Implementing an Untrusted Operating System on Trusted Hardware

Submitted to SOSP2003: Please do not distribute

David Lie Chandramohan A. Thekkath Mark Horowitz

Abstract There is a widespread belief that software-based solutions
are relatively easier to attack than hardware-based solu-
Recently, there has been considerable interest in provid- tions [3]. Thus, there have been several proposals for cre-
ing “trusted computing platforms” using hardware — TCPA ating systems that rely on hardware, rather than on software
and Palladium being the most publicly visible examples. In to enforce the security and protection of programs [9, 10, 15,
this paper we discuss our experience with building such a 18, 25, 27].
platform using a traditional time-sharing operating system Trysting the hardware rather than the software has inter-
executing on XOM — a processor architecture that provides esting implications for operating systems design. Since shar-
copy protection and tamper-resistance functions. In XOM, ing hardware resources among multiple users is a difficult
only the processor is trusted; main memory and the operat- task, often requiring complex policy decisions, it is most nat-
ing system are not trusted. urally done in software by aaperating systemBut, if one
Our operating systemXOMOS) manages hardware re- s reluctant to trust anything but the hardware, then we must
sources for applications that don'’t trust it. This requires a somehow arrange for an untrusted agent_the Operating sys-
division of responsibilities between the Operating syStem andtem software—to manage a trusted resource—the hardware.
hardware that is unlike previous systems. We describe tech- This paper explores the design of an operating system that
niques for providing traditional operating systems Services \ ns on hardware that supports tamper-resistant software.
in this context. Our operating system is intended to work with an existing

Since an implementation of a XOM processor does not o essor architecture called XOM, which stands for eXe-
exist, we use SimOS to simulate the hardware. We modify, e Only Memory [18]. In the XOM processor architec-

IRIX 6.5, a commercially available operating system to cre- ture, programs do not trust twperating systeror external

ate XOMOS. We are then able to analyze the performance o mory byt instead, trust the processor hardware to protect
and_lmplementatlon overheads of running an untrusted op- {hair code and data. In trying to design the operating sys-
erating system on trusted hardware. tem for the XOM processor, we found difficulties with the
original architectural specification that made it impractical
to provide certain operating system facilities, such as time-
slicing, process forking, and user-level signal handling. The
paper describes the design changes in the operating system

There are several good reasons for creating tamper—resistan?nd the architecture that were required to build a functioning
software including combating software piracy, enabling mo- system.

bile code to run on untrusted platforms without the risk of ~ The lack of trust in any software-based resource manager
tampering or intellectual property theft, and enabling the de- and external memory makes our system significantly more
ployment of trusted clients in distributed services such as robust and quite different from well-known approaches like
banking transactions, on-line gaming, electronic voting, and Microkernels and capability-based systems that try to solve a
digital content distribution. Tamper-resistant software is also Similar problem. If one is willing to compromise and lower
useful in situations where a portable device containing sen-the barrier by conceding hardware based attacks on memory,
sitive software and data may fall into the hands of adver- then solutions such as secure booting [2, 16, 27], TCPA [26]
saries, and in preventing viruses from modifying legitimate and Palladium (also known as Next-Generation Secure Com-
programs. puting Base or NGSCB) [5, 6] are viable alternatives to our

Tamper-resistance can be enforced using software or harddesign. We defer a fuller discussion of related work to Sec-
ware techniques. In the past, techniques such as software obtion 1.1.
fuscation have been explored, but with limited success [4]. The XOM architecture prevents programs from tamper-

1 Introduction

ing with each other by placing them in separatenpart- code since there is no way to distinguish between a legiti-
ments[22]. The separation of compartments is enforced mate user trying to gather information, and an adversary try-
by a combination of cryptography and tagging data in hard- ing to extract secrets. On the other hand, programs may still
ware. Since processes running on a XOM processor do notdo internal forms of self-debugging or self-profiling.

trust the operating system, it runs in a compartment separate

from user processes. However, to shgre hardware resource§ 1 pajated Work

among a set of processes, the operating system must be able

to preempt a process, as well as save and restore its conQur work is related to previous work on secure booting [2,

text. With XOM, a correctly written operating system must 16, 27]. Loosely speaking, secure booting is a technique
be able save and restore user data. Yet, even a malicioushat guarantees the integrity of higher level software running
operating system should not be able to read or modify dataon a machine by ensuring the integrity of each of the lower
belonging to a user process. layers (e.g., the runtime libraries, operating system kernel,

In addition to the operating system, main memory is also firmware, hardware) on which it depends. At the bottom of
not trusted by the XOM processor. The XOM processor not the chain a secure entity, such as a CPU, is assumed to have
only encrypts values in memory, but also stores hashes ofa tamper-resistant secret embedded in it. On power up, this
those values in memory as well. It will only accept encrypted secure entity takes control of the machine and authenticates
values from memory if accompanied by a valid hash. The the next layer e.g., the firmware, and transfers control to that
hash not only protects the actual value of the data, but alsolayer, which authenticates the next layer in turn, and trans-
checks the virtual address that the data was stored to by thefers control to it, and so on.
application, thus ensuring that an adversary cannot copy or A key difference between secure booting and XOM is that
move data from one virtual address to another. the latter does not trust the operating system or memory. Bug

The XOM architecture has previously undergone formal in the operating system cannot undermine the security of ap-
verification using a model checker [17]. This work demon- plications running on it. In a secure booting system, a deter-
strated that even an actively malicious operating system canmined and sufficiently sophisticated adversary could exploit
only extract a limited amount of information about user pro- the trusted memory to modify the instruction or data stream
grams. Because of its role as resource manager, the onlyof an authenticated program during execution (say by using
major attack the operating system could perform is a denial dual ported memory). In contrast, XOM encrypts all instruc-
of service attack. The verification also demonstrated that tions and data to and from main memory and can detect tam-
given a correctly working operating system, user programs pering of the code or the data at all times. The details of this
are guaranteed forward progress. technique are described in Section 2.

In principle, an operating system should be able to virtu- Executing trusted code on a secure co-processor is another
alize and manage resources without having to interpret anyway of achieving some of the same goals as we do [25, 27].
of the values it is moving, but there are practical obstacles to While a co-processor approach is feasible, it has some lim-
supporting many of the paradigms that typical operating sys- itations. For example, it is difficult to time-share the co-
tems support, such as signal handlers, memory managemenprocessor among mutually suspicious pieces of code. XO-
process creation and so on. In addition, the operating systemMOS allows mutually suspicious applications to be securely
must also manage resources used to store the cryptographieultitasked on the same processor without any special coop-
hashes that the XOM hardware uses. The challenge is to finderation from the applications.
ways of supporting traditional operating system functionality ~ There is much literature on security in the context of se-
under the new division of trust. To explore these matters fur- curity kernels [21], capability-based operating systems [24],
ther we designed an operating system for XOM cahe&at microkernels [1], and exokernels [7] that is related to our
MOS Using XOMOS we can execute XOM-protected (and work. All of these approaches assume that the operating sys-
ordinary) programs. Our experiments demonstrate that it is tem and memory are trusted, and as a result are very different
possible to write an operating system that not only managesfrom XOMOS.
resources for applications that do not trust it, but also sup- The TCPA [26] and Palladium or NGSCB [5, 6] initiatives
ports most, but not all, of the traditional services that one are also related to our approach. One difference between
expects from an operating system. these systems and XOM is that XOM provides the ability for

There is currently no hardware implementation of the programs to hide secrets in their binary images. Programs
XOM architecture. We therefore modify the SImOS [12] can use these secrets to authenticate themselves to third par-
simulation system to model a XOM processor, based on anties. Both TCPA and Palladium rely on a trusted monitor to
in-order processor model using the MIPS R10000 [11] in- perform the attestation (The TPM in the case of TCPA and
struction set. XOMOS is the implemented by modifying the the Nexus in the case of Palladium). TCPA provides a chain
IRIX 6.5 [23] operating system from SGI. of cryptographic hashes so that an application can reliably

XOM does preclude a set of services that operating sys- determine the complete boot sequence of the machine until
tems typically provide. For example, it would be impossible it was loaded. It can therefore decide if the boot sequence
to perform debugging or external profiling on XOM-secured has been tampered with and terminate. In some ways, TCPA

is similar to the authenticated boot process found in a securefashion. The operating system and other processes can ac-
booting system, and neither system can protect itself from ancess the XOM extensions through a set of instructions sum-
attack that modifies memory contents after attestation. Both marized in Table 1. The next three subsections detail how the
TCPA and the Palladium share the notionS#éaled Stor- XOM architecture compartments are enforced, how the pro-
age [5, 26], which uses a mechanism similar to XOM to cessor permits the operating system to handle program state
protect data. We discuss sealed storage in greater detail inwvithout violating isolation, and how it supports features such
Section 2.3. asattestationcurtained memoryandsealed storagéhat are

The rest of the paper is organized as follows. Section 2 commonly associated with trusted computing platforms.
provides background and summarizes the basic processor ar-
chitecture originally described in [18]. Supporting an operat-
ing system on this interface required significant software and

hardware co-design, resulting in several changes to IRIX and xoM uses both asymmetric and symmetric ciphers to imple-
the instruction set architecture. These changes are describe¢hent compartments The master secret hidden in the XOM
in Section 3. Section 4 describes the implementation effort processor is actually the private part of an asymmetric cipher
required to create XOMOS, and discusses the implementa-pair. To support multiple compartments, each compartment
tion and performance of micro-benchmarks as well as two pas 3 distinct symmetric key, called ttempartment key
secure applications running on XOMOS: RSA operations in \which is used to encrypt its contents. The compartment key,
OpenSSL and mpg123, an MP3 decoder. Finally, our con- jn turn, is encrypted with the public key matching the proces-
clusions are presented in Section 5. sor, allowing the processor to recover the compartment key
and decrypt the program. The encrypted compartment key
L . need not be kept in the processor; it can be stored with the
2 The Orlglnal XOM Architecture encrypted program code.
Data generated during program execution also must be
The XOM architecture is designed to address a shortcomingisolated in the program’s compartment. This is done by hav-
with implementing security in software. The problem is that |ng the XOM processor encrypt data that a program stores to
it is easy to tamper with and observe software, and as a re-memory with the compartment key when it leaves the CPU
sult, it is impossible to hide secrets in software. Instead, the chip. However, when data doesn'’t leave the chip, the XOM
XOM architecture uses hardware, and its tamper-resistantprocessor can skip the encryption. All values in proces-
properties, to protect master secrethat is different for ev- sor caches and registers are stored in plairf texincrease
ery XOM-enabled processor. This is then used to secure andefficiency. The XOM processor uses architectural support
protect other secrets in software. For example, a programto enforce compartments without paying the cryptographic
may want to protect its code and keep it secret. By hiding the penalty. Hardware tags, callétOM ID’s are added to on-
encryption key for the program in the processor, adversarieschip storage, such as registers and caches, to indicate which
cannot see or modify the program without mounting an at- compartment data and code belongs to. Since each compart-
tack on the processor hardware. Consequently, the XOM ment has a key and a XOM ID value, a hardware table, called
processor never allows the master secret to leave the chip; sghe XOM Key Table maintains the mapping between com-
all operations that use the master secret must be implementegartment keys and XOM ID’s. On a cache eviction the XOM
on the processor. processor performs a lookup on the XOM Key Table using
XOM uses its master secret to protect programs by sup-the XOM ID tag to get the compartment key it needs to en-
portingcompartmentsA compartment is a logical container crypt the value.
that prevents information from flowing into or out of it. A If code is encrypted, we say it is in a compartment. Prin-
process in a compartment is immune to bothservation cipals who don’t know the key cannot access the program
and modification Preventing unauthorized observation of code or data. There is a single distinguished compartment,
the protected process is important because the process codgalled theNULL compartmentwhich has no compartment
and data may have secrets that its owner does not want takey. Programs that are not encrypted exist and run in this
divulge. Conversely, by modifying the process data or code, compartment. Code and data in the NULL compartment
an adversary may induce the process to leak secrets, so thigan be accessed from any compartment, and programs may
must be prevented as well. We rely on the XOM hardware to yse this compartment as an insecure channel for sharing data
implement compartments efficiently using the secret hidden with other programs.
in the processor. To do this, XOM uses both cryptographic T protect against tampering of data while it is in mem-

and architectural techniques. ory, XOM processors employ a keyed cryptographic hash,
In this section, we will briefly summarize the original
XOM processor hardware described in [18]. For the most 1Asymmetric key cryptography uses pairs of keys, a public key for en-

part, a XOM processor behaves like atypical modern proceS_cryption and a private key for decryption, while symmetric ciphers use a
! single key for both encryption and decryption

sor, anc_l is simply a set of eXtenSions_to SUCh_ a processor. It 2ynencrypted values are referred to as plain text, encrypted values as
has registers, memory, and executes instructions in the usuatipher text

2.1 Implementing Compartments

Instruction | Description \

enter xom The XOM processor is given an encrypted compartment key. The key is decrypted and
placed in the XOM key Table. All following instructions are in the compartment and
should be encrypted.

exit xom Exit XOM compartment and return to the NULL compartment. Unload entry from|the
XOM Key Table.

secure store Stores register to memory securely.

secure load Loads memory securely from memory to a register.

save register Encrypts and saves a register to memory so that the operating system can save a program’s
state.

restore register Decrypts a value from memory and places it a register to restore a program’s state|

move to NULL Sets the XOM ID tag of register to NULL.

move from NULL Sets the XOM ID tag of register to that of the executing program.

Table 1. XOM Instructions. This table summarizes the original XOM instructions described in [18].

or message authentication code (MAC), to check for the in- standard load and store instructions save data in the NULL
tegrity of data and code stored into memory [14]. Each time compartment.

a cache line is written to memory, a hash of it is generated, XOM processors provide thenove from NULL and

and both the hash and the cache line are encrypted. The hasmove to NULL instructions to move register data between
pre-image contains both the virtual address and the value ofcompartments. These instructions simply change the value
the cache line. When decrypting the cache line, a matching of the tag on each register value.

hash must also be loaded before the XOM processor will ac-

cept the encrypted value as valid. Because the granularity of .

encryption is a cache line, it is important to note that pro- 2.2 Handling Program State

grams cannot store encrypted and unencrypted data on thgyhen 4 XOM program is interrupted, the operating system
same cache line. Similarly, encrypted code and plain text neeqs 4 way to save the context of the interrupted program,
code must be padded to be placed on separate cache lines. 4y restore it at a later time. However, at interrupt time,
In addition to the XOM Key Table, Master Private key and the contents of the registers are still tagged with the identity
encryption/decryption hardware, the XOM architecture also of the interrupted program. As a result, the operating sys-
adds new instructions to the instruction set architecture of thetem is unable to read those values to save them. The XOM

base machine. XOM programs execute¢néer xom in- processor provides two instructions for the operating system
struction to enter their XOM compartment. This instruction to use in this situation. Aave register instruction di-
causes the processor to decrypt the compartment key and enrects the XOM hardware to encrypt the register, create a hash
ter it into the XOM Key Table. At the same time, a XOM of the register, and store both to memory. A complemen-
ID is assigned to the compartment key. All instructions fol- tary restore register instruction takes the encrypted
lowing enter xom are in the compartment and must be register and hash, verifies the hash, and restores them back
decrypted before execution. Programs leave secure executo the original register, setting the XOM ID value appropri-
tion and return to the NULL compartment by executing the ately. The hashes detect when a malicious operating system
exit xom instruction. This causes the compartment key attempts to tamper with register values by either spoofing in
to be unloaded from the XOM key table and following in- a fake value or restoring valid values back to the wrong reg-
structions are no longer decrypted. This pair of instructions ister. In the event that the register is in the NULL compart-
allows a program to execute some code sections in the NULL ment, these instructions do not perform any cryptographic
compartment and others in a private compartment. This al- gperations.
lows for easier application deVElOpment and better program A Specia] provision must also be made to prevent the op-
performance as XOM code incurs the overhead of crypto- erating system from mounting a replay attack by taking the
graphic operations. register values from one interrupt and repeatedly restoring
XOM programs explicitly indicate whether data they store it. This is done by revoking the key used to encrypt and hash
to memory belongs to the NULL compartment or in their register values each time a XOM compartment is interrupted.
private compartment. Theecure store andsecure The hardware performs this revocation by regenerating a new
load instructions store and load data in a private compart- key for the XOM ID when it takes a trap. Since this key is
ment. Data thus stored is tagged with the same value as thecontinually changing, we can't use the compartment key to
program code when in the on-chip caches and will eventu- encrypt register values. Rather, we use a separate key, called
ally be encrypted with the same compartment key as the pro-theregister keyfor each XOM ID allocated in the XOM Key
gram if flushed to off-chip memory. On the other hand, the Table.

Memory values must also be protected against replay at-3 ~ Supporting an Operating System
tacks. Previous work [17] has shown a way of preventing
memory replays by storing a hash of memory in a register. The purpose of the XOM hardware is to protect the master
Efficient methods, such as the use of hash trees, exist to im-private key and to provide the basic functionality to enforce
plement this functionality [8]. compartments. Higher-level tasks such as resource alloca-
Note that XOM in no way prevents incorrectly written ton and management, hardware virtualization, and imple-
programs from leaking secrets, nor is that its intent. XOM Menting system call fqnctlonallty are still the domain of the.
simply provides the necessary support so that correct pro-OPerating system. While these tasks may have some security

grams can secure their secrets against a range of attacks. mplications, they are simply too complex to be implemented
in the hardware, necessitating the existence of an operating

system.
. XOM programs do not trust the operating system with

2.3 Support for Trusted Computing their data. On the other hand, the operating system does not

) trust XOM programs to behave properly, and must be able
XOM can be used to implement a platform for trusted com- {4 interrupt and remove resources from a misbehaving XOM
puting by protecting spftware from observation a_nd tamper- program. Accordingly, the contract between the XOM ar-
ing. Trusted computing offers three key security mecha- chjtecture and the operating system must satisfy two require-
nisms callecattestatiqm curtained memoryandsealed s_tor— ments. First, given a properly working operating system, it
age The XOM architecture supports these mechanisms asshould make resource management efficient and effective.
well, and many of the techniques used in XOM are directly second, it should ensure that if the operating system is ma-
applicable to trusted computing. licious, its privileged position does not allow it to violate the

Attestation is a mechanism that allows a remote party to isolation of a compartment.
verify some properties about a remote application and the Given these requirements on the interface between the
platform it is running on. For example, a remote party may hardware and operating system, the hardware must provides
want some guarantees that it is talking to an unmodified ver- exception and interrupt functionality as is found on ordinary
sion of a specific program before it continues with commu- processors. This allows the operating system to limit the ex-
nications. Using XOM to make software tamper-resistant ecution time of programs and interpose when programs ac-
gives software the ability to attest for itself, without the aid cess resources. On the other hand, when the operating sys-
of any other component. The software simply hides a signing tem moves the physical location of resources, it must adhere
key in its code image and uses this key to sign messages into the XOM compartments. This means, when saving pro-
a challenge-response protocol. Because XOM applicationscess state, it must use the special instructions provided by
can only be decrypted and executed on the correct XOM pro- XOM that encrypt and hash process registers. When relocat-
cessor, the software attestation also implicitly attests for the ing data in memory, the operating system must also relocate
hardware. However, since XOM does not need to trust the the respective hashes.
operating system, there is no need to attest for it. To implement XOMOS we needed to make three kinds of
Curtained memory is a mechanism where some portion of modifications.

memory is protected from observation and tampering. Palla-
dium provides this mechanism by making a portion of phys- ~ ® Modifications for XOM Key Table maintenance:

ical memory inaccessible to software without the proper cre- The hardware and operating system must have support
dentials. XOM provides curtained memory through the use for programs to use the XOM Key Table, and the oper-
of compartments. Compartments can be located anywhere ating system must manage the limited number of entries
in physical or virtual memory and storage for data in com- it has.

partments can be swapped to a backing store. In addition,
compartments are implemented entirely in the processor and
do not require any modifications to the memory or memory

controller. Compartments are resistant to direct attacks on
the hardware in the memory system, so even an adversary
who has access to the memory bus or who can emulate mem-

ory, cannot compromise a compartment. e Modifications for traditional operating system
Sealed storage is a mechanism that allows programs to mechanisms: Various features in a traditional operat-
store data in memory or on disk so that only programs with ing system such as shared libraries, process creation,
the proper credentials can access it. XOM implements sealed and user defined signal handlers require special support.
storage by having programs hide keys in their program im-
age. Programs may then use these keys to encrypt and deFor the most part, these modifications were implemented in
crypt data that is stored in the sealed storage. To authenticatehe operating system. However, in some cases, we found
the contents of sealed storage XOM can use hash trees [19]that modifications to the XOM hardware architecture were

e Modifications for dealing with encrypted data:
When the operating system is managing system re-
sources such as CPU time or memory, it must deal with
user data that is encrypted as well as the accompanying
hashes.

Original Hardware New Hardware Description
enter xom xalloc $rt,offset($base) Privileged. Decrypt the encrypted compartment key at
memory[$base + offset] and enter into the XOM
Key Table. The new XOM ID assigned to the key|is
placed in$rt . Requires a newom_alloc() system
call in the operating system.

xentr $rt,$rd Enters XOM compartment using the XOM [t . The
current register key is placed $ird .
exit xom xinval $rt Privileged. Mark the entry in the XOM Key Table

indicated by$rt as invalid. This XOM ID can nag
longer be used until it is reclaimed. Requires the new
xom_dealloc() system call.

xrclm $rt Privileged. Reclaim XOM IDért in the XOM Key Ta-
ble. Invalidate caches and clear any values in registers
that were tagged with the freed XOM ID.

xexit $rt Exit XOM compartment and return to the NULL com-
partment. $rt becomes the register key for the XOM
ID.
secure save xsd $rt,offset($base) Stores$rt into memory [$base + offset] . The

data remains in the same compartment as the procesg after
it is stored in memory.

secure load xld $rt,offset($base) Loads$rt with memory [$base + offset] . Val-
idate the accompanying hasrt is tagged with the ex;
ecuting process’ compartment.

save register xgetid $rt,$rd Take the XOM ID tag value ofrt and place it irbrd .
xenc $rt,$rd Check that$rt is owned by the XOM ID in$rd . If
so, encrypt the contents &ft with the keys indicated
by $rd . The result of the encryption is placed in XOM
co-processor registers $0...$3
xsave $rt,offset($base) $rt is one of the XOM co-processor registers $0../$3
which store the encrypted register created »mnc .
The register contents are savednemory[$base +
offset]

restore register xrstr $rt,offset($base) $rt is one of the XOM co-processor registers $0...$3 that
stores the encrypted value to be restored. Fill the register
with the value amemory[$base + offset]

xdec $rt,$rd Decrypt the 256 bit value set bystr , validate the re-
sult and restore to regist&rt . Set the XOM ID tag on
$rt .
move to NULL xmvtn $rt Set the XOM ID tag offrt to NULL.
move from NULL xmvfn $rt Set the XOM ID tag offrt to the XOM ID of the exe-

cuting program.

Table 2. Summary of modifications to the original XOM hardware architecture.

also necessary. A summary of the hardware modifications iscompartment frequently, since the hardware would have to

given in Table 2. perform an expensive public key operation every time.
An additional consideration is thagnter xom and
3.1 XOM Key Table System Calls exit xom by their nature, must be executed in the con-
text of the programs themselves as unprivileged instructions.
The original architecture specifies a singlgger xom in- If they were executed by the operating system instead, a ma-

struction to enter XOM operation. This allocates an entry in licious operating system could change the address at which
the XOM Key Table, which is freed when the program ex- the XOM code execution starts. Howevergeifiter xom
ecutes arexit xom instruction. While this is adequate, it is unprivileged, the operating system cannot prevent a ma-
is inefficient if a program wishes to enter and exit its XOM licious application from mounting a denial of service attack

by allocating all entries in the XOM Key Table. To satisfy xalloc system call, but none is available for reclama-
these conflicting requirements, we separate the operations otion, the operating system forcibly reclaims an entry with
loading and unloading XOM Key Table entries from entering the xinval —and xrclm instructions. When the process

and exiting XOM compartments. that just lost its entry is subsequently restarted, the operat-
We split each of theenter xom and exit xom in- ing system reallocates the XOM Key Table entry using the
structions into two smaller primitives. Theaalloc and encrypted compartment key.

xinval instructions allocate and invalidate XOM Key Ta-
ble entries, whilexentr andxexit instructions enter and
exit a XOM compartment. When a program wants to enter a
new XOM compartment, it executgalloc toloadacom- As discussed in Section 2, the operating system saves the
partment keyxalloc returns a new XOM ID value, which state of an interrupted process with the aid of additional
the program then uses with tixentr instruction to begin hardware instructions. However, the original architecture
execution in that compartment. Code following tentr overlooked one subtlety. When saving the register value
instruction must be properly encrypted and hashed to exe-with the save register instruction, the operating sys-
cute properly. Executingexit from a compartment exits tem has no way of reading the XOM ID tag of the register
the compartment, but the XOM Key Table entry is not re- it is saving. When the operating system restores registers
moved until the program executggval , so subsequent with therestore register instruction, it needs to tell
entries into the compartment only requirexemtr . the hardware which compartment to restore the register to

Becausealloc andxinval access alimited hardware with a XOM ID value. To fix this, we add a new instruc-
resource, they are privileged instructions, and are executedtion, xgetid that gets the XOM ID of the compartment
on behalf of the program by XOMOS via the system calls that owns that register. XOMOS uses this to query a reg-
xom_alloc() andxom.dealloc() . Thisschemeallows ster's XOM ID tag before saving it. Without this ability,
the operating system in interpose and prevent misbehavingxOMOS cannot identify the owner of data, and thus cannot
applications from allocating too many XOM Key Table en- manage the register.

3.3 Saving and Restoring Context

tries. The encrypted register is larger than a 64-bit mem-
ory/register word on our processor due to the additional in-
3.2 Virtualizing the XOM Key Table formation that must be saved. XOM uses a 128-bit cipher

text that contains the encrypted register value, register num-

XOMOS manages the XOM Key Table to allow as many ber, and the XOM ID of the compartment. This is then com-
applications to run simultaneously as possible. However, the bined with a 128-bit hash for integrity resulting in a 256-bit
table is a limited resource and there must be a mechanismvalue. Saving the entire value to memory in one instruction
to reuse its entries. Recall that the internal storage in the would result in a multi-cycle, multi-memory access instruc-
machine is protected by XOM ID’s that correspond to XOM tion, which is difficult to implement in hardware.
Key Table entries, so reusing a table entry could compromise Instead of the singlsave register instruction, we
the data of the previous owner. To ensure that old entrieschange the architecture to implementenc instruction
are not reused inappropriately, we add bits to the XOM Key that will encrypt and hash the register contents with the regis-
Table to record the state of each entry: free — available to beter key and place them in four speckDM registers These
allocated, active — currently in use, and invalid — no long can be accessed via thesave instruction, which takes
being used, but might still be protecting stale data. an index pointing to one of the four registers and saves it

xalloc changes an entry from the free state to the ac- to a memory location. Similarly, to replace thestore
tive state ancinval ~makes active entries invalid. Invalid register instruction, arxrstr instruction restores val-
entries are reclaimed to the free state by adding a new privi- ues in memory to the four XOM registers and>atec in-
leged instructionxrclm . XOMOS knows which entries are struction is used to decrypt the value in the XOM registers
in the invalid state since all table operations require system with the register key, verify the hashes, and return the value
calls into the kernel. Any invalid entry can be reclaimed, but to a general-purpose register.
the hardware first ensures that no data protected by the old The low-level trap code in XOMOS includes the XOM
XOM ID still exists on the processor. The XOM processor register access instructions. Figure 1 illustrates the code to
clears all registers in the register file that may be tagged with save and restore a register. This sequence saves and restores
that XOM ID. However, it is too complex for the hardware to register$s0. $k1 points to the base of the exception frame
check every cache entry so it invalidates all on-chip cacheswhile EF_SO is the offset into the exception frame where the
to prevent old data in the caches from leaking out. It is the register value offsO is stored. A similar sequence is re-
operating system’s responsibility to make sure any dirty data quired for every register. Processing traps for code in a com-
in the cache is written back first, or it will be lost. partment represents a large instruction overhead — where 2

The operating system maintains a mapping between pro-instructions are required to save and restore a register for an
cess ID’s, XOM ID’s, and encrypted compartment keys. application with no protected registers, 13 instructions are
When a process requests a XOM Key Table entry via the required to save and restore each protected register. To pre-

[$k1,BASE_OF_EFRAME # save cntxt the fake data. A sufficiently strong cryptographic algorithm

xgetid $s0,$at # 9‘;} (ﬁo&of sat (e.g., MD5 [13]) can make this computationally difficult.
xenc $s0.$at # encrypt $s0 We reserve a portion of the physical address space for the
into $x0...$x3 xhashsegment, where the cryptographic hashes for XOM
xsave :g,(EEFF_SSO(g&g()%l) ## save g will be stored. The starting location of the XOMOS kernel
xsave J(EF_SO+ encrypte: ; ; :
xsave $2(EF SO+16)$k1) # values is adjusted to be just pelow tixbhashsegment. In our XOM_
xsave $3,(EF_S0+24)($k1) processor, L2 cache lines are 128 bytes Iong and require a
sw $at,(EF_S0_XID)($k1) 128-hit hash, making thehashsegment one-eighth the size
it $0.EF_ SOk) # fteSYOfe cnixt of physical memory. For easy address translation, we locate
Xrstr ,EF_ restore .
xrstr $1.(EF SO+8)($k1) # from memory the segment at thg top of the physical address space. The
xrstr $2,(EF_SO0+16)($k1) offset of the hash in the segment can then be calculated by
xrstr $3,(EF_S0+24)($k1) dividing the physical address of the first word in the cache
Iw $at,(EF_SO0_XID)($k1)# load XOM ID line by eight.

xdec $s0,$at # decrypt

Whenever the XOMOS pager swaps a page in physical
Figure 1. XOMOS context switch code. memory out to the backing store, it also copies the matching
values in thexhashsegment onto a reserved space on swap.
When faulting a page back in, the operating system copies
serve the performance for applications that are not executingthe hash data of the page being faulted in, and places it at
in a compartment, XOMOS first checks the XOM ID of the the correct offset in thehashsegment. The operating sys-
program counter of an interrupted process to see if it is in a tem gives similar treatment to XOM code pages since XOM
compartment, and only executes the extra instructions if it is code also has hash values protecting it. These are stored in a
required. separate segment in the executable file. When a code page is
Aside from new context switch code, changes are also faulted in, the appropriate hash page is also read in from the
required to the exception frame structure, where XOMOS executable file image and placed in tfeshsegment.
stores the interrupted process state. The exception frame Since not all applications may actually use XOM facili-
must be enlarged to allow room to hold the XOM ID of each ties, our simple design is wasteful as it reserves a fixed por-
register as well as the larger cipher text. tion of memory for hashes. Unencrypted values will not have
Some parts of the interrupted process state cannot be prohash values that need to be saved. The design could be made
tected by XOM and are left tagged with the NULL XOM ID. more efficient with additional hardware.
For instance, data such as the fault virtual address in a TLB
miss, or the_status bits that indicate whether the_ |nterrupted3_5 Shared Libraries
thread was in kernel mode or not, must be available to the
operating system for it be to handle these exceptions. While Linking libraries statically is relatively straight forward as
this process state reveals some information about the applicathe library code can be placed in the XOM compartment by
tion, the nature of such information is limited. For example, encrypting and hashing it with the compartment key after
a malicious operating system can obtain an address trace ofinking. On the other hand, if linked dynamically, shared
every page an application accesses while in a XOM compart-library code cannot be encrypted since it must be linkable
ment by invalidating every page in the TLB and recording to many applications, and encrypting it with a certain key

every fault address. would make it linkable to only one. While it is possible to
have code in the compartment encrypt the library code at run
3.4 Paging Encrypted Pages time, thus bringing it into the compartment, this is compli-

cated. Instead, we chose to design an interface where XOM

XOM uses cryptographic hashes to check the integrity of encrypted code can call unencrypted library code, with the
data stored in memory. The operating system also must vir-assumption that the call is insecure — the caller cannot be
tualize memory, which means that it must be able to relocate sure that the library code has not been tampered with.
encrypted data and hashes in physical memory. Itis impossi- To support dynamically linked libraries in a way that is
ble to store the hashes in the ECC memory bits as suggestedransparent to the programmer, the compiler must be altered
in [18] because to virtualize memory, the operating system to use acaller savecalling convention to deal with secure
must be able to access the hashes. We store the hashes afata. To see why, recall that in a callee save calling conven-
a different page from the data so as to retain a contiguoustion, the dynamic library subroutines are expected to push
address space. the caller’s registers on the stack. However, since the subrou-

A malicious operating system cannot take advantage of tine is not in the same compartment as the XOM code calling
this separation between the hashes and the data. A XOMit, it will not have the ability to access those values. Thus, the
application will not proceed with a secure memory load if caller, rather than the callee, must save all secure registers.
a valid hash is not supplied to it. To tamper with data, the In addition, before calling the subroutine, the calling XOM
operating system must be able to create the correct hash focode must first move, as necessary, register values such as

compiler has saved all registers XOM ID. If the operating system interrupts one process, say
XOM ID value is in $s0 the parent, and restores the other, an error will occur since
sd $fp,0($sp) # push fp . . .

and $fp.$fp,"OXF # align fp the cu_rrent register key will not match the register state of
xmvin $fp # move pointers the child.

xmvtn $sp # to null The solution is to allocate a new XOM ID for the child.
xmvtn $gp Because there are two different threads of execution, we
xmvtn $a0 # move . . .

xmvin $al # subr. arguments need two different register keys. A newm.fork() li-

xmvin - $t9 . . brary call is created for programs where both the parent and
xexit # exit XOM (aligned) child of a fork will be using compartmentscom_fork()

Ja' $19 # subroutine call is similar to regular UNIXfork() except is will use the
xentr $s0 # reenter XOM (aligned) xom_alloc() system call to allocate for the child, a sec-
xmvfn $fp # move pointers ond XOM ID with the same compartment key as the parent.
imﬂ igg # back They must have the same compartment key because the child
xmvin vl # move return value needs to access the memory pages it |_nher|ts from the parent.
Id $fp,0($sp) # restore old fp After the new XOM Key Table entry is acquired, the par-

now compiler restores all ent requests the operating system to do a noforé()

caller save regs. When the parent returns, it continues using the old XOM ID,

while the child will use the new XOM ID.

Register data is tagged with XOM ID'’s, which distinguish
ownership between the parent and the child. The situation
with the data in the cache is more subtle. Since both parent
subroutine arguments, the stack pointer, frame pointer, andand child have the same compartment key, secure data in the
global pointer to the NULL compartment so that the callee caches must be tagged with the same value for both. Clearly,
can access them. After this it must exit its XOM compart- we cannot use the XOM ID’s, which are different for each
ment with thexexit instruction. process; instead we introduce a new value, calletOav

Encrypted data cannot be stored on the same cache lingag. Thus, XOM ID’s are architectural shorthand for regis-
as unencrypted data. When making a function call acrosster keys, which protect the dynamic state of a process; and
a XOM boundary, we can either realign the frame pointer XOM tags are architectural shorthand for compartment keys,
for local variables to cache line boundaries, or simply use a which protect the code and data of a process that is stored in
separate stack when executing in a XOM compartment. Sim- memory.
ilarly, the start of the unencrypted code must be aligned to be We modify the XOM Key Table to implement not one,
on a different cache line than that of the encrypted code. but two tables. One maps register keys to XOM ID’s and a

When returning from the subroutine call, the above se- second maps compartment keys to XOM tags. The hardware
guence must be reversed. The application re-enters its XOMalso records the mapping of XOM tags to XOM ID’s where
compartment, moves the stack pointers back from NULL, re- a single XOM tag can be used by multiple XOM ID’s. When
places them to the values before alignment and restores thea process executes a secure load, its XOM ID is translated
caller saved register values. Similar code must be executedthrough the XOM Key Table to the process’ XOM tag, which
before a system call since the system call arguments and prois then used to tag the data in the cache. When this cache
gram counter must be readable by the kernel. line is flushed to memory, the value is encrypted with the

We have implemented and tested this method by manually compartment key that corresponds to the XOM tag.
saving the registers and adding the wrapper code around calls
to the.C ;tand_ard .I|brary|bc). An example of such wrapper 3.7 User Defined Signal Handlers
code is given in Figure 2.

Libraries that perform security sensitive routines should A user defined signal handler may access the state of the
be statically linked. An example of this is the OpenSSL li- interrupted process. It may also modify that state and then
brary, which contains cryptographic routines. On the other restart the process with the altered state. However, when
hand, it does not make sense to encrypt shared libraries that process executing in its XOM compartment is delivered
consist of input or output routines. The program should a signal, the state of the interrupted thread will be en-
check values from these libraries to see if they are sensiblecrypted. XOMOS saves the register state of the process using
since they could potentially be coming from an adversary. xgetid ,xenc , andxsave instructions much like the con-

text switch code in Figure 1. The interrupted state is copied
3.6 Process Creation into asigcontexstructure and delivered to the user-level sig-

nal handler. However, to support XOM, the fields of gig-
Naively implemented, a XOM application that forks will contextstructure are enlarged the same way the exception
cause the operating system to create a child that is the ex{frame is, to accommodate the larger encrypted register val-
act copy of the parent, with the child inheriting the parent’'s ues and hashes.

Figure 2. Exiting and entering a Compartment.

To process the signal, the signal handler requires the regis- Function Number of
ter key that thesigcontexstructure is encrypted with. To be Lines | Files
secure, the hardware must only release this key to a handler Key Table System Calls 63 2
in the same compartment as the interrupted thread, which Key Table Reclamation 28 2
means the signal handler code must also be appropriately Save and Restore Context 907 16
encrypted and hashed with the same compartment key as the Paging Encrypted Pages 40 1
interrupted thread. Entry into the signal handler within the Signal Handling 802 2

XOM compartment and the retrieval of the register key must
be a single atomic action. Otherwise, we can get the follow- Table 3. Number of lines and files changed in
ing race: If the signal handler has entered the compartment the kernel.

and gets interrupted before it retrieves the register key, then
that key will be destroyed by the hardware before the handler

can ever get to it.] Function \ Num. of Lines \
The XOM hardware guarantees the required atomicity by Shared Library Wrappers 64

writing the register key into a general-purpose register when Signal Handling 136

a program executesxantr instruction. This way, the sig- Fork & Process Creation 72

nal handler in the XOM compartment always has the re-

quired register key, even if it is subsequently overwritten in Table 4. Line count of user level changes.

the key table by an interrupt. With the register key, the sig-
nal handler can then decrypt and verify the cipher texts in the
sigcontexstructure, and even modify and re-encrypt them if First, there is the overhead that results from the modifica-
necessary. tions that were performed on the base IRIX 6.5 operating
The simplest way for the signal handler to restart the System. The operating system overheads are studied with
thread is to restore the new register state and jump to the in-& series of micro-benchmarks, which stress certain parts of
terrupted PC. However, IRIX requires the restart path for the XOMOS that have been modified. The performance is com-
signal handler to pass through the kernel so that it can resetoared to the original, unaltered, IRIX 6.5 operating system.
the signal mask of the process. The kernel uses the contentd he other source of overhead is the cost of encrypting and
of the sigcontexsstructure returned by the handler to restart decrypting memory accesses, as well as the cost of entering
the process. Thus, the signal handler requires a way to set thénd exiting a compartment. These are more apparent when
register key so that it matches the key used in the modified €xamining end-to-end application performance. We thus ex-
sigcontextstructure. To do this, we modifyexit to take amine the performance of a XOM-enabled MP3 audio player
a register value, which the hardware will use as the current @nd RSA operations in the OpenSSL library.
register key for that XOM ID. XOM makes signal restarts
that pass through the kernel more expensive because the sig-
nal handler must re-encrypt all modified register valuesinthe 4,1 Implementation Effort
sigcontexstructure and the hardware must decrypt all those
values when the operating system restarts the thread. To implement XOMOS, we added approximately 1900 lines
In fact, if the signal handler modifies any of thigicontext of code to the IRIX 6.5 kernel. The breakdown of these
registers, it should select a new register key and re-encryptlines of code is shown in Table 3. In addition to the ker-
all of them with that key. Otherwise, if the signal handler nel changes, dealing with process creation, shared libraries,
encrypts the modified values with the same key as the oldand user level signal handling required changes at the user
value, a malicious operating system may choose to restorelevel, as shown in Table 4.
the old value and ignore the new value. In addition, a mali- One qualitative observation we made was that most of the
cious operating system may deliver signals with faulty argu- kernel modifications were limited to the low-level code that
ments. This will not pose a security problem the contents in interfaces between the operating system and the hardware.
the sigcontext structure will only be accessible if they were As a result, much of the higher-level functionality of the op-
encrypted and hashed properly. erating system, such as the resource management policies,
kernel architecture and file system were left unchanged. This
reduced the side effects of these modifications considerably
4 Results and suggests that the changes are not operating system de-
pendent. While some modifications such as signal and fork
In this section, we examine the various overheads associatedire UNIX specific, the concepts of saving state to handle a
with XOMOS. First, the implementation effort of the modifi- trap, paging and process creation are common to most mod-
cations discussed in Section 3 is discussed. We then procee@rn operating systems. This suggests that it would also be
to examine the performance overheads of our modifications. possible to port other operating systems to run on the XOM
The performance impact of XOM appears in two aspects. architecture.

Benchmark Total Cycles Total Instructions Kernel Instructions Cache Misses

IRIX] XOM | OV | IRIX [XOM [OV [IRIX [XOM [OV [IRIX | XOM [OV
System Call 9196 | 10817| 18% | 3828 | 4018| 5% | 3787 | 3837| 1% 5 6| 37%
Signal Handler| 65772| 99190 | 53% | 10417 | 14637 | 41% | 10339 | 14427 | 40% 34 48 | 43%
XOM _Fork 701625| 784418 | 12% | 65283 | 72490 | 11% | 65077 | 72261 | 11% | 565| 626 | 11%

Table 5. Micro-benchmark overhead of XOMOS vs. IRIX

4.2 Operating System Overhead small, so scaling down the caches helps put a conservative
upper bound on what the performance will be. The mem-

. ‘ e)) : ory latency is set at 150 processor cycles, and the memory
major areas. First, additional instructions are required by system models bus contention as well as read/write merging.

the operating system to save and restore context, resultingTable 5 summarizes the overheads that resulted from our op-
in more executed instructions. In addition, since encrypted erating system modifications

registers are larger than unencrypted registers, operating sys- .
tem data structures that store process state such as the exce%{C -Ic;?(frao}/r?srt?ﬁ?gofr?sr isnytsri?ecriltlasl’ iI: an:;?l?:”s; 323/ tgrtra];”m;t;er

tion frame orsigcontextiata structures have a larger memory discussed in Section 3.5, system calls cannot be made from

footprint. This can increase the cache miss rate and cause ",
more overhead. inside a compartment. To make a system call, the XOM ap-

Another source of overhead comes from the additional I/O plication must exit the compartment, make the system call

operations that are performed to save hash pages to diskf"md then return to compartment. The kernel only needs to

In our implementation, a hash page accompanies every dataCheCk that the system call is _not r_nade while |nS|d¢ a com-
page, and thus the 1/O requirements for paging operationspartment or the system call will fail. Because of this, about

0 ; . . .
are increased by the size of the hash pages. In this case, thigs % of the extra instructions occur in user code. The remain

resulted in a bandwidth increase of one eighth. This should ':r?;yc,:gj cz:icr)?j:Z%ZeSnZ%:rddI;{(Ia%ni(l)gzccr];nrr?c;fssisalreB;(iLéiee
not be an issue for applications that are not memory bound. yp . yp
Reclaiming XOM Key Table entries also results in some line, the transition to and from compartment code can also

. . .) ; incur a cache miss.

operating system overhead. Since this requires flushing on-])
chip caches, this can be an expensive operation. However, "€ signal handler overhead experiences the most kernel
note that each time a XOM Key Table entry is allocated, overhe_ad,W|th the majorl_ty of the extramstrqctlon_s exeguted
the XOM processor needs to perform a public key operation ©C€urring on the kfarngl §|de. Because the signal is delivered
which may require millions of cycles [20]. Typically, several While the application is in a compartment, the kernel must
allocations will occur before the XOMOS needs to reclaim US€ the longer XOM save routines shown in Figure 1 to save
entries, so we are assured that the percentage of cycles speffVerY register. In addition, when the kernel populates the
on XOM Key Table reclamation will not be large. sigcontext structure, the kerne_zl requires more instructions to

To quantify the overhead of XOMOS over the bare IRIX copy 'Fhe larger encrypted register values. The addmpnal in-
6.5 operating system, we wrote three micro-benchmarks thatStructions a_md larger data structures also result in an increase
exercised the portions of the operating system kernel that hadn cache misses.
been modified. These benchmarks exercised a system call, Finally the xomfork benchmark experiences the least
signal handling and process creation in the modified kernel. overhead of the three. Fork is already a long operation in
The NULL system call benchmark makes a system call in the IRIX, so the overhead imposed by XOM is less noticeable.
kernel thatimmediately returns to the application. The signal The majority of the fork overhead is from the additional sys-
handling benchmark installs a segmentation fault (SEGV) tem call required to allocate a XOM ID for the child. This
signal handler and then causes a SEGV to activate the hansystem call causes a number of TLB faults because the kernel
dler. The handler simply loads the program counter from the must perform acopy into read the encrypted compartment
sigcontext structure, increments it to the next instruction and key from the address space of the application.
then restarts the main thread. Finally, the process creation One thing we noticed from these benchmarks is that it is
benchmark callgom_fork to create new XOM processes. important to avoid performing any unnecessary XOM oper-

The benchmarks do not perform any secure memory op- ations in the kernel. In our implementation, we were careful
erations, so the overheads incurred are purely from the extrato always test if the interrupted application is running in a
instructions executed and any negative cache behavior. Ourcompartment or not. If it wasn’t, the extra instructions to
simulator is an in order processor model on which all instruc- save and restore the larger encrypted registers were left out.
tions complete in one cycle unless stalled by a cache miss.We can see this in the difference between the kernel instruc-
The processor model has split 16 KB L1 caches and a unifiedtions executed for the NULL system call benchmark, which
128 KB L2 cache. While these caches are small for a typical exits the compartment before trapping into the kernel, and
modern processor, the benchmarks that we simulate are alsehe signal handling benchmark, which traps while in a com-

The operating system modifications add overhead in several

] | mpg-123| mpg-coarse | mpg-fine | mpg-super-fine |

Cycles 153309129| 162495385| 6% | 158013671 3% | 349765340 129%
Instructions 82078248| 82110779| 0% | 82090221 0% | 82078248 0%
Cache Misses 50616 48367 | -4% 49708 | -2% 95623 | 89%
XOM Instructions 0 80530620 77447213 4403154
XOM Mem. Ops 0 25403 19828 16980
XOM Transitions 0 248 122 2075
] \ rsa | rsa-coarse | rsa-fine | rsa-super-fine |
Cycles 104489760| 103195645 -1% | 107646113 3% | 102589532 -2%
Instructions 64670758 64691056 0% | 64683133 0% | 64674475 0%
Cache Misses 4041 5252 | 30% 9724 | 141% 4162 3%
XOM Instructions 0 64210655 64127755 1116332
XOM Mem. Ops 0 2920 5483 381
XOM Transitions 0 86 87 18

Table 6. Performance overheads of XOM-mpg123 and XOM-OpenSSL-RSA

partment. Another factor in the overheads is that IRIX is a plication in the compartment reduces the amount of code
highly performance tuned operating system. By increasing visible to the adversary. We refer to this @sarse-grained
the size of the code and data structures, our modificationsXOM compartment usage. On the other hand, minimizing
destroyed a part of that tuning and resulted in more cachethe portion in the compartment reduces the overheads asso-
misses. ciated with memory accesses, but may allow the adversary
to infer more information about the application. We refer to
4.3 End-to-end application overhead this asfine-grainXOM compartment usage.
We are able to run full applications on XOMOS. To mea-
sure the end-to-end application overheads, we added XOM
functionality to two applications that would benefit from se-
cure execution. The firstis mpgl123 — a popular open source
MP3 audio player to creatéOM-mpg123 This simulates a
scenario where a software distributor may wish to distribute
a decoder for a proprietary compression format. The other is
the OpenSSL library, an open source library of cryptographic
functions, which is used in array of security applications. In
OpenSSL, we tested the performance of RSA encryption and
decryption, by using thesa _test benchmark that is in-
cluded in the OpenSSL distribution to create the XOM-RSA
benchmark.

We wanted to study the effects of varying the amount of
code in the XOM compartment with this experiment. Ap-
plications have two major sources of overhead when inside The overall execution time is given in processor cycles.
a compartment. The first is overhead on entering or exiting For the most part, the overhead is lower than the previous
a XOM compartment. Each time the application enters or section’s micro-benchmarks since the operating system over-
exits a compartment, an event we cak@M transition the head is diluted over a longer execution time. The only ex-
compiler must pad the instruction stream withp 's so that ception to this is mpg-super-fine — this was surprising since
encrypted code and unencrypted code boundaries are alignedor XOM-mpg123, the super-fine benchmark executes the
to cache lines in the machine. Even though the application fewest XOM instructions, but had the worst performance.
can avoid executing theop's by jumping pass them, itcan On closer inspection, we found that the DCT subroutine is
still incur a cache miss because the next instruction is on called on the inner loop of the decode function, so plac-
another cache line. The other source of overhead is due toing DCT in a compartment requires frequent and numer-
the additional memory access time that encrypted data andous XOM transitions. Each transition increases the mem-
instructions incur. This latency is due to the cryptographic ory footprint of the code by two cache lines, and as a result,
operations that the hardware must perform. the loop no longer fit as well in the cache. This illustrates

These performance considerations are balanced againsthat while each XOM memory access only adds a fraction
security requirements. Placing a large, portion of the ap- to the memory access time, numerous XOM transitions can

To study these effects, we created three versions of XOM-
mpgl23 and XOM-RSA, each at a different granularity of
XOM compartment code. Theoarsebenchmarks encom-
passed the entire application short of initial start-up code.
Finebenchmarks just protect the main algorithms that the ap-
plication is using. For example, in XOM-mpg123, the code
that decodes each frame of data is protected. This would ex-
pose the format of the mp3 file to an attacker, but would not
expose the actual decoding algorithm. Finally sper-fine
benchmarks seek a small operation to protect. This opera-
tion usually makes no system calls and has little or not mem-
ory accesses. In XOM-mpgl123, only the Discrete Cosine
Transform (DCT) function used in MPG decode is placed in
the compartment. Table 6 summarizes the results of porting
those applications.

lead to poor cache behavior due to increased code size. As dion state. Because of this, we feel that the same types of
result, creating too many XOM transitions in an effort to re- modifications could be applied to a wide range of operating
duce XOM memory accesses can lead to worse, as opposedystems. Since managing protected data is much more ex-
to better performance. pensive than normal data, care needs to be taken to ensure

Another interesting thing to note is that mpg-coarse actu- that both this processing is only done when needed, and it
ally has more XOM transitions despite the fact that the entire needs to be done infrequently. We were able to find tech-
application has been placed in a XOM compartment. This is niques to achieve this.
due to XOM transitions that occurred to make system calls. Although the basic XOM architecture that was originally
On the other hand, rsa-fine resulted in more XOM transitions proposed already has the basic primitives required to sup-
than rsa-coarse because of loop iterations, but rsa-super-fingort copy and tamper-resistance, we found that certain fea-
removed all system calls from the compartment so it had tures in hardware are required to facilitate the implementa-
many fewer XOM transitions. While coarseness in the com- tion of XOMOS. To virtualize and manage resources, XO-
partment granularities seems advantageous for both perforMOS must be able to relocate data in physical space while
mance and security, including sections that make too manythe XOM processor checks the integrity of data in virtualize
system or shared library calls can also cause a lot of XOM space. As a result, facilities must be provided for the oper-
transitions. From these benchmarks, it seems that addingating system to identify the owner of data, and the security
XOM protection to applications does not increase the over- hashes of memory data must be available to the operating
all instruction count by much. Rather, the number of XOM system, so that it may relocate data. Finally, the decompo-
transitions has a large effect on the number of cache missessition of complex functions into simple primitives, as in the
which is a major factor on overall program execution time. case of register saves and restores, as well as XOM Key Ta-
The latency due to XOM memory operations actually seems ble operations allows the operating system to better control
to be a secondary factor. resource usage.

We also observed that when the size and associativity of Our preliminary performance numbers look promising.
the caches is increased, fine granularity applications tend toThe hardware overheads are not small — with memory en-
perform better. However, their advantage is minimal, and cryption and decryption costing 15 cycles and saving and
overall difference between execution times is less than 5% restoring a protected register requiring 13 instructions in-
across different XOM compartment granularities. As a re- stead of 2. However, these costs are only incurred when
sult, with adequately sized caches, applications can be sethe machine must do an even more expensive operation —
cured in coarse-grained XOM compartments with minor per- hamely a memory fetch (which takes over 100 cycles) and a
formance penalty. trap into the kernel. In fact, in the applications that we exam-

ined, the dominant cost was neither of these issues, but rather

the larger code footprint that resulted in poor cache behavior.
5 Conclusions These results have encouraged us to explore other issues,

such as implementing a virtual backing store, and ways of
Currently, there exist various initiatives that place the trust in Using XOM to increase security in the file system. We be-
modern computing systems in a hardware component ratheﬂieve with the current trend towards trusted Computing plat-
in software only. In these systems, the applications don't forms, the techniques explored in this paper will be valuable
trust the operating system to protect their data, and the oper-as guides to the design and implementation of such systems.
ating system does not trust the application to properly use
its resources. The result is that the interface that the op-
erating system exports to each application must change to
support the hardware security features, and some of the pro-
tection aspects of the operating system must be moved into Rashid, A. Tevanian, and M. W. Young. Mach: A new kernel
the hardware. This paper studied how these changes can be o ngation for UNIX development. IRroceedings of Sum-
implemented and what the impact of those changes on the mer UsenixJuly 1986.
performance of the system is. To do this, we modified the [2] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable

References

[1] M. J. Accetta, R. V. Baron, W. Bolosky, D. B. Golub, R. F.

original XOM architecture proposal to better support an op- bootstrap architecture. Proceedings of the 1997 IEEE Sym-

erating system and we created the XOMOS operating system posium on Security and Privacyages 65-71, May 1997.

for study. [3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
We found that XOMOS could be written by modifying S. Vadhan, and K. Yang. On the (im)possibility of obfus-

cating programsLecture Notes in Computer Scien@i39,

a standard operating system such as IRIX. The size of the 2001

modifications on thg original operatingl system was _rr_lod- [4] Business Software Alliance, 2003.
est — about 1900 lines in roughly 20 files were modified. http://www.bsa.org

As one W0u|d eXpeCt, most Of the m0d|f|Cat|OnS dealt with [5] P. Eng|and’ J. DeTrevi”e, and B. Lampson_ D|g|ta| nghts
the low-level interface between the operating system and the management operating system. U.S. Patent 6,330,670, Dec.
hardware, and with routines that copied and saved applica- 2001.

[6] P. England, J. DeTreville, and B. Lampson. Loading and
identifying a digital rights management operating system.
U.S. Patent 6,327,652. Dec. 2001.

D. R. Engler, M. F. Kaashoek, and J. O'Toole. Exokernel: An
operating system architecture for application-level resource
management. IfProceedings of the 15th ACM Symposium
on Operating Systems Principlgsages 251-266, 1995.

B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. Devadas.
Caches and Merkle trees for efficient memory authentica-
tion. InNinth International Symposium on High Performance
Computer Architecturgpages 295-306, 2003.

[9] T. Gilmont, J. Legat, and J. Quisquater. An architecture of
security management unit for safe hosting of multiple agents.
In Proceedings of the International Workshop on Intelligent
Communications and Multimedia Terminalgages 79-82,
Nov. 1998.

T. Gilmont, J. Legat, and J. Quisquater. Hardware security for
software privacy supportElectronics Letters35(24):2096—
2097, Nov. 1999.

J. Heinrich. MIPS R10000 Microprocessor User's Manual
2.0 edition, 1996.

S. A. Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behavid?hD thesis, Stanford
University, Feb. 1998.

B. Kaliski Jr. and M. Robshaw. Message authentication with
MD5. CryptoBytes1(1):5-8, 1995.

(7]

(8]

[10]

[11]

[12]

[13]

[14] H. Krawczyk, M. Bellare, and R. Canetti.
HMAC: Keyed-hashing for message authentication.
http://www.ietf.org/rfc/rfc2104.txt , Febru-

ary 1997.

M. Kuhn. The TrustNol cryptoprocessor concept. Technical

Report CS555, Purdue University, Apr. 1997.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-

thentication in distributed systems: Theory and practre-

ceedings of the 13th ACM Symposium on Operating Systems

Principles 10(4):265-310, 1992.

D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz. Specify-

ing and verifying hardware for tamper-resistant software. In

Proceedings of the 2003 IEEE Symposium on Security and

Privacy, May 2003.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz. Architectural support for copy

and tamper resistant software. Pnoceedings of the 9th In-

ternational Conference Architectural Support for Program-

ming Languages and Operating Systerpages 168-177,

Nov. 2000.

U. Maheshwari, R. Vingralek, and W. Shapiro. How to build

a trusted database system on untrusted storage. Technical

Report STAR-TR-00-03, InterTrust, 2000.

R. Rivest, A. Shamir, and L. Adleman. A method for obtain-

ing digital signatures and public key cryptosyste@emmu-

nications of the ACM21(18):120-126, 1978.

J. Rushby. Design and verification of secure systemBradn

ceedings of the 8th ACM Symposium on Operating Systems

Principles volume 15, pages 12-21, 1981.

[22] J. Saltzer and M. Schroeder. The protection of information in
computer systemdEEE, 63(9):1278-1308, Sept. 1975.

[23] SGI IRIX 6.5: Home Page, May 2003.
http://www.sgi.com/software/irix6.5 .

[24] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast ca-
pability system. IrProceedings of the 17th ACM Symposium
on Operating Systems Principlgsages 170-185, 1999.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25] S. W. Smith, E. R. Palmer, and S. Weingart. Using a high-
performance, programmable secure coprocessémbncial
Cryptography pages 73-89, Feb. 1998.

[26] The Trusted Computing Platform Alliance,
http://www.trustedpc.com .

[27] J. Tygar and B. Yee. Dyad: A system for using physically
secure coprocessors. Technical Report CMU-CS—-91-140R,
Carnegie Mellon University, May 1991.

2003.

