode must a

ount for this
omputation.The above example shows that a
onsiderable amount of work has to be done if the analysisof types is implemented in a naive fashion. Thus, the entire type of an o

urren
e of
ons mayhave to be examined or
onstru
ted when it is en
ountered during exe
ution. Lu
kily, most of thiswork be
omes redundant with a suitable representation of types. As noted already, the stati
 type
he
king phase ensures that every o

urren
e of
ons a
tually has a type that mat
hes the stru
tureA!(list A)!(list A). What distinguishes parti
ular o

urren
es is the way the variable A is (ormust be) instantiated. Thus, if the type for any o

urren
e of
ons is stored as the `skeleton'A!(list A)!(list A) plus the binding for A, the only work required during exe
ution would be to
he
k the binding for A (during `type
he
king') or to instantiate it (during `type
onstru
tion').There is a further optimization that is appli
able in the �rst-order
ontext if types do not need tobe displayed with answers: the type skeleton
an be dispensed with. However, this optimization isnot appli
able in the higher-order
ase sin
e the entire type of a symbol may have to be examinedduring uni�
ation. We therefore do not
onsider this optimization expli
itly here.The above dis
ussion motivates representing a type by a skeleton and environment pair, wherethe skeleton is a pointer to a pre
omputed stru
ture in a type skeleton table and the environmentis a list of bindings for the variables appearing in the skeleton. The parti
ular way a type isfa
tored into these
omponents in our implementation depends on the symbol whose type it is. For
onstants and fun
tion symbols, the skeletons that are used are their
orresponding de�ned types.For a variable, the
hoi
e is dependent on the
ontext in whi
h the variable o

urs: the argumenttype
orresponding to the variable o

urren
e in the de�ned type of the �rst `parent' (fun
tion orpredi
ate) symbol is pi
ked as the type skeleton for the variable. For instan
e,
onsider the termp(X; f(X)) assuming that the de�ned type of p is A!A!o and that of f is (list B)!(list B).Our ma
hine will use the A as the type skeleton for X in this
ase. An alternative is to use themost spe
i�
 stru
ture that is available for the type of the variable at
ompile-time. Thus, in theexample
onsidered, (list B)
ould have been pi
ked as the type skeleton for X. However, the �rst
hoi
e in
urs fewer overheads within our overall pro
essing s
heme.The reader may be tempted to
onstrue the proposal just made as akin to advo
ating a stru
turesharing approa
h over the stru
ture
opying approa
h employed in usual WAM implementations.However,
onstruing the proposal in this fashion is in
orre
t and also misses its
entral point. Inthe
ontext of the �rst-order language, the main purpose of the separation of the type of a symbolinto a skeleton and an environment is to distinguish between a part of the type that need neverbe examined during pro
essing (but whi
h is nevertheless needed to determine the full type of thesymbol) and a part that may need to be examined. The latter
omponent of the type, i.e., the12

type environment may be represented in a variety of ways. The parti
ular representation we usefor it here is very similar to the representation of terms employed in, e.g., [26℄, and in this senseshares with it the merits and demerits of the stru
ture
opying approa
h.The a
tual implementation of our proposal di�ers from the `s
hema' outlined only in that inthe
ase of
onstants and fun
tion symbols the relevant type skeletons are dire
tly asso
iated withtheir names. To be pre
ise, the representation of a term makes use of
ells that are two wordslong and represent one of four di�erent kinds of obje
ts: fun
tion symbols,
onstants, (unbound)variables and referen
es. The information stored in these
ells is the following. There is, �rst ofall, a tag distinguishing between the di�erent kinds of data. For a fun
tion symbol, the additionalinformation stored
onsists of the name, in the form of an address in the symbol table, and apointer to the start of the type environment. The information retained for a
onstant is similar.4A variable
ontains a pointer to the type skeleton table and another pointer to the beginning ofa type environment. Finally, a referen
e
ell represents an indire
tion
reated by the binding ofvariables and stores additionally only the address of another heap lo
ation. The symbol table hasa re
ord for every fun
tion symbol and
onstant whi
h in
ludes, among other things, a pointerto its type skeleton in the type skeleton table. Type environments are written on a type heap,analogous to terms being written on the heap in the WAM. (The need for a separate type heapwill be
ome apparent in the next subse
tion and also when we
onsider
ompilation in Se
tion 5.)The type environment of a term o

upies a
onse
utive sequen
e of
ells on the type heap withan entry for ea
h distin
t type variable o

urring in the type skeleton asso
iated with that term.We note that the spe
i�
 representation used here di�ers from that in the WAM in that variablesare distinguished from referen
es. This division is somewhat more spa
e eÆ
ient sin
e
ombiningreferen
es and variables ne
essitates
ells that are three words long. However, operations su
has trailing and dereferen
ing be
ome slightly more expensive in time under this representation.While the trade-o�
ould be made di�erently in the �rst-order
ontext,
ertain other requirementsdetermine the
hoi
e made here to be the more appropriate one in the higher-order
ase.Figure 2 illustrates some of the details of our representation using the term
ons(
ons(a; nil); L)and assuming that the de�ned type of a is i and of
ons is as indi
ated in Se
tion 2.5 In this �gurewe have made expli
it also the representation of types in the type heap. We have
hosen to use herethe representation used in the WAM for terms as illustrated in, e.g., [1℄. Note that a
ompound term(stru
ture) is represented as usual by pla
ing the fun
tion symbol and arguments in
onse
utive
ells on the heap. In
onjun
tion with this �gure, we observe that the depi
tion of the entries in4Although we do not
onsider this aspe
t expli
itly here, integers and
oating point
onstants may be representedvia spe
ially tagged
ells as in usual Prolog implementations. Type environment pointers will be unne
essary in both
ases. In the
ase of integers this part of the
ell may be unused or used to represent numbers in a larger range.5The stru
ture
onstru
ted to represent a term in a WAM-like
ontext is dependent on the a
tual invo
ationpattern that leads to its
onstru
tion. The representation shown here is only illustrative and not ex
lusive.13

(list A)

var
Heap Type Heap

ref
nil

onsnil

on
onfun
fun

on
Symbol Table Skeleton Tableia

strlist=1
on

on

i
iiref

A!(list A)!(list A)

Figure 2: The representation of
ons(
ons(a; nil); L) in the enhan
ed ma
hine
14

the skeleton table is intended only to be s
hemati
. In reality the types in ea
h of the `
ells' willhave to be represented expli
itly. This is done in our ma
hine by treating ! as a binary fun
tionsymbol and employing the usual representation for �rst-order terms. This representation parallelsthe one used for types in the type heap.4.2 New Memory ComponentsOur ma
hine model preserves most of the stru
tures that appear in the WAM. However, some newdevi
es are added to those present in the WAM for the purpose of pro
essing types. We outlineour enhan
ed ma
hine below by des
ribing only its new memory
omponents, leaving the partsinherited from the WAM impli
it. We also hint at the intended purpose of the new
omponents.The pre
ise manner in whi
h these
omponents are used will be
ome
lear when we
onsider theaspe
t of
ompilation.The main addition to the stru
tures of the WAM is that of a type heap. As the earlier dis
us-sions indi
ate, exe
uting typed programs may require new type expressions to be
onstru
ted. Inprin
iple, these type expressions
ould be
onstru
ted on the WAM heap, and we have investigatedthis possibility. However, there are advantages to the divided heap spa
e that we have adopted.In the usual implementation s
hemes for the untyped language, the manner in whi
h
ompoundterms are stored is a sensitive issue: the fun
tion symbol and the arguments must be stored in
onse
utive lo
ations. The ordering of type
he
king and stru
ture
he
king instru
tions is
onsid-erably
onstrained by this requirement if one heap is used. In parti
ular, the interleaving of thesekinds of instru
tions is pre
luded by this requirement. However, our pro
essing s
heme, as outlinedat the beginning of Subse
tion 4.1 and as explained in greater detail in Se
tions 5 and 6, requiresthat these two kinds of instru
tions be interleaved. The division of spa
e thus appears ne
essaryfor preserving the preferred representation of
ompound terms. With regard to the position of thetype heap, we note that, in general, type expressions may be allo
ated either in the sta
k or in thetype heap. The usual arguments relating to ease of ba
ktra
king then di
tate that the type heapreside below the sta
k. Sin
e our language of types is based on �rst-order terms, the stru
ture ofthe type heap is similar to that of the heap in the WAM. (This observation also allows us to usea
opy of the usual WAM instru
tion set in the type analysis pro
ess, as we explain in the nextse
tion.)The other new
omponents in our ma
hine that play a role in the pro
essing of types aresummarized below:
15

type S stru
ture pointer to the type heaptype H register indi
ating the top of the type heaptype HB register indi
ating type heap ba
ktra
k pointZ1,Z2, : : : type registerstype mode a mode with a read or write statusThese
omponents, whi
h parallel
ertain
omponents that exist in the WAM, are used in imple-menting the uni�
ation of types. Their detailed use will be
ome
lear in the following se
tions.However, their purpose
an be summarized as follows. The Z registers are aliases for the A or Xregisters that are used in the WAM for passing arguments or holding temporary values; this nameis used only to distinguish the role of these registers in passing type arguments or in holding tempo-rary type values. The type S register plays a role in
he
king if the types in the type environmentof an atomi
 symbol have a desired stru
ture; in a
ertain sense, it is similar to the S register inthe WAM. The purpose of the type H register is self-explanatory, and the type HB register serves afun
tion that is analogous to that of the HB register in the WAM | it serves in determining what
hanges to type expressions might have to be undone and hen
e need to be trailed.There are some additional points to be mentioned about our ma
hine. Permanent type variablesare allo
ated in it on the same sta
k as the permanent (term) variables, allowingWAM optimizationslike last
all optimization and environment trimming to be retained. Both the heap and the typeheap expand with ea
h pro
edure invo
ation, and
ontra
t on ba
ktra
king. A
hoi
e point re
ordmust now in
lude a new �eld for re
ording the value of the type H register. Finally, it is ne
essaryto trail the bindings made for type variables in addition to those made for term variables. At alevel of detail, it seems to be more (time) eÆ
ient to use separate trail sta
ks and separate methodsfor resetting type and term bindings, and this observation is re
e
ted in the organization of ourma
hine. However, a further dis
ussion of this point is beyond the s
ope of this paper.5 CompilationOne di�eren
e between
ompilation for our language and that for Prolog is that
lauses must beexamined for type
orre
tness. A further di�eren
e is that the
ode that is produ
ed must in
ludeinstru
tions for performing type analysis at run-time. The stru
ture of this
ode is based on theobservation that typed uni�
ation in the �rst-order
ase
an be rendered into untyped uni�
ationby in
luding types as extra arguments in terms. (For the higher-order language, only a `�rst-orderlike' part of the uni�
ation pro
ess is
ompiled and this observation applies to that part as well.)However, the
ompile-time
he
king and our representation of terms allow us to redu
e the extraarguments to the bindings for type variables in the de�ned types of symbols. For example, let pbe a predi
ate symbol whose de�ned type is A!B!o. Then, an attempt to unify the two atoms16

p(X;Y) and p(1; 2)
an be
on
eptualized as an attempt to unify the `untyped' atoms p(A;B;X; Y)and p(int; int; 1; 2), assuming, of
ourse, that the type of the o

urren
e of p in the �rst atom is nota re�nement of the de�ned type of p. This translation is used almost literally in treating pro
edurede�nitions and
alls. Thus, new `type' arguments are determined for predi
ates at
ompile time.The
ode for pro
edure
alls must load the appropriate values into (type) argument registers andthe
ode for pro
edure de�nitions must
he
k the values of these arguments. However, a literaltranslation is not applied at the level of terms. For instan
e,
onsider an attempt to unify the typedterms ft(X;Y) and ft(1; 2), assuming that the de�ned type of ft is A!B!o. While this attempt
an be visualized as an attempt to unify ft(A;B;X; Y) and ft(int; int; 1; 2), the terms
ontinue tobe represented as ft(X;Y) and ft(1; 2) and the bindings determined for A and B a�e
t only thetype environment of the o

urren
e of ft in the �rst term.In implementing the above approa
h,
hanges and enhan
ements need to be made only to thoseWAM instru
tions that parti
ipate in uni�
ation. Consequently all other instru
tions are preservedun
hanged in our ma
hine. With regard to the instru
tions that are needed in uni�
ation, we note�rst that those that pro
ess fun
tion symbols must be modi�ed so that they
an initiate thepro
essing of the new `arguments'; these arguments are given by the type environment pointerasso
iated with the in
oming symbol or with the symbol to be
reated, and either reside on ormust be put onto the type heap. Further, instru
tions whi
h result in
onstants and variablesbeing written on the heap must also initiate the writing of the asso
iated type environments.Finally, new instru
tions are ne
essary for determining if the type arguments have the desiredstru
ture or, alternatively, for writing the bindings for these type arguments. We des
ribe themodi�
ations to the WAM instru
tions for unifying terms in greater detail below and then presentthe new instru
tions that are used for manipulating types. We use these instru
tions in the nextse
tion in illustrating the overall behavior of our enhan
ed ma
hine.5.1 Modi�
ations to Instru
tions for Pro
essing TermsIn addition to the pre
eding general remarks, the
hanges that are made to the original WAMinstru
tions for the purpose of pro
essing terms also in
orporate a distin
tion between
ases inwhi
h the symbol being pro
essed is monomorphi
, i.e., its type skeleton
ontains no variables, andin whi
h it is polymorphi
, i.e., its type skeleton
ontains one or more variables. It is ne
essary toinitiate type
he
king if the symbol is polymorphi
. To understand what exa
tly must be done inthis
ase,
onsider an instan
e of the instru
tion get stru
ture f,Ai where f is polymorphi
. Ifit is determined that register Ai referen
es a stru
ture whose head fun
tion symbol is f, then thetype environment asso
iated with this head must be lo
ated and the ma
hine must prepare to dotype uni�
ation. Alternatively, if Ai referen
es an unbound variable, the ma
hine must prepare towrite the type environment to be asso
iated with the stru
ture f. However, none of this pro
essing17

of types is ne
essary if f is monomorphi
.(1) As hinted earlier, the get stru
ture instru
tion splits into two forms, get p stru
tureand get m stru
ture, with the parti
ular one to be used in a given situation dependingon whether or not the relevant fun
tion symbol is polymorphi
. A similar relation holdsbetween put stru
ture, put p stru
ture and put m stru
ture. The desired a
tion of thenew instru
tions are explained as follows:� get m stru
ture f,Ai gets the value of register Ai and dereferen
es it. If the result isa referen
e to a stru
ture with head fun
tion symbol f, the S register is set to point tothe next address and exe
ution pro
eeds in read mode. If the result is a referen
e to avariable, the variable is made into a referen
e to the top of the heap, and the binding istrailed if ne
essary. Further, the fun
tion symbol f with a nil type environment pointeris pushed onto the heap, and exe
ution pro
eeds in write mode. In the remaining
ases,ba
ktra
king is initiated.� get p stru
ture f,Ai gets the value of register Ai and dereferen
es it. If the result isa referen
e to a stru
ture with head fun
tion symbol f, the S register is set to point tothe next address and the type S register is set to the type environment of f. Exe
utionthen pro
eeds in read and type read modes. If the result is a variable, the variable ismade into a referen
e to the top of the heap, and the binding is trailed if ne
essary.Further, the fun
tion symbol f with a type environment pointer to the top of the typeheap is pushed onto the heap and exe
ution pro
eeds in write and type write modes. Inthe remaining
ases, ba
ktra
king is initiated.� put m stru
ture f,Ai pushes the fun
tion symbol f with a nil type environmentpointer onto the heap and puts a referen
e to it into Ai. Exe
ution pro
eeds in writemode.� put p stru
ture f,Ai pushes the fun
tion symbol f with a type environment pointerto the top of the type heap onto the heap and puts a referen
e to it into Ai. Exe
ution
ontinues in write and type write modes.(2) The instru
tions for
ompiling
onstants appearing in
lauses obtain a treatment similar tothat a

orded to instru
tions dealing with stru
tures. Thus,
orresponding to ea
h of theinstru
tions get
onstant, unify
onstant and put
onstant, there are now two instru
-tions. One of these is used in
ompiling polymorphi

onstants and the other in
ompilingmonomorphi

onstants. The mnemoni
 for these instru
tions is
onstru
ted in the samefashion as for the instru
tions for stru
tures | e.g. the two instru
tions
orresponding to18

get
onstant are get p
onstant and get m
onstant. The stru
tures of all these instru
-tions ex
ept get p
onstant and unify p
onstant are similar to those of their
ounterpartsfor the untyped language and the e�e
ts of these instru
tions
an be understood by analogy tothose for pro
essing the head fun
tion symbol of stru
tures. The instru
tions get p
onstantand unify p
onstant get an extra address argument and their interpretation is as follows:� get p
onstant
,Ai,L gets the value of the register Ai and dereferen
es it. If the resultis a referen
e to a variable, that variable is bound to the
onstant
 with type environmentpointer pointing to the top of the type heap, the binding is trailed if ne
essary andexe
ution pro
eeds in type write mode. If the result is a
onstant with name
, exe
utionjumps to address L. In the remaining
ase, ba
ktra
king is initiated.� unify p
onstant
,L, when exe
uted in read mode, dereferen
es the
ontents of theheap lo
ation pointed to by the S register. If the result is a referen
e to a variable, thenthat variable is bound to the
onstant
 with type environment pointer pointing to thetop of the type heap, the binding is trailed if ne
essary, the S register is in
rementedand exe
ution pro
eeds in type write mode. If the result is a
onstant with name
,the S register is again in
remented and exe
ution jumps to address L; this allows theinstru
tions whi
h, in write mode, are required to
opy the type environment of thevariable to be skipped in read mode. In the remaining
ase, ba
ktra
king is initiated. Inwrite mode, a
onstant with name
 and type environment pointer set to the top of thetype heap is written to the top of the heap and exe
ution pro
eeds in type write mode.(3) The instru
tions put variable and unify variable also give rise to two forms whose usagedepends on whether or not the type skeleton asso
iated with the variable has type variablesin it. In the former
ase put p variable and unify p variable are used and in the latter
ase put m variable and unify m variable are used.� put p variable Xn,skel,Ai
reates a
ell on the heap for an unbound variable andsets its type skeleton pointer to skel, whi
h is itself a pointer to the type skeletonthat is determined to be asso
iated with the variable during
ompilation, and its typeenvironment to point to the top of the type heap. A referen
e to the new
ell is thenput into registers Ai and Xn and exe
ution pro
eeds in type write mode.� unify p variable Xn,skel,L, in write mode,
reates on the top of the heap an unboundvariable whose type skeleton pointer is set to skel and whose type environment is apointer to the top of the type heap. A referen
e to the newly
reated
ell is then pla
edin Xn and exe
ution pro
eeds in type write mode. In read mode, the
ontents of theheap lo
ation pointed to by the S register is stored in the Xn register, the S register isin
remented and exe
ution jumps to address L.19

The instru
tions put m variable and unify m variable are identi
al to their polymorphi

ounterparts ex
ept that (i) the type environment �eld is set to nil, (ii) the manipulationof the type (read/write) mode is not ne
essary and (iii) in unify m variable, the label Lis not used at all. Also, while we have dis
ussed the modi�
ations to put variable andget variable only in the
ontext of temporary variables, the
hanges where permanentvariables are involved are analogous.(4) The following instru
tions are the same as in the WAM ex
ept that typed uni�
ation is used.� get value Vn,Ai� unify value Vn� unify lo
al value Vn(5) `Globalizing' a variable using unify lo
al value Vn or put unsafe value Vn now requires
opying the
omplete
ell on the sta
k to the heap to prevent loss of type information.We assume in this paper that there are no spe
ial instru
tions for handling lists; su
h instru
tions
an, of
ourse, be added by modifying the usual ones in a manner similar to that followed forinstru
tions that pro
ess
onstants and fun
tion symbols. All other uni�
ation instru
tions thatare not dis
ussed expli
itly here remain un
hanged.5.2 New Instru
tions for Pro
essing TypesUnifying types essentially amounts to unifying �rst-order terms. Our extended ma
hine, therefore,has a
ounterpart for ea
h WAM instru
tion for the purpose of
ompiling type analysis. These newinstru
tions are named by inserting ` type ' in the middle of the name of ea
h WAM instru
tion.The only di�eren
e in their operation is that they work on the
omponents related to types su
has the type heap and the type H and type S registers. For example, put type variable Zn,Zihas the same e�e
t as the WAM instru
tion put variable Xn,Ai ex
ept that the required
ell is
reated on the type heap instead of the heap.Two further instru
tions are added to the instru
tions obtained from the WAM instru
tionsin the fashion outlined above for the purpose of type uni�
ation: unified type value Vn andunified type lo
al value Vn. These instru
tions are used in pla
e of unify type value andunify type lo
al value in situations when it is known during
ompilation that it is unne
es-sary to undertake uni�
ation when the instru
tion is exe
uted in type read mode. Su
h a sit-uation arises, for example, when a type variable in an argument in a stru
ture also appears inthe type of the fun
tor of the stru
ture. The instru
tion unified type value is a spe
ial ver-sion of the unify type value that in type read mode merely in
rements the type S register20

by one. A similar relationship holds between the instru
tions unified type lo
al value andunify type lo
al value.6 Some Examples and AnalysisWe now illustrate the overall behavior of our ma
hine and the use of our instru
tions by
onsideringthe
ompilation of some typed programs. As a �rst example, we
onsider
ompiling the
lauserel pair(X;Y) :- rel(fst(X); fst(Y)); rel(snd(X); snd(Y)):under the following assumptions: the de�ned types of fst and snd are (pair A B)!A and(pair C D)!D where pair is a binary type
onstru
tor, the de�ned type of rel is E!E!o andthe de�ned type of rel pair is (pair F G)!(pair F G)!o. The predi
ate rel pair has two typevariables in its type skeleton. The assumption is that, on invoking this predi
ate, the bindings ofthese variables will be pla
ed in the argument (Z) registers in mu
h the same fashion as the `real'arguments of the predi
ate are pla
ed in the A registers. These values must be saved in
hoi
e pointre
ords for the same reason as must the usual arguments. Further, the values of type variablesmust be loaded into argument registers prior to
alling a subgoal. These requirements di
tate thestru
ture of the
ompiled
ode for rel pair that is shown below6:allo
ateget type variable Y3,Z1 % type variable Aget type variable Y4,Z2 % type variable Bget variable Y1,A3 % Xget variable Y2,A4 % Yput p stru
ture fst/1,A2 % (fstunify type lo
al value Y3 % type variable Aunify type lo
al value Y4 % type variable Bunify lo
al value Y1 % X)put p stru
ture fst/1,A3 % (fstunify type lo
al value Y3 % type variable Aunify type lo
al value Y4 % type variable Bunify lo
al value Y2 % Y)6Given that type variables may also have to be stored in registers, it is natural to ask if there is some s
hemefor allo
ating registers. Although this question is not addressed expli
itly in this paper, the stru
ture of a generalanswer is not diÆ
ult to see. A
ompiler
an easily make expli
it the type arguments in the translation of
lausessket
hed at the beginning of Se
tion 5. Standard register allo
ation algorithms, e.g., the one presented in [3℄,
anthen be used. We assume su
h an algorithm in the
ompiled
ode presented here and in the other examples in thisse
tion. 21

all rel/2,4put type unsafe value Y4,Z1 % type variable Bput p stru
ture snd/1,A2 % (sndunify type lo
al value Y3 % type variable Aunify type lo
al value Y4 % type variable Bunify lo
al value Y1 % X)put p stru
ture snd/1,A3 % (sndunify type lo
al value Y3 % type variable Aunify type lo
al value Y4 % type variable Bunify lo
al value Y2 % Y)deallo
ateexe
ute rel/2We would like to make some
omparisons between the usual s
heme that is employed for im-plementing an untyped logi
 programming language and the enhan
ements to su
h a s
heme fordealing with a typed language that we have des
ribed here. For this purpose, we
onsider the
ompilation of the append predi
ate, the
lauses for whi
h are reprodu
ed below:append(nil; L; L):append(
ons(X;L1); L2;
ons(X;L3)) :- append(L1; L2; L3):Now, the
omparison between the two s
hemes
an be made at two di�erent levels. At the �rstlevel, we
ould redu
e our language, and
onsequently this de�nition, to an e�e
tively untypedform and
ompare the
ode generated and the pro
essing required under our s
heme with the onepresented, for example in [26℄. At another level, we
ould preserve some of the advantages of typingand observe the overhead that this
reates during exe
ution.An e�e
tively untyped language
an be obtained from our typed one under the following trans-lation: we assume that there are only two sorts in the language, i and o, that the type asso
iatedwith ea
h term is i and that with propositions is o, and that the typing of
onstants, fun
tion sym-bols and predi
ate symbols are di
tated by this requirement.7 With regard to the append programabove, the de�ned type of append under this redu
tion is i!i!i!o and nil and
ons are assumedto have the de�ned types i and i!i!i respe
tively.As a result of the typing s
heme assumed above, variables do not o

ur in any types, i.e., the
onstants, fun
tion symbols and predi
ate symbols are all monomorphi
. Thus, all the needed typeinformation is atta
hed to these symbols at
ompile time under our implementation s
heme, and7The observant reader might obje
t to this redu
tion on the grounds that our language was assumed at the outsetto
ontain the sort int and the type
onstru
tor list. However, this obje
tion is not serious: the redu
tion we des
ribehere depends only on the user not employing int and list in
onstru
ting types in his/her programs.22

virtually no type pro
essing is done during exe
ution. The
ompiled
ode that will be generatedfor append under this typing is displayed below, assuming that list(1) represents a pointer to thetype skeleton i:swit
h on term C1a, C1, C2, failC1a: try me else C2aC1: get m
onstant nil/0,A1 % nilget value A2,A3 % L, Lpro
eedC2a: trust me else failC2: get m stru
ture
ons/2,A1 %
ons(unify m variable X4,list(1) % X,unify m variable A1,list(1) % L1)get m stru
ture
ons/2,A3 %
ons(unify value X4 % Xunify m variable A3,list(1) % L3exe
ute append/3This
ode is very similar to that generated for an untyped language by the usual s
hemes. Onedi�eren
e is the use of the instru
tions get m
onstant and get m stru
ture instead of get niland get list. This di�eren
e is super�
ial and may, in fa
t, be eliminated. Another di�eren
e isthat the o

urren
es of the unify m variable instru
tions must in write mode in
lude a pointerto a type skeleton in the
ell that is
reated. This additional operation does not have mu
h timeoverhead. Yet another di�eren
e is that the instru
tions get value and unify value must performtyped uni�
ation. However, here too our s
heme makes the overhead involved in
onsequential: theonly real overhead is in
urred when polymorphi
 terms are pro
essed, and a mere look at the typeenvironment pointer suÆ
es for determining whether or not a fun
tion,
onstant or variable symbolis polymorphi
. Finally, our s
heme involves a spa
e overhead in that a type environment pointermust be in
luded with ea
h pie
e of data and a variable
ell must also
ontain a pointer to a typeskeleton. The former seems to be an unavoidable pri
e to be paid for
exibility in typing. As forthe latter, we have noted already that it is not ne
essary to in
lude type information with variablesin the
ontext of a �rst-order language. (Thus the time overhead mentioned in
onne
tion withtyped versions of unify variable
an also be eliminated.) However this is essential for a higher-order language and our implementation s
heme in
ludes this information be
ause it is designed toeventually apply to su
h a language.Rather than attempting to eliminate typing distin
tions, we may a
tually make e�e
tive use ofthese. In su
h a situation, the append pro
edure may be interpreted as a polymorphi
 one,
apable23

of appending lists of arbitrary, but homogeneous, type.8 This
apability is obtained by assumingthat the de�ned types for the various symbols are the following: (list A)!(list A)!(list A)!ofor append, B!(list B)!(list B) for
ons and (list C) for nil. The
ompiled
ode that wouldbe obtained for the de�nition of append under su
h a typing is given below. We assume here thatlist(2) and list(3) represent pointers to the type skeletons B and (list B), respe
tively.swit
h on term C1a, C1, C2, failC1a: try me else C2aC1: get p
onstant nil/0,A2,T1 % nilunify type lo
al value Z1 % type variable AT1: get value A3,A4 % L, Lpro
eedC2a: trust me else failC2: get p stru
ture
ons/2,A2 %
ons(unified type lo
al value Z1 % type variable A,unify p variable X5,list(2),T2 % (X,unify type lo
al value Z1 % type variable A),T2: unify p variable A2,list(3),T3 % (L1,unify type lo
al value Z1 % type variable A)), L2,T3: get p stru
ture
ons/2,A4 %
ons(unified type lo
al value Z1 % type variable A,unify value X5 % X,unify p variable A4,list(3),T4 % (L3,unify type lo
al value Z1 % type variable A))T4: exe
ute append/3In
ontrast to the monomorphi

ase, this
ode in
ludes several instru
tions that parti
ipate intyped uni�
ation. However, it is interesting to note that very little overhead is in
urred by these in-stru
tions when the uni�
ation of terms takes pla
e in read mode. All the unify type lo
al valueinstru
tions are skipped over in this
ase. There are two more instru
tions that are pertinent,namely the unified type lo
al value instru
tions. While these are not skipped over, their ef-fe
t in read mode is merely to in
rement a register. There are some overheads when uni�
ationof terms pro
eeds in write mode be
ause the ma
hine must build the type environments for thevarious stru
tures that it is
reating. However, even these operations are not a major penalty on8The advantages of using typing in this
ase might be obvious. A general dis
ussion of this issue also o

urs in[20℄. 24

performan
e sin
e no type expressions are a
tually built. In fa
t only pointers to prior type ex-pressions are pushed onto the type heap. Along another dimension,
onsiderable (type) stru
ture
an be shared between the type environment of a fun
tion symbol and those of its arguments, andthis helps redu
e the spa
e overhead in general.The typing assumed for the various symbols in the last example satis�es the type generalityand type preserving properties of [8℄. The analysis in [8℄ (and in [15℄) shows that su

ess andfailure in a typed �rst-order language satisfying these properties is independent of spe
i�
 typinginformation. Thus, a typed �rst-order language in whi
h these
onditions are guaranteed to besatis�ed
an, in a sense, be implemented as an untyped language. The s
heme that we haveproposed
learly in
urs an overhead over su
h an implementation. The nature of this overhead hasbeen exposed and dis
ussed in the
ase of the polymorphi
 version of append, and a similar analysis
an be provided in other situations where the type generality and type preserving
onditions aresatis�ed. While the signi�
an
e of the overhead
an be debated, we note that our s
heme has theadvantage of being
ompletely general: it yields an implementation even in situations where thetype generality (or related)
ondition is not satis�ed. Su
h situations
ould arise naturally in a�rst-order language, as exempli�ed in Se
tion 3. More importantly, our s
heme
arries over readilyto the implementation of higher-order languages. Typing information must be expli
itly presentin these languages for determining the set of solutions and it is diÆ
ult to see how the overheadin
urred by our implementation method
an be avoided in su
h a
ontext.7 Con
lusionWe have dis
ussed in this paper the implementation of a logi
 programming language that in
orpo-rates a form of polymorphi
 typing. Our main obje
tive was to examine ways in whi
h the analysisof types at exe
ution time
ould be minimized. We have suggested the following ways in whi
h thisgoal
an be a
hieved:(1) By using a representation of types that separates the information already present during
ompilation from that whi
h must be determined during exe
ution. This permits less workto be done in
he
king types at run-time.(2) By introdu
ing instru
tions for
ompiling as mu
h of the remaining type
he
king as is pos-sible, thereby eliminating the need to do this via
ode run in interpretive mode.We have illustrated the appli
ability of these ideas by
onsidering the implementation of a typedversion of Prolog that is
losely related to others that have been proposed re
ently (e.g., see [8℄).The ideas presented here
an also be used in the
ontext of other typed languages. They are25

appli
able, for instan
e, to a higher-order language and we have also used them in [12℄ to des
ribean alternative implementation s
heme for the polymorphi
 order-sorted language
onsidered in [2℄.We re
all that the original motivation for this work was that of implementing the higher-orderlanguage
alled �Prolog. The ideas presented here are in fa
t employed more or less dire
tly in anabstra
t ma
hine that we have devised for this language that also in
orporates devi
es for handlinghigher-order features [16, 18, 21℄ and for implementing s
oping
onstru
ts in logi
 programming[10, 17℄. An emulator for this ma
hine is
urrently being implemented and we believe that thise�ort will provide a pra
ti
al vindi
ation for the ideas des
ribed in this paper.8 A
knowledgementsWe are grateful to Bharat Jayaraman for suggestions provided at an early stage in this work andfor his
omments on an earlier version of this paper. Some suggestions for improvement werealso provided by anonymous referees. Support for this resear
h was obtained from NSF grantCCR-89-05825 and CCR-92-08465.Referen
es[1℄ Hassan A��t-Ka
i. Warren's Abstra
t Ma
hine: A Tutorial Re
onstru
tion. MIT Press, 1991.[2℄ C. Beierle, G. Meyer, and H. Semle. Extending the Warren abstra
t ma
hine to polymorphi
order-sorted resolution. In Vijay Saraswat and Kazunori Ueda, editors, Pro
eedings of theInternational Logi
 Programming Symposium, pages 272{286. MIT Press, 1991.[3℄ Saumya K. Debray. Register allo
ation in a Prolog ma
hine. In Pro
eedings of the 1986Symposium on Logi
 Programming, pages 267{275. IEEE Computer So
iety Press, September1986.[4℄ S
ott Dietzen and Frank Pfenning. Higher-order and modal logi
 as a framework forexplanation-based generalization. Ma
hine Learning, 9:23{55, 1992.[5℄ Amy Felty. Spe
ifying and Implementing Theorem Provers in a Higher-Order Logi
 Program-ming Language. PhD thesis, University of Pennsylvania, August 1989.[6℄ Mi
hael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: AMe
hanised Logi
 of Computation, volume 78 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1979.[7℄ John J. Hannan. Investigating a Proof-Theoreti
 Meta-Language for Fun
tional Programs.PhD thesis, University of Pennsylvania, August 1990.26

[8℄ Mi
hael Hanus. Horn
lause programs with polymorphi
 types: Semanti
s and resolution.In J. Diaz and F. Orejas, editors, TAPSOFT 89. Springer-Verlag, 1989. Le
ture Notes inComputer S
ien
e Vol 352.[9℄ Mi
hael Hanus. Polymorphi
 higher-order programming in Prolog. In Giorgio Levi and Mau-rizio Martelli, editors, Pro
eedings of the Sixth International Logi
 Programming Conferen
e,pages 382{398. MIT Press, 1989.[10℄ Bharat Jayaraman and Gopalan Nadathur. Implementation te
hniques for s
oping
onstru
tsin logi
 programming. In Koi
hi Furukawa, editor, Eighth International Logi
 ProgrammingConferen
e, pages 871{886, Paris, Fran
e, June 1991. MIT Press.[11℄ Keehang Kwon and Gopalan Nadathur. An instru
tion set for higher-order hereditary Harropformulas. In Pro
eedings of the Workshop on the �Prolog Programming Language, Philadelphia,1992. (to appear).[12℄ Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing logi
 program-ming languages with polymorphi
 typing. Te
hni
al Report CS-1991-39, Computer S
ien
eDepartment, Duke University, 1991.[13℄ T.K. Lakshman and U.S. Reddy. Typed Prolog: A semanti
 re
onstru
tion of the My
roft-O'Keefe type system. In Vijay Saraswat and Kazunori Ueda, editors, Pro
eedings of theInternational Logi
 Programming Symposium, pages 202{217. MIT Press, 1991.[14℄ Dale Miller and Gopalan Nadathur. A logi
 programming approa
h to manipulating formulasand programs. In Seif Haridi, editor, IEEE Symposium on Logi
 Programming, pages 379{388,San Fran
is
o, September 1987.[15℄ A. My
roft and R. A. O'Keefe. A polymorphi
 type system for Prolog. Arti�
ial Intelligen
e,23:295{307, 1984.[16℄ Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for �Prolog. In EwingLusk and Ross Overbeek, editors, Pro
eedings of the North Ameri
an Conferen
e on Logi
Programming, pages 1180{1198, Cleveland, Ohio, O
tober 1989.[17℄ Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. S
oping
onstru
ts in logi
 pro-gramming: Implementation problems and their solution. Te
hni
al Report CS-1993-17, De-partment of Computer S
ien
e, Duke University, July 1993.[18℄ Gopalan Nadathur, Bharat Jayaraman, and Debra Sue Wilson. Implementation
onsiderationsfor higher-order features in logi
 programming. Te
hni
al Report CS-1993-16, Department ofComputer S
ien
e, Duke University, June 1993.27

[19℄ Gopalan Nadathur and Dale Miller. An Overview of �Prolog. In Kenneth A. Bowen andRobert A. Kowalski, editors, Fifth International Logi
 Programming Conferen
e, pages 810{827, Seattle, Washington, August 1988. MIT Press.[20℄ Gopalan Nadathur and Frank Pfenning. The type system of a higher-order logi
 programminglanguage. In Frank Pfenning, editor, Types in Logi
 Programming, pages 245{283. MIT Press,1992.[21℄ Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable foroperations on their intensions. In Pro
eedings of the 1990 ACM Conferen
e on Lisp andFun
tional Programming, pages 341{348. ACM Press, 1990.[22℄ Frank Pfenning. Partial polymorphi
 type inferen
e and higher-order uni�
ation. In Pro
eed-ings of the ACM Lisp and Fun
tional Programming Conferen
e, pages 153{163, 1988.[23℄ Uday S. Reddy. Notions of polymorphism for predi
ate logi
 programs. In K. Bowen andR. Kowalski, editors, Pro
eedings of the Fifth International Conferen
e and Symposium onLogi
 Programming. MIT Press, 1988.[24℄ G. Smolka. TEL (Version 0.9), report and users manual. Te
hni
al Report SEKI-Report SR87-17, FB informatik, Univ. Kaiserslautern, 1988.[25℄ M. H. van Emden and R. H. Kowalski. The semanti
s of predi
ate logi
 as a programminglanguage. Journal of the ACM, 23(4):733{742, 1976.[26℄ D.H.D. Warren. An abstra
t Prolog instru
tion set. Te
hni
al report, SRI International,O
tober 1983. Te
hni
al Note 309.

28

