Lazy XML Processing

Markus L. Noga
Universitat Karlsruhe
Program Structures Group
Adenauerring 20a
76133 Karlsruhe, Germany

markus@noga.de

ABSTRACT

This paper formalizes the domain of tree-based XML pro-
cessing and classifies several implementation approaches. The
lazy approach, an original contribution, is presented in depth.
Proceeding from experimental measurements, we derive a se-
lection strategy for implementation approaches to maximize
performance.

Categories and Subject Descriptors

E.2 [Data]: Data Storage Representations; 1.7.2 [Document
and Text Processing]: Document Preparation; D.1.1 [Pro-
gramming Techniques]: Applicative (Functional) Pro-
gramming

General Terms

Measurement, Performance, Design

Keywords

Parsing, Lazy evaluation, XML, Document object model

1. INTRODUCTION

XML data processing is a cornerstone of many contempo-
rary applications. Examples of this include content manage-
ment systems, office packages, web development and elec-
tronic business suites, all of which ultimately manipulate
XML documents.

Certain simple operations on XML documents can be de-
fined on a textual document representation [24]. Text sub-
stitution is such a case. However, most operations must be
aware of nested structures, e.g., visualizing route planning
results as vector graphics. Formulating these operations on
a textual representation is hard. Trees [21] are a more con-
venient representation for these tasks.

Computations on XML trees are performed by XML pro-
cessors. In general, a processor has m input and n output
ports, which may be typed with DTDs or XML Schemas [22,

Permission to make digital or hard copies of all or part of this work for

Steffen Schott
Universitat Karlsruhe
Program Structures Group MSI
Adenauerring 20a
76133 Karlsruhe, Germany

info@steffen-schott.de

Welf Lowe
Vaxjo universitet

Software Technology Group
351-95 Vaxjo, Sweden

welf.lowe@msi.vxu.se

Transform Serialize

Deserialize

Figure 1: A simple XML processing network.

23]. We call 0:1 processors sources, 1:0 processors sinks and
1:1 processors transformations. One example of a source is
an XML parser which deserializes textual XML representa-
tions to trees. Correspondingly, serialization as performed
by XML writers is a simple sink. When restricted to a single
input, XSLT scripts [25] are transformations in our sense.

Many processors do not require full access to their inputs.
E.g., when generating outlines, only tree nodes correspond-
ing to chapters and sections are visited, but the bulk of
paragraph nodes are not. Given a specific input tree, we
define the coverage of a processor’s input port as the frac-
tion of nodes visited. For 1:n processors, we use the term
processor coverage.

Individual processors can be connected to form an XML
processing network. As in architectural systems [19} 4], every
input port must be connected to a single output port. Data
flows from output to input. Fig.[[]shows a pipeline, a simple
case of processing network.

There are several approaches to implement XML proces-
sors within a network. In this paper, we ignore the issue
of distribution and classify approaches according to control
flow and type information (Fig. .

Control flow can be either push- or pull-based. In the
push model, activity resides with the sources. They push
data along the edges of the network irrespective of the at-
tached processors’ real needs. In the pull model, the sinks
are active. They pull exactly the required partial documents
from the processors attached to their inputs.

Type information can be interpreted or compiled. In in-
terpreted typing, types are available at run time only. E.g.,
deserializers interpret and pass document types, and trans-
formations interpret XSL transformations and pass output
types. In compiled typing, type information is available dur-
ing network composition. This admits static preprocessing.

The two dimensions of control flow and type information

personal or classroom use is granted without fee provided that copies areyield four different approaches. Traditional eager process-
not made or distributed for profit or commercial advantage and that copies ing is the simplest of them, as it employs neither partial
bear this notice and the full citation on the first page. To copy otherwise, t0 rocessing nor preprocessing. Lazy processing corresponds

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
DocEng’02,November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-594-7/02/0013$5.00.

to lazy evaluation as in functional programming languages,
which we address in section[2.1} Data-driven processing only
implements preprocessing. Finally, the demand-driven ap-

mailto:markus@noga.de
mailto:info@steffen-schott.de
mailto:welf.lowe@msi.vxu.se

Type information

l Interpreted Compiled
2 .
L Lazy Demand-driven
2 E
€ ager i
8 (traditional) | Data-driven

Figure 2: Approaches to XML processing

proach combines both lazy processing and preprocessing.

Given this classification of implementation approaches, we
can pose the central question of this paper: “What is a
selection strategy to maximize performance?”

When the consumer actually uses the entire document,
pull-based processing should carry a performance penalty
over push approaches due to multiple invocations over the
system boundary. As coverage decreases, pull-based perfor-
mance should improve dramatically. Also, we would expect
compiled approaches to offer superior performance compared
to interpreted ones.

This paper focuses on the first claim and analyzes it quan-
titatively. We choose the well-known domain of deserializers
to measure the tradeoffs between push- and pull-based pro-
cessing. As our prior work validates the second claim [13],
we restrict ourselves to the simpler dynamically typed case.

As a welcome side effect, lazy deserialization produces in-
formation about the access profile of the consumer on the
fly. By evaluating the progress of parsing and the fractions
of the tree already created, an accurate picture can be ob-
tained. This access profile may prove useful in tailoring
future static optimizations. Thus, lazy deserialization is an
interesting platform for future work.

The next subsection, [2| examines the state of the art. We
describe our lazy deserialization architecture in section [3]
Comparative measurements are taken in section Section@
summarizes the results and outlines future work.

2. STATE OF THE ART

We discuss lazy evaluation in the context of functional
programming languages. Then, we focus on XML and exam-
ine its textual representation, the standard DOM interface
to XML trees and the XSL transformation language from
the viewpoint of pull-based processing. We examine avail-
able available parsers and transformers and classify them
according to fig. @] We check if available XSL test suites
can be used to measure the tradeoff in question. Finally, we
summarize our findings.

2.1 Lazy Evaluation of Functional Languages

Functional programming originated with Kleene’s model
of algorithms as p-recursive functions [11]. In that model,
functions are taken from a predefined set or composed with
substitution, primitive recursion or p-recursion.

The lambda-calculus 5] is a still simpler model. It consists
only of function definitions and function applications. Most
functional languages can be expressed completely in terms
of the lambda calculus [15]. Lambda is also a convenient
model for large subsets of imperative languages [12].

We illustrate the lambda calculus with a short example.
first:=Ax.\y.x simply returns its first argument. Let succ
be the successor function on a natural number represen-

tation, then firstsucc:=Ax.\y.first(succ(x),succ(y))
will return the successor of its first argument.

Terms like firstsucc 0 1 can be evaluated using differ-
ent strategies. While all strategies evaluate that term to 1,
they may differ in performance. The direction of evaluation
within a given function (left-to-right or right-to-left) usually
has little impact. However, the treatment of nested function
applications is the most important performance character-
istic of an evaluation strategy.

Consider strategies that compute nested function appli-
cations in a bottom-up manner. They first evaluate all in-
ner subterms, then they combine the results using the outer
function. In our example, they compute the successors of
both 0 and 1, then discard the second result. This approach
is called eager evaluation.

The inverse approach first examines which results are re-
quired by a given outer term, then computes and combines
them. In our example, such strategies determine that first
only uses its first argument, then compute only the needed
successor of 0. This approach is called lazy evaluation.

Lazy evaluation is generally faster than eager evaluation
because it avoids unnecessary function applications. In our
example, lazy evaluation requires one successor evaluation,
whereas eager evaluation requires two. While successors are
computationally cheap, this difference becomes even more
pronounced for expensive functions like factorials.

Lazy evaluation has another important advantage. As
only necessary subterms are ever evaluated, the total num-
ber of subterms may well be infinite. Many tough problems
are easily expressed using such infinite intermediate repre-
sentations [9]. Thus, most functional languages use lazy
evaluation. Our lazy approach is an instance of this ap-
proach as well. Unfortunately, due to their preprocessing
phase, lazy parsers cannot operate on infinite intermediate
structures. However, these structures may be an important
concept for future lazy XSL transformation.

2.2 XML Standards

The basic properties of XML [24] are well known. XML
files store pre-order depth-first traversals of XML trees [21].
For pull-based processing, we are interested in parsing XML
files partially. Unfortunately, their nesting structure en-
closes element content with pairs of corresponding opening
and closing tags. The linkage between adjacent nodes is not
stored explicitly, so subtrees cannot be skipped without be-
ing scanned. In other words, simple navigation operations
on the tree translate to expensive operations on the serializa-
tion format. Furthermore, the entire document is contained
within a single top-level element. Thus, a document has to
be scanned in its entirety before any statement about its
top-level structure can be made. As a result, partial parsing
generally requires some form of preprocessing.

DOM defines an interface to tree representations of XML
data. It is also a well-established standard [20]. For efficient
pull-based processing, a tree interface must offer highly se-
lective access operations. Informally, selectivity is the frac-
tion of nodes returned by an operation that we are actually
interested in. For low selectivity, the burden of eliminating
undesired results resides with the caller. The more selective
an interface is, the tighter the limits to coverage that can be
preserved throughout the processing chain. DOM offers ac-
cess operations based on position and name. Whether this
is sufficient cannot be determined a priori.

XSLT scripts specify transformations over the set of XML
documents [25]. Inspired by functional programming, XSLT
operations are free of side effects other than tree output.
Thus, bound functionals may be retained and evaluated to
tree fragments at a later time |14]. XSLT is therefore well-
suited to partial transformations of an input document and
fits well into the concept of pull-based processing.

2.3 XML Parsers

Most widely available XML parsers follow the traditional
approach of interpreting DTDs or XML Schemas. Examples
of this genre are Apache Xerces [1], James Clark’s xp [6] and
the Sun parsers [27]. Xerces can produce DOM output, the
others implement SAX-based messaging [17].

Our prior work includes compiler approaches to XML
parsing, most notably xsdc [16] and aXMLerate |3]. Both
provide proprietary messaging and DOM interfaces.

The Xerces parser also supports lazy processing via the
defer-node-expansion feature. The documentation states:
If this feature is set to true, the DOM nodes in the returned
document are expanded as the tree is traversed. The FAQ
document states more precisely that All of the immediate
children of a Node are created when any of that Node’s chil-
dren are accessed.

Unfortunately, there is a dearth of specifics. An inspec-
tion of the source reveals that deferred node expansion does
exactly what it says — it defers the object encapsulation
of node data stored in tables. As these tables already con-
tain fully parsed document tree data, performance gains are
bound to be small.

There are no demand-driven parsers yet.

2.4 XML Transformers

Again, most widely available transformers follow the tra-
ditional approach of interpreting an XSLT script for imme-
diate processing. E.g., Saxon [10], xt 7], and Xalan [2] fall
into this category. Only Xalan can operate on DOM input,
the other contenders accept SAX messages only.

Compiler approaches include [8] and |18|. The former uses
proprietary specifications, whereas the latter accepts stan-
dard XSLT scripts. There are no lazy or demand-driven
approaches yet.

2.5 XML Test Suites

Two test suites for XSLT processors are publicly available.
The older XSLBench suite [28] is of historical interest only,
as the newer XSLTMark [29] has incorporated XSLBench
almost completely.

XSLTMark contains a variety of test cases, which simulta-
neously serve as regression and performance tests. Unfortu-
nately, the regression aspect is highly dominant. All but one
test case actually traverse the entire document. Although
they form valuable execution frameworks, publicly available
test suites are thus ill-suited to evaluate partial processing.

2.6 Summary

Lazy evaluation of a functional program is an important
performance optimization that additionally allows program-
mers to use infinite intermediate structures. This makes lazy
evaluation interesting for XML processing.

A lazier approach than Xerces’ is called for. All such
approaches require preprocessing. As DOM is the canonical
interface to XML trees, it should be implemented by the

lazy parser to ensure comparability. Experiments must tell
if DOM is selective enough to retain coverage bounds. E.g.,
transformation processors map XPath selection operations
on DOM in an implementation-dependent way, thus sparse
XPath selection need not result in sparse DOM queries.

Comparing lazy and traditional parsing performance re-
quires a transformation context. Apache Xalan can provide
that context, and Apache Xerces in DOM mode is a suit-
able comparison candidate, especially as it offers a somewhat
lazy mode of operation. As existing test suites do not span
a wide coverage range, a custom test generator is required.
The next section covers the generic architecture of a lazy
XML parser.

3. ARCHITECTURE

We first discuss a generic architecture for lazy XML pars-
ing. Subsequently, we refine the architecture to prepare the
ground for a DOM implementation.

3.1 Generic Architecture

As discussed in the previous section, XML is not imme-
diately suitable for partial parsing. Some form of prepro-
cessing is required to locate closing tags and determine the
nesting structure. Consequently, the process of lazy parsing
can be decomposed into two phases (see fig. .

<XML> preprocessing > @ progressive parsing >

source document document
structure tree

Figure 3: Lazy XML parser architecture

We illustrate the operation of each phase using the following
XML document:

01 <article title="0Of mice and men">
02 <section title="Unrelated work">

03 Grouped by subject.

04 <section title="0f mice">

05 Mice are rather small and felty.
06 </section>

o7 <section title="0f men">

08 Men and women are rather tall.
09 </section>

10 </section>

11 <section title="Our work">

12 The tribulations of buckers, hands, tramps,
13 and swampers in the Great Depression.

14 </section>

15 </article>

The preprocessing phase skims the source to extract the
document structure tree. This representation stores node
types and hierarchical relationships between nodes as well as
references to a textual representation for every node. The
possible types are element, text, commment, processing in-
struction, document type or entity reference. Hierarchy
amounts to storing references to all children of an element.
For non-elements, hierarchy is trivial. The textual represen-
tation allows future progressive parsing. Should consumers
actually access a node later on, detailed information can

then be parsed irrespective of the node environment. Con-
ceptually, the resulting structure is a tree attributed with
types and source references (see fig. .

element
line 1

element
line 2

element
line 11

Figure 4: Sample structure tree

The progressive parsing phase constructs the highly more
detailed virtual document tree on demand. Initially, only
the root node of the virtual tree exists. All remaining nodes
are virtual. Consumers can invoke methods on existing
nodes to retrieve attributes and children. As parts of the
document are requested by the consumer, the respective
parts of the source document are parsed and the correspond-
ing nodes in the virtual document tree are created.

Consider a consumer that creates high-level outlines which
list all toplevel sections in an article. Fig. [5|shows the frag-
ment of the virtual document tree created during the exe-
cution of this consumer.

@name=

“Of mice and men”
@name= @name=
“Unrelated work” “Our work”

Figure 5: Sample virtual document tree

In this design, the concerns of preprocessing and progres-
sive parsing are encapsulated separately. An implementa-
tion of preprocessing may thus be reused for various pro-
gressive parsers, independent of the interfaces they provide
for tree access. We can build a virtual document tree with
a DOM interface as well as arbitrary proprietary ones.

3.2 Refining the Architecture

Now, we are ready to discuss a concrete architecture for
low-level access to trees. In this case, the document tree
interface offers three categories of basic operations on node
objects: hierarchical navigation, namespace prefix resolu-
tion and data retrieval. We examine their characteristics
and requirements before choosing a design.

Hierarchical navigation retrieves parent, sibling or descen-
dant nodes of a given node. Information about the document
structure is the only prerequisite to this task, i.e., it can be

accomplished without further parsing by solely relying upon
the information delivered by the preprocessing phase.

Namespace prefix resolution maps a prefix to a names-
pace declared in the same element or an ancestor. As far as
the enclosing elements are still unparsed, resolution triggers
parsing to retrieve the necessary information.

Data retrieval operations obtain information about the
node itself, i.e., tag names, attribute names and values etc.
The required information is local to any given node.

Hierarchical navigation and namespace prefix resolution
require information not directly available to individual node
objects. Consequently, these requests cannot be properly
handled by the node objects themselves. They have to be
processed by delegation. Because the document tree root
is the only node initially available, we choose to make all
preprocessing data available through it. Non-local requests
to other nodes are delegated to the document root.

This does not necessarily apply to data retrieval. In most
cases, a node needs to be parsed before object creation. The
information to process data retrieval requests is thus avail-
able when creating a node object. One can freely choose to
either augment node objects with this information or to re-
alize data retrieval operations by delegation consistent with
the above approach. We choose the second alternative for
reasons of consistency and flexibility. E.g., tag and attribute
names are stored in the root.

Consistent use of delegation keeps the node objects light-
weight. Most data structures reside centrally with the root
node object, including bookkeeping data to track the progress
of parsing and references to node objects already created.
Lazy parsing is a centralized affair.

4. IMPLEMENTATION

In this section, we discuss a Java implementation of lazy
parsing that conforms to the refined architecture from the
previous section. Fig. |§| further refines the architecture.

As mentioned above, the choice of virtual tree interface
is an arbitrary one. Therefore, we will give details of the
most salient data structures in preprocessing, but we do not
discuss progressive parsing in depth.

o
character . pre- o] -
<XML>| | o codin g lexing parsing m@ progressive parsing

source internal DOM
representation interface

Figure 6: Lazy XML parser implementation

4.1 Preprocessing

In the preprocessing phase, our implementation analyzes
the document structure and builds an internal representa-
tion suitable for partial parsing. As depicted in the left half
of fig.[6] the phase consists of three steps. A pluggable reader
converts the various character encodings permitted in XML
sources to a stream of Unicode characters. A simple and
fast lexer assembles a token sequence from this character
stream. This token sequence controls the recursive descent
of a pre-parser, which is responsible for building the internal
representation.

In the course of recursive descent, nodes are indexed se-
quentially in depth-first pre-order, or document order. The

node index assigned in this way serves to uniquely identify
individual nodes. For each node, recursive descent retains
a reference to either the next sibling, or the parent if there
are no following siblings. Furthermore, we retain node types
and textual representations.

Because object creation is the single most expensive op-
eration in Java, our implementation departs from the archi-
tectural view of structure tree nodes as individual objects.
Instead, we chose a non-interleaved memory representation
that employs three contiguous arrays and a string buffer.
All arrays are accessed via the node index and grown dy-
namically during construction. Fig. [7] shows the internal
representation of the sample document from section

leleltle[tle[t]e[t] |

r—
(O o [[|
—y

byte[] nodeType

nextlndex

int[]

int[] textOffset

StringBuffer text

on title="Our work"The tribulations of b
uckers, hands, tramps and swampers i

Figure 7: Internal structure representation

The nodeType type array stores node types. In this im-
plementation, we choose to ignore document type nodes.
Therefore, there are only six different node types: elements
with and without children, text nodes, comments, process-
ing instructions and entity references. For clarity, we choose
a byte array instead of bit vectors.

The nextIndex array retains the hierarchy, i.e., it stores
the node index of the following sibling or parent as discussed
above. As parents have lower node indices than their chil-
dren, the two kinds of references can be distinguished.

The string buffer contains Unicode sequences for progres-
sive parsing. Data for all nodes are concatenated in docu-
ment order. As node types and structure are already de-
coded, the delimiting character sequences <, </, <!-- <?
and their counterparts are omitted as well as closing tags.
To resolve strings for individual nodes, the textOffset ar-
ray stores the index into the string buffer for every node.

This representation consumes 9 bytes per node, plus the
space for the textual representation. In our implementation
the input stream is decoded prior to structure analysis, i.e.
the textual representation has to be stored as a Unicode
string consuming 16 bits per character.

Assuming that document authors generally chose efficient
character encodings, e.g., UTF-8 for English text or Shift-
JIS for Japanese, we could refine lazy processing even fur-
ther. In that scenario, storage can be saved by computing
the token sequence from the raw input stream and deferring

character decoding to progressive parsing. Due to the need
for multiple scanners, we have not pursued this path.

4.2 Progressive Parsing

To fit into the measurement framework, we had to pro-
vide a DOM interface to the virtual document tree. The
Java bindings of DOM are defined by the Java API for XML
Processing, short JAXP [26]. As XSLT never writes on its
input, we confined ourselves to a read-only DOM. Addition-
ally, we included functions to measure input coverage by
gathering access profiles.

5. MEASUREMENTS

We are interested in the relative performances of lazy tree
construction and the traditional eager approach to parsing
and building document trees.

Lazy tree construction avoids parsing and constructing
parts of the tree that are never accessed. We expect its per-
formance to be superior for sparse coverage. However, the
dynamic adaptation mechanism requires additional book-
keeping and delegates numerous API calls to the central
Document object. We expect these overheads to worsen per-
formance for full coverage or even repeated accesses. As a
weak lazy approach, Xerces deferred node expansion should
fall somewhere in between the eager and lazy approaches.

To validate these expectations, we have to measure execu-
tion times for a full range of coverage. In these data, we are
particularly looking for the break-even point between the
lazy and traditional approaches.

5.1 Test Suite Generator

As stated in section [2:5] the benchmarks in existing test
suites do not cover a full range of coverage. We thus devel-
oped a custom benchmark generator. Implemented in Java,
it generates custom test cases for XSLTMark from configu-
ration templates. Each test case consists of an XML source
document, two sets of XSLT scripts and a configuration file.

The source document is generated from a template, an
XML file with nested elements and text which describe the
overall structure of the output document. Whereas text is
simply copied from the template to the output, an element
can be further configured by specifying the tag name and
the number of times its content is to be repeated.

The XSLT scripts describe simple transformations that
copy portions of the input document to the output docu-
ment. Both sets of transformations span a full range of
coverage. The first set uses limits on traversal breadth to
achieve partial coverage, the second one employs limits on
depth. In this way, we accumulate access profiles of different
kinds for gradually increasing coverage.

The configuration file inserts test cases into the bench-
mark framework. It specifies a list of transformations to be
executed and timed on varying inputs.

5.2 Benchmark

We compiled a benchmark running our lazy DOM im-
plementation against an eager implementation. For this
comparison, we choose Apache’s Xerces Java Parser release
1.3.0, a freely available traditional XML parser that sup-
ports the DOM API and shows fairly good performance.
Both traditional and deferred modes were tested.

We generated several disparate test cases with the tool de-
scribed above. Within our Java benchmark framework, the

50000

0

E 40000

£

= 30000

c

2

=

©

£ 20000

S

3

c

© 10000 —o—Lazy DOM

- —B— Xerces DOM

—O— Xerces Deferred DOM

0+ T T T T

0% 20% 40% 60% 80% 100%
coverage [%]

Figure 8: Depth-limited processing time

60000
= 50000 -
E
£ 40000
=
S 30000
©
E
S 20000 -
2
I —o—Lazy DOM
= 10000 —— Xerces DOM

—O— Xerces Deferred DOM
0+ T T T T
0% 20% 40% 60% 80% 100%

coverage [%]

Figure 9: Breadth-limited processing time

individual transformations were applied using the Apache
Xalan XSLT transformer , This well established stan-
dard implementation is capable of operating on DOM input.
Unfortunately, current versions of Xalan convert the entire
input tree to an internal representation, resulting in full cov-
erage. Therefore, we restricted ourselves to Xalan version
2.0.0. The input trees were provided by Xerces running in
DOM mode and our lazy DOM parser, respectively.

For each transformation and DOM implementation re-
spectively, the cumulative runtime of ten subsequent iter-
ations was measured, thereby compensating for the coarse
resolution of the system clock. In order to bypass distur-
bances caused by the JVM’s just-in-time compilation, we
conducted blind runs prior to the actually measured execu-
tions. Coverage was measured by gathering access profiles
for the virtual document tree.

We ran our measurements on a 600 MHz Pentium IIT with
256 MB of memory under Windows 2000 Professional and
Sun Java 2 SDK, Standard Edition, version 1.3.1.

5.3 Results

Fig. [§] and [J] show processing times for depth-limited and
breadth-limited test cases, respectively. The depth-limited
test case comprises a binary XML tree of 1,053 KB source
and a nesting depth of 14 levels. The breadth-limited case
contrasted this with a tree nesting to 4 levels with a branch-
ing factor of 30 per level and 1,417 KB source. The resulting
graphs are similar in other cases.

For zero coverage, lazy parsing outperforms the eager ap-
proach by a considerable 80%. This lead continuously de-

clines for increasing coverage. Break-even between lazy and
eager processing occurs between 80% and 95% coverage.
Lazy processing incurs an overhead of about 10-15% for full
coverage. Xerces deferred node expansion consistently per-
forms worse. Its trade-off point versus eager processing is
lower, at around 70%. These overall results are indepen-
dent of traversal limits, though the lazy strategy appears to
be most convincing for shallow breadth limits. In all, the
numbers validate our initial expectations.

Fig. [§] and [9] show memory consumption for the above
benchmarks. For zero coverage, lazy processing again out-
performs the eager approach by 65%. The lead declines
with increasing coverage, reaching parity around 45%. For
full coverage, lazy processing incurs a memory overhead of
70-100% over eager processing. Memory consumption for
Xerces deferred node expansion lies near the average of lazy
and eager processing, with a similar tradeoff point as for
lazy processing.

6. CONCLUSIONS

For both depth- and breadth-limited transformations, pro-
cessing times for the lazy approach are approximately linear
in the percentage of nodes visited. In both traversal cases,
the lazy approach breaks even with eager processing at 80%
coverage. Thus, coverage uniquely determines the tradeoff
between lazy and eager processing in our test cases.

Limits to breadth and depth are highly disparate cases.
In general, path-based tree traversals like those induced by
XSL transformations lie somewhere between the two ex-

20

—&—Lazy DOM
—il— Xerces DOM
—O— Xerces Deferred DOM

0 -+ . . T T
0% 20% 40% 60% 80% 100%
coverage [%]

memory consumption [mb]
>

Figure 10: Depth-limited memory consumption

30
£ 25
c
2 20
o
£
2 15
c
8
> 10
2 —o—Lazy DOM
g 5 —— Xerces DOM

—O— Xerces Deferred DOM
0 T T T T
0% 20% 40% 60% 80% 100%

coverage [%]

Figure 11: Breadth-limited memory consumption

tremes. We therefore propose the following strategy to maxi-
mize performance: Choose a lazy implementation if coverage
does not exceed 80%, otherwise an eager one.

In low-footprint devices, the memory overhead of lazy pro-
cessing at high coverage may be a problem. As sketched in
the final paragraphs of section 4.1} extending the lazy ap-
proach to character set decoding can alleviate this problem
if document authors use suitable character encodings.

Unfortunately, most XSLT scripts in standard test suites
actually visit each and every node in a document, i.e., they
exhibit full coverage. Partially, this is due to their dual pur-
pose. These suites simultaneously benchmark and validate
processors, so complete processing is actually desired. In
many cases, disabling superfluous default processing rules
goes a long way to ensure sparse coverage in XSLT scripts.

Moreover, in many cases the mapping of XPath steps
to DOM operations destroys sparseness. DOM does not
support proper filtering, so a sparse transformation on the
XSLT level often maps to a complete DOM tree traversal.
This problem is inherent to DOM and may only be elimi-
nated by adopting a new interface.

Once we have completed implementing lazy XSL transfor-
mations, our future work will center on such a new interface.
We aim to provide uniform access to both deserialization
and transformation processors, while preserving sparseness
to improve networked performance.

When lazy XSL transformation is available, we also aim
to explore the use of infinite intermediate documents. How
these structures can contribute to clean and efficient designs
remains an open question for XML processing networks. Ex-
ploring the related idioms of functional programming lan-
guages may be a promising direction here.

7. ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers for their
diligence and dedication to quality. Your insightful com-
ments were really helpful in enhancing this paper.

8. REFERENCES
[1] Xerces Java Parser. Apache XML Project,
http://xml.apache.org/xerces-j/.
[2] Xalan Java XSLT Processor. Apache XML Project,
http://xml.apache.org/xalan-j/|
[3] aXMLerate Project. B2B Group, University of
Karlsruhe,
http://i44pc29.info.uni-karlsruhe.de/B2Bweb/.
[4] L. Bass, P. Clement, and R. Kazman. Software
Architecture in Practice. Addison Wesley, 1998.
[5] A. Church. The Calculi of Lambda Conversion.
Princeton University Press, 1941.
[6] J. Clark. XP - an XML Parser in Java.
http://wuw.jclark.com/xml/xp/, 1998.
[7] J. Clark. XT. http://www.jclark.com/xml/xt/}, 1999.
[8] J. Dieterich. Generierung von Graphersetzern als
XML-Transformatoren. Universitat Karlsruhe, IPD
Goos, Jun 2001.
[9] J. Hughes. Why Functional Programming Matters.
Computer Journal, 32(2):98-107, 1989.
[10] M. Kay. The SAXON XSLT Processor.
http://saxon.sf.net/, 2001.
[11] S. Kleene. General recursive functions of natural
numbers. Math. Ann., 112:729-745, 1936.

[12] P. J. Landin. The next 700 programming languages.
Communications of the ACM, 9(3):157-166, 1966.

[13] W. Lowe, M. L. Noga, and T. S. Gaul. Foundations of
fast communication via XML. Annals of Software
Engineering, 13(1-4):357-379, Jun 2002.

[14] W. Lowe and M. L. Noga. Scenario-based connector
optimization. In LNCS 2370, IFIP/ACM CD 2002,
pages 170-184. Springer, Jun 2002.

[15] J. McCarthy. History of LISP, pages 173-197.
Academic Press, New York, 1981.

[16] M. L. Noga. Erzeugung validierender Zerteiler aus
XML Schemata. Universitat Karlsruhe, IPD Goos,
http://www.noga.de/markus/XMLSchema/
Diplomarbeit.pdf, Oct 2000.

[17] Simple API for XML Processing. Megginson et. al.,
http://wuw.saxproject.org/, 2002.

[18] T. Schmitt-Lechner. Entwicklung eines
XSLT-Ubersetzers. Universitét Karlsruhe, IPD Goos,
May 2001.

[19] M. Shaw and D. Graham. Software Architecture in
Practice — Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[20] Document Object Model. W3C,
http://wuw.w3.org/DOM/, 2000.

[21] XML Information Set. W3C Working Draft 26 July
2000, http:
//www.w3.org/TR/2000/WD-xml-infoset-20000726,
2000.

[22] XML Schema Part 1: Structures. W3C
Recommendation 2 May 2001, http:
//www.w3.org/TR/2001/REC-xmlschema-1-20010502,
2001.

[23] XML Schema Part 2: Datatypes. W3C
Recommendation 2 May 2001, http://www.w3.org/
TR/2001/REC-xmlschema-2-220010502, 2001.

[24] Extensible Markup Language (XML) 1.0. W3C
Recommandation,
http://www.w3.org/TR/1998/REC-xml1-19980210,
1998.

[25] XSL Transformations (XSLT). W3C
Recommandation, http://www.w3.org/TR/xs1t, 1999.

[26] Java API for XML Processing. Sun Microsystems Inc.,
1.1.3 edition, 2001.

[27] XML Parser for Java. IBM AlphaWorks, http:
//alphaworks.ibm.com/aw.nsf/techmain/xml4j,
2001.

[28] XSLBench. TFI Technology Ltd., http:
//www.tfi-technology.com/xml/xslbench.html,
2001.

[29] XSLTMark. DataPower Technology Ltd.,
http://wuw.datapower.com/XSLTMark/, 2001.

http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://i44pc29.info.uni-karlsruhe.de/B2Bweb/
http://www.jclark.com/xml/xp/
http://www.jclark.com/xml/xt/
http://saxon.sf.net/
http://www.noga.de/markus/XMLSchema/Diplomarbeit.pdf
http://www.noga.de/markus/XMLSchema/Diplomarbeit.pdf
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.w3.org/TR/2000/WD-xml-infoset-20000726
http://www.w3.org/TR/2000/WD-xml-infoset-20000726
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-220010502
http://www.w3.org/TR/2001/REC-xmlschema-2-220010502
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/xslt
http://alphaworks.ibm.com/aw.nsf/techmain/xml4j
http://alphaworks.ibm.com/aw.nsf/techmain/xml4j
http://www.tfi-technology.com/xml/xslbench.html
http://www.tfi-technology.com/xml/xslbench.html
http://www.datapower.com/XSLTMark/

	Introduction
	State of the art
	Lazy Evaluation of Functional Languages
	XML Standards
	XML Parsers
	XML Transformers
	XML Test Suites
	Summary

	Architecture
	Generic Architecture
	Refining the Architecture

	Implementation
	Preprocessing
	Progressive Parsing

	Measurements
	Test Suite Generator
	Benchmark
	Results

	Conclusions
	Acknowledgements
	REFERENCES -9pt

