
An Adaptive Virtual Queue (AVQ) Algorithm for Active
Queue Management

Srisankar S. Kunniyur, Member, IEEE, and R. Srikant, Senior Member, IEEE

Abstract— Virtual Queue-based marking schemes have been recently
proposed for AQM (Active Queue Management) in Internet routers. We
consider a particular scheme, which we call the Adaptive Virtual Queue
(AVQ), and study its following properties: stability in the presence of feed-
back delays, its ability to maintain small queue lengths and its robustness
in the presence of extremely short flows (the so-called web mice). Using a
linearized model of the system dynamics, we present a simple rule to design
the parameters of the AVQ algorithm. We then compare its performance
through simulation with several well-known AQM schemes such as RED,
REM, PI controller and a non-adaptive virtual queue algorithm. With a
view towards implementation, we show that AVQ can be implemented as a
simple token bucket using only a few lines of code.

Keywords— Active Queue Management, Internet congestion control,
ECN Marking

1 Introduction
In the modern day Internet, there has been a strong demand for
QoS and fairness among flows. As a result, in addition to the
sources, the links are also forced to play an active role in conges-
tion control and avoidance. Random Early Discard (RED) [1]
was originally proposed to achieve fairness among sources with
different burstiness and to control queue lengths. RED allows
for dropping packets before buffer overflow. Another form of
congestion notification that has been discussed since the advent
of RED is Explicit Congestion Notification (ECN) [2]. ECN
has been proposed to allow each link to participate in conges-
tion control by notifying users when it detects an onset of con-
gestion. Upon detecting incipient congestion, a bit in the packet
header is set to one for the purpose of notifying the user that a
link on its route is experiencing congestion. The user then reacts
to the mark as if a packet has been lost. Thus, the link avoids
dropping the packet (thereby enhancing goodput) and still man-
ages to convey congestion information to the user.

To provide ECN marks or drop packets in order to control
queue lengths or provide fairness, the routers have to select pack-
ets to be marked in a manner that conveys information about
the current state of the network to the users. Algorithms that
the routers employ to convey such information are called Active
Queue Management (AQM) schemes. An AQM scheme might
mark or drop packets depending on the policy at the router. In
this paper, we use the term “marking” more generally to refer
to any action taken by the router to notify the user of incipient
congestion. The action can, in reality, be ECN-type marking
or dropping (as in RED) depending upon the policy set for the

S. S. Kunniyur is with the Dept. of Electrical and Systems Engineering, University of
Pennsylvania. Email: kunniyur@seas.upenn.edu

R. Srikant is with the Department of General Engineering and Coordinated Science Lab-
oratory, University of Illinois at Urbana-Champaign. Email: rsrikant@uiuc.edu

Research supported by DARPA Grant F30602-00-2-0542 and NSF Grants ANI-9813710
and NCR-9701525.

router. As in earlier work on studying AQM schemes [3, 4, 5],
this distinction is blurred in the mathematical analysis to allow
for the development of simple design rules for the choice of
AQM parameters. However, our simulations consider marking
and dropping schemes separately.

Designing robust AQM schemes has been a very active re-
search area in the Internet community. Some AQM schemes
that have been proposed include RED [1], a virtual queue-based
scheme where the virtual capacity is adapted [6, 7], SRED [8],
Blue [9], Proportional Integral (PI) controller [4], REM [10],
a virtual queue based AQM scheme [11] (which we refer to as
the Gibbens-Kelly Virtual Queue, or the GKVQ scheme) among
others. While most of the proposed AQM schemes detect con-
gestion based on the queue lengths at the link (e.g., RED), some
AQM schemes detect congestion based on the arrival rate of the
packets at the link (e.g., virtual queue-based schemes) and some
use a combination of both (e.g., PI). Also, most of the AQM
schemes involve adapting the marking probability (as noted be-
fore we use the term marking to refer to both marking and drop-
ping) in some way or the other. An important question is how
fast should one adapt while maintaining the stability of the sys-
tem? Here the system refers jointly to the TCP congestion con-
trollers operating at the edges of the network and the AQM
schemes operating in the interior of the network. Adapting too
fast might make the system respond quickly to changing net-
work conditions, but it might lead to large oscillatory behavior
or in the worst-case even instability. Adapting too slowly might
lead to sluggish behavior and more losses or marks than desired,
which might lead to a lower throughput.

In this paper, we start by presenting an implementation of a
virtual-queue based AQM scheme, namely the Adaptive Virtual
Queue (AVQ). The motivation behind the AVQ algorithm is to
design an AQM scheme that results in a low-loss, low-delay and
high utilization operation at the link. We then discuss a method-
ology for finding the fastest rate at which the marking probabil-
ity adaptation can take place, given certain system parameters
like the maximum delay and the number of users, so that the
system remains stable. We note that the marking probability
in AVQ is implicit, no marking probability is explicitly calcu-
lated and thus, no random number generation is required. On
the other hand, we replace the marking probability calculation
with the computation of the capacity of a virtual queue. Moti-
vated by the success of the analysis and design of other AQM
schemes in [3, 4, 5], we consider a single router accessed by
many TCP sources with the same round-trip time (RTT) and use
a control-theoretic analysis to study the stability of this system.

The AVQ algorithm maintains a virtual queue whose capac-

1

ity (called virtual capacity) is less than the actual capacity of
the link. When a packet arrives in the real queue, the virtual
queue is also updated to reflect the new arrival. Packets in the
real queue are marked/dropped when the virtual buffer over-
flows. The virtual capacity at each link is then adapted to en-
sure that the total flow entering each link achieves a desired
utilization of the link. This was originally proposed in [6] as
a rate-based marking scheme. In the absence of feedback de-
lays, it was shown in [7] that a fluid-model representation of the
above scheme, along with the congestion-controllers at the end-
hosts, was semi-globally asymptotically stable when the link
adaptation is sufficiently slow. An appealing feature of the AVQ
scheme is that, in the absence of feedback delays, the system
is fair in the sense that it maximizes the sum of utilities of all
the users in the network [7]. Combining this with a result in [6]
which shows that a TCP user with an RTT of dr can be approxi-
mated by a user with a utility function −1

d2
r
xr

, where xr is the rate
of the TCP user, shows that the network as a whole converges
to an operating point that minimizes

∑

r
−1

d2
r
xr

. This utility func-
tion called the potential delay was introduced as a possible fair-
ness criterion in [12]. The throughput under this utility function
is given by 1/dr

√
pr, where pr is the loss probability seen by

User r which is consistent with the models in [3, 4, 5]. While
we use this simplified model for analysis in the paper, our sim-
ulations in ns-2 use TCP-Reno, including slow-start, time-out,
fast retransmit, etc. A slightly more refined utility function is
used in [13] and the results in this paper can be easily modified
to incorporate that utility function.

We start with a fluid-model representation of the TCP flow-
control, along with the AVQ scheme that was proposed in [6].
However, here we explicitly consider the feedback delay due
to the RTT of each user and thus, we obtain a set of delay-
differential equations. We linearize this system and obtain con-
ditions for local stability in terms of the round-trip delay, the
number of users, the utilization of the link and a smoothing pa-
rameter in the update equation of the AVQ scheme. The rest of
the paper is organized as follows: in Section 2, we present an
implementation of the AVQ algorithm and provide design rules
for the stability of the AVQ and TCP together. In Section 3, we
provide detailed ns-2 simulations to validate our design rules
and also compare the AVQ algorithm with RED, REM, GKVQ
and the PI controllers. The PI controller is somewhat similar
to AVQ in that it adapts the marking probability in a manner
similar to the virtual capacity adaptation in the AVQ scheme,
but it depends on the queue size at the link. As a result, for
small buffers the system tends to perform poorly. Also, since
the marking probability is directly modified and this update has
to be slow enough for system stability, the scheme exhibits slug-
gishness when short flows are introduced. This is the subject
of simulations in Section 3. Since the analytical model does
not capture the discrete packet behavior of the network in ad-
dition to the slow-start and the timeout characteristics of TCP,
the simulations in Section 3 are intended to demonstrate the per-
formance of the AVQ algorithm under these realistic conditions.
In Section 4, we provide theoretical justification for the design
rules in Section 2. The design rules in Section 4 are less restric-
tive than the design rules in [14]. Conclusions are provided in
Section 5.

− Real Queue

− Virtual Queue

Before packet arrival After packet arrival

Figure 1: AVQ: When Virtual Queue is not full

�����
�����
�����

���
���
���

������

− Real Queue

Before packet arrival
After packet arrival

− Virtual Queue

− Marked Packet

Figure 2: AVQ: When the incoming packet is dropped from the
Virtual Queue

2 The AVQ Algorithm
Let C be the capacity of a link and γ be the desired utilization
at the link. The AVQ scheme, as presented in [6, 7], at a router
works as follows:

• The router maintains a virtual queue whose capacity C̃ ≤
C and whose buffer size is equal to the buffer size of the
real queue. Upon each packet arrival, a fictitious packet
is enqueued in the virtual queue if there is sufficient space
in the buffer (See Figure 1). If the new packet overflows
the virtual buffer, then the packet is discarded in the virtual
buffer and the real packet is marked by setting its ECN bit
or the real packet is dropped, depending upon the conges-
tion notification mechanism used by the router (See Fig-
ure 2).

• At each packet arrival epoch, the virtual queue capacity is
updated according to the following differential equation:

˙̃C = α(γC − λ), (1)

where λ is the arrival rate at the link and α > 0 is the
smoothing parameter. The rationale behind this is that mark-
ing has to be more aggressive when the link utilization ex-
ceeds the desired utilization and should be less aggressive
when the link utilization is below the desired utilization.

We now make the following observations. No actual enqueue-
ing or dequeueing of packets is necessary in the virtual queue,
we just have to keep track of the virtual queue length. Equation
(1) can be thought of as a token bucket where tokens are gener-
ated at rate αγC up to a maximum of C and depleted by each
arrival by an amount equal to α times the size of the packet (See
Figure 3). Define

2

α

Capacity
Virtual capacity

Tokens are generated at the rate

tokens are removed
α

(Desired Utilization)

When a packet of size b arrives, b

Figure 3: AVQ: Token bucket implementation of the virtual ca-
pacity adaptation

B = buffer size
s = arrival time of previous packet
t = Current time
b = number of bytes in current packet
V Q = Number of bytes currently in the virtual queue
Then, the following pseudo-code describes an implementa-

tion of AVQ scheme:

The AVQ Algorithm

At each packet arrival epoch do
V Q←max(V Q−C̃(t−s), 0) /∗Update Virtual Queue

Size ∗/
If V Q + b > B

Mark or drop packet in the real queue
else

V Q← V Q + b /∗ Update Virtual Queue Size ∗/
endif
C̃ = max(min(C̃ +α∗γ ∗C ∗ (t− s), C)−α∗ b, 0) /∗

Update Virtual Capacity ∗/
s← t /∗ Update last packet arrival time ∗/

We note the following features of the AVQ scheme:

1. The implementation complexity of the AVQ scheme is com-
parable to RED. RED performs averaging of the queue
length, dropping probability computation and random num-
ber generation to make drop decisions. We replace these
with the virtual capacity calculation in AVQ.

2. AVQ is a primarily a rate-based marking, as opposed to
queue length or average queue length based marking. This
provides early feedback, the advantages of which have been
explored by Hollot et al [4, 5], which was also mentioned
in Kelly et al [15].

3. Instead of attempting to regulate queue length as in RED,
PI controller or recent versions of REM, we regulate uti-
lization. As we will see in simulations, this is more robust
to the presence of extremely short flows or variability in the
number of long flows in the network. The reason is that,
when utilization is equal to one, variance introduced by the
short flows seems to lead to an undesirable transient behav-
ior where excessively large queue lengths persist over long

periods of time.
4. Unlike the GKVQ algorithm [11], we adapt the capacity

of the virtual queue. A fixed value of C̃ leads to a utiliza-
tion that is always smaller than C̃/C and it could be much
smaller than this depending on the number of users in the
system. Our marking mechanism is also different in that
we do not mark until the end of a busy period after a con-
gestion episode.

5. There are two parameters that have to be chosen to imple-
ment AVQ: the desired utilization γ and the damping fac-
tor α. The desired utilization γ determines the robustness
to the presence of uncontrollable short flows. It allows an
ISP to trade-off between high levels of utilization and small
queue lengths. Both the parameters α and γ determine the
stability of the AVQ algorithm and we provide a simple
design rule to choose these parameters.

The starting point for the analysis of such a scheme is the
fluid-model of the TCP congestion-avoidance algorithm as pro-
posed in [6]. A theoretical justification of how a stochastic
discrete-time equation can be approximated by a fluid-model is
shown in [16]. We then incorporate the virtual capacity update
equation with this model and study the stability of the entire
system under linearization.

Consider a single link of capacity C with N TCP users travers-
ing it. Let the desired utilization of the link be γ ≤ 1, and let d
be the round-trip propagation delay of each user (we assume that
all users have the same round-trip propagation delay). Let xi(t)
be the flow-rate of user i at time t. We will model the TCP users
using the −1

d2x
utility function as proposed in [6]. For the sake of

simplicity and tractability, we will neglect slow-start and time-
outs when modeling the TCP users. We will later show through
simulations that even with slow-start and timeouts, stability is
maintained. Let p(., .) be the fraction of packets marked at the
link. The fraction of packets marked (i.e., p(., .)) is a function of
the total arrival rate at the link as well as the virtual capacity of
the link. The congestion-avoidance algorithm of TCP user i can
now be represented by the following delay differential equation:

ẋi =
1

d2
− βxi(t)xi(t− d)p(

N
∑

j=1

xj(t− d), C̃(t− d)), (2)

where β < 1 and C̃ is the virtual-capacity of the link. A β
value of 2/3 would give us the steady-state throughput of TCP

as 1
d

√

3
2p∗

, where p∗ is the steady-state marking probability
which is consistent with the results in [17]. Hence, we will use
β = 2/3, in all our calculations. Also, note that on substituting
xi ≈ Wi

d
, where Wi is the window-size of user i, we recover the

TCP window control algorithm [6, 3].
The update equation at each link can now be written as:

˙̃C = α(γC − λ), (3)

where λ =
∑N

j=1 xj is the total flow into the link and α > 0
is the smoothing parameter. Note that α determines how fast
one adapts the marking probability at the link to the changing
network conditions. We will present a design rule that specifies
how to choose α for a given feedback delay (d), utilization (γ)

3

and a lower bound on the number of users (N). In fact, as we
will show in Section 4, one can derive bounds on any of the four
parameters α, γ, N or d, given the other three using the same
design rule. However, in practice, it would seem most natural to
choose α given the other three parameters.

Let x∗
i , λ∗, C̃∗ and p∗ denote the equilibrium values of xi, λ,

C̃ and p(λ, C̃). The equilibrium point of the non-linear TCP/AQM
model is given by:

∑

i

x∗
i = λ∗ = γC

x∗
i =

γC

N

p∗ = p(γC, C̃∗) =
N2

β(dγC)2
.

Let us assume that

λ(t) = λ∗ + δλ(t)

C̃(t) = C̃∗ + δC̃(t).

The linearized version of the non-linear TCP/AQM model can
now be written as:

˙δλ = −K11δλ(t)−K12δλ(t− d) + K2δC̃(t− d) (4)
˙δC̃ = −αδλ(t), (5)

where

K11 :=
N

γCd2
, K12 :=

N

γCd2
+ β

γC2

N

∂p(γC, C̃∗)

∂λ
,

and K2 := β
γC2

N

∣

∣

∣

∣

∣

∂p(γC, C̃∗)

∂C̃

∣

∣

∣

∣

∣

.

For analytical tractability, we assume that

p(λ, C̃) =
max{0, (λ− C̃)}

λ
. (6)

We will now state the main result of this paper which serves
as the design for the AVQ algorithm. The proof of this result is
given in Section 4.

Theorem 2.1 Suppose that the feedback delay d, number of users
N, and the utilization γ, are given. Let α̂ be given by:

α̂ = min

{

N

γCd2
,

π

2dK2

√

π2

4d2
−K2

12 + K2
11

}

. (7)

Then, for all α < α̂, the system is locally stable.

3 Simulations
The above theorem shows that by choosing α according to (7),
one can guarantee the local stability of the TCP/AQM scheme.
However, the fluid-model does not take into account the discrete
packet behavior of the network as well as the inherent nonlin-
earities in the TCP algorithm. As a result, it becomes impor-
tant to verify the analytical results using simulations in which

the nonlinearities of the system are taken into account. In this
section, we conduct experiments that simulate various scenarios
in the network and show that the AVQ algorithm performs as
predicted by the analytical model in all the experiments. Even
though each experiment shows that AVQ results in small queues,
low loss and high utilization at the link, it is important to note
that each experiment simulates a different scenario and the per-
formance of AVQ is tested in this scenario.

In this section, we use the packet-simulator ns-2 [18] to simu-
late the adaptive virtual queue scheme. We show that the simu-
lation results agree with the convergence results shown in the
previous section. In particular, we select an α, using Theo-
rem 2.1 that will ensure stability for a given round-trip delay d,
and a lower bound on the number of users, N. We then present
a single set out of many experiments that we did to show that α
indeed stabilizes the system even in the presence of arrivals and
departure of short connections. We then compare this scheme
with many other AQM schemes.

3.1 Simulation Setup

Throughout this section, we consider a single link of capacity
10 Mbps that marks or drops packets according to some AQM
scheme. For AVQ, unless otherwise stated, we let γ, the desired
utilization, be 0.98. We use TCP-Reno as the default transport
protocol with the TCP data packet size set to 1000 bytes. Each
TCP connection is placed in one of five classes which differ only
in their round-trip propagation delays. Class 1 has a round-trip
delay of 40 ms, Class 2 has a round-trip delay of 60 ms, Class 3
has a round-trip delay of 80 ms, Class 4 has a round-trip delay
of 100 ms and Class 5 has a round-trip delay of 130 ms. The
buffer size at the link is assumed to be 100 packets.

In the first five experiments, we assume that the link marks
packets and thus, any packet loss is due to buffer overflow. In
these experiments, we demonstrate that the AVQ scheme achieves
high utilization and low packet loss. Further, the algorithm re-
sponds quickly to changing network conditions such as vary-
ing number of TCP flows. In the first experiment, we study
the convergence properties of the AVQ algorithm both in the
absence and in the presence of short flows. In the remaining
experiments, we compare the AVQ algorithm with other AQM
schemes like RED, REM, PI and the Gibbens’ and Kellys’ Vir-
tual Queue (GKVQ). In the second experiment, we compare
the performance of various AQM schemes in the presence of
long-lived flows. In the third experiment, we compare the tran-
sient behavior of the AQM schemes when long-lived flows are
dropped and added to the network. In the fourth experiment,
we compare the AQM schemes in the presence of short flows in
the network. In the fifth experiment, we study the sensitivity of
the AVQ algorithm to the smoothing parameter (α) as well as
to the desired utilization parameter (γ). In the last experiment,
we compare the AVQ scheme with other schemes when the link
drops packets (as opposed to marking) to indicate congestion.
Again, the AVQ scheme is shown to have smaller queue lengths
compared to other schemes.

We design the AVQ controller for a maximum delay of d =
350 ms. Using the design rule in Theorem 2.1, any α < 0.8,
will ensure stability. In the experiments, to account for non-

4

0 20 40 60 80 100 120 140 160 180 200
450

500

550

600

650

700

Time (in seconds)

V
irt

ua
l C

ap
ac

ity
 (i

n
pa

ck
et

s/
se

co
nd

)

Virtual capacity vs time for AVQ

Figure 4: Experiment 1. Evolution of the virtual capacity with
time for the AVQ scheme

Table 1: Experiment 1. Mean and the standard deviation of the
queue size before and after the introduction of short flows.

Before After
Short Flows Short Flows

Average Queue Size 12.17 19.19
Standard Deviation 10.28 13.44

linearities in the system, we let α be 0.15. In all experiments, we
consider two types of flows: FTP flows that persist throughout
the duration of the simulations and FTP flows of 20 packets each
(to model the short flows).

Experiment 1:
In this experiment, we study the convergence properties and
buffer sizes at the queue for the AVQ scheme alone. A total
of 180 FTP flows with 36 in each delay class persist throughout
the duration of the simulations, while short flows (of 20 pack-
ets each) arrive at the link at the rate of 30 flows per second.
The short flows are uniformly distributed among the five delay
classes. To simulate a sudden change in network conditions, we
start the experiment with only FTP flows in the system and intro-
duce the short flows after 100 seconds. The evolution of the vir-
tual capacity is given in Figure 4. After an initial transient, the
virtual capacity settles down and oscillates around a particular
value. Note that the oscillations in the virtual capacity are due
to the packet nature of the network which is not captured by the
analytical model. At 100 seconds, there is a drop in the virtual
capacity since the AVQ algorithm adapts to the changing num-
ber of flows. Beyond 100 seconds, the virtual capacity is lower
than it was before 100 seconds since the links marks packets ag-
gressively due to the increased load. The queue length evolution
for the system every 100 ms is given in Figure 5. Except dur-
ing transients introduced by load changes, the queue lengths are
small (less than 20 packets). At 100 seconds, the queue length
jumps up due to the short flows. However, the system stabilizes
and the queue lengths are small once again. Table 1 gives the
average and the standard deviation of the queue length before
and after the introduction of short flows. Note that there is

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Time (in seconds)

Q
ue

ue
 le

ng
th

 (i
n

pa
ck

et
s)

Queue length vs time for AVQ

Figure 5: Experiment 1. Queue length vs time for the AVQ
scheme

a small increase in the average queue length as well as in the
standard deviation due to the addition of short-flows in the sys-
tem. Another important performance measure is the number of
packets dropped due to buffer overflow in the system. Since
ECN marking is used, we expect the number of packets lost due
to buffer overflow to be small. Indeed only 10 out of roughly
250, 000 packets are dropped. These drops are primarily due to
the sudden additional load brought on by the short flows. An-
other performance measure that is of interest is the utilization
of the link. The utilization was observed to be 0.9827, which
is very close to the desired utilization of 0.98. We note that the
apparent discrepancy between Figure 5, where the queue length
never reaches the buffer size of 100 packets, and the fact that
there are 10 dropped packets is due to the fact that the queue
length is sampled only once every 100 ms to plot the graphs.

�
We will now compare the AVQ scheme with other AQM schemes

that have been proposed. Since there are many AQM schemes
in the literature, we will compare the AVQ scheme with a rep-
resentative few. In particular, we will compare the AVQ scheme
with

1. Random Early Discard (RED) proposed in [1]. In our ex-
periments, we use the “gentle” version of RED. Unless oth-
erwise stated, the parameters were chosen as recommended
in http://www.aciri.org/floyd/REDparameters.txt.

2. Random Early Marking (REM) proposed in [10]. The REM
scheme tries to regulate the queue length to a desired value
(denoted by qref) by adapting the marking probability.
The REM controller marks each packet with a probabil-
ity p which is updated periodically (say, every T seconds)
as

p[k + 1] = 1− φ−µ[k+1],

where φ is a arbitrary constant greater than one and

µ[k+1] = max(0, µ[k]+γ(q[k+1]−(1−α)q[k]−αqref)),

and α and γ are constants and q[k + 1] is the queue length
at the k + 1 sampling instant. Since REM is very sensitive
to φ, we will use the values as recommended in [10].

5

3. The PI controller proposed in [5]. The PI controller marks
each packet with a probability p which is updated periodi-
cally (say, every T seconds) as

p[k + 1] = p[k] + a(q[k + 1]− qref)− b(q[k]− qref),

where a > 0 and b > 0 are constants chosen according to
the design rules given in [5].

4. The virtual queue based AQM scheme (GKVQ) proposed
in [11]. In this scheme, the link maintains a virtual queue
with fixed capacity C̃ = θC, and buffer size B̃ = θB,
where θ < 1, and B is the buffer capacity of the original
queue. Whenever the virtual queue overflows, all pack-
ets in the real queue and all future incoming packets are
marked till the virtual queue becomes empty again. Note
that this scheme cannot be used in the case where the link
drops the packets instead of marking them because the through-
put would be very bad due to aggressive dropping. As
in [11], we will use θ = 0.90 in all our simulations using
the GKVQ.

Experiment 2:
In this experiment, we compare the performance of the various
AQM schemes assuming that the link “marks” packets and in
the presence of long-lived FTP flows only. The queue size at the
link is set to 100 packets. The desired queue length for the REM
scheme and the PI scheme is set at 50 packets and the minthresh
and the maxthresh for the RED (with gentle turned on) scheme
are set at 37 and 75 packets respectively. Recall that the desired
utilization of the link is set to be 0.98 for the AVQ scheme.

Since we use an average queue length of 50 packets for REM
and the PI controller, it is natural to attempt to regulate the queue
length to 50 for the AVQ scheme also. However, the AVQ does
not directly attempt to control queue size. Thus, for the AVQ
scheme, we drop every packet that arrives when there are al-
ready 50 packets in the real queue. Note that this is the worst-
case scenario for the AVQ scheme, since when ECN marking is
used, the natural primary measure of performance is packet loss.

We summarize our simulation results below:

• Packet Losses and Link Utilization: The losses incurred by
all the schemes are shown in Figure 6 as a function of
the number of FTP flows. The AVQ scheme has fewer
losses than any other scheme except the GKVQ even at
high loads. The loss rate for GKVQ and AVQ are com-
parable; however, the GKVQ marks packets more aggres-
sively than any other scheme and thus has lower utilization.
Figure 7 shows the utilization of the link for all the AQM
schemes. Note that, the utilization of GKVQ is as low as
75%. This can once again be attributed to the aggressive
marking strategy of GKVQ. RED also results in a poor uti-
lization of the link. Our observation has been that when in-
creasing the utilization of RED (by tuning its parameters),
the packet losses at the link also increases. REM and PI
have a utilization of 1.0 as the queue is always non-empty.
For the AVQ scheme, we required a desired utilization of
0.98 and we can see that the AVQ scheme tracks the desired
utilization quite well. Thus, the main conclusion from this
experiment is that the AVQ achieves low loss with high uti-
lization.

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Number of FTP connections at the link

N
u
m

b
e
r

o
f
p
a
ck

e
t
d
ro

p
s

a
t
th

e
 li

n
k

Packet drops vs number of FTP connections for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 6: Experiment 2. Losses at the link for varying number
of FTP connections for the different AQM schemes

• Responsiveness to changing network conditions: The objec-
tive of this experiment is to measure the response of each
AQM scheme when the number of flows is increased. Twenty
new FTP users are added every 100s till the total num-
ber of FTP connections reach 180 and the average queue
length over every 100s is computed. Schemes that have a
long transient period will have an increasing average queue
length as new users are added before the scheme is able to
converge. The average queue length (over each 100 second
interval) of each scheme as the number of users increase is
shown in Figure 8. We see from the figure that PI and REM
have higher average queue lengths than the desired queue
length. On the other hand, AVQ, GKVQ and RED have
smaller queue sizes. This is due to the fact that REM and
PI apparently have a long transient period and new users
are added before the queue length converges. The aver-
age queue length over each 100s interval is used to capture
persistent transients in this experiment for studying the re-
sponsiveness of the AQM schemes to load changes. This
experiment shows that AVQ is responsive to changes in
network load and is able to maintain a small queue length
even when the network load keeps increasing.

Experiment 3:
In this experiment, we compare the responsiveness of the AQM
schemes when flows are dropped and then introduced later on.
Specifically, we only compare REM and the PI controller (since
these are only ones among those that we have discussed that
attempt to precisely regulate the queue length to a desired value)
with the AVQ controller. Unless otherwise stated, all the system
parameters are identical to Experiment 2. The number of FTP
connections is 140 at time 0.0 At time 100, 105 FTP connections
are dropped and at time 150 a new set of 105 FTP connections
is established. We plot the evolution of the queue size for each
of the AQM scheme. Figure 9 shows the evolution of the queue
size for PI as the flows depart and arrive. Note that the desired

6

20 40 60 80 100 120 140 160 180
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of FTP connections at the link

U
ti
liz

a
ti
o
n
 a

t
th

e
 l
in

k

Utilization vs number of FTP connections for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 7: Experiment 2. Achieved Utilization at the link for the
different AQM schemes

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Number of FTP connections at the link

A
ve

ra
g
e
 q

u
e
u
e
 le

n
g
th

 in
 p

a
ck

e
ts

Average queue length vs number of FTP connections for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 8: Experiment 2. Queue length at the link for varying
number of FTP connections for the different AQM schemes

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time in seconds

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Queue length vs time for PI with 140 FTP connections

PI

Figure 9: Experiment 3. Evolution of the queue length at vary-
ing loads for PI

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time in seconds

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Queue length vs time for AVQ with 140 FTP connections

Figure 10: Experiment 3. Evolution of the queue sizes at vary-
ing loads for AVQ

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time in seconds

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Queue length vs time for REM with 140 FTP connections

REM

Figure 11: Experiment 3. Evolution of the queue sizes at vary-
ing loads for REM

queue length is 50 packets. We can see that the system takes
some time to respond to departures and new arrivals. On the
other hand, the queue in the AVQ scheme in Figure 10 responds
quickly to the removal of flows at time t = 100, and to the
addition of flows at time 150. Figure 11 gives the evolution of
the queue sizes for REM. The desired queue level in the REM
scheme is 50 packets and REM is very slow to bring the queue
level to 50 packets. On removing flows, the queue level drops,
but on addition of new flows, there is a large overshoot in REM.

Experiment 4:
Till now we have been comparing AVQ and all other AQM
schemes in the absence of short flows. However, a large part
of the connections in the Internet comprise of short flows. As
a result, it is important to study the performance of an AQM
scheme in the presence short flows. In this experiment, we will
start with 40 FTP connections that persist throughout the length
of the experiment. We also allow the AQM schemes to converge
to the optimal solution when there are only 40 FTP connections
in the network. We then introduce short flows and study the
performance of the AQM scheme as the number of short flows
increases. We start with a short-flow arrival rate of 10 per sec-
ond and gradually increase it to 50 short flows per second. Each
short flow transfers 20 packets using TCP/Reno. The round-trip

7

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of short flows arriving per second at the link

N
u
m

b
e
r

o
f
p
a
c
k
e
t
d
ro

p
s
 a

t
th

e
 l
in

k

Number of packets dropped vs number of short flows for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 12: Experiment 4. Packet losses at the link for various
AQM schemes

times of the short flows are also distributed uniformly between
the five delay classes.

We again study the following performance measures:

• Packet losses and Utilization: The losses incurred by all the
schemes are shown in Figure 12. Note that AVQ has lower
drops than the RED, REM and the PI schemes. GKVQ in-
curs no significant packet drops (and hence cannot be seen
in the figure) because of its aggressive marking scheme.
However, as in Experiment 2, the utilization of GKVQ is
poor as seen in Figure 13. We again see that REM and PI
have a utilization of one, while RED and GKVQ have poor
utilization. For the AVQ scheme, the utilization is actually
slightly higher than the desired utilization at high loads,
but this can be attributed to the load brought by the short-
flows. From this experiment, we can see that AVQ has
lower drops compared to REM, PI and RED in the pres-
ence of short flows. Even though, AVQ has more drops
than GKVQ, the utilization at the link for AVQ is signifi-
cantly greater than the GKVQ algorithm.

• Queue length: The average queue length of each scheme
as the rate of the incoming short-flows short connections
are increased is shown in Figure 14. We see that the AVQ
controller maintains the smallest queue length among all
schemes as the number of short-flows increases.

Experiment 5:
In this experiment, we study the sensitivity of the AVQ algo-
rithm to the smoothing parameter (α) and the desired utilization
parameter (γ). The number of long TCP connections accessing
the link is fixed at 180 and the simulation setup is identical to
that in Experiment 1. From Theorem 2.1, any value of α ≤ 0.8
will guarantee stability. In addition to the long flows, short flows
are introduced after 100s. In the first part of the experiment, the
smoothing parameter, α, is varied from 0.20 to 0.80, while the
desired utilization parameter, γ, is fixed at 0.98. The evolution
of the queue length is shown in Figure 15. We can see that the

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of short flows arriving per second at the link

U
til

iz
a
tio

n
 a

t
th

e
 li

n
k

Utilization for varying number of short flows for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 13: Experiment 4. Utilization of the link for various
AQM schemes

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of short flows arriving per second at the link

A
ve

ra
g
e
 q

u
e
u
e
 le

n
g
th

 in
 p

a
ck

e
ts

Average queue length for varying number of short flows for different AQM schemes

AVQ
RED
PI
REM
GKVQ

Figure 14: Experiment 4. Average queue length at the link for
various AQM schemes

average queue lengths remain small irrespective of the value of
α that is used. However, the transients due to the sudden load
of the short flows at t = 100s is more pronounced when α is
small. Hence, even though a very small value of α can guaran-
tee stability, it can make the link sluggish to changes in network
load. A theoretical analysis of the transient behavior is required
to precisely quantify the impact of α on the system performance.
This could be a topic for future research.

In the second part of the experiment, we fix the value of α to
be equal to 0.5 and vary the value of γ. We use four different
values of γ (0.90, 0.98, 0.99 and 1.0) to study the sensitivity of
the algorithm to γ. The rest of the simulation setup is identical
to the first part. We increase the burstiness of the short flows by
splitting a single short flow of 20 packets into two short flows

8

0 20 40 60 80 100 120 140 160 180 200
0

50

100

0.20

0 20 40 60 80 100 120 140 160 180 200
0

50

100

0.40

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Q
u

e
u

e
 s

iz
e

 i
n

 p
a

c
k
e

ts

0.60

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time in seconds

0.80

Figure 15: Experiment 5. Evolution of the queue length for
different values of the smoothing parameter α

of 10 packets each. Figure 16 shows the evolution of the queue
length for the different values of γ. We can see that smaller val-
ues of γ results in smaller queue sizes. As a result, smaller val-
ues of γ results in smaller number of dropped packets as shown
in Figure 17. Note that when γ < 1, packet drops are primar-
ily caused by the sudden load change at 100s. After a transient
period in which the algorithm tries to adapt to the new load,
there are no more packet drops. But the duration of the tran-
sient period seems to increase as γ is increased. When γ = 1,
the transients caused by new short flows is sufficient to cause
buffer overflow in certain instances. The achieved utilization
(averaged over one second) is shown in Figure 18. We can see
that irrespective of the value of γ, AVQ tracks the desired uti-
lization quite well. For a desired average queue length (or loss
probability), an upper bound on the value of γ would depend
on the traffic characteristics. Given the traffic characteristics,
desired loss probability or desired average queue length, analyt-
ically computing an appropriate value for γ is a topic for future
research.

Experiment 6:
Till now, we have assumed that the router marks packets upon
detecting congestion. Instead one can drop packets when con-
gestion is detected. In this experiment, we use dropping instead
of marking when the links detects an incipient congestion event.

Note that, in the case of marking, the main goal of the adap-
tive algorithm was to match the total arrival rate to the desired
utilization of the link. However, in the case of dropping, the link
only serves those packets that are admitted to the real queue. As
a result, in the case of dropping, one adapts the virtual capacity
(C̃) only when a packet has been admitted to the real queue, i.e.,
only the accepted arrival rate is taken into consideration.

We compare RED, REM and PI controller to the AVQ scheme.
We do not use GKVQ as a dropping algorithm as the number
of packets dropped on detecting congestion would be very high
and it would result in negligible throughput. The buffer limit at
the link is set to 100 packets. The users employ TCP NewReno.

0 20 40 60 80 100 120 140 160 180 200
0

50

100
1.0

0 20 40 60 80 100 120 140 160 180 200
0

50

100
0.99

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Q
u

e
u

e
 s

iz
e

 i
n

 p
a

c
k
e

ts

0.98

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time in seconds

0.90

Figure 16: Experiment 5. Evolution of the Queue Length for
different values of γ

100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

1.0

100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

0.99

100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

N
u

m
b

e
r

o
f

p
a

c
k
e

ts
 d

ro
p

p
e

d

100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

Time in seconds

0.98

0.90

Figure 17: Experiment 5. Number of Dropped packets vs Time
for different values of γ

All the other parameters are as in Experiment 2. However, in
this case we simulate the AVQ scheme with both γ = 1.0 and
γ = 0.98. The reason for using γ = 0.98 earlier was to have
small losses to get the most benefit from ECN marking. Since
marking is no longer used, we also study the AVQ under full
utilization.

We have 40 FTP connections traversing the link for the en-
tire duration of the simulation. We allow the respective AQM
schemes to converge and then introduce short-flows at 100s.
Short-flows introduced are TCP-RENO sources with 20 pack-
ets to transmit. The rate at which short flows arrive at the link
is slowly increased. The average queue length, and the utiliza-
tion are shown in Figure 19 and Figure 20. The total goodput
is shown in Figure 21. By goodput, we mean the number of

9

0 20 40 60 80 100 120 140 160 180 200
0.85

0.9

0.95

1

1.05

Time in seconds

0 20 40 60 80 100 120 140 160 180 200
0.85

0.9

0.95

1

1.05

A
c
h

ie
v
e

d
 U

ti
liz

a
ti
o

n

0.98

0 20 40 60 80 100 120 140 160 180 200
0.85

0.9

0.95

1

1.05

0.99

0 20 40 60 80 100 120 140 160 180 200
0.85

0.9

0.95

1

1.05

1.0

0.90

Figure 18: Experiment 5. Achieved Utilization vs Time for dif-
ferent values of γ

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of short flows arriving per second at the link

A
ve

ra
g
e
 q

u
e
u
e
 le

n
g
th

 in
 p

a
ck

e
ts

Average queue length for varying number of short flows for different AQM schemes

AVQ (Gamma = 1.0)
AVQ (Gamma = 0.98)
RED
PI
REM

Figure 19: Experiment 6. Average queue lengths for various
AQM schemes

packets successfully delivered by the link to the TCP receivers.
In general, this could be different from the throughput (which is
the total number of packets processed by the link) due to TCP’s
retransmission mechanism. Note that the average queue length,
the goodput of each flow and fairness are the three possible
performance objectives that one would use to compare differ-
ent AQM schemes when dropping is employed as a congestion
notification mechanism. In practice, we would like an AQM
scheme that maintains a small average queue length with high
utilization. However, the AQM scheme should not introduce
any additional bias in the rates towards smaller round-trip flows
(TCP by itself introduces a bias towards smaller round-trip flows
and we do not want to add it). In this experiment, we compared
the average queue length and the utilization at the link of AVQ,

0 5 10 15 20 25 30 35 40 45 50
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Number of short flows arriving per second at the link

U
til

iz
a
tio

n
 a

t
th

e
 li

n
k

Utilization for varying number of short flows for different AQM schemes

AVQ (Gamma = 1.0)
AVQ (Gamma = 0.98)
RED
PI
REM

Figure 20: Experiment 6. Utilization for various AQM schemes

0 5 10 15 20 25 30 35 40 45 50
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of short flows arriving per second at the link

T
o
ta

l G
o
o
d
p
u
t
a
ch

ie
ve

d

Total Goodput achieved for varying number of short flows for different AQM schemes

AVQ (Gamma = 0.98)
AVQ (Gamma = 1.0)
RED on AVQ (Gamma = 0.98)
RED
PI
REM

Figure 21: Experiment 6. Total Goodput for the various AQM
schemes

RED, REM and PI.
Note: Instead of marking or dropping a packet in the real

queue when the virtual queue overflows, one can mark or drop
packets in the real queue by applying RED (or any other AQM
algorithm) in the virtual queue. Thus, if there are desirable fea-
tures in other AQM schemes, they can be easily incorporated
in the AVQ algorithm. When marking is employed, our expe-
rience is that a simple mark-tail would be sufficient as shown
in Experiments 1 through 4. In the case when the link drops
the packets, many successive packet drops from the same flow
could cause time-outs. To avoid this, one could randomize the
dropping by using a mechanism like RED in the virtual queue to
prevent bursts of packets of the same flow to be dropped. Hence,
in this experiment, we also consider an AVQ scheme that had
RED implemented in its virtual queue.

10

Our experience has been that, if RED is employed in the vir-
tual queue, the performance of the AQM scheme is not very sen-
sitive to the choice of the RED parameters. Even though, there
is no significant difference in the goodputs, we believe that the
fairness of the AVQ scheme can be improved using a proba-
bilistic dropping scheme in the virtual queue at the expense of
increased computation at the router. We intend to study the fair-
ness properties in our future research work. Note that a proba-
bilistic AQM scheme on the virtual queue is required only when
the link drops packets and not when the link marks packets be-
cause multiple marks within a single window does not cause
TCP to time-out or go into slow-start.

4 Stability Analysis of the AVQ scheme
In this section, we will prove the main result of the paper which
was stated in Theorem 2.1. The starting point of the analysis
is the linearized version of the TCP/AQM model derived in (4)
and (5). We summarize the main ideas behind the proof:

• The stability of a linear delay-differential equation can be
analyzed using its characteristic equation. The character-
istic equation of the linear delay-differential equation can
be obtained by taking its Laplace Transform. For the lin-
earized system to be stable, its characteristic equation should
have all its roots in the left-half plane (i.e., if σ is a root of
the characteristic equation, then Re[σ] < 0).

• We will first show that for α, N, and γ fixed, the system is
stable in the absence of feedback delays, i.e., d = 0. This
implies that all the roots of the characteristic equation lie in
the left-half plane. The roots of the characteristic equation
are continuous functions of its parameters. Therefore, the
roots of the characteristic equation are continuous function
of the feedback delay d. By increasing d, one can find the
smallest feedback delay d∗ at which one of the roots hits
the imaginary axis (if there is no such d, then the system is
stable for all d.). Hence, for all d < d∗, the system has all
its roots in the left-half plane and hence it is stable. This is
the key idea behind the stability analysis in this section.

Recall that the linearized TCP/AQM system was given in (4)
and (5). For analytical tractability, we assume that

p(λ, C̃) =
Max{0, (λ− C̃)}

λ
. (8)

Note that, while this is not differentiable everywhere in λ or C̃, it
is differentiable in the region λ > C̃. Substituting for ∂p(γC,C̃∗)

∂λ
,

and ∂p(γC,C̃∗)

∂C̃
and using the fact that p(γC, C̃∗) = N2

β(dγC)2 , we
find that

K11 =
N

γCd2
K12 = K2 = β

γC

N
. (9)

Note that K12 > K11. Let Λ(s) denote the Laplace-Transform
of δλ(t) and let Ψ(s) denote the Laplace-transform of δC̃(t).
Taking the Laplace-transforms of (4) and (5), we get:

sΛ(s) = −K11Λ(s)−K12e
−sdΛ(s) + K2e

−sdΨ(s) (10)
sΨ(s) = −αΛ(s). (11)

Substituting (11) in (10), we get the so-called characteristic equa-
tion

s + K11 + e−sd

(

K12 + α
K2

s

)

= 0. (12)

Next, we use the fact that the roots are continuous functions of
the round-trip delay d. As a result, if the system is stable with
d = 0 for a fixed value of α, then the roots are strictly in the
left-half plane. Therefore, we can choose d small enough such
that the roots still remain in the left-half plane. This will help
us to find the maximum feedback delay for which the system
is stable for a given α. We will then show that we can use the
same technique to show that given a feedback delay d, one can
find the maximum value of α for which the system is stable. We
will formalize these ideas in this section.

When d = 0, i.e., there is no feedback delay in the system,
the characteristic equation reduces to:

s + K11 + K12 + α
K2

s
= 0. (13)

Solving the quadratic equation, we get:

s =
−(K11 + K12)±

√

(K11 + K12)2 − 4αK2

2
.

If 4αK2 ≤ (K11 + K12)
2, then the system has all real roots

which lie strictly in the left half-plane. If 4αK2 > (K11 +
K12)

2, then the system has complex roots that also lie strictly in
the left half-plane. Thus, for all values of α > 0, the system is
stable.

The following theorem gives the necessary condition on the
RTT for the stability of the system given by (4) and (5).

Theorem 4.1 Fix α = α̂, the number of TCP users, N and the
utilization γ. Find the smallest d = d̂ such that

ω(α̂, d,N, γ) =

√

(K2
12 −K2

11) +
√

(K2
12 −K2

11)
2 + 4K2

2 α̂2

2
(14)

satisfies

ωd + arctan

(

α̂

ω

)

+ arctan

(

ω

K11

)

= (2k + 1)π, (15)

for some k = 0, 1, 2, · · · . Then, the TCP/AQM system given in
(4) and (5) is stable for all values of d < d̂.

Proof: The characteristic equation of the TCP/AQM system (12)
can be rewritten as:

1 +
e−sd

(

K12 + αK2

s

)

s + K11
= 0. (16)

Let jω be one of the roots of the characteristic equation at the
smallest d = d∗ such that the roots hits the imaginary axis.
Since the roots on the imaginary axis are complementary, we
will concern ourselves only with ω ≥ 0. From (16), we get:

e−jωd
(

K12 + αK2

jω

)

jω + K11
= −1.

11

To satisfy the last condition, the following conditions must be
met simultaneously:
Condition on magnitude:

∣

∣

∣

∣

∣

∣

e−jωd
(

K12 + αK2

jω

)

jω + K11

∣

∣

∣

∣

∣

∣

= 1

Condition on angles:

6

e−jωd
(

K12 + αK2

jω

)

jω + K11
= (2k + 1)π k = 0,±1,±2.

From the condition on magnitude, we get
√

K2
12 +

K2

2
α̂2

ω2

√

K2
11 + ω2

= 1

(or)

ω(α̂, d, N, γ) =

√

(K2

12
−K2

11
) +

√

(K2

12
−K2

11
)2 + 4K2

2
α̂2

2
. (17)

From the condition on angles, we get:

ωd + arctan

(

α̂

ω

)

+ arctan

(

ω

K11

)

= (2k + 1)π,

for k = 0, 1, 2, · · · . Since K11 is a decreasing function of d, and
K12 and K2 are independent of d, we note that ω(α̂, d,N, γ)

is an increasing function of d. Therefore, the smallest d = d̂
that solves (15) gives the smallest delay such that at least one of
the roots hits the imaginary axis. Therefore, for all d < d̂, the
system is locally asymptotically stable.

REMARK: Although Theorem 4.1 provides a necessary and
sufficient condition, it is hard to verify the conditions of the the-
orem numerically due to the following issues:

• What value of k will yield the smallest d?
• If d̂ solves (15), how can we be sure that there exists no d̃,

such that d̃ solves (15) and d̃ < d̂?

Theorem 4.2 solves these issues by giving an easily verifiable
sufficient condition for stability. Before stating the theorem, we
state the following useful fact:

Fact 4.1 Let a and b be arbitrary positive constants with a ≤ b.
Then,

max
x

arctan(
a

x
) + arctan(

x

b
) =

π

2
. (18)

Theorem 4.2 Fix α = α̂, the number of TCP users, N and the
utilization γ. Define d̂ to be:

d̂ = min{
√

N

γCα̂
, d∗}, (19)

where d∗ solves:
ωd∗ =

π

2
, (20)

and ω is as given in (14). Then for all d < d̂ the system is stable.
Moreover, d∗ is unique.

Proof: Note that K12 and K2 do not depend on d. Also, K11 =
N

γCd2 . Therefore, as d increases, K11 decreases and ω increases.
Note that we can easily show that d∗ is a unique solution to (20).
Also, note that d̂ ≤ d∗. Hence,

ωd̂ ≤ π

2
.

Let d̃ solve (15) for some k. Then, we claim that

d̂ < d̃. (21)

Suppose not. Since d̂2 < N
γCα̂

and d̃ < d̂, we have α̂ < K11(d̃).
Thus, using Fact 4.1,

arctan(
α̂

ω
) + arctan(

ω

K11
) ≤ π

2
.

Therefore,

ω(α̂, d̃, N, γ)d̃ ≥ 4k + 1

2
π, k = 0, 1, 2 . . . (22)

Also, since d̃ < d̂, ω(α̂, d̃, N, γ) < ω(α̂, d̂, N, γ). Thus,

ω(α̂, d̃, N, γ)d̃ < ω(α̂, d̂, N, γ)d̂ ≤ π

2
.

But this contradicts (22). Hence d̂ ≤ d̃. Thus, any d < d̂ also
satisfies d < d̃, and therefore, for any d < d̂, the system is stable
from Theorem 4.1.

Till now, we have been given a fixed α and a fixed N and we
were interested in finding the largest feedback delay for which
this system is stable. But, a more practical question is the fol-
lowing: given a feedback delay d̃, and number of users N, how
can one design α such that the system is stable? The next theo-
rem gives a method by which one can design α such that system
is stable. Note that this theorem is the main result of the paper
and is also stated in Section 2. We state it again for convenience.

Theorem 4.3 Suppose that the feedback delay d̂, number of users
N̂ , and the utilization γ̂, are given. Let α̂ be given by:

α̂ = min

N

γCd̂2
,

π

2d̂K2

√

π2

4d̂2
−K2

12 + K2
11

. (23)

Then, for all α < α̂, the system is locally stable.

Proof: Using (20), we know that

d̂ω(α̂, d̂, N̂ , γ̂) ≤ π

2
.

Now let us fix an α̃ < α̂. Since, α̃ < α̂, we have:

α̃ < K11(d), ∀d ≤ d̂,

and

ω(α̃, d, N̂ , γ̂) < ω(α̂, d, N̂ , γ̂) < ω(α̂, d̂, N̂ , γ̂) ∀d ≤ d̂.

Therefore, using Fact 4.1 we get for all d ≤ d̂:

dω(α̃, d, N̂ , γ̂) + arctan(
α̂

ω(α̃, d, N̂ , γ̂)
) + arctan(

ω(α̃, d, N̂ , γ̂)

K11(d)
< π.

Hence, the system is stable for all α < α̂.
In [14], we presented the following condition for stability.

12

Theorem 4.4 Fix the feedback delay d̃, the number of users N
and the utilization γ. Find α∗ satisfying:

ωd̃ + arctan

(

ω

K11

)

=
π

2
, (24)

where ω is as given in (14). Then, for all α < α∗, the system is
stable.

We will now show that if there exists an α̂ > 0 that satisfies
(24), then there exists an α∗ > 0 that satisfies (23).

Theorem 4.5 Fix the feedback delay d̂, the number of users N̂
and the utilization γ̂. Let α̂ > 0 solve (24). Then there exists an
α∗ > 0 that satisfies (23).

Proof: Suppose there does not exist an α∗ > 0 that satisfies
(23). This implies

K2
12 −K2

11 >
π2

4d̂2
. (25)

However, there exists an α̂ such that:

d̂ω(α̂, d̂, N̂ , γ̂) =
π

2
− arctan(

ω(α̂, d̂, N̂ , γ̂)

K11
).

Let

κ = arctan(
ω(α̂, d̂, N̂ , γ̂)

K11
) > 0.

Therefore,

d̂ω(α, d̂, N̂ , γ̂) =
π − 2κ

2
.

From (17), we know that

K2
12 −K2

11 < (ω(α, d̂, N̂ , γ̂))2.

Therefore,

K2
12 −K2

11 <
(π − 2κ)2

4d̂2
<

π2

4d̂2
.

This contradicts (25). Hence, there exists a α∗ that satisfies (23).

Example 4.1 In this example, we will compare the value of α
obtained from (24) and (23). In particular, we will show that
one might not be able to solve (24) even though one can solve
(23). Consider a single link with 10Mbps capacity and let there
be 150 users accessing it. Using an average packet size of 1000
bytes, the capacity of the link can be written as 1250 packets per
second. Let the desired utilization at the link γ to be 0.98. Let
d̃ = 0.15. Using (24) we compute the value of α̂ = 4.7710. Us-
ing (23) to solve for α∗, we get α∗ = 5.44. Now, if we increase
the delay to 0.25 seconds, there exists no α̂ that will solve (24).
However, using (23) to solve for α∗, we get α∗ = 1.95. In view
of this example and the previous theorem, (23) is a less restric-
tive condition on α than (24).

The next theorem quantifies the impact of N, the number of
users, on the stability of the system.

Theorem 4.6 Fix the feedback delay d̂, the smoothing parame-
ter α̂ and the utilization γ. Define N̂ to be:

N̂ = max{α̂d̂2γC,N∗}, (26)

where N∗ satisfies:

ωd̂ =
π

2
,

and ω is as given in (14). Then, for all N > N̂, the system is
stable.

Proof: Note that in this case, K11, K12, and K2 are all functions
of N. We can easily show that as N increases, K11 increases,
K12 decreases, K2 decreases and ω(α, d,N, γ) decreases. Us-
ing this and following along the lines of the proof for Theo-
rem 4.3, we can show that for all N > N̂, the system is locally
stable.

A similar theorem can now be stated for γ.

Theorem 4.7 Fix the feedback delay d̂, number of users N̂ and
the smoothing parameter α̂. Define γ̂ to be:

γ̂ = min{ N

Cd̂2α̂
, γ∗}, (27)

where γ∗ solves:

ωd̂ =
π

2
,

and ω is as given in (14). Then, for all γ < γ̂, the system is
stable.

5 Conclusions
Robust Active Queue Management schemes at the routers is es-
sential for a low-loss, low-delay network. In this paper, an easily
implementable robust AQM scheme called the Adaptive Virtual
Queue (AVQ) algorithm is presented. The implementation com-
plexity of the AVQ algorithm is comparable to other well-known
AQM schemes. While the present form of AVQ adapts the vir-
tual capacity on every packet arrival, an actual implementation
in routers might perform this adaptation every K packets (as in
the PI controller [4]). Parameter choice for AVQ in this scenario
is a topic for future research.

In this paper, we provide simple design rules to choose the
smoothing parameters of the AVQ algorithm. The criterion we
use to choose the parameters is local stability of the congestion-
controllers and the AQM scheme together. However, it would
also be useful to quantify the impact of the desired utilization
γ on QoS parameters such as loss probability or average queue
length. This is a topic for future research.

We show through simulations that the AVQ controller out per-
forms a number of other well-known AQM schemes in terms of
losses, utilization and average queue length. In particular, we
show that AVQ is able to maintain a small average queue length
at high utilizations with minimal loss at the routers. This con-
clusion also holds in the presence of short flows arriving and de-
parting at the link. We also show that AVQ responds to changing
network conditions better than other AQM schemes (in terms of
average queue length, utilization and losses).

13

We also study the performance of AVQ when dropping (in-
stead of marking) is employed at the routers. While AVQ per-
forms better than other AQM schemes in terms of utilization and
average queue length, the fairness of AVQ can be improved us-
ing a probabilistic AQM scheme (like RED) on AVQ. We note
that a probabilistic AQM scheme on the virtual queue is required
only when the link drops packets and not when the link marks
packets because multiple marks within a single window does not
cause TCP to time-out or go into slow-start. The fairness prop-
erties of AVQ with packet dropping is a topic of future research.

An important feature of the AVQ algorithm is that one can
employ any AQM algorithm in the virtual queue. Thus, if there
are desirable properties in any other marking schemes, one can
easily incorporate it into the AVQ scheme. However, when
marking is employed, our experience has been that a simple
mark-tail would suffice.

References

[1] S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions
on Networking, August 1993.

[2] S. Floyd, “TCP and explicit congestion notification,” ACM
Computer Communication Review, vol. 24, pp. 10–23, Oc-
tober 1994.

[3] V. Misra, W. Gong, and D. Towlsey, “A fluid-based anal-
ysis of a network of AQM routers supporting TCP flows
with an application to RED,” in Proceedings of SIG-
COMM, Stockholm, Sweden, September 2000.

[4] C.V. Hollot, V. Misra, D. Towlsey, and W. Gong, “On de-
signing improved controllers for AQM routers supporting
TCP flows,” in Proceedings of INFOCOM, Alaska, An-
chorage, April 2001.

[5] C.V. Hollot, V. Misra, D. Towlsey, and W. Gong, “A con-
trol theoretic analysis of RED,” in Proceedings of INFO-
COM, Alaska, Anchorage, April 2001.

[6] S. Kunniyur and R. Srikant, “End-to-end congestion con-
trol: utility functions, random losses and ECN marks,” in
Proceedings of INFOCOM, Tel Aviv, Israel, March 2000.
Also to appear in IEEE/ACM Transactions on Networking,
2003.

[7] S. Kunniyur and R. Srikant, “A time-scale decomposition
approach to adaptive ECN marking,” IEEE Transactions
on Automatic Control, June 2002.

[8] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Sta-
bilized RED,” in Proceedings of INFOCOM, New York,
NY, March 1999.

[9] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A new
class of active queue management schemes,” April 1999,
Technical Report, CSE-TR-387-99, U. Michigan.

[10] S. Athuraliya, D. E. Lapsley, and S. H. Low, “Random
early marking for Internet congestion control,” in Proceed-
ings of Globecom, 1999.

[11] R.J. Gibbens and F.P. Kelly, “Distributed connection ac-
ceptance control for a connectionless network,” in Proc.
of the 16th Intl. Teletraffic Congress, Edinburgh, Scotland,
June 1999.

[12] L. Massoulie and J. Roberts, “Bandwidth sharing: Objec-
tives and algorithms,” in Proceedings of INFOCOM, New
York, NY, March 1999.

[13] F.P. Kelly, “Mathematical modeling of the Internet,” Math-
ematics Unlimited - 2001 and Beyond, Springer-Verlag,
Berlin, 2001.

[14] S. Kunniyur and R. Srikant, “Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue
management,” in Proceedings of SIGCOMM, San Diego,
CA, August 2001.

[15] F.P. Kelly, P.Key, and S. Zachary, “Distributed admission
control,” IEEE Journal on Selected Areas in Communica-
tions, vol. 18, 2000.

[16] S. Shakkottai and R. Srikant, “Mean FDE models of In-
tenet congestion control in a many-flows regime,” in Pro-
ceedings of Infocom, 2002.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP throughput: A simple model and its empirical valida-
tion,” in Proceedings of SIGCOMM, Vancouver, Canada,
1998.

[18] ns2 (online), ” http://www.isi.edu/nsnam/ns.”

S. Kunniyur received his B.E. in Electrical and Elec-
tronics Engineering from B.I.T.S., Pilani, India in 1996,
and the M.S. and Ph.D. degrees in Electrical Engi-
neering from the University of Illinois at Urbana-Champaign
in 1998 and 2001, respectively. He is currently an
Assistant Professor of Electrical and Systems Engi-
neering at the University of Pennsylvania. His re-
search interests include design and performance anal-
ysis of communication networks, congestion control
and pricing in heterogeneous networks. His email ad-
dress is kunniyur@seas.upenn.edu.

R. Srikant (M ’91, SM ’01) received his B.Tech.
from the Indian Institute of Technology, Madras in
1985, his M.S. and Ph.D. from the University of Illi-
nois in 1988 and 1991, respectively, all in Electrical
Engineering. He was a Member of Technical Staff at
AT&T Bell Laboratories from 1991 to 1995. He is
currently with the University of Illinois, where he is
an Associate Professor in the Department of General
Engineering, a Research Associate Professor in the
Coordinated Science Lab and an Affiliate in the De-
partment of Electrical and Computer Engineering. He

was an associate editor of Automatica, and is currently on the editorial boards
of the IEEE/ACM Transactions on Networking and IEEE Transactions on Au-
tomatic Control. He was the chair of the 2002 IEEE Computer Communica-
tions Workshop in Santa Fe, NM. His research interests include communication
networks, stochastic processes, queueing theory, information theory, and game
theory. His email address is rsrikant@uiuc.edu.

14

