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Abstract

Introducing types into a logic programming language leads to the need for typed unification
within the computation model. In the presence of polymorphism and higher-order features,
this aspect forces analysis of types at run-time. We propose extensions to the Warren Abstract
Machine (WAM) that permit such analysis to be done with reasonable efficiency. Much informa-
tion about the structures of types is present at compile-time, and we show that this information
can be used to considerably reduce the work during execution. We illustrate our ideas in the
context of a typed version of Prolog. We describe a modified representation for terms, new
instructions and additional data areas that in conjunction with existing WAM structures suffice
to implement this language. The nature of compiled code is illustrated through examples, and
the kind of run-time overheads that are incurred for processing types is analyzed, especially in
those cases where others have shown that type checking can be eliminated during execution.
The ideas presented here are being used in an implementation of the higher-order language
called AProlog.

Key Words: Logic programming, typing, run-time type checking, implementation.

1 Introduction

There have been two different views of types in logic programming, manifest in the notions of
prescriptive and descriptive typing [23]. The former notion corresponds to the use of a typed
logic for programming, whereas the latter notion encapsulates an understanding of given (untyped)
programs without changing the language used. At a pragmatic level, the first view of typing
leads to languages with greater expressiveness while the second view corresponds to attaching
information with programs that does not affect their meaning but that might be useful, for example,

in improving their execution efficiency. Our interest in this paper is in the situation where a regimen
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of prescriptive typing is adopted and, in particular, in the new implementation problems that arise
in this context.

The main motivation for the work presented here is that of providing a good implementation
for the higher-order logic programming language called AProlog [19] that, amongst other things,
incorporates such a notion of typing [20]. Numerous applications have been discovered for this
language over the last few years (e.g., see [4, 5, 7, 14, 22]), stressing the importance of this concern.
In providing a robust and efficient implementation for AProlog, three aspects that are novel to this
language have to be dealt with: its higher-order features, its new search primitives and its typing
regimen. The ideas discussed in this paper complement work pertaining to the first two aspects
[10, 16, 17, 18, 21] and play a central role in an implementation that is being developed for this
language. Despite the specific context of interest, we focus in this paper on a (typed) first-order
sublanguage of AProlog. We make this choice so as to simplify the presentation, the higher-order
features of the language being an aspect deserving treatment in their own right. The simplification
nevertheless permits all the important aspects of an implementation to be discussed, and the ideas
we present here are in fact used directly in an abstract machine that we have designed for the
higher-order language [11]. We also note that the first-order language that is considered is itself of
some interest, being closely related to typed versions of Prolog that have been proposed recently
[8, 13, 15]. Finally, our work is also pertinent to languages with a different typing regimen  such
as the one based on order-sorting [24] — and we believe that this relevance is more clearly exposed
through the focus on a first-order language.

Typing is generally viewed as a device for providing information about the correctness of pro-
grams during compilation. One may therefore wonder why the use of types in logic programming
would require any new mechanisms at run-time. However, the possibility that types might have to
be examined during execution can be appreciated if one reflects on the fact that it is a typed logic
that is now being used for programming. An immediate consequence of this change in language is
that the computation process must use a form of typed unification. If a simplistic typing scheme is
used, the new computation model can actually be implemented relatively easily by ‘bundling’ the
type information into the names of symbols. Unfortunately, a useful type system must incorporate
some form of polymorphism within it, and the specific type instances of symbols that are used
in a computation can usually only be determined during execution. Further, precise knowledge
of these type instances may be needed for several reasons. First, if the type system permits ad
hoc polymorphism, the relevant definition for the procedure being invoked is dependent on this
information. Second, in certain contexts, such as in AProlog, the unifiers for terms are determined
by their types. Finally, the correct presentation of answers to queries requires not only the bindings
for variables to be displayed, but also the right types.

The fact that the use of types within logic programming could lead to a need for examining



them has been recognized previously. However, the emphasis has been on describing conditions
under which type analysis can be avoided at run-time. (A notable exception is the work in [2] for
an order-sorted language.) The general approach has been to identify situations in which success
or failure in typed unification is not dependent on type annotations. One such situation, first
presented in [15] and labeled in [8] as type generality, effectively amounts to banishing ad hoc
polymorphism.! A generalization of this criterion is also described in [9]. While identifying such
criteria is useful, this does not provide a scheme for dealing with situations in which the criteria
described are not met. Further, the usual criteria presented for eliding types at run-time depend on
a crucial property of a first-order language: types play a role in determining unifiability but do not
influence the structure of unifiers. This property may not extend to other languages. In particular,
it does not hold for a higher-order language such as AProlog. The specific computations that are
performed in this language are intimately related to the types attached to the atomic symbols.
Consequently, mechanisms are needed in such a language for determining and maintaining these
types at run-time.

We consider in this paper additions to the usual machinery employed for implementing (un-
typed) Prolog for the purpose of providing an adequate treatment of types. The starting point
for our implementation considerations is one that needs little justification: the basic paradigms of
computation in the typed and untyped languages are very similar, the only difference being that
typed unification must be accommodated. Our specific proposals are presented as modifications to
the Warren Abstract Machine (WAM) [26]. For the immediate purpose of this paper, this choice
is largely to provide a concreteness to the discussion. However, there is a definite reason for this
preference in the context of a higher-order language. The choice is in a sense between a structure
sharing and a structure copying approach, and efficiency in higher-order reduction dictates the
latter. (The exact reasons are too detailed to describe here.) There is, of course, the question of
whether any modification is needed to the basic scheme for the untyped language. As we shall
see presently, a naive approach that can be adopted at least in the first-order context is to leave
the usual machinery unchanged and to include types as an extra argument with function terms
and procedure calls. However, this solution can be improved considerably by utilizing the type
checking that is done during the compilation phase. In particular, corresponding to the type of
every symbol a ‘skeleton’ can be identified that need never be checked or generated at run-time.
Using this observation, a scheme can be devised that works correctly in all situations and exerts
very little extra effort in the cases where others have shown that run-time type checking can be
avoided.

The rest of this paper is organized as follows. In the next section we present a Prolog-like

! Actually, the exclusion of ad hoc polymorphism alone is not sufficient. A further restriction on function symbols
is necessary  these symbols must be type preserving in the sense of [8].



language that incorporates a form of typing. We use this language to argue for the need for run-
time type analysis in Section 3. In the following two sections, we describe enhancements to the
WAM for implementing this language. Section 6 presents examples to illustrate the overall nature

of our machine and offers some analysis of the scheme developed. Section 7 concludes the paper.

2 A Typed Version of Prolog

The language of interest to us is based on a variant of Horn clauses [25] that incorporates a type
system similar in some ways to the one used in ML [6]. There are two components of this language
that need to be described: the types and the terms and programs. The types of the language are
constructed from a set S of sorts, a set C of type constructors, each member of which is specified
with a fixed arity, and an infinite supply of type variables. The set S initially contains o, the type of
propositions, and int, the type of integers, and C similarly contains the unary list type constructor
list. The user may add to these collections by using declarations of a kind we do not further specify
here. Type variables are distinguished by the usual Prolog convention for variables, i.e. they are
denoted by tokens starting with an uppercase letter. The types are categorized into the atomic
types, corresponding to sets of individual objects, and the types of functions and predicates. The
atomic types consist of the sorts, the type variables and expressions of the form (¢ a7 ... «,) where
¢ is an n-ary type constructor and the «;s are atomic types. The types of functions are given by
expressions of the form a;— ... —a,— 3, where S is an atomic type and each «; is an atomic type
other than o. Types aq, ..., a, are referred to as the argument types of the function and g is called
its target type. In the case when the target type is o, the type in question is that of a predicate or
procedure. We observe that a type has the structure of a first-order term. We make implicit use of
this fact below.

The language of terms and programs is for the large part identical to that of Prolog with
the exception that every expression now has an associated type. These types are obtained from
associating, at the very lowest level, an atomic type with every constant and variable, a function type
with every function symbol and a predicate type with each predicate symbol. The associations for
constants and for function and predicate symbols are obtained, first of all, through a defined type for
the symbol that may be provided by declarations such as in AProlog [20]. Particular occurrences of
these symbols may then assume instances of the defined types as their types. The types of variables
may be specified by an annotation such as X : type at one of the occurrences of the variable in
the expression; all the occurrences of the variable in the given expression must then adopt the
specified type. Given an association of types with occurrences of atomic symbols, an expression
such as f(t1,...,t,) is considered to be well-formed and to have the type £y just in case the type
associated with (the occurrence of) f is f1— ... =8,—fy and, for 1 < i < n, t; is a well-formed



expression of type £;. To provide an illustration, let us assume that the defined type of 1 and 2 is int,
of cons is A—(list A)—(list A), of nil is (list B) and of append is (list C)—(list C)—(list C)—o.

Then the occurrence of append and the two occurrences of cons in the expression
append(cons(1, cons(2,nil)), (X : (list int)), (Y : (list int)))

can have the types (list int)—(list int)—(list int)—o and int—(list int)— (list int), respectively.
Further, if they do have these types, then the expression in question is well-formed and has the
type o. However, if the type associated with the occurrence of the variable Y in the expression is
changed to (list (list D)), then the expression would not be well-formed.

Type variables result in a form of polymorphism in our language. A type that contains variables
in reality stands for the infinite collection of types that are obtained by replacing the variables by
ground types. This form of ‘quantification’ extends to a constant, variable, function symbol or
predicate symbol that has the type associated with it. For instance, assume, as before, that nil
is a constant whose defined type is (list A). Then it stands in reality for an infinite collection of
constants each of which have the name nil but whose associated types are (list int), (list (list int)),
and so on. Particular occurrences of constants, function symbols and predicate symbols may
‘refine’ the quantification implicit in their defined type. Thus, if an occurrence of nil has the type
(list (list A)) associated with it, then it stands for a collection that includes a constant with the
type (list (list int)) but not one of type (list int).

The implicit quantification provided for by type variables extends in a natural fashion to any
term in whose type these variables might occur. Such an expression represents every well-formed
expression that can be obtained by replacing each atomic symbol appearing in it by one that it
represents; we note that the replacement for variables must be done in a consistent fashion. A
particular kind of expression to which such a quantification applies is a program clause. Thus,
consider the following clauses defining the append predicate in which the occurrences of append,
cons and nil have the types (list A)—(list A)—(list A)—o, A—(list A)—(list A) and (list A)

respectively:

append(nil, (L : (list A)), L).
append(cons((X : A), (L1 : (list A))), (L2 : (list A)),cons(X, (L3 : (list A))))
:= append(L1, L2, L3).

Each of these clauses represents an infinite collection of clauses, the elements of these collections
being obtained, effectively, by instantiating the type variable in the clause with a ground type.
Viewed differently, the clauses actually define a polymorphic procedure that is capable of appending
any two lists all of whose elements are of the same (ground) type. It is interesting to note that
the polymorphism that is manifest in this example is parametric: the definition of appending lists

remains the same regardless of the type of the elements of the list.
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if p'(s1,...,8,) is a variant of a program clause in P whose free variables are chosen
so as not to appear in the left-hand side of the rule, p and p’ are identical except
for their types and these types are unifiable and have ¢ as a most general unifier.
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if f and f' are identical except for their types and these types are unifiable and have
 as a most general unifier.
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Figure 1: State transition rules in the context of a given program P



A query in the language being considered consists, as in Prolog, of a list of atoms. Answering
such a query amounts, roughly, to finding a instance of these atoms that is satisfied by the given
program. In defining the notion of computation precisely, some care must be exercised due to the
presence of types. We provide a formal presentation of this notion by means of a transition system.
The states of this transition system consist of lists of atoms or equations of the form ¢; = 9,
where ¢; and ?5 are terms in our typed language. Transitions between states are dependent on a
particular program context and are given by the rules shown in Figure 1. The following tokens are
used in these rules, perhaps with subscripts and superscripts, as schema variables for the indicated
syntactic categories: G for atoms or equations between terms, A for atoms, s and ¢ for terms, p for
predicate symbols, f for function symbols, ¢ for constants and X for variables. A rule of the form
[ = r that appears in this figure is applicable to a state if it is an instance of [ and if the provisos
on the rule are met. The application of such a rule results in a transition to the state that is the
corresponding instance of r. In obtaining the new state, it may be necessary to make substitutions
for some of the type or ‘term’ variables in a term, atom or equation. This is depicted in our
transition rules by an expression of the form ¢(t) or ¢(G), where ¢ represents the substitution. If
@ is a substitution for type variables, then its application consists of suitably modifying the types
of the atomic symbols appearing in that expression.

We call a sequence of state transitions that start from a given query a derivation, and we depict
it by listing the states that arise in the course of the transitions. Such a derivation is successful if it
ends in a state given by the empty list. A successful derivation determines an instantiation for the
variables in the original query and this is viewed, as usual, as an answer to the query. With respect
to type variables in the query, this interpretation amounts to viewing them as being existentially
quantified. An alternative description of this viewpoint that is in line with the earlier discussion of
type variables is the following: A query in which type variables occur represents an infinite set of
queries each member of which corresponds to instantiating these variables with ground types. An
answer to any one of these instances is then also an answer to the overall query.

The objective is ultimately to find answers to queries. The notion of computation that is
of interest may thus be described as a search for successful derivations. In structuring such a
search, we need a method for determining which of several existing derivations to extend at a
given point and for choosing between different transition rules that could be used to extend the
selected derivation. The strategy that underlies the implementation described in this paper is the
following. The search proceeds by always trying to extend a given derivation. This derivation may
be characterized by the last state in it, which is referred to as the current state. In attempting
to extend the derivation, only those rules are considered that pertain to the first element of the
current state. If this is an atom, a program clause must be used to ‘simplify’ it. The rule that is

used in this case is determined by the sequence in which these clauses appear in the program. A



situation may, in general, be reached where all the rules that apply to the current state under the
described restrictions have been exhausted. In this case, the search proceeds by retracting final
segments of the existing derivation until a derivation is found whose last state can be transformed
by some untried rule. If such a derivation is found, then the untried alternative is attempted.
Otherwise the search ends in failure. The search procedure that results from adopting the strategy
described is similar in structure to that underlying Prolog. The main difference is that it also takes
into account the typed nature of our language.

We have assumed up to this point that the types of the various symbols that occur in a program
are provided by the user. In reality this is not necessary. Given the defined types of constants,
function symbols and predicate symbols and possibly the types of some occurrences of variables, a
most general typing can be determined for all the symbols that occur in a given expression. We shall
assume such a typing in the discussions that follow. In addition, the defined types of constants,
function symbols and predicate symbols can themselves often be inferred in the form intended by
the programmer by the process of reconstruction described in [20]. However, the details of type
reconstruction are not very relevant to this paper. The notion of computation that is of interest
requires a full knowledge of types at the points where the compilation and execution of programs

are considered, and we shall assume that this is available in the remainder of this paper.

3 The Need for Run-Time Type Analysis

The model of computation for our language differs from that for Prolog mainly in that it uses a form
of typed unification. To understand some of the implications of this difference, let us assume that
ft is a function symbol with defined type A— B—int and consider the task of unifying the terms
ft(X,Y) and ft(1,2). To begin with, we observe that it makes sense to try to unify these terms
only because they have the same types. Now, the existence of a unifier for these terms depends
on the argument types of the occurrence of ft in the first term. If these types are int, then the
two terms have a unifier that is similar to the one obtained by ignoring the types. If the types are
7 instead we assume here and elsewhere in the paper that 7 is a sort distinct from int¢ that is
introduced by the programmer — then the terms are not unifiable. The types of symbol occurrences
thus appear to affect the question of unifiability in an intrinsic way, indicating a possible need for

the run-time processing of types.?

*The reader familiar with the language ML might wonder why a similar problem does not arise in that context.
The reason for this is that in ML the variables X and Y in an expression such as ft(X,Y’) cannot assume a type more
restrictive than the defined argument types of ft; in one sense, this is a consequence of the linearity restriction on
patterns and the groundness requirement on expressions being evaluated. Thus, unification (or, more appropriately,
matching) becomes independent of the specific types. A similar effect is obtained in the logic programming context
by the type generality and type preserving conditions [8], but these restrictions have, in our opinion, less independent
justification.



In a situation where only ground types are present, it is possible to bundle the type into the
names of symbols, thereby eliminating the necessity to look at these explicitly during execution.
Thus, in the case above, we may distinguish the function symbol f¢ that has type i—i—int from
the function symbol with the same ‘name’ but type int—int—int, and this distinction may be used
to determine the question of unifiability. However, the presence of polymorphism makes this kind
of compile-time analysis insufficient in general. Since variables may occur in types, it is necessary
to unify types, as opposed to merely checking for identity. The values that are thus determined for
type variables may have a two-fold impact: they may be needed for understanding the answers that
are found and also for determining which of several procedures are relevant for solving a subsequent
goal.

To illustrate the latter possibility, we consider the following sequence of clauses assuming that
the defined type of print is A—o, the defined type of print_list and print_list_aux is (list A)—o

and the defined types of cons and nil are as indicated in the previous section:

print(X :int) = write(X).
print(X : (list A)) := print_list(X).

print_list_auz(nil).

print_list_aux(cons(X, L)) := write(’,), print(X), print_list_auz(L).
print_list(nil) = write(’[]’).

print_list(cons(X, L)) 1= write(’["), print(X), print_list_auz (L), write(’]’).

The above definition of print exhibits a form of ad hoc polymorphism: the two clauses shown
pertain to displaying integers and lists respectively and the elided part presumably contains clauses
pertinent to displaying other kinds of objects. On the other hand, the definitions of print_list and
print_list_aux are polymorphic in a parametric sense. The interesting aspect of these definitions
is that they require type information to be available at run-time to ensure the correct processing
of queries. Thus, the type of the object to be printed must be available during execution for the
purpose of determining which of the several clauses for print is to be used. Notice that this also

requires parametrically polymorphic definitions to process types. Thus consider the query
print_list(cons(1, cons(2, cons(3,nil)))).

This query will in due course invoke print_list_aux. The latter procedure must determine that the
type of the elements of the list that is being displayed is int and must pass this information on to
print when it invokes that procedure.

The general observation in the examples above is that types are needed to determine the ex-
istence of unifiers and hence also the applicability of clauses. In the first-order context, types

influence only the existence of unifiers and not their structure. It has therefore been suggested that



analysis of types during execution may be eliminated in situations where the question of unifiability
is itself independent of type information [9]. While this is of interest as an optimization technique,
this is certainly not comprehensive enough to be an implementation strategy even for the first-order
case. Moreover, the underlying assumption does not generalize to other contexts of interest, such as
that of a higher-order language. In such contexts the structures of unifiers may also be dependent
on typing. For example, let F' be a function variable and consider unifying the terms a and F(X)
in a language such as AProlog. Assume a has the type i. Now, if F' has the type int—i, the most
general unifier is given by the substitution for F' of the constant function which returns a, i.e. the
lambda term (Ay a). If the type of F is i— i instead, there are two incomparable solutions. One of
these binds F' to a constant function similar to that above (but with a different type), and the other
binds X to a and F to the identity function (Ay y) on objects of type i. The choice of solutions
is thus dependent on the type of F' and can be made correctly only if this type is present during
computation.?

Typed unification can be rendered into untyped unification at least in the first-order context
by including the type of function terms as an extra argument. Returning to the example at
the beginning of the section and assuming that the types of X and Y are i, the attempt to
unify the typed terms f#(X,Y) and ft(1,2) may be recast into an attempt to unify the untyped
terms ft(i—i—int, X,Y) and ft(int—int—int, 1,2). It may thus appear that any regular Prolog
implementation would suffice for our typed language as well. There are, however, at least two
drawbacks with this proposal. First, it does not generalize to the higher-order context for reasons
mentioned earlier, and this is the context we are ultimately interested in. The second problem,
and one that applies even to the first-order language under immediate consideration, is that this
approach performs at run-time work that has already been performed during compilation. From the
type declarations available at compile-time, it is known, for instance, that the type of any occurrence
of ft must have the structure A—B—int. During execution it is therefore only necessary to check
the instantiations for A and B in determining whether particular occurrences of this function
symbol are (or can be made) identical. The ideas that we present in the following sections utilize

this observation to reduce the effort in processing types during the execution of the program.

4 A Machine Model Based on the WAM

An implementation of our language must include type information in the representation of terms.

Further, space must be provided for creating new type expressions during execution and new mecha-

3 A stronger statement can in fact be made: the kind of unification problem considered here can meaningfully be
solved only in the presence of types. Thus, types in AProlog are not merely a device for indicating program correctness
during compilation. They are in a sense necessary even for the existence of the language. We refer the reader to [20]
for a fuller appreciation of this fact.

10



nisms are needed for performing the unification of types. We describe in this section the structures
that must be added to the usual machinery employed for implementing logic programming lan-
guages for the purpose of accommodating these requirements. We base our discussions on one
particular model, that of the WAM. The precise nature of the changes to this model depends on
the choice of representation for types. In the first subsection below, we present a representation
that follows up on the discussions in Section 3. We then describe the machinery that must be added
to the WAM for the processing of types in light of this representation. We assume familiarity in

these discussions with the basic issues pertaining to the WAM.

4.1 Representation of Typed Terms

Our representation of terms stores types only with occurrences of constants, variables and func-
tion symbols. This information uniquely determines the types of all terms and is sufficient for
implementing the computation model described in Section 2. From the latter perspective, it is
unnecessary even to store types with constants and variables: by the time unification ‘descends’
to constants or variables, types must have become identical. (It is as a result of this that types
are not examined in rules (4)—(6) of Figure 1.) However, this information is maintained within
the scheme we describe so as to permit the type of any arbitrary term to be determined in the
course of execution. This ability is useful if, for instance, we wish to display the types of terms to
the programmer. More importantly, this information is needed in the extention of our scheme to a
higher-order language: types of variables and constants play a crucial role in a phase of higher-order
unification that occurs after the analysis of the ‘first-order’ structure of terms contained in rules
(3) (6) in Figure 1.

In determining a suitable representation of types, it is useful to consider the manner in which
these will be used. To understand this aspect, we return to the append predicate of Section 2 whose

definition, with the typing of various symbols being left implicit, is reproduced below:

append(nil, L, L).
append(cons(X, L1), L2, cons(X, L3)) :- append(L1, L2, L3).

Consider now some of the tasks involved in evaluating a query such as
append(cons(1,nil), cons(2,nil), R).

Only the second clause is applicable in solving this query. In attempting to use it, it is necessary to
unify the term cons(1,nil) with cons(X, L1). This task also involves checking if the type of cons in
the first term is compatible with the expression A—(list A)—(list A). This ‘type checking’ aspect
must be made explicit in any compiled code that is generated for the second clause. In a similar

fashion the term cons(X, L3) must be ‘constructed’ and the variable R bound to it. Constructing

11



this term also involves processing types. For instance, it is necessary to construct the expression
A—(list A)—(list A) with a suitable binding for A and to make this the type of the new instance
of cons that is created. Once again the compiled code must account for this computation.

The above example shows that a considerable amount of work has to be done if the analysis
of types is implemented in a naive fashion. Thus, the entire type of an occurrence of cons may
have to be examined or constructed when it is encountered during execution. Luckily, most of this
work becomes redundant with a suitable representation of types. As noted already, the static type
checking phase ensures that every occurrence of cons actually has a type that matches the structure
A—(list A)—(list A). What distinguishes particular occurrences is the way the variable A is (or
must be) instantiated. Thus, if the type for any occurrence of cons is stored as the ‘skeleton’
A—(list A)—(list A) plus the binding for A, the only work required during execution would be to
check the binding for A (during ‘type checking’) or to instantiate it (during ‘type construction’).
There is a further optimization that is applicable in the first-order context if types do not need to
be displayed with answers: the type skeleton can be dispensed with. However, this optimization is
not applicable in the higher-order case since the entire type of a symbol may have to be examined
during unification. We therefore do not consider this optimization explicitly here.

The above discussion motivates representing a type by a skeleton and environment pair, where
the skeleton is a pointer to a precomputed structure in a type skeleton table and the environment
is a list of bindings for the variables appearing in the skeleton. The particular way a type is
factored into these components in our implementation depends on the symbol whose type it is. For
constants and function symbols, the skeletons that are used are their corresponding defined types.
For a variable, the choice is dependent on the context in which the variable occurs: the argument
type corresponding to the variable occurrence in the defined type of the first ‘parent’ (function or
predicate) symbol is picked as the type skeleton for the variable. For instance, consider the term
p(X, f(X)) assuming that the defined type of p is A—A—o0 and that of f is (list B)—(list B).
Our machine will use the A as the type skeleton for X in this case. An alternative is to use the
most specific structure that is available for the type of the variable at compile-time. Thus, in the
example considered, (list B) could have been picked as the type skeleton for X. However, the first
choice incurs fewer overheads within our overall processing scheme.

The reader may be tempted to construe the proposal just made as akin to advocating a structure
sharing approach over the structure copying approach employed in usual WAM implementations.
However, construing the proposal in this fashion is incorrect and also misses its central point. In
the context of the first-order language, the main purpose of the separation of the type of a symbol
into a skeleton and an environment is to distinguish between a part of the type that need never
be examined during processing (but which is nevertheless needed to determine the full type of the

symbol) and a part that may need to be examined. The latter component of the type, i.e., the
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type environment may be represented in a variety of ways. The particular representation we use
for it here is very similar to the representation of terms employed in, e.g., [26], and in this sense
shares with it the merits and demerits of the structure copying approach.

The actual implementation of our proposal differs from the ‘schema’ outlined only in that in
the case of constants and function symbols the relevant type skeletons are directly associated with
their names. To be precise, the representation of a term makes use of cells that are two words
long and represent one of four different kinds of objects: function symbols, constants, (unbound)
variables and references. The information stored in these cells is the following. There is, first of
all, a tag distinguishing between the different kinds of data. For a function symbol, the additional
information stored consists of the name, in the form of an address in the symbol table, and a
pointer to the start of the type environment. The information retained for a constant is similar.*
A variable contains a pointer to the type skeleton table and another pointer to the beginning of
a type environment. Finally, a reference cell represents an indirection created by the binding of
variables and stores additionally only the address of another heap location. The symbol table has
a record for every function symbol and constant which includes, among other things, a pointer
to its type skeleton in the type skeleton table. Type environments are written on a type heap,
analogous to terms being written on the heap in the WAM. (The need for a separate type heap
will become apparent in the next subsection and also when we consider compilation in Section 5.)
The type environment of a term occupies a consecutive sequence of cells on the type heap with
an entry for each distinct type variable occurring in the type skeleton associated with that term.
We note that the specific representation used here differs from that in the WAM in that variables
are distinguished from references. This division is somewhat more space efficient since combining
references and variables necessitates cells that are three words long. However, operations such
as trailing and dereferencing become slightly more expensive in time under this representation.
While the trade-off could be made differently in the first-order context, certain other requirements
determine the choice made here to be the more appropriate one in the higher-order case.

Figure 2 illustrates some of the details of our representation using the term cons(cons(a, nil), L)
and assuming that the defined type of a is i and of cons is as indicated in Section 2.% In this figure
we have made explicit also the representation of types in the type heap. We have chosen to use here
the representation used in the WAM for terms as illustrated in, e.g., [1]. Note that a compound term
(structure) is represented as usual by placing the function symbol and arguments in consecutive

cells on the heap. In conjunction with this figure, we observe that the depiction of the entries in

4 Although we do not consider this aspect explicitly here, integers and floating point constants may be represented
via specially tagged cells as in usual Prolog implementations. Type environment pointers will be unnecessary in both
cases. In the case of integers this part of the cell may be unused or used to represent numbers in a larger range.

"The structure constructed to represent a term in a WAM-like context is dependent on the actual invocation
pattern that leads to its construction. The representation shown here is only illustrative and not exclusive.
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Figure 2: The representation of cons(cons(a,nil), L) in the enhanced machine
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the skeleton table is intended only to be schematic. In reality the types in each of the ‘cells’ will
have to be represented explicitly. This is done in our machine by treating — as a binary function
symbol and employing the usual representation for first-order terms. This representation parallels

the one used for types in the type heap.

4.2 New Memory Components

Our machine model preserves most of the structures that appear in the WAM. However, some new
devices are added to those present in the WAM for the purpose of processing types. We outline
our enhanced machine below by describing only its new memory components, leaving the parts
inherited from the WAM implicit. We also hint at the intended purpose of the new components.
The precise manner in which these components are used will become clear when we consider the
aspect of compilation.

The main addition to the structures of the WAM is that of a type heap. As the earlier discus-
sions indicate, executing typed programs may require new type expressions to be constructed. In
principle, these type expressions could be constructed on the WAM heap, and we have investigated
this possibility. However, there are advantages to the divided heap space that we have adopted.
In the usual implementation schemes for the untyped language, the manner in which compound
terms are stored is a sensitive issue: the function symbol and the arguments must be stored in
consecutive locations. The ordering of type checking and structure checking instructions is consid-
erably constrained by this requirement if one heap is used. In particular, the interleaving of these
kinds of instructions is precluded by this requirement. However, our processing scheme, as outlined
at the beginning of Subsection 4.1 and as explained in greater detail in Sections 5 and 6, requires
that these two kinds of instructions be interleaved. The division of space thus appears necessary
for preserving the preferred representation of compound terms. With regard to the position of the
type heap, we note that, in general, type expressions may be allocated either in the stack or in the
type heap. The usual arguments relating to ease of backtracking then dictate that the type heap
reside below the stack. Since our language of types is based on first-order terms, the structure of
the type heap is similar to that of the heap in the WAM. (This observation also allows us to use
a copy of the usual WAM instruction set in the type analysis process, as we explain in the next
section.)

The other new components in our machine that play a role in the processing of types are

summarized below:
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type-S structure pointer to the type heap

type H register indicating the top of the type heap
type_HB register indicating type heap backtrack point
21,72, ... type registers

type mode a mode with a read or write status

These components, which parallel certain components that exist in the WAM, are used in imple-
menting the unification of types. Their detailed use will become clear in the following sections.
However, their purpose can be summarized as follows. The Z registers are aliases for the A or X
registers that are used in the WAM for passing arguments or holding temporary values; this name
is used only to distinguish the role of these registers in passing type arguments or in holding tempo-
rary type values. The type_S register plays a role in checking if the types in the type environment
of an atomic symbol have a desired structure; in a certain sense, it is similar to the S register in
the WAM. The purpose of the type H register is self-explanatory, and the type HB register serves a
function that is analogous to that of the HB register in the WAM — it serves in determining what
changes to type expressions might have to be undone and hence need to be trailed.

There are some additional points to be mentioned about our machine. Permanent type variables
are allocated in it on the same stack as the permanent (term) variables, allowing WAM optimizations
like last call optimization and environment trimming to be retained. Both the heap and the type
heap expand with each procedure invocation, and contract on backtracking. A choice point record
must now include a new field for recording the value of the type_H register. Finally, it is necessary
to trail the bindings made for type variables in addition to those made for term variables. At a
level of detail, it seems to be more (time) efficient to use separate trail stacks and separate methods
for resetting type and term bindings, and this observation is reflected in the organization of our

machine. However, a further discussion of this point is beyond the scope of this paper.

5 Compilation

One difference between compilation for our language and that for Prolog is that clauses must be
examined for type correctness. A further difference is that the code that is produced must include
instructions for performing type analysis at run-time. The structure of this code is based on the
observation that typed unification in the first-order case can be rendered into untyped unification
by including types as extra arguments in terms. (For the higher-order language, only a ‘first-order
like’ part of the unification process is compiled and this observation applies to that part as well.)
However, the compile-time checking and our representation of terms allow us to reduce the extra
arguments to the bindings for type variables in the defined types of symbols. For example, let p
be a predicate symbol whose defined type is A—B—o0. Then, an attempt to unify the two atoms
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p(X,Y) and p(1,2) can be conceptualized as an attempt to unify the ‘untyped’ atoms p(A, B, X,Y)
and p(int,int, 1, 2), assuming, of course, that the type of the occurrence of p in the first atom is not
a refinement of the defined type of p. This translation is used almost literally in treating procedure
definitions and calls. Thus, new ‘type’ arguments are determined for predicates at compile time.
The code for procedure calls must load the appropriate values into (type) argument registers and
the code for procedure definitions must check the values of these arguments. However, a literal
translation is not applied at the level of terms. For instance, consider an attempt to unify the typed
terms ft(X,Y) and ft(1,2), assuming that the defined type of ft is A—B—o0. While this attempt
can be visualized as an attempt to unify ft(A, B, X,Y) and ft(int,int, 1,2), the terms continue to
be represented as ft(X,Y) and f#(1,2) and the bindings determined for A and B affect only the
type environment of the occurrence of f¢ in the first term.

In implementing the above approach, changes and enhancements need to be made only to those
WAM instructions that participate in unification. Consequently all other instructions are preserved
unchanged in our machine. With regard to the instructions that are needed in unification, we note
first that those that process function symbols must be modified so that they can initiate the
processing of the new ‘arguments’; these arguments are given by the type environment pointer
associated with the incoming symbol or with the symbol to be created, and either reside on or
must be put onto the type heap. Further, instructions which result in constants and variables
being written on the heap must also initiate the writing of the associated type environments.
Finally, new instructions are necessary for determining if the type arguments have the desired
structure or, alternatively, for writing the bindings for these type arguments. We describe the
modifications to the WAM instructions for unifying terms in greater detail below and then present
the new instructions that are used for manipulating types. We use these instructions in the next

section in illustrating the overall behavior of our enhanced machine.

5.1 Modifications to Instructions for Processing Terms

In addition to the preceding general remarks, the changes that are made to the original WAM
instructions for the purpose of processing terms also incorporate a distinction between cases in
which the symbol being processed is monomorphic, i.e., its type skeleton contains no variables, and
in which it is polymorphic, i.e., its type skeleton contains one or more variables. It is necessary to
initiate type checking if the symbol is polymorphic. To understand what exactly must be done in
this case, consider an instance of the instruction get_structure f,Ai where f is polymorphic. If
it is determined that register Ai references a structure whose head function symbol is £, then the
type environment associated with this head must be located and the machine must prepare to do
type unification. Alternatively, if Ai references an unbound variable, the machine must prepare to

write the type environment to be associated with the structure £. However, none of this processing
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of types is necessary if £ is monomorphic.

(1) As hinted earlier, the get_structure instruction splits into two forms, get_p_structure
and get_m_structure, with the particular one to be used in a given situation depending
on whether or not the relevant function symbol is polymorphic. A similar relation holds
between put_structure, put_p_structure and put m_structure. The desired action of the

new instructions are explained as follows:

e get_m structure f,Ai gets the value of register Ai and dereferences it. If the result is
a reference to a structure with head function symbol £, the S register is set to point to
the next address and execution proceeds in read mode. If the result is a reference to a
variable, the variable is made into a reference to the top of the heap, and the binding is
trailed if necessary. Further, the function symbol f with a nil type environment pointer
is pushed onto the heap, and execution proceeds in write mode. In the remaining cases,

backtracking is initiated.

e get_p_structure f,Ai gets the value of register Ai and dereferences it. If the result is
a reference to a structure with head function symbol £, the S register is set to point to
the next address and the type_S register is set to the type environment of f. Execution
then proceeds in read and type read modes. If the result is a variable, the variable is
made into a reference to the top of the heap, and the binding is trailed if necessary.
Further, the function symbol £ with a type environment pointer to the top of the type
heap is pushed onto the heap and execution proceeds in write and type write modes. In

the remaining cases, backtracking is initiated.

e put_m structure f,Ai pushes the function symbol f with a nil type environment
pointer onto the heap and puts a reference to it into Ai. Execution proceeds in write

mode.

e put_p_structure f,Ai pushes the function symbol £ with a type environment pointer
to the top of the type heap onto the heap and puts a reference to it into Ai. Execution

continues in write and type write modes.

(2) The instructions for compiling constants appearing in clauses obtain a treatment similar to
that accorded to instructions dealing with structures. Thus, corresponding to each of the
instructions get_constant, unify_constant and put_constant, there are now two instruc-
tions. One of these is used in compiling polymorphic constants and the other in compiling
monomorphic constants. The mnemonic for these instructions is constructed in the same

fashion as for the instructions for structures e.g. the two instructions corresponding to
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get_constant are get_p_constant and get_m_constant. The structures of all these instruc-
tions except get_p_constant and unify_p_constant are similar to those of their counterparts
for the untyped language and the effects of these instructions can be understood by analogy to
those for processing the head function symbol of structures. The instructions get_p_constant

and unify p_constant get an extra address argument and their interpretation is as follows:

e get_p_constant c,Ai,L gets the value of the register Ai and dereferences it. If the result
is a reference to a variable, that variable is bound to the constant ¢ with type environment
pointer pointing to the top of the type heap, the binding is trailed if necessary and
execution proceeds in type write mode. If the result is a constant with name c, execution

jumps to address L. In the remaining case, backtracking is initiated.

e unify p constant c,L, when executed in read mode, dereferences the contents of the
heap location pointed to by the S register. If the result is a reference to a variable, then
that variable is bound to the constant ¢ with type environment pointer pointing to the
top of the type heap, the binding is trailed if necessary, the S register is incremented
and execution proceeds in type write mode. If the result is a constant with name c,
the S register is again incremented and execution jumps to address L; this allows the
instructions which, in write mode, are required to copy the type environment of the
variable to be skipped in read mode. In the remaining case, backtracking is initiated. In
write mode, a constant with name ¢ and type environment pointer set to the top of the

type heap is written to the top of the heap and execution proceeds in type write mode.

(3) The instructions put_variable and unify variable also give rise to two forms whose usage
depends on whether or not the type skeleton associated with the variable has type variables
in it. In the former case put_p_variable and unify p_variable are used and in the latter

case put_m_variable and unify m variable are used.

e put_p_variable Xn,skel,Ai creates a cell on the heap for an unbound variable and
sets its type skeleton pointer to skel, which is itself a pointer to the type skeleton
that is determined to be associated with the variable during compilation, and its type
environment to point to the top of the type heap. A reference to the new cell is then

put into registers Ai and Xn and execution proceeds in type write mode.

e unify p variable Xn,skel,L, in write mode, creates on the top of the heap an unbound
variable whose type skeleton pointer is set to skel and whose type environment is a
pointer to the top of the type heap. A reference to the newly created cell is then placed
in Xn and execution proceeds in type write mode. In read mode, the contents of the
heap location pointed to by the S register is stored in the Xn register, the S register is

incremented and execution jumps to address L.
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The instructions put_m_variable and unify m variable are identical to their polymorphic
counterparts except that (i) the type environment field is set to nil, (ii) the manipulation
of the type (read/write) mode is not necessary and (iii) in unify m variable, the label L
is not used at all. Also, while we have discussed the modifications to put_variable and
get_variable only in the context of temporary variables, the changes where permanent

variables are involved are analogous.

(4) The following instructions are the same as in the WAM except that typed unification is used.

e get_value Vn,Ai
e unify value Vn

e unify_ local_value Vn

(5) ‘Globalizing’ a variable using unify _local_value Vn or put_unsafe _value Vn now requires

copying the complete cell on the stack to the heap to prevent loss of type information.

We assume in this paper that there are no special instructions for handling lists; such instructions
can, of course, be added by modifying the usual ones in a manner similar to that followed for
instructions that process constants and function symbols. All other unification instructions that

are not discussed explicitly here remain unchanged.

5.2 New Instructions for Processing Types

Unifying types essentially amounts to unifying first-order terms. Our extended machine, therefore,
has a counterpart for each WAM instruction for the purpose of compiling type analysis. These new
instructions are named by inserting ¢ _type_’ in the middle of the name of each WAM instruction.
The only difference in their operation is that they work on the components related to types such
as the type heap and the type H and type_S registers. For example, put_type_variable Zn,Zi
has the same effect as the WAM instruction put_variable Xn,Ai except that the required cell is
created on the type heap instead of the heap.

Two further instructions are added to the instructions obtained from the WAM instructions
in the fashion outlined above for the purpose of type unification: unified type_value Vn and
unified type_local _value Vn. These instructions are used in place of unify type_value and
unify_type_local_value in situations when it is known during compilation that it is unneces-
sary to undertake unification when the instruction is executed in type read mode. Such a sit-
uation arises, for example, when a type variable in an argument in a structure also appears in
the type of the functor of the structure. The instruction unified type_value is a special ver-

sion of the unify type_value that in type read mode merely increments the type_S register
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by one. A similar relationship holds between the instructions unified type_local_value and

unify_type_local_value.

6 Some Examples and Analysis

We now illustrate the overall behavior of our machine and the use of our instructions by considering

the compilation of some typed programs. As a first example, we consider compiling the clause
rel_pair(X,Y) = rel(fst(X), fst(Y)),rel(snd(X), snd(Y)).

under the following assumptions: the defined types of fst and snd are (pair A B)—A and
(pair C D)—D where pair is a binary type constructor, the defined type of rel is E—F—o0 and
the defined type of rel_pair is (pair F G)—(pair F G)—o. The predicate rel_pair has two type
variables in its type skeleton. The assumption is that, on invoking this predicate, the bindings of
these variables will be placed in the argument (Z) registers in much the same fashion as the ‘real’
arguments of the predicate are placed in the A registers. These values must be saved in choice point
records for the same reason as must the usual arguments. Further, the values of type variables
must be loaded into argument registers prior to calling a subgoal. These requirements dictate the

structure of the compiled code for rel_pair that is shown below®:

allocate

get_type_variable Y3,Z1 % type variable A
get_type_variable Y4,Z2 % type variable B
get_variable Y1,A3 % X

get_variable Y2,A4 Y
put_p_structure fst/1,A2 % (fst
unify_type_local_value Y3 % type variable A
unify type_local_value Y4 % type variable B
unify_local_value Y1 % X)
put_p_structure fst/1,A3 % (fst
unify_type_local_value Y3 % type variable A
unify type_local_value Y4 % type variable B
unify_local_value Y2 % Y)

5Given that type variables may also have to be stored in registers, it is natural to ask if there is some scheme
for allocating registers. Although this question is not addressed explicitly in this paper, the structure of a general
answer is not difficult to see. A compiler can easily make explicit the type arguments in the translation of clauses
sketched at the beginning of Section 5. Standard register allocation algorithms, e.g., the one presented in [3], can
then be used. We assume such an algorithm in the compiled code presented here and in the other examples in this
section.
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call rel/2,4

put_type_unsafe_value Y4,Z1 % type variable B
put_p_structure snd/1,A2 % (snd
unify_type_local_value Y3 % type variable A
unify_type_local_value Y4 % type variable B
unify_local_value Y1 % X)
put_p_structure snd/1,A3 % (snd
unify_type_local_value Y3 % type variable A
unify_type_local_value Y4 % type variable B
unify_local_value Y2 % Y)

deallocate

execute rel/2

We would like to make some comparisons between the usual scheme that is employed for im-
plementing an untyped logic programming language and the enhancements to such a scheme for
dealing with a typed language that we have described here. For this purpose, we consider the

compilation of the append predicate, the clauses for which are reproduced below:

append(nil, L, L).
append(cons(X, L1), L2, cons(X, L3)) :- append(L1, L2, L3).

Now, the comparison between the two schemes can be made at two different levels. At the first
level, we could reduce our language, and consequently this definition, to an effectively untyped
form and compare the code generated and the processing required under our scheme with the one
presented, for example in [26]. At another level, we could preserve some of the advantages of typing
and observe the overhead that this creates during execution.

An effectively untyped language can be obtained from our typed one under the following trans-
lation: we assume that there are only two sorts in the language, ¢ and o, that the type associated
with each term is ¢ and that with propositions is 0, and that the typing of constants, function sym-
bols and predicate symbols are dictated by this requirement.” With regard to the append program
above, the defined type of append under this reduction is i—i—i—0 and nil and cons are assumed
to have the defined types ¢ and i—i—1 respectively.

As a result of the typing scheme assumed above, variables do not occur in any types, i.e., the
constants, function symbols and predicate symbols are all monomorphic. Thus, all the needed type

information is attached to these symbols at compile time under our implementation scheme, and

"The observant reader might object to this reduction on the grounds that our language was assumed at the outset
to contain the sort int and the type constructor list. However, this objection is not serious: the reduction we describe
here depends only on the user not employing int and list in constructing types in his/her programs.
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virtually no type processing is done during execution. The compiled code that will be generated
for append under this typing is displayed below, assuming that 1ist (1) represents a pointer to the
type skeleton i:

switch_on_term Cla, C1, C2, fail

Cla: try_me_else C2a

Ci: get_m_constant nil/0,A1 % nil
get_value A2,A3 %» L, L
proceed

C2a: trust_me_else fail

C2: get_m_structure cons/2,A1 % comns(
unify m variable X4,list (1) % X,
unify m variable Al,list(1) % L1)
get_m_structure cons/2,A3 % comns(
unify_value X4 h X
unify m variable A3,list (1) % L3

execute append/3

This code is very similar to that generated for an untyped language by the usual schemes. One
difference is the use of the instructions get_m_constant and get_m structure instead of get nil
and get_list. This difference is superficial and may, in fact, be eliminated. Another difference is
that the occurrences of the unify m variable instructions must in write mode include a pointer
to a type skeleton in the cell that is created. This additional operation does not have much time
overhead. Yet another difference is that the instructions get_value and unify_value must perform
typed unification. However, here too our scheme makes the overhead involved inconsequential: the
only real overhead is incurred when polymorphic terms are processed, and a mere look at the type
environment pointer suffices for determining whether or not a function, constant or variable symbol
is polymorphic. Finally, our scheme involves a space overhead in that a type environment pointer
must be included with each piece of data and a variable cell must also contain a pointer to a type
skeleton. The former seems to be an unavoidable price to be paid for flexibility in typing. As for
the latter, we have noted already that it is not necessary to include type information with variables
in the context of a first-order language. (Thus the time overhead mentioned in connection with
typed versions of unify variable can also be eliminated.) However this is essential for a higher-
order language and our implementation scheme includes this information because it is designed to
eventually apply to such a language.

Rather than attempting to eliminate typing distinctions, we may actually make effective use of

these. In such a situation, the append procedure may be interpreted as a polymorphic one, capable
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8 This capability is obtained by assuming

of appending lists of arbitrary, but homogeneous, type.
that the defined types for the various symbols are the following: (list A)—(list A)—(list A)—o
for append, B—(list B)—(list B) for cons and (list C') for nil. The compiled code that would
be obtained for the definition of append under such a typing is given below. We assume here that

1ist(2) and list(3) represent pointers to the type skeletons B and (list B), respectively.

switch_on_term Cla, C1, C2, fail
Cla: tryme_else C2a

Cil: get_p_constant nil/0,A2,T1 % nil

unify type_local value Z1 % type variable A
T1: get_value A3,A4 % L, L

proceed

C2a: trust_me_else fail

C2: get_p_structure cons/2,A2 % comns(
unified_type_local_value Z1 % type variable A,
unify p_variable X5,1ist(2),T2 % (X,
unify type_local value Z1 % type variable A),

T2: unify p_variable A2,1ist(3),T3 % (L1,
unify type_local_value Z1 % type variable A)), L2,

T3: get_p_structure cons/2,A4 % cons(
unified_type_local_value Z1 % type variable A,
unify value X5 h X,
unify p_variable A4,1ist(3),T4 % (L3,
unify type_local_value Z1 % type variable A))

T4:  execute append/3

In contrast to the monomorphic case, this code includes several instructions that participate in
typed unification. However, it is interesting to note that very little overhead is incurred by these in-
structions when the unification of terms takes place in read mode. All the unify type local value
instructions are skipped over in this case. There are two more instructions that are pertinent,
namely the unified type_local value instructions. While these are not skipped over, their ef-
fect in read mode is merely to increment a register. There are some overheads when unification
of terms proceeds in write mode because the machine must build the type environments for the

various structures that it is creating. However, even these operations are not a major penalty on

8The advantages of using typing in this case might be obvious. A general discussion of this issue also occurs in
[20].
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performance since no type expressions are actually built. In fact only pointers to prior type ex-
pressions are pushed onto the type heap. Along another dimension, considerable (type) structure
can be shared between the type environment of a function symbol and those of its arguments, and
this helps reduce the space overhead in general.

The typing assumed for the various symbols in the last example satisfies the type generality
and type preserving properties of [8]. The analysis in [8] (and in [15]) shows that success and
failure in a typed first-order language satisfying these properties is independent of specific typing
information. Thus, a typed first-order language in which these conditions are guaranteed to be
satisfied can, in a sense, be implemented as an untyped language. The scheme that we have
proposed clearly incurs an overhead over such an implementation. The nature of this overhead has
been exposed and discussed in the case of the polymorphic version of append, and a similar analysis
can be provided in other situations where the type generality and type preserving conditions are
satisfied. While the significance of the overhead can be debated, we note that our scheme has the
advantage of being completely general: it yields an implementation even in situations where the
type generality (or related) condition is not satisfied. Such situations could arise naturally in a
first-order language, as exemplified in Section 3. More importantly, our scheme carries over readily
to the implementation of higher-order languages. Typing information must be explicitly present
in these languages for determining the set of solutions and it is difficult to see how the overhead

incurred by our implementation method can be avoided in such a context.

7 Conclusion

We have discussed in this paper the implementation of a logic programming language that incorpo-
rates a form of polymorphic typing. Our main objective was to examine ways in which the analysis
of types at execution time could be minimized. We have suggested the following ways in which this

goal can be achieved:

(1) By using a representation of types that separates the information already present during
compilation from that which must be determined during execution. This permits less work

to be done in checking types at run-time.

(2) By introducing instructions for compiling as much of the remaining type checking as is pos-

sible, thereby eliminating the need to do this via code run in interpretive mode.

We have illustrated the applicability of these ideas by considering the implementation of a typed
version of Prolog that is closely related to others that have been proposed recently (e.g., see [8]).

The ideas presented here can also be used in the context of other typed languages. They are
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applicable, for instance, to a higher-order language and we have also used them in [12] to describe
an alternative implementation scheme for the polymorphic order-sorted language considered in [2].

We recall that the original motivation for this work was that of implementing the higher-order
language called AProlog. The ideas presented here are in fact employed more or less directly in an
abstract machine that we have devised for this language that also incorporates devices for handling
higher-order features [16, 18, 21] and for implementing scoping constructs in logic programming
[10, 17]. An emulator for this machine is currently being implemented and we believe that this

effort will provide a practical vindication for the ideas described in this paper.
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