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Implementing Polymorphi Typing in aLogi Programming Language�Keehang Kwon, Gopalan Nadathur and Debra Sue WilsonDepartment of Computer SieneDuke University, Durham, NC 27706AbstratIntroduing types into a logi programming language leads to the need for typed uni�ationwithin the omputation model. In the presene of polymorphism and higher-order features,this aspet fores analysis of types at run-time. We propose extensions to the Warren AbstratMahine (WAM) that permit suh analysis to be done with reasonable eÆieny. Muh informa-tion about the strutures of types is present at ompile-time, and we show that this informationan be used to onsiderably redue the work during exeution. We illustrate our ideas in theontext of a typed version of Prolog. We desribe a modi�ed representation for terms, newinstrutions and additional data areas that in onjuntion with existing WAM strutures suÆeto implement this language. The nature of ompiled ode is illustrated through examples, andthe kind of run-time overheads that are inurred for proessing types is analyzed, espeially inthose ases where others have shown that type heking an be eliminated during exeution.The ideas presented here are being used in an implementation of the higher-order languagealled �Prolog.Key Words: Logi programming, typing, run-time type heking, implementation.1 IntrodutionThere have been two di�erent views of types in logi programming, manifest in the notions ofpresriptive and desriptive typing [23℄. The former notion orresponds to the use of a typedlogi for programming, whereas the latter notion enapsulates an understanding of given (untyped)programs without hanging the language used. At a pragmati level, the �rst view of typingleads to languages with greater expressiveness while the seond view orresponds to attahinginformation with programs that does not a�et their meaning but that might be useful, for example,in improving their exeution eÆieny. Our interest in this paper is in the situation where a regimen� This paper has been aepted for publiation in Computer Languages. Comments on its ontents are welomeand may be sent to the authors at the indiated addresses or, eletronially, at the addresses kwon�s.duke.edu,gopalan�s.duke.edu or dsw�s.duke.edu. 1



of presriptive typing is adopted and, in partiular, in the new implementation problems that arisein this ontext.The main motivation for the work presented here is that of providing a good implementationfor the higher-order logi programming language alled �Prolog [19℄ that, amongst other things,inorporates suh a notion of typing [20℄. Numerous appliations have been disovered for thislanguage over the last few years (e.g., see [4, 5, 7, 14, 22℄), stressing the importane of this onern.In providing a robust and eÆient implementation for �Prolog, three aspets that are novel to thislanguage have to be dealt with: its higher-order features, its new searh primitives and its typingregimen. The ideas disussed in this paper omplement work pertaining to the �rst two aspets[10, 16, 17, 18, 21℄ and play a entral role in an implementation that is being developed for thislanguage. Despite the spei� ontext of interest, we fous in this paper on a (typed) �rst-ordersublanguage of �Prolog. We make this hoie so as to simplify the presentation, the higher-orderfeatures of the language being an aspet deserving treatment in their own right. The simpli�ationnevertheless permits all the important aspets of an implementation to be disussed, and the ideaswe present here are in fat used diretly in an abstrat mahine that we have designed for thehigher-order language [11℄. We also note that the �rst-order language that is onsidered is itself ofsome interest, being losely related to typed versions of Prolog that have been proposed reently[8, 13, 15℄. Finally, our work is also pertinent to languages with a di�erent typing regimen | suhas the one based on order-sorting [24℄ | and we believe that this relevane is more learly exposedthrough the fous on a �rst-order language.Typing is generally viewed as a devie for providing information about the orretness of pro-grams during ompilation. One may therefore wonder why the use of types in logi programmingwould require any new mehanisms at run-time. However, the possibility that types might have tobe examined during exeution an be appreiated if one reets on the fat that it is a typed logithat is now being used for programming. An immediate onsequene of this hange in language isthat the omputation proess must use a form of typed uni�ation. If a simplisti typing sheme isused, the new omputation model an atually be implemented relatively easily by `bundling' thetype information into the names of symbols. Unfortunately, a useful type system must inorporatesome form of polymorphism within it, and the spei� type instanes of symbols that are usedin a omputation an usually only be determined during exeution. Further, preise knowledgeof these type instanes may be needed for several reasons. First, if the type system permits adho polymorphism, the relevant de�nition for the proedure being invoked is dependent on thisinformation. Seond, in ertain ontexts, suh as in �Prolog, the uni�ers for terms are determinedby their types. Finally, the orret presentation of answers to queries requires not only the bindingsfor variables to be displayed, but also the right types.The fat that the use of types within logi programming ould lead to a need for examining2



them has been reognized previously. However, the emphasis has been on desribing onditionsunder whih type analysis an be avoided at run-time. (A notable exeption is the work in [2℄ foran order-sorted language.) The general approah has been to identify situations in whih suessor failure in typed uni�ation is not dependent on type annotations. One suh situation, �rstpresented in [15℄ and labeled in [8℄ as type generality, e�etively amounts to banishing ad hopolymorphism.1 A generalization of this riterion is also desribed in [9℄. While identifying suhriteria is useful, this does not provide a sheme for dealing with situations in whih the riteriadesribed are not met. Further, the usual riteria presented for eliding types at run-time depend ona ruial property of a �rst-order language: types play a role in determining uni�ability but do notinuene the struture of uni�ers. This property may not extend to other languages. In partiular,it does not hold for a higher-order language suh as �Prolog. The spei� omputations that areperformed in this language are intimately related to the types attahed to the atomi symbols.Consequently, mehanisms are needed in suh a language for determining and maintaining thesetypes at run-time.We onsider in this paper additions to the usual mahinery employed for implementing (un-typed) Prolog for the purpose of providing an adequate treatment of types. The starting pointfor our implementation onsiderations is one that needs little justi�ation: the basi paradigms ofomputation in the typed and untyped languages are very similar, the only di�erene being thattyped uni�ation must be aommodated. Our spei� proposals are presented as modi�ations tothe Warren Abstrat Mahine (WAM) [26℄. For the immediate purpose of this paper, this hoieis largely to provide a onreteness to the disussion. However, there is a de�nite reason for thispreferene in the ontext of a higher-order language. The hoie is in a sense between a struturesharing and a struture opying approah, and eÆieny in higher-order redution ditates thelatter. (The exat reasons are too detailed to desribe here.) There is, of ourse, the question ofwhether any modi�ation is needed to the basi sheme for the untyped language. As we shallsee presently, a naive approah that an be adopted at least in the �rst-order ontext is to leavethe usual mahinery unhanged and to inlude types as an extra argument with funtion termsand proedure alls. However, this solution an be improved onsiderably by utilizing the typeheking that is done during the ompilation phase. In partiular, orresponding to the type ofevery symbol a `skeleton' an be identi�ed that need never be heked or generated at run-time.Using this observation, a sheme an be devised that works orretly in all situations and exertsvery little extra e�ort in the ases where others have shown that run-time type heking an beavoided.The rest of this paper is organized as follows. In the next setion we present a Prolog-like1Atually, the exlusion of ad ho polymorphism alone is not suÆient. A further restrition on funtion symbolsis neessary | these symbols must be type preserving in the sense of [8℄.3



language that inorporates a form of typing. We use this language to argue for the need for run-time type analysis in Setion 3. In the following two setions, we desribe enhanements to theWAM for implementing this language. Setion 6 presents examples to illustrate the overall natureof our mahine and o�ers some analysis of the sheme developed. Setion 7 onludes the paper.2 A Typed Version of PrologThe language of interest to us is based on a variant of Horn lauses [25℄ that inorporates a typesystem similar in some ways to the one used in ML [6℄. There are two omponents of this languagethat need to be desribed: the types and the terms and programs. The types of the language areonstruted from a set S of sorts, a set C of type onstrutors, eah member of whih is spei�edwith a �xed arity, and an in�nite supply of type variables. The set S initially ontains o, the type ofpropositions, and int, the type of integers, and C similarly ontains the unary list type onstrutorlist. The user may add to these olletions by using delarations of a kind we do not further speifyhere. Type variables are distinguished by the usual Prolog onvention for variables, i.e. they aredenoted by tokens starting with an upperase letter. The types are ategorized into the atomitypes, orresponding to sets of individual objets, and the types of funtions and prediates. Theatomi types onsist of the sorts, the type variables and expressions of the form ( �1 : : : �n) where is an n-ary type onstrutor and the �is are atomi types. The types of funtions are given byexpressions of the form �1! : : :!�n!�, where � is an atomi type and eah �i is an atomi typeother than o. Types �1; : : : ; �n are referred to as the argument types of the funtion and � is alledits target type. In the ase when the target type is o, the type in question is that of a prediate orproedure. We observe that a type has the struture of a �rst-order term. We make impliit use ofthis fat below.The language of terms and programs is for the large part idential to that of Prolog withthe exeption that every expression now has an assoiated type. These types are obtained fromassoiating, at the very lowest level, an atomi type with every onstant and variable, a funtion typewith every funtion symbol and a prediate type with eah prediate symbol. The assoiations foronstants and for funtion and prediate symbols are obtained, �rst of all, through a de�ned type forthe symbol that may be provided by delarations suh as in �Prolog [20℄. Partiular ourrenes ofthese symbols may then assume instanes of the de�ned types as their types. The types of variablesmay be spei�ed by an annotation suh as X : type at one of the ourrenes of the variable inthe expression; all the ourrenes of the variable in the given expression must then adopt thespei�ed type. Given an assoiation of types with ourrenes of atomi symbols, an expressionsuh as f(t1; : : : ; tn) is onsidered to be well-formed and to have the type �0 just in ase the typeassoiated with (the ourrene of) f is �1! : : :!�n!�0 and, for 1 � i � n, ti is a well-formed4



expression of type �i. To provide an illustration, let us assume that the de�ned type of 1 and 2 is int,of ons is A!(list A)!(list A), of nil is (list B) and of append is (list C)!(list C)!(list C)!o.Then the ourrene of append and the two ourrenes of ons in the expressionappend(ons(1; ons(2; nil)); (X : (list int)); (Y : (list int)))an have the types (list int)!(list int)!(list int)!o and int!(list int)!(list int), respetively.Further, if they do have these types, then the expression in question is well-formed and has thetype o. However, if the type assoiated with the ourrene of the variable Y in the expression ishanged to (list (list D)), then the expression would not be well-formed.Type variables result in a form of polymorphism in our language. A type that ontains variablesin reality stands for the in�nite olletion of types that are obtained by replaing the variables byground types. This form of `quanti�ation' extends to a onstant, variable, funtion symbol orprediate symbol that has the type assoiated with it. For instane, assume, as before, that nilis a onstant whose de�ned type is (list A). Then it stands in reality for an in�nite olletion ofonstants eah of whih have the name nil but whose assoiated types are (list int), (list (list int)),and so on. Partiular ourrenes of onstants, funtion symbols and prediate symbols may`re�ne' the quanti�ation impliit in their de�ned type. Thus, if an ourrene of nil has the type(list (list A)) assoiated with it, then it stands for a olletion that inludes a onstant with thetype (list (list int)) but not one of type (list int).The impliit quanti�ation provided for by type variables extends in a natural fashion to anyterm in whose type these variables might our. Suh an expression represents every well-formedexpression that an be obtained by replaing eah atomi symbol appearing in it by one that itrepresents; we note that the replaement for variables must be done in a onsistent fashion. Apartiular kind of expression to whih suh a quanti�ation applies is a program lause. Thus,onsider the following lauses de�ning the append prediate in whih the ourrenes of append,ons and nil have the types (list A)!(list A)!(list A)!o, A!(list A)!(list A) and (list A)respetively:append(nil; (L : (list A)); L):append(ons((X : A); (L1 : (list A))); (L2 : (list A)); ons(X; (L3 : (list A)))):- append(L1; L2; L3):Eah of these lauses represents an in�nite olletion of lauses, the elements of these olletionsbeing obtained, e�etively, by instantiating the type variable in the lause with a ground type.Viewed di�erently, the lauses atually de�ne a polymorphi proedure that is apable of appendingany two lists all of whose elements are of the same (ground) type. It is interesting to note thatthe polymorphism that is manifest in this example is parametri: the de�nition of appending listsremains the same regardless of the type of the elements of the list.5



(1) G1; : : : ; Gi�1; p(t1; : : : ; tn); Gi+1; : : : ; Gm )'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn);'(A1); : : : ; '(Al); '(Gi+1); : : : ; '(Gm),if p0(s1; : : : ; sn) :- A1; : : : ; Al is a variant of a program lause in P whose free variablesare hosen so as not to appear in the left-hand side of the rule, p and p0 are identialexept for their types and these types are uni�able and have ' is a most general uni�er.(2) G1; : : : ; Gi�1; p(t1; : : : ; tn); Gi+1; : : : ; Gm )'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn); '(Gi+1); : : : ; '(Gm),if p0(s1; : : : ; sn) is a variant of a program lause in P whose free variables are hosenso as not to appear in the left-hand side of the rule, p and p0 are idential exeptfor their types and these types are uni�able and have ' as a most general uni�er.(3) G1; : : : ; Gi�1; f(t1; : : : ; tn) = f 0(s1; : : : ; sn); Gi+1; : : : ; Gm )'(G1); : : : ; '(Gi�1); '(t1) = '(s1); : : : ; '(tn) = '(sn); '(Gi+1); : : : ; '(Gm),if f and f 0 are idential exept for their types and these types are uni�able and have' as a most general uni�er.(4) G1; : : : ; Gi�1;  = ;Gi+1; : : : ; Gm ) G1; : : : ; Gi�1; Gi+1; : : : ; Gm.(5) G1; : : : ; Gi�1;X = t;Gi+1; : : : ; Gm ) '(G1); : : : ; '(Gi�1); '(Gi+1); : : : ; '(Gm),provided t is idential to X or X does not appear in t and ' represents thesubstitution of t for X.(6) G1; : : : ; Gi�1; t = X;Gi+1; : : : ; Gm ) '(G1); : : : ; '(Gi�1); '(Gi+1); : : : ; '(Gm),provided t is idential to X or X does not appear in t and ' represents thesubstitution of t for X.Figure 1: State transition rules in the ontext of a given program P
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A query in the language being onsidered onsists, as in Prolog, of a list of atoms. Answeringsuh a query amounts, roughly, to �nding a instane of these atoms that is satis�ed by the givenprogram. In de�ning the notion of omputation preisely, some are must be exerised due to thepresene of types. We provide a formal presentation of this notion by means of a transition system.The states of this transition system onsist of lists of atoms or equations of the form t1 = t2,where t1 and t2 are terms in our typed language. Transitions between states are dependent on apartiular program ontext and are given by the rules shown in Figure 1. The following tokens areused in these rules, perhaps with subsripts and supersripts, as shema variables for the indiatedsyntati ategories: G for atoms or equations between terms, A for atoms, s and t for terms, p forprediate symbols, f for funtion symbols,  for onstants and X for variables. A rule of the forml ) r that appears in this �gure is appliable to a state if it is an instane of l and if the provisoson the rule are met. The appliation of suh a rule results in a transition to the state that is theorresponding instane of r. In obtaining the new state, it may be neessary to make substitutionsfor some of the type or `term' variables in a term, atom or equation. This is depited in ourtransition rules by an expression of the form '(t) or '(G), where ' represents the substitution. If' is a substitution for type variables, then its appliation onsists of suitably modifying the typesof the atomi symbols appearing in that expression.We all a sequene of state transitions that start from a given query a derivation, and we depitit by listing the states that arise in the ourse of the transitions. Suh a derivation is suessful if itends in a state given by the empty list. A suessful derivation determines an instantiation for thevariables in the original query and this is viewed, as usual, as an answer to the query. With respetto type variables in the query, this interpretation amounts to viewing them as being existentiallyquanti�ed. An alternative desription of this viewpoint that is in line with the earlier disussion oftype variables is the following: A query in whih type variables our represents an in�nite set ofqueries eah member of whih orresponds to instantiating these variables with ground types. Ananswer to any one of these instanes is then also an answer to the overall query.The objetive is ultimately to �nd answers to queries. The notion of omputation that isof interest may thus be desribed as a searh for suessful derivations. In struturing suh asearh, we need a method for determining whih of several existing derivations to extend at agiven point and for hoosing between di�erent transition rules that ould be used to extend theseleted derivation. The strategy that underlies the implementation desribed in this paper is thefollowing. The searh proeeds by always trying to extend a given derivation. This derivation maybe haraterized by the last state in it, whih is referred to as the urrent state. In attemptingto extend the derivation, only those rules are onsidered that pertain to the �rst element of theurrent state. If this is an atom, a program lause must be used to `simplify' it. The rule that isused in this ase is determined by the sequene in whih these lauses appear in the program. A7



situation may, in general, be reahed where all the rules that apply to the urrent state under thedesribed restritions have been exhausted. In this ase, the searh proeeds by retrating �nalsegments of the existing derivation until a derivation is found whose last state an be transformedby some untried rule. If suh a derivation is found, then the untried alternative is attempted.Otherwise the searh ends in failure. The searh proedure that results from adopting the strategydesribed is similar in struture to that underlying Prolog. The main di�erene is that it also takesinto aount the typed nature of our language.We have assumed up to this point that the types of the various symbols that our in a programare provided by the user. In reality this is not neessary. Given the de�ned types of onstants,funtion symbols and prediate symbols and possibly the types of some ourrenes of variables, amost general typing an be determined for all the symbols that our in a given expression. We shallassume suh a typing in the disussions that follow. In addition, the de�ned types of onstants,funtion symbols and prediate symbols an themselves often be inferred in the form intended bythe programmer by the proess of reonstrution desribed in [20℄. However, the details of typereonstrution are not very relevant to this paper. The notion of omputation that is of interestrequires a full knowledge of types at the points where the ompilation and exeution of programsare onsidered, and we shall assume that this is available in the remainder of this paper.3 The Need for Run-Time Type AnalysisThe model of omputation for our language di�ers from that for Prolog mainly in that it uses a formof typed uni�ation. To understand some of the impliations of this di�erene, let us assume thatft is a funtion symbol with de�ned type A!B!int and onsider the task of unifying the termsft(X;Y ) and ft(1; 2). To begin with, we observe that it makes sense to try to unify these termsonly beause they have the same types. Now, the existene of a uni�er for these terms dependson the argument types of the ourrene of ft in the �rst term. If these types are int, then thetwo terms have a uni�er that is similar to the one obtained by ignoring the types. If the types arei instead | we assume here and elsewhere in the paper that i is a sort distint from int that isintrodued by the programmer | then the terms are not uni�able. The types of symbol ourrenesthus appear to a�et the question of uni�ability in an intrinsi way, indiating a possible need forthe run-time proessing of types.22The reader familiar with the language ML might wonder why a similar problem does not arise in that ontext.The reason for this is that in ML the variables X and Y in an expression suh as ft(X; Y ) annot assume a type morerestritive than the de�ned argument types of ft; in one sense, this is a onsequene of the linearity restrition onpatterns and the groundness requirement on expressions being evaluated. Thus, uni�ation (or, more appropriately,mathing) beomes independent of the spei� types. A similar e�et is obtained in the logi programming ontextby the type generality and type preserving onditions [8℄, but these restritions have, in our opinion, less independentjusti�ation. 8



In a situation where only ground types are present, it is possible to bundle the type into thenames of symbols, thereby eliminating the neessity to look at these expliitly during exeution.Thus, in the ase above, we may distinguish the funtion symbol ft that has type i!i!int fromthe funtion symbol with the same `name' but type int!int!int, and this distintion may be usedto determine the question of uni�ability. However, the presene of polymorphism makes this kindof ompile-time analysis insuÆient in general. Sine variables may our in types, it is neessaryto unify types, as opposed to merely heking for identity. The values that are thus determined fortype variables may have a two-fold impat: they may be needed for understanding the answers thatare found and also for determining whih of several proedures are relevant for solving a subsequentgoal.To illustrate the latter possibility, we onsider the following sequene of lauses assuming thatthe de�ned type of print is A!o, the de�ned type of print list and print list aux is (list A)!oand the de�ned types of ons and nil are as indiated in the previous setion:print(X : int) :- write(X).print(X : (list A)) :- print list(X)....print list aux(nil).print list aux(ons(X;L)) :- write(';'); print(X); print list aux(L).print list(nil) :- write('[℄'):print list(ons(X;L)) :- write('['); print(X); print list aux(L); write('℄'):The above de�nition of print exhibits a form of ad ho polymorphism: the two lauses shownpertain to displaying integers and lists respetively and the elided part presumably ontains lausespertinent to displaying other kinds of objets. On the other hand, the de�nitions of print list andprint list aux are polymorphi in a parametri sense. The interesting aspet of these de�nitionsis that they require type information to be available at run-time to ensure the orret proessingof queries. Thus, the type of the objet to be printed must be available during exeution for thepurpose of determining whih of the several lauses for print is to be used. Notie that this alsorequires parametrially polymorphi de�nitions to proess types. Thus onsider the queryprint list(ons(1; ons(2; ons(3; nil)))):This query will in due ourse invoke print list aux. The latter proedure must determine that thetype of the elements of the list that is being displayed is int and must pass this information on toprint when it invokes that proedure.The general observation in the examples above is that types are needed to determine the ex-istene of uni�ers and hene also the appliability of lauses. In the �rst-order ontext, typesinuene only the existene of uni�ers and not their struture. It has therefore been suggested that9



analysis of types during exeution may be eliminated in situations where the question of uni�abilityis itself independent of type information [9℄. While this is of interest as an optimization tehnique,this is ertainly not omprehensive enough to be an implementation strategy even for the �rst-orderase. Moreover, the underlying assumption does not generalize to other ontexts of interest, suh asthat of a higher-order language. In suh ontexts the strutures of uni�ers may also be dependenton typing. For example, let F be a funtion variable and onsider unifying the terms a and F (X)in a language suh as �Prolog. Assume a has the type i. Now, if F has the type int!i, the mostgeneral uni�er is given by the substitution for F of the onstant funtion whih returns a, i.e. thelambda term (�y a). If the type of F is i! i instead, there are two inomparable solutions. One ofthese binds F to a onstant funtion similar to that above (but with a di�erent type), and the otherbinds X to a and F to the identity funtion (�y y) on objets of type i. The hoie of solutionsis thus dependent on the type of F and an be made orretly only if this type is present duringomputation.3Typed uni�ation an be rendered into untyped uni�ation at least in the �rst-order ontextby inluding the type of funtion terms as an extra argument. Returning to the example atthe beginning of the setion and assuming that the types of X and Y are i, the attempt tounify the typed terms ft(X;Y ) and ft(1; 2) may be reast into an attempt to unify the untypedterms ft(i!i!int;X; Y ) and ft(int!int!int; 1; 2). It may thus appear that any regular Prologimplementation would suÆe for our typed language as well. There are, however, at least twodrawbaks with this proposal. First, it does not generalize to the higher-order ontext for reasonsmentioned earlier, and this is the ontext we are ultimately interested in. The seond problem,and one that applies even to the �rst-order language under immediate onsideration, is that thisapproah performs at run-time work that has already been performed during ompilation. From thetype delarations available at ompile-time, it is known, for instane, that the type of any ourreneof ft must have the struture A!B!int. During exeution it is therefore only neessary to hekthe instantiations for A and B in determining whether partiular ourrenes of this funtionsymbol are (or an be made) idential. The ideas that we present in the following setions utilizethis observation to redue the e�ort in proessing types during the exeution of the program.4 A Mahine Model Based on the WAMAn implementation of our language must inlude type information in the representation of terms.Further, spae must be provided for reating new type expressions during exeution and new meha-3A stronger statement an in fat be made: the kind of uni�ation problem onsidered here an meaningfully besolved only in the presene of types. Thus, types in �Prolog are not merely a devie for indiating program orretnessduring ompilation. They are in a sense neessary even for the existene of the language. We refer the reader to [20℄for a fuller appreiation of this fat. 10



nisms are needed for performing the uni�ation of types. We desribe in this setion the struturesthat must be added to the usual mahinery employed for implementing logi programming lan-guages for the purpose of aommodating these requirements. We base our disussions on onepartiular model, that of the WAM. The preise nature of the hanges to this model depends onthe hoie of representation for types. In the �rst subsetion below, we present a representationthat follows up on the disussions in Setion 3. We then desribe the mahinery that must be addedto the WAM for the proessing of types in light of this representation. We assume familiarity inthese disussions with the basi issues pertaining to the WAM.4.1 Representation of Typed TermsOur representation of terms stores types only with ourrenes of onstants, variables and fun-tion symbols. This information uniquely determines the types of all terms and is suÆient forimplementing the omputation model desribed in Setion 2. From the latter perspetive, it isunneessary even to store types with onstants and variables: by the time uni�ation `desends'to onstants or variables, types must have beome idential. (It is as a result of this that typesare not examined in rules (4){(6) of Figure 1.) However, this information is maintained withinthe sheme we desribe so as to permit the type of any arbitrary term to be determined in theourse of exeution. This ability is useful if, for instane, we wish to display the types of terms tothe programmer. More importantly, this information is needed in the extention of our sheme to ahigher-order language: types of variables and onstants play a ruial role in a phase of higher-orderuni�ation that ours after the analysis of the `�rst-order' struture of terms ontained in rules(3){(6) in Figure 1.In determining a suitable representation of types, it is useful to onsider the manner in whihthese will be used. To understand this aspet, we return to the append prediate of Setion 2 whosede�nition, with the typing of various symbols being left impliit, is reprodued below:append(nil; L; L):append(ons(X;L1); L2; ons(X;L3)) :- append(L1; L2; L3):Consider now some of the tasks involved in evaluating a query suh asappend(ons(1; nil); ons(2; nil); R):Only the seond lause is appliable in solving this query. In attempting to use it, it is neessary tounify the term ons(1; nil) with ons(X;L1). This task also involves heking if the type of ons inthe �rst term is ompatible with the expression A!(list A)!(list A). This `type heking' aspetmust be made expliit in any ompiled ode that is generated for the seond lause. In a similarfashion the term ons(X;L3) must be `onstruted' and the variable R bound to it. Construting11



this term also involves proessing types. For instane, it is neessary to onstrut the expressionA!(list A)!(list A) with a suitable binding for A and to make this the type of the new instaneof ons that is reated. One again the ompiled ode must aount for this omputation.The above example shows that a onsiderable amount of work has to be done if the analysisof types is implemented in a naive fashion. Thus, the entire type of an ourrene of ons mayhave to be examined or onstruted when it is enountered during exeution. Lukily, most of thiswork beomes redundant with a suitable representation of types. As noted already, the stati typeheking phase ensures that every ourrene of ons atually has a type that mathes the strutureA!(list A)!(list A). What distinguishes partiular ourrenes is the way the variable A is (ormust be) instantiated. Thus, if the type for any ourrene of ons is stored as the `skeleton'A!(list A)!(list A) plus the binding for A, the only work required during exeution would be tohek the binding for A (during `type heking') or to instantiate it (during `type onstrution').There is a further optimization that is appliable in the �rst-order ontext if types do not need tobe displayed with answers: the type skeleton an be dispensed with. However, this optimization isnot appliable in the higher-order ase sine the entire type of a symbol may have to be examinedduring uni�ation. We therefore do not onsider this optimization expliitly here.The above disussion motivates representing a type by a skeleton and environment pair, wherethe skeleton is a pointer to a preomputed struture in a type skeleton table and the environmentis a list of bindings for the variables appearing in the skeleton. The partiular way a type isfatored into these omponents in our implementation depends on the symbol whose type it is. Foronstants and funtion symbols, the skeletons that are used are their orresponding de�ned types.For a variable, the hoie is dependent on the ontext in whih the variable ours: the argumenttype orresponding to the variable ourrene in the de�ned type of the �rst `parent' (funtion orprediate) symbol is piked as the type skeleton for the variable. For instane, onsider the termp(X; f(X)) assuming that the de�ned type of p is A!A!o and that of f is (list B)!(list B).Our mahine will use the A as the type skeleton for X in this ase. An alternative is to use themost spei� struture that is available for the type of the variable at ompile-time. Thus, in theexample onsidered, (list B) ould have been piked as the type skeleton for X. However, the �rsthoie inurs fewer overheads within our overall proessing sheme.The reader may be tempted to onstrue the proposal just made as akin to advoating a struturesharing approah over the struture opying approah employed in usual WAM implementations.However, onstruing the proposal in this fashion is inorret and also misses its entral point. Inthe ontext of the �rst-order language, the main purpose of the separation of the type of a symbolinto a skeleton and an environment is to distinguish between a part of the type that need neverbe examined during proessing (but whih is nevertheless needed to determine the full type of thesymbol) and a part that may need to be examined. The latter omponent of the type, i.e., the12



type environment may be represented in a variety of ways. The partiular representation we usefor it here is very similar to the representation of terms employed in, e.g., [26℄, and in this senseshares with it the merits and demerits of the struture opying approah.The atual implementation of our proposal di�ers from the `shema' outlined only in that inthe ase of onstants and funtion symbols the relevant type skeletons are diretly assoiated withtheir names. To be preise, the representation of a term makes use of ells that are two wordslong and represent one of four di�erent kinds of objets: funtion symbols, onstants, (unbound)variables and referenes. The information stored in these ells is the following. There is, �rst ofall, a tag distinguishing between the di�erent kinds of data. For a funtion symbol, the additionalinformation stored onsists of the name, in the form of an address in the symbol table, and apointer to the start of the type environment. The information retained for a onstant is similar.4A variable ontains a pointer to the type skeleton table and another pointer to the beginning ofa type environment. Finally, a referene ell represents an indiretion reated by the binding ofvariables and stores additionally only the address of another heap loation. The symbol table hasa reord for every funtion symbol and onstant whih inludes, among other things, a pointerto its type skeleton in the type skeleton table. Type environments are written on a type heap,analogous to terms being written on the heap in the WAM. (The need for a separate type heapwill beome apparent in the next subsetion and also when we onsider ompilation in Setion 5.)The type environment of a term oupies a onseutive sequene of ells on the type heap withan entry for eah distint type variable ourring in the type skeleton assoiated with that term.We note that the spei� representation used here di�ers from that in the WAM in that variablesare distinguished from referenes. This division is somewhat more spae eÆient sine ombiningreferenes and variables neessitates ells that are three words long. However, operations suhas trailing and dereferening beome slightly more expensive in time under this representation.While the trade-o� ould be made di�erently in the �rst-order ontext, ertain other requirementsdetermine the hoie made here to be the more appropriate one in the higher-order ase.Figure 2 illustrates some of the details of our representation using the term ons(ons(a; nil); L)and assuming that the de�ned type of a is i and of ons is as indiated in Setion 2.5 In this �gurewe have made expliit also the representation of types in the type heap. We have hosen to use herethe representation used in the WAM for terms as illustrated in, e.g., [1℄. Note that a ompound term(struture) is represented as usual by plaing the funtion symbol and arguments in onseutiveells on the heap. In onjuntion with this �gure, we observe that the depition of the entries in4Although we do not onsider this aspet expliitly here, integers and oating point onstants may be representedvia speially tagged ells as in usual Prolog implementations. Type environment pointers will be unneessary in bothases. In the ase of integers this part of the ell may be unused or used to represent numbers in a larger range.5The struture onstruted to represent a term in a WAM-like ontext is dependent on the atual invoationpattern that leads to its onstrution. The representation shown here is only illustrative and not exlusive.13
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Figure 2: The representation of ons(ons(a; nil); L) in the enhaned mahine
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the skeleton table is intended only to be shemati. In reality the types in eah of the `ells' willhave to be represented expliitly. This is done in our mahine by treating ! as a binary funtionsymbol and employing the usual representation for �rst-order terms. This representation parallelsthe one used for types in the type heap.4.2 New Memory ComponentsOur mahine model preserves most of the strutures that appear in the WAM. However, some newdevies are added to those present in the WAM for the purpose of proessing types. We outlineour enhaned mahine below by desribing only its new memory omponents, leaving the partsinherited from the WAM impliit. We also hint at the intended purpose of the new omponents.The preise manner in whih these omponents are used will beome lear when we onsider theaspet of ompilation.The main addition to the strutures of the WAM is that of a type heap. As the earlier disus-sions indiate, exeuting typed programs may require new type expressions to be onstruted. Inpriniple, these type expressions ould be onstruted on the WAM heap, and we have investigatedthis possibility. However, there are advantages to the divided heap spae that we have adopted.In the usual implementation shemes for the untyped language, the manner in whih ompoundterms are stored is a sensitive issue: the funtion symbol and the arguments must be stored inonseutive loations. The ordering of type heking and struture heking instrutions is onsid-erably onstrained by this requirement if one heap is used. In partiular, the interleaving of thesekinds of instrutions is preluded by this requirement. However, our proessing sheme, as outlinedat the beginning of Subsetion 4.1 and as explained in greater detail in Setions 5 and 6, requiresthat these two kinds of instrutions be interleaved. The division of spae thus appears neessaryfor preserving the preferred representation of ompound terms. With regard to the position of thetype heap, we note that, in general, type expressions may be alloated either in the stak or in thetype heap. The usual arguments relating to ease of baktraking then ditate that the type heapreside below the stak. Sine our language of types is based on �rst-order terms, the struture ofthe type heap is similar to that of the heap in the WAM. (This observation also allows us to usea opy of the usual WAM instrution set in the type analysis proess, as we explain in the nextsetion.)The other new omponents in our mahine that play a role in the proessing of types aresummarized below:
15



type S struture pointer to the type heaptype H register indiating the top of the type heaptype HB register indiating type heap baktrak pointZ1,Z2, : : : type registerstype mode a mode with a read or write statusThese omponents, whih parallel ertain omponents that exist in the WAM, are used in imple-menting the uni�ation of types. Their detailed use will beome lear in the following setions.However, their purpose an be summarized as follows. The Z registers are aliases for the A or Xregisters that are used in the WAM for passing arguments or holding temporary values; this nameis used only to distinguish the role of these registers in passing type arguments or in holding tempo-rary type values. The type S register plays a role in heking if the types in the type environmentof an atomi symbol have a desired struture; in a ertain sense, it is similar to the S register inthe WAM. The purpose of the type H register is self-explanatory, and the type HB register serves afuntion that is analogous to that of the HB register in the WAM | it serves in determining whathanges to type expressions might have to be undone and hene need to be trailed.There are some additional points to be mentioned about our mahine. Permanent type variablesare alloated in it on the same stak as the permanent (term) variables, allowingWAM optimizationslike last all optimization and environment trimming to be retained. Both the heap and the typeheap expand with eah proedure invoation, and ontrat on baktraking. A hoie point reordmust now inlude a new �eld for reording the value of the type H register. Finally, it is neessaryto trail the bindings made for type variables in addition to those made for term variables. At alevel of detail, it seems to be more (time) eÆient to use separate trail staks and separate methodsfor resetting type and term bindings, and this observation is reeted in the organization of ourmahine. However, a further disussion of this point is beyond the sope of this paper.5 CompilationOne di�erene between ompilation for our language and that for Prolog is that lauses must beexamined for type orretness. A further di�erene is that the ode that is produed must inludeinstrutions for performing type analysis at run-time. The struture of this ode is based on theobservation that typed uni�ation in the �rst-order ase an be rendered into untyped uni�ationby inluding types as extra arguments in terms. (For the higher-order language, only a `�rst-orderlike' part of the uni�ation proess is ompiled and this observation applies to that part as well.)However, the ompile-time heking and our representation of terms allow us to redue the extraarguments to the bindings for type variables in the de�ned types of symbols. For example, let pbe a prediate symbol whose de�ned type is A!B!o. Then, an attempt to unify the two atoms16



p(X;Y ) and p(1; 2) an be oneptualized as an attempt to unify the `untyped' atoms p(A;B;X; Y )and p(int; int; 1; 2), assuming, of ourse, that the type of the ourrene of p in the �rst atom is nota re�nement of the de�ned type of p. This translation is used almost literally in treating proedurede�nitions and alls. Thus, new `type' arguments are determined for prediates at ompile time.The ode for proedure alls must load the appropriate values into (type) argument registers andthe ode for proedure de�nitions must hek the values of these arguments. However, a literaltranslation is not applied at the level of terms. For instane, onsider an attempt to unify the typedterms ft(X;Y ) and ft(1; 2), assuming that the de�ned type of ft is A!B!o. While this attemptan be visualized as an attempt to unify ft(A;B;X; Y ) and ft(int; int; 1; 2), the terms ontinue tobe represented as ft(X;Y ) and ft(1; 2) and the bindings determined for A and B a�et only thetype environment of the ourrene of ft in the �rst term.In implementing the above approah, hanges and enhanements need to be made only to thoseWAM instrutions that partiipate in uni�ation. Consequently all other instrutions are preservedunhanged in our mahine. With regard to the instrutions that are needed in uni�ation, we note�rst that those that proess funtion symbols must be modi�ed so that they an initiate theproessing of the new `arguments'; these arguments are given by the type environment pointerassoiated with the inoming symbol or with the symbol to be reated, and either reside on ormust be put onto the type heap. Further, instrutions whih result in onstants and variablesbeing written on the heap must also initiate the writing of the assoiated type environments.Finally, new instrutions are neessary for determining if the type arguments have the desiredstruture or, alternatively, for writing the bindings for these type arguments. We desribe themodi�ations to the WAM instrutions for unifying terms in greater detail below and then presentthe new instrutions that are used for manipulating types. We use these instrutions in the nextsetion in illustrating the overall behavior of our enhaned mahine.5.1 Modi�ations to Instrutions for Proessing TermsIn addition to the preeding general remarks, the hanges that are made to the original WAMinstrutions for the purpose of proessing terms also inorporate a distintion between ases inwhih the symbol being proessed is monomorphi, i.e., its type skeleton ontains no variables, andin whih it is polymorphi, i.e., its type skeleton ontains one or more variables. It is neessary toinitiate type heking if the symbol is polymorphi. To understand what exatly must be done inthis ase, onsider an instane of the instrution get struture f,Ai where f is polymorphi. Ifit is determined that register Ai referenes a struture whose head funtion symbol is f, then thetype environment assoiated with this head must be loated and the mahine must prepare to dotype uni�ation. Alternatively, if Ai referenes an unbound variable, the mahine must prepare towrite the type environment to be assoiated with the struture f. However, none of this proessing17



of types is neessary if f is monomorphi.(1) As hinted earlier, the get struture instrution splits into two forms, get p strutureand get m struture, with the partiular one to be used in a given situation dependingon whether or not the relevant funtion symbol is polymorphi. A similar relation holdsbetween put struture, put p struture and put m struture. The desired ation of thenew instrutions are explained as follows:� get m struture f,Ai gets the value of register Ai and dereferenes it. If the result isa referene to a struture with head funtion symbol f, the S register is set to point tothe next address and exeution proeeds in read mode. If the result is a referene to avariable, the variable is made into a referene to the top of the heap, and the binding istrailed if neessary. Further, the funtion symbol f with a nil type environment pointeris pushed onto the heap, and exeution proeeds in write mode. In the remaining ases,baktraking is initiated.� get p struture f,Ai gets the value of register Ai and dereferenes it. If the result isa referene to a struture with head funtion symbol f, the S register is set to point tothe next address and the type S register is set to the type environment of f. Exeutionthen proeeds in read and type read modes. If the result is a variable, the variable ismade into a referene to the top of the heap, and the binding is trailed if neessary.Further, the funtion symbol f with a type environment pointer to the top of the typeheap is pushed onto the heap and exeution proeeds in write and type write modes. Inthe remaining ases, baktraking is initiated.� put m struture f,Ai pushes the funtion symbol f with a nil type environmentpointer onto the heap and puts a referene to it into Ai. Exeution proeeds in writemode.� put p struture f,Ai pushes the funtion symbol f with a type environment pointerto the top of the type heap onto the heap and puts a referene to it into Ai. Exeutionontinues in write and type write modes.(2) The instrutions for ompiling onstants appearing in lauses obtain a treatment similar tothat aorded to instrutions dealing with strutures. Thus, orresponding to eah of theinstrutions get onstant, unify onstant and put onstant, there are now two instru-tions. One of these is used in ompiling polymorphi onstants and the other in ompilingmonomorphi onstants. The mnemoni for these instrutions is onstruted in the samefashion as for the instrutions for strutures | e.g. the two instrutions orresponding to18



get onstant are get p onstant and get m onstant. The strutures of all these instru-tions exept get p onstant and unify p onstant are similar to those of their ounterpartsfor the untyped language and the e�ets of these instrutions an be understood by analogy tothose for proessing the head funtion symbol of strutures. The instrutions get p onstantand unify p onstant get an extra address argument and their interpretation is as follows:� get p onstant ,Ai,L gets the value of the register Ai and dereferenes it. If the resultis a referene to a variable, that variable is bound to the onstant  with type environmentpointer pointing to the top of the type heap, the binding is trailed if neessary andexeution proeeds in type write mode. If the result is a onstant with name , exeutionjumps to address L. In the remaining ase, baktraking is initiated.� unify p onstant ,L, when exeuted in read mode, dereferenes the ontents of theheap loation pointed to by the S register. If the result is a referene to a variable, thenthat variable is bound to the onstant  with type environment pointer pointing to thetop of the type heap, the binding is trailed if neessary, the S register is inrementedand exeution proeeds in type write mode. If the result is a onstant with name ,the S register is again inremented and exeution jumps to address L; this allows theinstrutions whih, in write mode, are required to opy the type environment of thevariable to be skipped in read mode. In the remaining ase, baktraking is initiated. Inwrite mode, a onstant with name  and type environment pointer set to the top of thetype heap is written to the top of the heap and exeution proeeds in type write mode.(3) The instrutions put variable and unify variable also give rise to two forms whose usagedepends on whether or not the type skeleton assoiated with the variable has type variablesin it. In the former ase put p variable and unify p variable are used and in the latterase put m variable and unify m variable are used.� put p variable Xn,skel,Ai reates a ell on the heap for an unbound variable andsets its type skeleton pointer to skel, whih is itself a pointer to the type skeletonthat is determined to be assoiated with the variable during ompilation, and its typeenvironment to point to the top of the type heap. A referene to the new ell is thenput into registers Ai and Xn and exeution proeeds in type write mode.� unify p variable Xn,skel,L, in write mode, reates on the top of the heap an unboundvariable whose type skeleton pointer is set to skel and whose type environment is apointer to the top of the type heap. A referene to the newly reated ell is then plaedin Xn and exeution proeeds in type write mode. In read mode, the ontents of theheap loation pointed to by the S register is stored in the Xn register, the S register isinremented and exeution jumps to address L.19



The instrutions put m variable and unify m variable are idential to their polymorphiounterparts exept that (i) the type environment �eld is set to nil, (ii) the manipulationof the type (read/write) mode is not neessary and (iii) in unify m variable, the label Lis not used at all. Also, while we have disussed the modi�ations to put variable andget variable only in the ontext of temporary variables, the hanges where permanentvariables are involved are analogous.(4) The following instrutions are the same as in the WAM exept that typed uni�ation is used.� get value Vn,Ai� unify value Vn� unify loal value Vn(5) `Globalizing' a variable using unify loal value Vn or put unsafe value Vn now requiresopying the omplete ell on the stak to the heap to prevent loss of type information.We assume in this paper that there are no speial instrutions for handling lists; suh instrutionsan, of ourse, be added by modifying the usual ones in a manner similar to that followed forinstrutions that proess onstants and funtion symbols. All other uni�ation instrutions thatare not disussed expliitly here remain unhanged.5.2 New Instrutions for Proessing TypesUnifying types essentially amounts to unifying �rst-order terms. Our extended mahine, therefore,has a ounterpart for eah WAM instrution for the purpose of ompiling type analysis. These newinstrutions are named by inserting ` type ' in the middle of the name of eah WAM instrution.The only di�erene in their operation is that they work on the omponents related to types suhas the type heap and the type H and type S registers. For example, put type variable Zn,Zihas the same e�et as the WAM instrution put variable Xn,Ai exept that the required ell isreated on the type heap instead of the heap.Two further instrutions are added to the instrutions obtained from the WAM instrutionsin the fashion outlined above for the purpose of type uni�ation: unified type value Vn andunified type loal value Vn. These instrutions are used in plae of unify type value andunify type loal value in situations when it is known during ompilation that it is unnees-sary to undertake uni�ation when the instrution is exeuted in type read mode. Suh a sit-uation arises, for example, when a type variable in an argument in a struture also appears inthe type of the funtor of the struture. The instrution unified type value is a speial ver-sion of the unify type value that in type read mode merely inrements the type S register20



by one. A similar relationship holds between the instrutions unified type loal value andunify type loal value.6 Some Examples and AnalysisWe now illustrate the overall behavior of our mahine and the use of our instrutions by onsideringthe ompilation of some typed programs. As a �rst example, we onsider ompiling the lauserel pair(X;Y ) :- rel(fst(X); fst(Y )); rel(snd(X); snd(Y )):under the following assumptions: the de�ned types of fst and snd are (pair A B)!A and(pair C D)!D where pair is a binary type onstrutor, the de�ned type of rel is E!E!o andthe de�ned type of rel pair is (pair F G)!(pair F G)!o. The prediate rel pair has two typevariables in its type skeleton. The assumption is that, on invoking this prediate, the bindings ofthese variables will be plaed in the argument (Z) registers in muh the same fashion as the `real'arguments of the prediate are plaed in the A registers. These values must be saved in hoie pointreords for the same reason as must the usual arguments. Further, the values of type variablesmust be loaded into argument registers prior to alling a subgoal. These requirements ditate thestruture of the ompiled ode for rel pair that is shown below6:alloateget type variable Y3,Z1 % type variable Aget type variable Y4,Z2 % type variable Bget variable Y1,A3 % Xget variable Y2,A4 % Yput p struture fst/1,A2 % (fstunify type loal value Y3 % type variable Aunify type loal value Y4 % type variable Bunify loal value Y1 % X)put p struture fst/1,A3 % (fstunify type loal value Y3 % type variable Aunify type loal value Y4 % type variable Bunify loal value Y2 % Y)6Given that type variables may also have to be stored in registers, it is natural to ask if there is some shemefor alloating registers. Although this question is not addressed expliitly in this paper, the struture of a generalanswer is not diÆult to see. A ompiler an easily make expliit the type arguments in the translation of lausesskethed at the beginning of Setion 5. Standard register alloation algorithms, e.g., the one presented in [3℄, anthen be used. We assume suh an algorithm in the ompiled ode presented here and in the other examples in thissetion. 21



all rel/2,4put type unsafe value Y4,Z1 % type variable Bput p struture snd/1,A2 % (sndunify type loal value Y3 % type variable Aunify type loal value Y4 % type variable Bunify loal value Y1 % X)put p struture snd/1,A3 % (sndunify type loal value Y3 % type variable Aunify type loal value Y4 % type variable Bunify loal value Y2 % Y)dealloateexeute rel/2We would like to make some omparisons between the usual sheme that is employed for im-plementing an untyped logi programming language and the enhanements to suh a sheme fordealing with a typed language that we have desribed here. For this purpose, we onsider theompilation of the append prediate, the lauses for whih are reprodued below:append(nil; L; L):append(ons(X;L1); L2; ons(X;L3)) :- append(L1; L2; L3):Now, the omparison between the two shemes an be made at two di�erent levels. At the �rstlevel, we ould redue our language, and onsequently this de�nition, to an e�etively untypedform and ompare the ode generated and the proessing required under our sheme with the onepresented, for example in [26℄. At another level, we ould preserve some of the advantages of typingand observe the overhead that this reates during exeution.An e�etively untyped language an be obtained from our typed one under the following trans-lation: we assume that there are only two sorts in the language, i and o, that the type assoiatedwith eah term is i and that with propositions is o, and that the typing of onstants, funtion sym-bols and prediate symbols are ditated by this requirement.7 With regard to the append programabove, the de�ned type of append under this redution is i!i!i!o and nil and ons are assumedto have the de�ned types i and i!i!i respetively.As a result of the typing sheme assumed above, variables do not our in any types, i.e., theonstants, funtion symbols and prediate symbols are all monomorphi. Thus, all the needed typeinformation is attahed to these symbols at ompile time under our implementation sheme, and7The observant reader might objet to this redution on the grounds that our language was assumed at the outsetto ontain the sort int and the type onstrutor list. However, this objetion is not serious: the redution we desribehere depends only on the user not employing int and list in onstruting types in his/her programs.22



virtually no type proessing is done during exeution. The ompiled ode that will be generatedfor append under this typing is displayed below, assuming that list(1) represents a pointer to thetype skeleton i:swith on term C1a, C1, C2, failC1a: try me else C2aC1: get m onstant nil/0,A1 % nilget value A2,A3 % L, LproeedC2a: trust me else failC2: get m struture ons/2,A1 % ons(unify m variable X4,list(1) % X,unify m variable A1,list(1) % L1)get m struture ons/2,A3 % ons(unify value X4 % Xunify m variable A3,list(1) % L3exeute append/3This ode is very similar to that generated for an untyped language by the usual shemes. Onedi�erene is the use of the instrutions get m onstant and get m struture instead of get niland get list. This di�erene is super�ial and may, in fat, be eliminated. Another di�erene isthat the ourrenes of the unify m variable instrutions must in write mode inlude a pointerto a type skeleton in the ell that is reated. This additional operation does not have muh timeoverhead. Yet another di�erene is that the instrutions get value and unify value must performtyped uni�ation. However, here too our sheme makes the overhead involved inonsequential: theonly real overhead is inurred when polymorphi terms are proessed, and a mere look at the typeenvironment pointer suÆes for determining whether or not a funtion, onstant or variable symbolis polymorphi. Finally, our sheme involves a spae overhead in that a type environment pointermust be inluded with eah piee of data and a variable ell must also ontain a pointer to a typeskeleton. The former seems to be an unavoidable prie to be paid for exibility in typing. As forthe latter, we have noted already that it is not neessary to inlude type information with variablesin the ontext of a �rst-order language. (Thus the time overhead mentioned in onnetion withtyped versions of unify variable an also be eliminated.) However this is essential for a higher-order language and our implementation sheme inludes this information beause it is designed toeventually apply to suh a language.Rather than attempting to eliminate typing distintions, we may atually make e�etive use ofthese. In suh a situation, the append proedure may be interpreted as a polymorphi one, apable23



of appending lists of arbitrary, but homogeneous, type.8 This apability is obtained by assumingthat the de�ned types for the various symbols are the following: (list A)!(list A)!(list A)!ofor append, B!(list B)!(list B) for ons and (list C) for nil. The ompiled ode that wouldbe obtained for the de�nition of append under suh a typing is given below. We assume here thatlist(2) and list(3) represent pointers to the type skeletons B and (list B), respetively.swith on term C1a, C1, C2, failC1a: try me else C2aC1: get p onstant nil/0,A2,T1 % nilunify type loal value Z1 % type variable AT1: get value A3,A4 % L, LproeedC2a: trust me else failC2: get p struture ons/2,A2 % ons(unified type loal value Z1 % type variable A,unify p variable X5,list(2),T2 % (X,unify type loal value Z1 % type variable A),T2: unify p variable A2,list(3),T3 % (L1,unify type loal value Z1 % type variable A)), L2,T3: get p struture ons/2,A4 % ons(unified type loal value Z1 % type variable A,unify value X5 % X,unify p variable A4,list(3),T4 % (L3,unify type loal value Z1 % type variable A))T4: exeute append/3In ontrast to the monomorphi ase, this ode inludes several instrutions that partiipate intyped uni�ation. However, it is interesting to note that very little overhead is inurred by these in-strutions when the uni�ation of terms takes plae in read mode. All the unify type loal valueinstrutions are skipped over in this ase. There are two more instrutions that are pertinent,namely the unified type loal value instrutions. While these are not skipped over, their ef-fet in read mode is merely to inrement a register. There are some overheads when uni�ationof terms proeeds in write mode beause the mahine must build the type environments for thevarious strutures that it is reating. However, even these operations are not a major penalty on8The advantages of using typing in this ase might be obvious. A general disussion of this issue also ours in[20℄. 24



performane sine no type expressions are atually built. In fat only pointers to prior type ex-pressions are pushed onto the type heap. Along another dimension, onsiderable (type) struturean be shared between the type environment of a funtion symbol and those of its arguments, andthis helps redue the spae overhead in general.The typing assumed for the various symbols in the last example satis�es the type generalityand type preserving properties of [8℄. The analysis in [8℄ (and in [15℄) shows that suess andfailure in a typed �rst-order language satisfying these properties is independent of spei� typinginformation. Thus, a typed �rst-order language in whih these onditions are guaranteed to besatis�ed an, in a sense, be implemented as an untyped language. The sheme that we haveproposed learly inurs an overhead over suh an implementation. The nature of this overhead hasbeen exposed and disussed in the ase of the polymorphi version of append, and a similar analysisan be provided in other situations where the type generality and type preserving onditions aresatis�ed. While the signi�ane of the overhead an be debated, we note that our sheme has theadvantage of being ompletely general: it yields an implementation even in situations where thetype generality (or related) ondition is not satis�ed. Suh situations ould arise naturally in a�rst-order language, as exempli�ed in Setion 3. More importantly, our sheme arries over readilyto the implementation of higher-order languages. Typing information must be expliitly presentin these languages for determining the set of solutions and it is diÆult to see how the overheadinurred by our implementation method an be avoided in suh a ontext.7 ConlusionWe have disussed in this paper the implementation of a logi programming language that inorpo-rates a form of polymorphi typing. Our main objetive was to examine ways in whih the analysisof types at exeution time ould be minimized. We have suggested the following ways in whih thisgoal an be ahieved:(1) By using a representation of types that separates the information already present duringompilation from that whih must be determined during exeution. This permits less workto be done in heking types at run-time.(2) By introduing instrutions for ompiling as muh of the remaining type heking as is pos-sible, thereby eliminating the need to do this via ode run in interpretive mode.We have illustrated the appliability of these ideas by onsidering the implementation of a typedversion of Prolog that is losely related to others that have been proposed reently (e.g., see [8℄).The ideas presented here an also be used in the ontext of other typed languages. They are25
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