
Implementing an Untrusted Operating System on Trusted Hardware
Submitted to SOSP2003: Please do not distribute

David Lie Chandramohan A. Thekkath Mark Horowitz

Abstract

Recently, there has been considerable interest in provid-
ing “trusted computing platforms” using hardware — TCPA
and Palladium being the most publicly visible examples. In
this paper we discuss our experience with building such a
platform using a traditional time-sharing operating system
executing on XOM — a processor architecture that provides
copy protection and tamper-resistance functions. In XOM,
only the processor is trusted; main memory and the operat-
ing system are not trusted.

Our operating system (XOMOS) manages hardware re-
sources for applications that don’t trust it. This requires a
division of responsibilities between the operating system and
hardware that is unlike previous systems. We describe tech-
niques for providing traditional operating systems services
in this context.

Since an implementation of a XOM processor does not
exist, we use SimOS to simulate the hardware. We modify
IRIX 6.5, a commercially available operating system to cre-
ate XOMOS. We are then able to analyze the performance
and implementation overheads of running an untrusted op-
erating system on trusted hardware.

1 Introduction

There are several good reasons for creating tamper-resistant
software including combating software piracy, enabling mo-
bile code to run on untrusted platforms without the risk of
tampering or intellectual property theft, and enabling the de-
ployment of trusted clients in distributed services such as
banking transactions, on-line gaming, electronic voting, and
digital content distribution. Tamper-resistant software is also
useful in situations where a portable device containing sen-
sitive software and data may fall into the hands of adver-
saries, and in preventing viruses from modifying legitimate
programs.

Tamper-resistance can be enforced using software or hard-
ware techniques. In the past, techniques such as software ob-
fuscation have been explored, but with limited success [4].

There is a widespread belief that software-based solutions
are relatively easier to attack than hardware-based solu-
tions [3]. Thus, there have been several proposals for cre-
ating systems that rely on hardware, rather than on software
to enforce the security and protection of programs [9, 10, 15,
18, 25, 27].

Trusting the hardware rather than the software has inter-
esting implications for operating systems design. Since shar-
ing hardware resources among multiple users is a difficult
task, often requiring complex policy decisions, it is most nat-
urally done in software by anoperating system. But, if one
is reluctant to trust anything but the hardware, then we must
somehow arrange for an untrusted agent—the operating sys-
tem software—to manage a trusted resource—the hardware.

This paper explores the design of an operating system that
runs on hardware that supports tamper-resistant software.
Our operating system is intended to work with an existing
processor architecture called XOM, which stands for eXe-
cute Only Memory [18]. In the XOM processor architec-
ture, programs do not trust theoperating systemor external
memory, but instead, trust the processor hardware to protect
their code and data. In trying to design the operating sys-
tem for the XOM processor, we found difficulties with the
original architectural specification that made it impractical
to provide certain operating system facilities, such as time-
slicing, process forking, and user-level signal handling. The
paper describes the design changes in the operating system
and the architecture that were required to build a functioning
system.

The lack of trust in any software-based resource manager
and external memory makes our system significantly more
robust and quite different from well-known approaches like
microkernels and capability-based systems that try to solve a
similar problem. If one is willing to compromise and lower
the barrier by conceding hardware based attacks on memory,
then solutions such as secure booting [2, 16, 27], TCPA [26]
and Palladium (also known as Next-Generation Secure Com-
puting Base or NGSCB) [5, 6] are viable alternatives to our
design. We defer a fuller discussion of related work to Sec-
tion 1.1.

The XOM architecture prevents programs from tamper-

ing with each other by placing them in separatecompart-
ments[22]. The separation of compartments is enforced
by a combination of cryptography and tagging data in hard-
ware. Since processes running on a XOM processor do not
trust the operating system, it runs in a compartment separate
from user processes. However, to share hardware resources
among a set of processes, the operating system must be able
to preempt a process, as well as save and restore its con-
text. With XOM, a correctly written operating system must
be able save and restore user data. Yet, even a malicious
operating system should not be able to read or modify data
belonging to a user process.

In addition to the operating system, main memory is also
not trusted by the XOM processor. The XOM processor not
only encrypts values in memory, but also stores hashes of
those values in memory as well. It will only accept encrypted
values from memory if accompanied by a valid hash. The
hash not only protects the actual value of the data, but also
checks the virtual address that the data was stored to by the
application, thus ensuring that an adversary cannot copy or
move data from one virtual address to another.

The XOM architecture has previously undergone formal
verification using a model checker [17]. This work demon-
strated that even an actively malicious operating system can
only extract a limited amount of information about user pro-
grams. Because of its role as resource manager, the only
major attack the operating system could perform is a denial
of service attack. The verification also demonstrated that
given a correctly working operating system, user programs
are guaranteed forward progress.

In principle, an operating system should be able to virtu-
alize and manage resources without having to interpret any
of the values it is moving, but there are practical obstacles to
supporting many of the paradigms that typical operating sys-
tems support, such as signal handlers, memory management,
process creation and so on. In addition, the operating system
must also manage resources used to store the cryptographic
hashes that the XOM hardware uses. The challenge is to find
ways of supporting traditional operating system functionality
under the new division of trust. To explore these matters fur-
ther we designed an operating system for XOM calledXO-
MOS. Using XOMOS we can execute XOM-protected (and
ordinary) programs. Our experiments demonstrate that it is
possible to write an operating system that not only manages
resources for applications that do not trust it, but also sup-
ports most, but not all, of the traditional services that one
expects from an operating system.

There is currently no hardware implementation of the
XOM architecture. We therefore modify the SimOS [12]
simulation system to model a XOM processor, based on an
in-order processor model using the MIPS R10000 [11] in-
struction set. XOMOS is the implemented by modifying the
IRIX 6.5 [23] operating system from SGI.

XOM does preclude a set of services that operating sys-
tems typically provide. For example, it would be impossible
to perform debugging or external profiling on XOM-secured

code since there is no way to distinguish between a legiti-
mate user trying to gather information, and an adversary try-
ing to extract secrets. On the other hand, programs may still
do internal forms of self-debugging or self-profiling.

1.1 Related Work

Our work is related to previous work on secure booting [2,
16, 27]. Loosely speaking, secure booting is a technique
that guarantees the integrity of higher level software running
on a machine by ensuring the integrity of each of the lower
layers (e.g., the runtime libraries, operating system kernel,
firmware, hardware) on which it depends. At the bottom of
the chain a secure entity, such as a CPU, is assumed to have
a tamper-resistant secret embedded in it. On power up, this
secure entity takes control of the machine and authenticates
the next layer e.g., the firmware, and transfers control to that
layer, which authenticates the next layer in turn, and trans-
fers control to it, and so on.

A key difference between secure booting and XOM is that
the latter does not trust the operating system or memory. Bug
in the operating system cannot undermine the security of ap-
plications running on it. In a secure booting system, a deter-
mined and sufficiently sophisticated adversary could exploit
the trusted memory to modify the instruction or data stream
of an authenticated program during execution (say by using
dual ported memory). In contrast, XOM encrypts all instruc-
tions and data to and from main memory and can detect tam-
pering of the code or the data at all times. The details of this
technique are described in Section 2.

Executing trusted code on a secure co-processor is another
way of achieving some of the same goals as we do [25, 27].
While a co-processor approach is feasible, it has some lim-
itations. For example, it is difficult to time-share the co-
processor among mutually suspicious pieces of code. XO-
MOS allows mutually suspicious applications to be securely
multitasked on the same processor without any special coop-
eration from the applications.

There is much literature on security in the context of se-
curity kernels [21], capability-based operating systems [24],
microkernels [1], and exokernels [7] that is related to our
work. All of these approaches assume that the operating sys-
tem and memory are trusted, and as a result are very different
from XOMOS.

The TCPA [26] and Palladium or NGSCB [5, 6] initiatives
are also related to our approach. One difference between
these systems and XOM is that XOM provides the ability for
programs to hide secrets in their binary images. Programs
can use these secrets to authenticate themselves to third par-
ties. Both TCPA and Palladium rely on a trusted monitor to
perform the attestation (The TPM in the case of TCPA and
the Nexus in the case of Palladium). TCPA provides a chain
of cryptographic hashes so that an application can reliably
determine the complete boot sequence of the machine until
it was loaded. It can therefore decide if the boot sequence
has been tampered with and terminate. In some ways, TCPA

is similar to the authenticated boot process found in a secure
booting system, and neither system can protect itself from an
attack that modifies memory contents after attestation. Both
TCPA and the Palladium share the notion ofSealed Stor-
age [5, 26], which uses a mechanism similar to XOM to
protect data. We discuss sealed storage in greater detail in
Section 2.3.

The rest of the paper is organized as follows. Section 2
provides background and summarizes the basic processor ar-
chitecture originally described in [18]. Supporting an operat-
ing system on this interface required significant software and
hardware co-design, resulting in several changes to IRIX and
the instruction set architecture. These changes are described
in Section 3. Section 4 describes the implementation effort
required to create XOMOS, and discusses the implementa-
tion and performance of micro-benchmarks as well as two
secure applications running on XOMOS: RSA operations in
OpenSSL and mpg123, an MP3 decoder. Finally, our con-
clusions are presented in Section 5.

2 The Original XOM Architecture

The XOM architecture is designed to address a shortcoming
with implementing security in software. The problem is that
it is easy to tamper with and observe software, and as a re-
sult, it is impossible to hide secrets in software. Instead, the
XOM architecture uses hardware, and its tamper-resistant
properties, to protect amaster secretthat is different for ev-
ery XOM-enabled processor. This is then used to secure and
protect other secrets in software. For example, a program
may want to protect its code and keep it secret. By hiding the
encryption key for the program in the processor, adversaries
cannot see or modify the program without mounting an at-
tack on the processor hardware. Consequently, the XOM
processor never allows the master secret to leave the chip; so
all operations that use the master secret must be implemented
on the processor.

XOM uses its master secret to protect programs by sup-
portingcompartments. A compartment is a logical container
that prevents information from flowing into or out of it. A
process in a compartment is immune to bothobservation
and modification. Preventing unauthorized observation of
the protected process is important because the process code
and data may have secrets that its owner does not want to
divulge. Conversely, by modifying the process data or code,
an adversary may induce the process to leak secrets, so this
must be prevented as well. We rely on the XOM hardware to
implement compartments efficiently using the secret hidden
in the processor. To do this, XOM uses both cryptographic
and architectural techniques.

In this section, we will briefly summarize the original
XOM processor hardware described in [18]. For the most
part, a XOM processor behaves like a typical modern proces-
sor, and is simply a set of extensions to such a processor. It
has registers, memory, and executes instructions in the usual

fashion. The operating system and other processes can ac-
cess the XOM extensions through a set of instructions sum-
marized in Table 1. The next three subsections detail how the
XOM architecture compartments are enforced, how the pro-
cessor permits the operating system to handle program state
without violating isolation, and how it supports features such
asattestation, curtained memory, andsealed storagethat are
commonly associated with trusted computing platforms.

2.1 Implementing Compartments

XOM uses both asymmetric and symmetric ciphers to imple-
ment compartments1. The master secret hidden in the XOM
processor is actually the private part of an asymmetric cipher
pair. To support multiple compartments, each compartment
has a distinct symmetric key, called thecompartment key,
which is used to encrypt its contents. The compartment key,
in turn, is encrypted with the public key matching the proces-
sor, allowing the processor to recover the compartment key
and decrypt the program. The encrypted compartment key
need not be kept in the processor; it can be stored with the
encrypted program code.

Data generated during program execution also must be
isolated in the program’s compartment. This is done by hav-
ing the XOM processor encrypt data that a program stores to
memory with the compartment key when it leaves the CPU
chip. However, when data doesn’t leave the chip, the XOM
processor can skip the encryption. All values in proces-
sor caches and registers are stored in plain text2 to increase
efficiency. The XOM processor uses architectural support
to enforce compartments without paying the cryptographic
penalty. Hardware tags, calledXOM ID’s are added to on-
chip storage, such as registers and caches, to indicate which
compartment data and code belongs to. Since each compart-
ment has a key and a XOM ID value, a hardware table, called
the XOM Key Table, maintains the mapping between com-
partment keys and XOM ID’s. On a cache eviction the XOM
processor performs a lookup on the XOM Key Table using
the XOM ID tag to get the compartment key it needs to en-
crypt the value.

If code is encrypted, we say it is in a compartment. Prin-
cipals who don’t know the key cannot access the program
code or data. There is a single distinguished compartment,
called theNULL compartment, which has no compartment
key. Programs that are not encrypted exist and run in this
compartment. Code and data in the NULL compartment
can be accessed from any compartment, and programs may
use this compartment as an insecure channel for sharing data
with other programs.

To protect against tampering of data while it is in mem-
ory, XOM processors employ a keyed cryptographic hash,

1Asymmetric key cryptography uses pairs of keys, a public key for en-
cryption and a private key for decryption, while symmetric ciphers use a
single key for both encryption and decryption

2Unencrypted values are referred to as plain text, encrypted values as
cipher text

Instruction Description
enter xom The XOM processor is given an encrypted compartment key. The key is decrypted and

placed in the XOM key Table. All following instructions are in the compartment and
should be encrypted.

exit xom Exit XOM compartment and return to the NULL compartment. Unload entry from the
XOM Key Table.

secure store Stores register to memory securely.
secure load Loads memory securely from memory to a register.
save register Encrypts and saves a register to memory so that the operating system can save a program’s

state.
restore register Decrypts a value from memory and places it a register to restore a program’s state.
move to NULL Sets the XOM ID tag of register to NULL.
move from NULL Sets the XOM ID tag of register to that of the executing program.

Table 1. XOM Instructions. This table summarizes the original XOM instructions described in [18].

or message authentication code (MAC), to check for the in-
tegrity of data and code stored into memory [14]. Each time
a cache line is written to memory, a hash of it is generated,
and both the hash and the cache line are encrypted. The hash
pre-image contains both the virtual address and the value of
the cache line. When decrypting the cache line, a matching
hash must also be loaded before the XOM processor will ac-
cept the encrypted value as valid. Because the granularity of
encryption is a cache line, it is important to note that pro-
grams cannot store encrypted and unencrypted data on the
same cache line. Similarly, encrypted code and plain text
code must be padded to be placed on separate cache lines.

In addition to the XOM Key Table, Master Private key and
encryption/decryption hardware, the XOM architecture also
adds new instructions to the instruction set architecture of the
base machine. XOM programs execute theenter xom in-
struction to enter their XOM compartment. This instruction
causes the processor to decrypt the compartment key and en-
ter it into the XOM Key Table. At the same time, a XOM
ID is assigned to the compartment key. All instructions fol-
lowing enter xom are in the compartment and must be
decrypted before execution. Programs leave secure execu-
tion and return to the NULL compartment by executing the
exit xom instruction. This causes the compartment key
to be unloaded from the XOM key table and following in-
structions are no longer decrypted. This pair of instructions
allows a program to execute some code sections in the NULL
compartment and others in a private compartment. This al-
lows for easier application development and better program
performance as XOM code incurs the overhead of crypto-
graphic operations.

XOM programs explicitly indicate whether data they store
to memory belongs to the NULL compartment or in their
private compartment. Thesecure store andsecure
load instructions store and load data in a private compart-
ment. Data thus stored is tagged with the same value as the
program code when in the on-chip caches and will eventu-
ally be encrypted with the same compartment key as the pro-
gram if flushed to off-chip memory. On the other hand, the

standard load and store instructions save data in the NULL
compartment.

XOM processors provide themove from NULL and
move to NULL instructions to move register data between
compartments. These instructions simply change the value
of the tag on each register value.

2.2 Handling Program State

When a XOM program is interrupted, the operating system
needs a way to save the context of the interrupted program,
and restore it at a later time. However, at interrupt time,
the contents of the registers are still tagged with the identity
of the interrupted program. As a result, the operating sys-
tem is unable to read those values to save them. The XOM
processor provides two instructions for the operating system
to use in this situation. Asave register instruction di-
rects the XOM hardware to encrypt the register, create a hash
of the register, and store both to memory. A complemen-
tary restore register instruction takes the encrypted
register and hash, verifies the hash, and restores them back
to the original register, setting the XOM ID value appropri-
ately. The hashes detect when a malicious operating system
attempts to tamper with register values by either spoofing in
a fake value or restoring valid values back to the wrong reg-
ister. In the event that the register is in the NULL compart-
ment, these instructions do not perform any cryptographic
operations.

A special provision must also be made to prevent the op-
erating system from mounting a replay attack by taking the
register values from one interrupt and repeatedly restoring
it. This is done by revoking the key used to encrypt and hash
register values each time a XOM compartment is interrupted.
The hardware performs this revocation by regenerating a new
key for the XOM ID when it takes a trap. Since this key is
continually changing, we can’t use the compartment key to
encrypt register values. Rather, we use a separate key, called
theregister key, for each XOM ID allocated in the XOM Key
Table.

Memory values must also be protected against replay at-
tacks. Previous work [17] has shown a way of preventing
memory replays by storing a hash of memory in a register.
Efficient methods, such as the use of hash trees, exist to im-
plement this functionality [8].

Note that XOM in no way prevents incorrectly written
programs from leaking secrets, nor is that its intent. XOM
simply provides the necessary support so that correct pro-
grams can secure their secrets against a range of attacks.

2.3 Support for Trusted Computing

XOM can be used to implement a platform for trusted com-
puting by protecting software from observation and tamper-
ing. Trusted computing offers three key security mecha-
nisms calledattestation, curtained memory, andsealed stor-
age. The XOM architecture supports these mechanisms as
well, and many of the techniques used in XOM are directly
applicable to trusted computing.

Attestation is a mechanism that allows a remote party to
verify some properties about a remote application and the
platform it is running on. For example, a remote party may
want some guarantees that it is talking to an unmodified ver-
sion of a specific program before it continues with commu-
nications. Using XOM to make software tamper-resistant
gives software the ability to attest for itself, without the aid
of any other component. The software simply hides a signing
key in its code image and uses this key to sign messages in
a challenge-response protocol. Because XOM applications
can only be decrypted and executed on the correct XOM pro-
cessor, the software attestation also implicitly attests for the
hardware. However, since XOM does not need to trust the
operating system, there is no need to attest for it.

Curtained memory is a mechanism where some portion of
memory is protected from observation and tampering. Palla-
dium provides this mechanism by making a portion of phys-
ical memory inaccessible to software without the proper cre-
dentials. XOM provides curtained memory through the use
of compartments. Compartments can be located anywhere
in physical or virtual memory and storage for data in com-
partments can be swapped to a backing store. In addition,
compartments are implemented entirely in the processor and
do not require any modifications to the memory or memory
controller. Compartments are resistant to direct attacks on
the hardware in the memory system, so even an adversary
who has access to the memory bus or who can emulate mem-
ory, cannot compromise a compartment.

Sealed storage is a mechanism that allows programs to
store data in memory or on disk so that only programs with
the proper credentials can access it. XOM implements sealed
storage by having programs hide keys in their program im-
age. Programs may then use these keys to encrypt and de-
crypt data that is stored in the sealed storage. To authenticate
the contents of sealed storage XOM can use hash trees [19].

3 Supporting an Operating System

The purpose of the XOM hardware is to protect the master
private key and to provide the basic functionality to enforce
compartments. Higher-level tasks such as resource alloca-
tion and management, hardware virtualization, and imple-
menting system call functionality are still the domain of the
operating system. While these tasks may have some security
implications, they are simply too complex to be implemented
in the hardware, necessitating the existence of an operating
system.

XOM programs do not trust the operating system with
their data. On the other hand, the operating system does not
trust XOM programs to behave properly, and must be able
to interrupt and remove resources from a misbehaving XOM
program. Accordingly, the contract between the XOM ar-
chitecture and the operating system must satisfy two require-
ments. First, given a properly working operating system, it
should make resource management efficient and effective.
Second, it should ensure that if the operating system is ma-
licious, its privileged position does not allow it to violate the
isolation of a compartment.

Given these requirements on the interface between the
hardware and operating system, the hardware must provides
exception and interrupt functionality as is found on ordinary
processors. This allows the operating system to limit the ex-
ecution time of programs and interpose when programs ac-
cess resources. On the other hand, when the operating sys-
tem moves the physical location of resources, it must adhere
to the XOM compartments. This means, when saving pro-
cess state, it must use the special instructions provided by
XOM that encrypt and hash process registers. When relocat-
ing data in memory, the operating system must also relocate
the respective hashes.

To implement XOMOS we needed to make three kinds of
modifications.

• Modifications for XOM Key Table maintenance:
The hardware and operating system must have support
for programs to use the XOM Key Table, and the oper-
ating system must manage the limited number of entries
it has.

• Modifications for dealing with encrypted data:
When the operating system is managing system re-
sources such as CPU time or memory, it must deal with
user data that is encrypted as well as the accompanying
hashes.

• Modifications for traditional operating system
mechanisms: Various features in a traditional operat-
ing system such as shared libraries, process creation,
and user defined signal handlers require special support.

For the most part, these modifications were implemented in
the operating system. However, in some cases, we found
that modifications to the XOM hardware architecture were

Original Hardware New Hardware Description
enter xom xalloc $rt,offset($base) Privileged. Decrypt the encrypted compartment key at

memory[$base + offset] and enter into the XOM
Key Table. The new XOM ID assigned to the key is
placed in$rt . Requires a newxom alloc() system
call in the operating system.

xentr $rt,$rd Enters XOM compartment using the XOM ID$rt . The
current register key is placed in$rd .

exit xom xinval $rt Privileged. Mark the entry in the XOM Key Table
indicated by$rt as invalid. This XOM ID can no
longer be used until it is reclaimed. Requires the new
xom dealloc() system call.

xrclm $rt Privileged. Reclaim XOM ID$rt in the XOM Key Ta-
ble. Invalidate caches and clear any values in registers
that were tagged with the freed XOM ID.

xexit $rt Exit XOM compartment and return to the NULL com-
partment. $rt becomes the register key for the XOM
ID.

secure save xsd $rt,offset($base) Stores$rt into memory [$base + offset] . The
data remains in the same compartment as the process after
it is stored in memory.

secure load xld $rt,offset($base) Loads$rt with memory [$base + offset] . Val-
idate the accompanying hash.$rt is tagged with the ex-
ecuting process’ compartment.

save register xgetid $rt,$rd Take the XOM ID tag value of$rt and place it in$rd .
xenc $rt,$rd Check that$rt is owned by the XOM ID in$rd . If

so, encrypt the contents of$rt with the keys indicated
by $rd . The result of the encryption is placed in XOM
co-processor registers $0...$3

xsave $rt,offset($base) $rt is one of the XOM co-processor registers $0...$3
which store the encrypted register created byxenc .
The register contents are saved tomemory[$base +
offset] .

restore register xrstr $rt,offset($base) $rt is one of the XOM co-processor registers $0...$3 that
stores the encrypted value to be restored. Fill the register
with the value atmemory[$base + offset] .

xdec $rt,$rd Decrypt the 256 bit value set byxrstr , validate the re-
sult and restore to register$rt . Set the XOM ID tag on
$rt .

move to NULL xmvtn $rt Set the XOM ID tag of$rt to NULL.
move from NULL xmvfn $rt Set the XOM ID tag of$rt to the XOM ID of the exe-

cuting program.

Table 2. Summary of modifications to the original XOM hardware architecture.

also necessary. A summary of the hardware modifications is
given in Table 2.

3.1 XOM Key Table System Calls

The original architecture specifies a singleenter xom in-
struction to enter XOM operation. This allocates an entry in
the XOM Key Table, which is freed when the program ex-
ecutes anexit xom instruction. While this is adequate, it
is inefficient if a program wishes to enter and exit its XOM

compartment frequently, since the hardware would have to
perform an expensive public key operation every time.

An additional consideration is thatenter xom and
exit xom by their nature, must be executed in the con-
text of the programs themselves as unprivileged instructions.
If they were executed by the operating system instead, a ma-
licious operating system could change the address at which
the XOM code execution starts. However, ifenter xom
is unprivileged, the operating system cannot prevent a ma-
licious application from mounting a denial of service attack

by allocating all entries in the XOM Key Table. To satisfy
these conflicting requirements, we separate the operations of
loading and unloading XOM Key Table entries from entering
and exiting XOM compartments.

We split each of theenter xom and exit xom in-
structions into two smaller primitives. Thexalloc and
xinval instructions allocate and invalidate XOM Key Ta-
ble entries, whilexentr andxexit instructions enter and
exit a XOM compartment. When a program wants to enter a
new XOM compartment, it executesxalloc to load a com-
partment key.xalloc returns a new XOM ID value, which
the program then uses with thexentr instruction to begin
execution in that compartment. Code following thexentr
instruction must be properly encrypted and hashed to exe-
cute properly. Executingxexit from a compartment exits
the compartment, but the XOM Key Table entry is not re-
moved until the program executesxinval , so subsequent
entries into the compartment only require anxentr .

Becausexalloc andxinval access a limited hardware
resource, they are privileged instructions, and are executed
on behalf of the program by XOMOS via the system calls
xom alloc() andxom dealloc() . This scheme allows
the operating system in interpose and prevent misbehaving
applications from allocating too many XOM Key Table en-
tries.

3.2 Virtualizing the XOM Key Table

XOMOS manages the XOM Key Table to allow as many
applications to run simultaneously as possible. However, the
table is a limited resource and there must be a mechanism
to reuse its entries. Recall that the internal storage in the
machine is protected by XOM ID’s that correspond to XOM
Key Table entries, so reusing a table entry could compromise
the data of the previous owner. To ensure that old entries
are not reused inappropriately, we add bits to the XOM Key
Table to record the state of each entry: free — available to be
allocated, active — currently in use, and invalid — no long
being used, but might still be protecting stale data.

xalloc changes an entry from the free state to the ac-
tive state andxinval makes active entries invalid. Invalid
entries are reclaimed to the free state by adding a new privi-
leged instruction,xrclm . XOMOS knows which entries are
in the invalid state since all table operations require system
calls into the kernel. Any invalid entry can be reclaimed, but
the hardware first ensures that no data protected by the old
XOM ID still exists on the processor. The XOM processor
clears all registers in the register file that may be tagged with
that XOM ID. However, it is too complex for the hardware to
check every cache entry so it invalidates all on-chip caches
to prevent old data in the caches from leaking out. It is the
operating system’s responsibility to make sure any dirty data
in the cache is written back first, or it will be lost.

The operating system maintains a mapping between pro-
cess ID’s, XOM ID’s, and encrypted compartment keys.
When a process requests a XOM Key Table entry via the

xalloc system call, but none is available for reclama-
tion, the operating system forcibly reclaims an entry with
the xinval and xrclm instructions. When the process
that just lost its entry is subsequently restarted, the operat-
ing system reallocates the XOM Key Table entry using the
encrypted compartment key.

3.3 Saving and Restoring Context

As discussed in Section 2, the operating system saves the
state of an interrupted process with the aid of additional
hardware instructions. However, the original architecture
overlooked one subtlety. When saving the register value
with the save register instruction, the operating sys-
tem has no way of reading the XOM ID tag of the register
it is saving. When the operating system restores registers
with the restore register instruction, it needs to tell
the hardware which compartment to restore the register to
with a XOM ID value. To fix this, we add a new instruc-
tion, xgetid that gets the XOM ID of the compartment
that owns that register. XOMOS uses this to query a reg-
ister’s XOM ID tag before saving it. Without this ability,
XOMOS cannot identify the owner of data, and thus cannot
manage the register.

The encrypted register is larger than a 64-bit mem-
ory/register word on our processor due to the additional in-
formation that must be saved. XOM uses a 128-bit cipher
text that contains the encrypted register value, register num-
ber, and the XOM ID of the compartment. This is then com-
bined with a 128-bit hash for integrity resulting in a 256-bit
value. Saving the entire value to memory in one instruction
would result in a multi-cycle, multi-memory access instruc-
tion, which is difficult to implement in hardware.

Instead of the singlesave register instruction, we
change the architecture to implement anxenc instruction
that will encrypt and hash the register contents with the regis-
ter key and place them in four specialXOM registers. These
can be accessed via thexsave instruction, which takes
an index pointing to one of the four registers and saves it
to a memory location. Similarly, to replace therestore
register instruction, anxrstr instruction restores val-
ues in memory to the four XOM registers and anxdec in-
struction is used to decrypt the value in the XOM registers
with the register key, verify the hashes, and return the value
to a general-purpose register.

The low-level trap code in XOMOS includes the XOM
register access instructions. Figure 1 illustrates the code to
save and restore a register. This sequence saves and restores
register$s0 . $k1 points to the base of the exception frame
while EF S0 is the offset into the exception frame where the
register value of$s0 is stored. A similar sequence is re-
quired for every register. Processing traps for code in a com-
partment represents a large instruction overhead — where 2
instructions are required to save and restore a register for an
application with no protected registers, 13 instructions are
required to save and restore each protected register. To pre-

li $k1,BASE_OF_EFRAME # save cntxt
xgetid $s0,$at # get XOM ID

of $s0->$at
xenc $s0,$at # encrypt $s0

into $x0...$x3
xsave $0,EF_S0($k1) # save
xsave $1,(EF_S0+8)($k1) # encrypted
xsave $2,(EF_S0+16)($k1) # values
xsave $3,(EF_S0+24)($k1)
sw $at,(EF_S0_XID)($k1)
... # restore cntxt
xrstr $0,EF_S0($k1) # restore
xrstr $1,(EF_S0+8)($k1) # from memory
xrstr $2,(EF_S0+16)($k1)
xrstr $3,(EF_S0+24)($k1)
lw $at,(EF_S0_XID)($k1)# load XOM ID
xdec $s0,$at # decrypt

Figure 1. XOMOS context switch code.

serve the performance for applications that are not executing
in a compartment, XOMOS first checks the XOM ID of the
program counter of an interrupted process to see if it is in a
compartment, and only executes the extra instructions if it is
required.

Aside from new context switch code, changes are also
required to the exception frame structure, where XOMOS
stores the interrupted process state. The exception frame
must be enlarged to allow room to hold the XOM ID of each
register as well as the larger cipher text.

Some parts of the interrupted process state cannot be pro-
tected by XOM and are left tagged with the NULL XOM ID.
For instance, data such as the fault virtual address in a TLB
miss, or the status bits that indicate whether the interrupted
thread was in kernel mode or not, must be available to the
operating system for it be to handle these exceptions. While
this process state reveals some information about the applica-
tion, the nature of such information is limited. For example,
a malicious operating system can obtain an address trace of
every page an application accesses while in a XOM compart-
ment by invalidating every page in the TLB and recording
every fault address.

3.4 Paging Encrypted Pages

XOM uses cryptographic hashes to check the integrity of
data stored in memory. The operating system also must vir-
tualize memory, which means that it must be able to relocate
encrypted data and hashes in physical memory. It is impossi-
ble to store the hashes in the ECC memory bits as suggested
in [18] because to virtualize memory, the operating system
must be able to access the hashes. We store the hashes on
a different page from the data so as to retain a contiguous
address space.

A malicious operating system cannot take advantage of
this separation between the hashes and the data. A XOM
application will not proceed with a secure memory load if
a valid hash is not supplied to it. To tamper with data, the
operating system must be able to create the correct hash for

the fake data. A sufficiently strong cryptographic algorithm
(e.g., MD5 [13]) can make this computationally difficult.

We reserve a portion of the physical address space for the
xhashsegment, where the cryptographic hashes for XOM
will be stored. The starting location of the XOMOS kernel
is adjusted to be just below thexhashsegment. In our XOM
processor, L2 cache lines are 128 bytes long and require a
128-bit hash, making thexhashsegment one-eighth the size
of physical memory. For easy address translation, we locate
the segment at the top of the physical address space. The
offset of the hash in the segment can then be calculated by
dividing the physical address of the first word in the cache
line by eight.

Whenever the XOMOS pager swaps a page in physical
memory out to the backing store, it also copies the matching
values in thexhashsegment onto a reserved space on swap.
When faulting a page back in, the operating system copies
the hash data of the page being faulted in, and places it at
the correct offset in thexhashsegment. The operating sys-
tem gives similar treatment to XOM code pages since XOM
code also has hash values protecting it. These are stored in a
separate segment in the executable file. When a code page is
faulted in, the appropriate hash page is also read in from the
executable file image and placed in thexhashsegment.

Since not all applications may actually use XOM facili-
ties, our simple design is wasteful as it reserves a fixed por-
tion of memory for hashes. Unencrypted values will not have
hash values that need to be saved. The design could be made
more efficient with additional hardware.

3.5 Shared Libraries

Linking libraries statically is relatively straight forward as
the library code can be placed in the XOM compartment by
encrypting and hashing it with the compartment key after
linking. On the other hand, if linked dynamically, shared
library code cannot be encrypted since it must be linkable
to many applications, and encrypting it with a certain key
would make it linkable to only one. While it is possible to
have code in the compartment encrypt the library code at run
time, thus bringing it into the compartment, this is compli-
cated. Instead, we chose to design an interface where XOM
encrypted code can call unencrypted library code, with the
assumption that the call is insecure — the caller cannot be
sure that the library code has not been tampered with.

To support dynamically linked libraries in a way that is
transparent to the programmer, the compiler must be altered
to use acaller savecalling convention to deal with secure
data. To see why, recall that in a callee save calling conven-
tion, the dynamic library subroutines are expected to push
the caller’s registers on the stack. However, since the subrou-
tine is not in the same compartment as the XOM code calling
it, it will not have the ability to access those values. Thus, the
caller, rather than the callee, must save all secure registers.
In addition, before calling the subroutine, the calling XOM
code must first move, as necessary, register values such as

compiler has saved all registers
XOM ID value is in $s0
sd $fp,0($sp) # push fp
and $fp,$fp,˜0xF # align fp
xmvtn $fp # move pointers
xmvtn $sp # to null
xmvtn $gp
xmvtn $a0 # move
xmvtn $a1 # subr. arguments
xmvtn $t9
xexit # exit XOM (aligned)
jal $t9 # subroutine call
...
xentr $s0 # reenter XOM (aligned)
xmvfn $fp # move pointers
xmvfn $gp # back
xmvfn $sp
xmvfn $v1 # move return value
ld $fp,0($sp) # restore old fp
now compiler restores all
caller save regs.

Figure 2. Exiting and entering a Compartment.

subroutine arguments, the stack pointer, frame pointer, and
global pointer to the NULL compartment so that the callee
can access them. After this it must exit its XOM compart-
ment with thexexit instruction.

Encrypted data cannot be stored on the same cache line
as unencrypted data. When making a function call across
a XOM boundary, we can either realign the frame pointer
for local variables to cache line boundaries, or simply use a
separate stack when executing in a XOM compartment. Sim-
ilarly, the start of the unencrypted code must be aligned to be
on a different cache line than that of the encrypted code.

When returning from the subroutine call, the above se-
quence must be reversed. The application re-enters its XOM
compartment, moves the stack pointers back from NULL, re-
places them to the values before alignment and restores the
caller saved register values. Similar code must be executed
before a system call since the system call arguments and pro-
gram counter must be readable by the kernel.

We have implemented and tested this method by manually
saving the registers and adding the wrapper code around calls
to the C standard library (libc). An example of such wrapper
code is given in Figure 2.

Libraries that perform security sensitive routines should
be statically linked. An example of this is the OpenSSL li-
brary, which contains cryptographic routines. On the other
hand, it does not make sense to encrypt shared libraries that
consist of input or output routines. The program should
check values from these libraries to see if they are sensible
since they could potentially be coming from an adversary.

3.6 Process Creation

Naively implemented, a XOM application that forks will
cause the operating system to create a child that is the ex-
act copy of the parent, with the child inheriting the parent’s

XOM ID. If the operating system interrupts one process, say
the parent, and restores the other, an error will occur since
the current register key will not match the register state of
the child.

The solution is to allocate a new XOM ID for the child.
Because there are two different threads of execution, we
need two different register keys. A newxom fork() li-
brary call is created for programs where both the parent and
child of a fork will be using compartments.xom fork()
is similar to regular UNIXfork() except is will use the
xom alloc() system call to allocate for the child, a sec-
ond XOM ID with the same compartment key as the parent.
They must have the same compartment key because the child
needs to access the memory pages it inherits from the parent.
After the new XOM Key Table entry is acquired, the par-
ent requests the operating system to do a normalfork() .
When the parent returns, it continues using the old XOM ID,
while the child will use the new XOM ID.

Register data is tagged with XOM ID’s, which distinguish
ownership between the parent and the child. The situation
with the data in the cache is more subtle. Since both parent
and child have the same compartment key, secure data in the
caches must be tagged with the same value for both. Clearly,
we cannot use the XOM ID’s, which are different for each
process; instead we introduce a new value, called aXOM
tag. Thus, XOM ID’s are architectural shorthand for regis-
ter keys, which protect the dynamic state of a process; and
XOM tags are architectural shorthand for compartment keys,
which protect the code and data of a process that is stored in
memory.

We modify the XOM Key Table to implement not one,
but two tables. One maps register keys to XOM ID’s and a
second maps compartment keys to XOM tags. The hardware
also records the mapping of XOM tags to XOM ID’s where
a single XOM tag can be used by multiple XOM ID’s. When
a process executes a secure load, its XOM ID is translated
through the XOM Key Table to the process’ XOM tag, which
is then used to tag the data in the cache. When this cache
line is flushed to memory, the value is encrypted with the
compartment key that corresponds to the XOM tag.

3.7 User Defined Signal Handlers

A user defined signal handler may access the state of the
interrupted process. It may also modify that state and then
restart the process with the altered state. However, when
a process executing in its XOM compartment is delivered
a signal, the state of the interrupted thread will be en-
crypted. XOMOS saves the register state of the process using
xgetid , xenc , andxsave instructions much like the con-
text switch code in Figure 1. The interrupted state is copied
into asigcontextstructure and delivered to the user-level sig-
nal handler. However, to support XOM, the fields of thesig-
contextstructure are enlarged the same way the exception
frame is, to accommodate the larger encrypted register val-
ues and hashes.

To process the signal, the signal handler requires the regis-
ter key that thesigcontextstructure is encrypted with. To be
secure, the hardware must only release this key to a handler
in the same compartment as the interrupted thread, which
means the signal handler code must also be appropriately
encrypted and hashed with the same compartment key as the
interrupted thread. Entry into the signal handler within the
XOM compartment and the retrieval of the register key must
be a single atomic action. Otherwise, we can get the follow-
ing race: If the signal handler has entered the compartment
and gets interrupted before it retrieves the register key, then
that key will be destroyed by the hardware before the handler
can ever get to it.

The XOM hardware guarantees the required atomicity by
writing the register key into a general-purpose register when
a program executes axentr instruction. This way, the sig-
nal handler in the XOM compartment always has the re-
quired register key, even if it is subsequently overwritten in
the key table by an interrupt. With the register key, the sig-
nal handler can then decrypt and verify the cipher texts in the
sigcontextstructure, and even modify and re-encrypt them if
necessary.

The simplest way for the signal handler to restart the
thread is to restore the new register state and jump to the in-
terrupted PC. However, IRIX requires the restart path for the
signal handler to pass through the kernel so that it can reset
the signal mask of the process. The kernel uses the contents
of thesigcontextstructure returned by the handler to restart
the process. Thus, the signal handler requires a way to set the
register key so that it matches the key used in the modified
sigcontextstructure. To do this, we modifyxexit to take
a register value, which the hardware will use as the current
register key for that XOM ID. XOM makes signal restarts
that pass through the kernel more expensive because the sig-
nal handler must re-encrypt all modified register values in the
sigcontextstructure and the hardware must decrypt all those
values when the operating system restarts the thread.

In fact, if the signal handler modifies any of thesigcontext
registers, it should select a new register key and re-encrypt
all of them with that key. Otherwise, if the signal handler
encrypts the modified values with the same key as the old
value, a malicious operating system may choose to restore
the old value and ignore the new value. In addition, a mali-
cious operating system may deliver signals with faulty argu-
ments. This will not pose a security problem the contents in
the sigcontext structure will only be accessible if they were
encrypted and hashed properly.

4 Results

In this section, we examine the various overheads associated
with XOMOS. First, the implementation effort of the modifi-
cations discussed in Section 3 is discussed. We then proceed
to examine the performance overheads of our modifications.
The performance impact of XOM appears in two aspects.

Function Number of
Lines Files

Key Table System Calls 63 2
Key Table Reclamation 28 2
Save and Restore Context 907 16
Paging Encrypted Pages 40 1
Signal Handling 802 2

Table 3. Number of lines and files changed in
the kernel.

Function Num. of Lines
Shared Library Wrappers 64
Signal Handling 136
Fork & Process Creation 72

Table 4. Line count of user level changes.

First, there is the overhead that results from the modifica-
tions that were performed on the base IRIX 6.5 operating
system. The operating system overheads are studied with
a series of micro-benchmarks, which stress certain parts of
XOMOS that have been modified. The performance is com-
pared to the original, unaltered, IRIX 6.5 operating system.
The other source of overhead is the cost of encrypting and
decrypting memory accesses, as well as the cost of entering
and exiting a compartment. These are more apparent when
examining end-to-end application performance. We thus ex-
amine the performance of a XOM-enabled MP3 audio player
and RSA operations in the OpenSSL library.

4.1 Implementation Effort

To implement XOMOS, we added approximately 1900 lines
of code to the IRIX 6.5 kernel. The breakdown of these
lines of code is shown in Table 3. In addition to the ker-
nel changes, dealing with process creation, shared libraries,
and user level signal handling required changes at the user
level, as shown in Table 4.

One qualitative observation we made was that most of the
kernel modifications were limited to the low-level code that
interfaces between the operating system and the hardware.
As a result, much of the higher-level functionality of the op-
erating system, such as the resource management policies,
kernel architecture and file system were left unchanged. This
reduced the side effects of these modifications considerably
and suggests that the changes are not operating system de-
pendent. While some modifications such as signal and fork
are UNIX specific, the concepts of saving state to handle a
trap, paging and process creation are common to most mod-
ern operating systems. This suggests that it would also be
possible to port other operating systems to run on the XOM
architecture.

Benchmark Total Cycles Total Instructions Kernel Instructions Cache Misses
IRIX XOM OV IRIX XOM OV IRIX XOM OV IRIX XOM OV

System Call 9196 10817 18% 3828 4018 5% 3787 3837 1% 5 6 37%
Signal Handler 65772 99190 53% 10417 14637 41% 10339 14427 40% 34 48 43%
XOM Fork 701625 784418 12% 65283 72490 11% 65077 72261 11% 565 626 11%

Table 5. Micro-benchmark overhead of XOMOS vs. IRIX

4.2 Operating System Overhead

The operating system modifications add overhead in several
major areas. First, additional instructions are required by
the operating system to save and restore context, resulting
in more executed instructions. In addition, since encrypted
registers are larger than unencrypted registers, operating sys-
tem data structures that store process state such as the excep-
tion frame orsigcontextdata structures have a larger memory
footprint. This can increase the cache miss rate and cause
more overhead.

Another source of overhead comes from the additional I/O
operations that are performed to save hash pages to disk.
In our implementation, a hash page accompanies every data
page, and thus the I/O requirements for paging operations
are increased by the size of the hash pages. In this case, this
resulted in a bandwidth increase of one eighth. This should
not be an issue for applications that are not memory bound.

Reclaiming XOM Key Table entries also results in some
operating system overhead. Since this requires flushing on-
chip caches, this can be an expensive operation. However,
note that each time a XOM Key Table entry is allocated,
the XOM processor needs to perform a public key operation
which may require millions of cycles [20]. Typically, several
allocations will occur before the XOMOS needs to reclaim
entries, so we are assured that the percentage of cycles spent
on XOM Key Table reclamation will not be large.

To quantify the overhead of XOMOS over the bare IRIX
6.5 operating system, we wrote three micro-benchmarks that
exercised the portions of the operating system kernel that had
been modified. These benchmarks exercised a system call,
signal handling and process creation in the modified kernel.
The NULL system call benchmark makes a system call in the
kernel that immediately returns to the application. The signal
handling benchmark installs a segmentation fault (SEGV)
signal handler and then causes a SEGV to activate the han-
dler. The handler simply loads the program counter from the
sigcontext structure, increments it to the next instruction and
then restarts the main thread. Finally, the process creation
benchmark callsxom fork to create new XOM processes.

The benchmarks do not perform any secure memory op-
erations, so the overheads incurred are purely from the extra
instructions executed and any negative cache behavior. Our
simulator is an in order processor model on which all instruc-
tions complete in one cycle unless stalled by a cache miss.
The processor model has split 16 KB L1 caches and a unified
128 KB L2 cache. While these caches are small for a typical
modern processor, the benchmarks that we simulate are also

small, so scaling down the caches helps put a conservative
upper bound on what the performance will be. The mem-
ory latency is set at 150 processor cycles, and the memory
system models bus contention as well as read/write merging.
Table 5 summarizes the overheads that resulted from our op-
erating system modifications.

The overhead for system calls is modest and the number
of extra instructions in the kernel is actually very small. As
discussed in Section 3.5, system calls cannot be made from
inside a compartment. To make a system call, the XOM ap-
plication must exit the compartment, make the system call
and then return to compartment. The kernel only needs to
check that the system call is not made while inside a com-
partment or the system call will fail. Because of this, about
75% of the extra instructions occur in user code. The remain-
ing cycles are caused by additional cache misses. Because
encrypted code and unencrypted code cannot share a cache
line, the transition to and from compartment code can also
incur a cache miss.

The signal handler overhead experiences the most kernel
overhead, with the majority of the extra instructions executed
occurring on the kernel side. Because the signal is delivered
while the application is in a compartment, the kernel must
use the longer XOM save routines shown in Figure 1 to save
every register. In addition, when the kernel populates the
sigcontext structure, the kernel requires more instructions to
copy the larger encrypted register values. The additional in-
structions and larger data structures also result in an increase
in cache misses.

Finally the xomfork benchmark experiences the least
overhead of the three. Fork is already a long operation in
IRIX, so the overhead imposed by XOM is less noticeable.
The majority of the fork overhead is from the additional sys-
tem call required to allocate a XOM ID for the child. This
system call causes a number of TLB faults because the kernel
must perform acopy in to read the encrypted compartment
key from the address space of the application.

One thing we noticed from these benchmarks is that it is
important to avoid performing any unnecessary XOM oper-
ations in the kernel. In our implementation, we were careful
to always test if the interrupted application is running in a
compartment or not. If it wasn’t, the extra instructions to
save and restore the larger encrypted registers were left out.
We can see this in the difference between the kernel instruc-
tions executed for the NULL system call benchmark, which
exits the compartment before trapping into the kernel, and
the signal handling benchmark, which traps while in a com-

mpg-123 mpg-coarse mpg-fine mpg-super-fine
Cycles 153309129 162495385 6% 158013671 3% 349765340 129%
Instructions 82078248 82110779 0% 82090221 0% 82078248 0%
Cache Misses 50616 48367 -4% 49708 -2% 95623 89%
XOM Instructions 0 80530620 77447213 4403154
XOM Mem. Ops 0 25403 19828 16980
XOM Transitions 0 248 122 2075

rsa rsa-coarse rsa-fine rsa-super-fine
Cycles 104489760 103195645 -1% 107646113 3% 102589532 -2%
Instructions 64670758 64691056 0% 64683133 0% 64674475 0%
Cache Misses 4041 5252 30% 9724 141% 4162 3%
XOM Instructions 0 64210655 64127755 1116332
XOM Mem. Ops 0 2920 5483 381
XOM Transitions 0 86 87 18

Table 6. Performance overheads of XOM-mpg123 and XOM-OpenSSL-RSA

partment. Another factor in the overheads is that IRIX is a
highly performance tuned operating system. By increasing
the size of the code and data structures, our modifications
destroyed a part of that tuning and resulted in more cache
misses.

4.3 End-to-end application overhead

We are able to run full applications on XOMOS. To mea-
sure the end-to-end application overheads, we added XOM
functionality to two applications that would benefit from se-
cure execution. The first is mpg123 — a popular open source
MP3 audio player to createXOM-mpg123. This simulates a
scenario where a software distributor may wish to distribute
a decoder for a proprietary compression format. The other is
the OpenSSL library, an open source library of cryptographic
functions, which is used in array of security applications. In
OpenSSL, we tested the performance of RSA encryption and
decryption, by using thersa test benchmark that is in-
cluded in the OpenSSL distribution to create the XOM-RSA
benchmark.

We wanted to study the effects of varying the amount of
code in the XOM compartment with this experiment. Ap-
plications have two major sources of overhead when inside
a compartment. The first is overhead on entering or exiting
a XOM compartment. Each time the application enters or
exits a compartment, an event we call aXOM transition, the
compiler must pad the instruction stream withnop ’s so that
encrypted code and unencrypted code boundaries are aligned
to cache lines in the machine. Even though the application
can avoid executing thenop ’s by jumping pass them, it can
still incur a cache miss because the next instruction is on
another cache line. The other source of overhead is due to
the additional memory access time that encrypted data and
instructions incur. This latency is due to the cryptographic
operations that the hardware must perform.

These performance considerations are balanced against
security requirements. Placing a large, portion of the ap-

plication in the compartment reduces the amount of code
visible to the adversary. We refer to this ascoarse-grained
XOM compartment usage. On the other hand, minimizing
the portion in the compartment reduces the overheads asso-
ciated with memory accesses, but may allow the adversary
to infer more information about the application. We refer to
this asfine-grainXOM compartment usage.

To study these effects, we created three versions of XOM-
mpg123 and XOM-RSA, each at a different granularity of
XOM compartment code. Thecoarsebenchmarks encom-
passed the entire application short of initial start-up code.
Finebenchmarks just protect the main algorithms that the ap-
plication is using. For example, in XOM-mpg123, the code
that decodes each frame of data is protected. This would ex-
pose the format of the mp3 file to an attacker, but would not
expose the actual decoding algorithm. Finally thesuper-fine
benchmarks seek a small operation to protect. This opera-
tion usually makes no system calls and has little or not mem-
ory accesses. In XOM-mpg123, only the Discrete Cosine
Transform (DCT) function used in MPG decode is placed in
the compartment. Table 6 summarizes the results of porting
those applications.

The overall execution time is given in processor cycles.
For the most part, the overhead is lower than the previous
section’s micro-benchmarks since the operating system over-
head is diluted over a longer execution time. The only ex-
ception to this is mpg-super-fine — this was surprising since
for XOM-mpg123, the super-fine benchmark executes the
fewest XOM instructions, but had the worst performance.
On closer inspection, we found that the DCT subroutine is
called on the inner loop of the decode function, so plac-
ing DCT in a compartment requires frequent and numer-
ous XOM transitions. Each transition increases the mem-
ory footprint of the code by two cache lines, and as a result,
the loop no longer fit as well in the cache. This illustrates
that while each XOM memory access only adds a fraction
to the memory access time, numerous XOM transitions can

lead to poor cache behavior due to increased code size. As a
result, creating too many XOM transitions in an effort to re-
duce XOM memory accesses can lead to worse, as opposed
to better performance.

Another interesting thing to note is that mpg-coarse actu-
ally has more XOM transitions despite the fact that the entire
application has been placed in a XOM compartment. This is
due to XOM transitions that occurred to make system calls.
On the other hand, rsa-fine resulted in more XOM transitions
than rsa-coarse because of loop iterations, but rsa-super-fine
removed all system calls from the compartment so it had
many fewer XOM transitions. While coarseness in the com-
partment granularities seems advantageous for both perfor-
mance and security, including sections that make too many
system or shared library calls can also cause a lot of XOM
transitions. From these benchmarks, it seems that adding
XOM protection to applications does not increase the over-
all instruction count by much. Rather, the number of XOM
transitions has a large effect on the number of cache misses,
which is a major factor on overall program execution time.
The latency due to XOM memory operations actually seems
to be a secondary factor.

We also observed that when the size and associativity of
the caches is increased, fine granularity applications tend to
perform better. However, their advantage is minimal, and
overall difference between execution times is less than 5%
across different XOM compartment granularities. As a re-
sult, with adequately sized caches, applications can be se-
cured in coarse-grained XOM compartments with minor per-
formance penalty.

5 Conclusions

Currently, there exist various initiatives that place the trust in
modern computing systems in a hardware component rather
in software only. In these systems, the applications don’t
trust the operating system to protect their data, and the oper-
ating system does not trust the application to properly use
its resources. The result is that the interface that the op-
erating system exports to each application must change to
support the hardware security features, and some of the pro-
tection aspects of the operating system must be moved into
the hardware. This paper studied how these changes can be
implemented and what the impact of those changes on the
performance of the system is. To do this, we modified the
original XOM architecture proposal to better support an op-
erating system and we created the XOMOS operating system
for study.

We found that XOMOS could be written by modifying
a standard operating system such as IRIX. The size of the
modifications on the original operating system was mod-
est — about 1900 lines in roughly 20 files were modified.
As one would expect, most of the modifications dealt with
the low-level interface between the operating system and the
hardware, and with routines that copied and saved applica-

tion state. Because of this, we feel that the same types of
modifications could be applied to a wide range of operating
systems. Since managing protected data is much more ex-
pensive than normal data, care needs to be taken to ensure
that both this processing is only done when needed, and it
needs to be done infrequently. We were able to find tech-
niques to achieve this.

Although the basic XOM architecture that was originally
proposed already has the basic primitives required to sup-
port copy and tamper-resistance, we found that certain fea-
tures in hardware are required to facilitate the implementa-
tion of XOMOS. To virtualize and manage resources, XO-
MOS must be able to relocate data in physical space while
the XOM processor checks the integrity of data in virtualize
space. As a result, facilities must be provided for the oper-
ating system to identify the owner of data, and the security
hashes of memory data must be available to the operating
system, so that it may relocate data. Finally, the decompo-
sition of complex functions into simple primitives, as in the
case of register saves and restores, as well as XOM Key Ta-
ble operations allows the operating system to better control
resource usage.

Our preliminary performance numbers look promising.
The hardware overheads are not small — with memory en-
cryption and decryption costing 15 cycles and saving and
restoring a protected register requiring 13 instructions in-
stead of 2. However, these costs are only incurred when
the machine must do an even more expensive operation —
namely a memory fetch (which takes over 100 cycles) and a
trap into the kernel. In fact, in the applications that we exam-
ined, the dominant cost was neither of these issues, but rather
the larger code footprint that resulted in poor cache behavior.

These results have encouraged us to explore other issues,
such as implementing a virtual backing store, and ways of
using XOM to increase security in the file system. We be-
lieve with the current trend towards trusted computing plat-
forms, the techniques explored in this paper will be valuable
as guides to the design and implementation of such systems.

References

[1] M. J. Accetta, R. V. Baron, W. Bolosky, D. B. Golub, R. F.
Rashid, A. Tevanian, and M. W. Young. Mach: A new kernel
foundation for UNIX development. InProceedings of Sum-
mer Usenix, July 1986.

[2] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable
bootstrap architecture. InProceedings of the 1997 IEEE Sym-
posium on Security and Privacy, pages 65–71, May 1997.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im)possibility of obfus-
cating programs.Lecture Notes in Computer Science, 2139,
2001.

[4] Business Software Alliance, 2003.
http://www.bsa.org .

[5] P. England, J. DeTreville, and B. Lampson. Digital rights
management operating system. U.S. Patent 6,330,670, Dec.
2001.

[6] P. England, J. DeTreville, and B. Lampson. Loading and
identifying a digital rights management operating system.
U.S. Patent 6,327,652. Dec. 2001.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. InProceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 251–266, 1995.

[8] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. Devadas.
Caches and Merkle trees for efficient memory authentica-
tion. InNinth International Symposium on High Performance
Computer Architecture, pages 295–306, 2003.

[9] T. Gilmont, J. Legat, and J. Quisquater. An architecture of
security management unit for safe hosting of multiple agents.
In Proceedings of the International Workshop on Intelligent
Communications and Multimedia Terminals, pages 79–82,
Nov. 1998.

[10] T. Gilmont, J. Legat, and J. Quisquater. Hardware security for
software privacy support.Electronics Letters, 35(24):2096–
2097, Nov. 1999.

[11] J. Heinrich. MIPS R10000 Microprocessor User’s Manual,
2.0 edition, 1996.

[12] S. A. Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behavior. PhD thesis, Stanford
University, Feb. 1998.

[13] B. Kaliski Jr. and M. Robshaw. Message authentication with
MD5. CryptoBytes, 1(1):5–8, 1995.

[14] H. Krawczyk, M. Bellare, and R. Canetti.
HMAC: Keyed-hashing for message authentication.
http://www.ietf.org/rfc/rfc2104.txt , Febru-
ary 1997.

[15] M. Kuhn. The TrustNo1 cryptoprocessor concept. Technical
Report CS555, Purdue University, Apr. 1997.

[16] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.Pro-
ceedings of the 13th ACM Symposium on Operating Systems
Principles, 10(4):265–310, 1992.

[17] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz. Specify-
ing and verifying hardware for tamper-resistant software. In
Proceedings of the 2003 IEEE Symposium on Security and
Privacy, May 2003.

[18] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. InProceedings of the 9th In-
ternational Conference Architectural Support for Program-
ming Languages and Operating Systems, pages 168–177,
Nov. 2000.

[19] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build
a trusted database system on untrusted storage. Technical
Report STAR-TR-00-03, InterTrust, 2000.

[20] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public key cryptosystems.Commu-
nications of the ACM, 21(18):120–126, 1978.

[21] J. Rushby. Design and verification of secure systems. InPro-
ceedings of the 8th ACM Symposium on Operating Systems
Principles, volume 15, pages 12–21, 1981.

[22] J. Saltzer and M. Schroeder. The protection of information in
computer systems.IEEE, 63(9):1278–1308, Sept. 1975.

[23] SGI IRIX 6.5: Home Page, May 2003.
http://www.sgi.com/software/irix6.5 .

[24] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast ca-
pability system. InProceedings of the 17th ACM Symposium
on Operating Systems Principles, pages 170–185, 1999.

[25] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-
performance, programmable secure coprocessor. InFinancial
Cryptography, pages 73–89, Feb. 1998.

[26] The Trusted Computing Platform Alliance, 2003.
http://www.trustedpc.com .

[27] J. Tygar and B. Yee. Dyad: A system for using physically
secure coprocessors. Technical Report CMU–CS–91–140R,
Carnegie Mellon University, May 1991.

