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Abstract

We describe a multiscale representation for diffeomorphisms. Our rep-
resentation allows synthesis – e.g. generate random diffeomorphisms – and
analysis – e.g. identify the scales and locations where the diffeomorphism
has behavior that would be unpredictable based on its coarse-scale behav-
ior. Our representation has a forward transform with coefficients that are
organized dyadically, in a way that is familiar from wavelet analysis, and an
inverse transform that is nonlinear, and generates true diffeomorphisms when
the underlying object satisfies a certain sampling condition.

Although both the forward and inverse transforms are nonlinear, it is pos-
sible to operate on the coefficients in the same way that one operates on
wavelet coefficients; they can be shrunk towards zero, quantized, and can
be randomized; such procedures are useful for denoising, compressing, and
stochastic simulation. Observations include: (a) if a template image with
edges is morphed by a complex but known transform, compressing the mor-
phism is far more effective than compressing the morphed image. (b) One
can create random morphisms with and desired self-similarity exponents by
inverse transforming scaled Gaussian noise. (c) Denoising morpishms in a
sense smooths the underlying level sets of the object.

1 Introduction
Temporal or spacial deformation is a common underlying source of variability in many
signal and image analysis problems. This deformation may be the result of measurement
distortions, as in the case of satellite imagery [1] and GC/MS data [12] or the deformation
may be the actual phenomenon of study [9, 11]. In the first case, the deformation is seen
as a nuisance and must be removed before further analysis. In the second case, the goal
is not the removal of the deformation but rather the extraction of the deformation. Once
the deformation has been extracted, understanding the phenomenon at hand consists of
analyzing the deformation itself. This paper presents a novel representation for the defor-
mation after extraction that takes advantage of smoothness and multiscale organization to
both ease the computational burden of analysis and reveal geometric structure.



For the problem of deformation analysis we will limit ourselves to deformations that
are diffeomorphisms–special deformations that are invertible, smooth, and have smooth
inverses – this specialization allows us to limit the problem to one that is mathemati-
cally amenable. Although they are one of the basic building blocks of modern theoretical
mathematics, and an everyday object in pure mathematics, diffeomorphisms are a new
data type in image and signal analysis. This new data type needs a representation native
to its own structures. This representation should allow for fast computation and storage
while maintaining as much transparency as possible. In this paper we present one possible
approach to addressing this need.

We present a novel nonlinear invertible multiscale transform on the space of diffeo-
morphisms that can be used to store, manipulate, and analyze the variability in a collec-
tion of signals that are all diffeomorphic to a given template. This multiscale transform is
known as the Morphlet Transform. The use of such a transform is motivated by the suc-
cess of multiscale methods in data compression [5], noise removal [4], and fast template
registration [7]. Many realistic diffeomorphisms that appear in image and signal analysis
are sparsely represented in the Morphlet transform space.

There is one chief obstacle to representing diffeomorphisms: the space of diffeomor-
phisms is not a linear function space. Diffeomorphisms are functions, and so any given
diffeomorphism may be expressed in a basis expansion. But perturbations or manipula-
tions of the expansion coefficients may produce, after reconstruction, a function that is no
longer a diffeomorphism. This will be true regardless of the basis functions that are used.

There are two typical strategies for representing diffeomorphisms. The first is to
restrict to a parametric family of functions like affine maps, polynomials, or thin-plate
splines. Although these methods are attractive due to their simplicity, with the exception
of affine maps, none of these methods can guarantee that the matching function is in fact
a diffeomorphism. The second strategy is to use a deformation vector field such as in [6].
The diffeomorphism is then the unit time flow induced by the vector field. The vector field
representation has three drawbacks: first, calculating features of the full diffeomorphism
involves solving a first order PDE, which can be computationally intensive; second, the
representation is global, so the values of the vector field outside of some region can ef-
fect the value of the diffeomorphism in the region; third, because of the global nature of
the vector field the multiscale structure of the field may not correspond to the multiscale
structure of the diffeomorphism. In contrast, the Morphlet transform offers a local and
computationally efficient description for diffeomorphisms that ensures that the matching
functions are, in fact, diffeomorphisms.

The Morphlet transform takes uniform samples of the diffeomorphism on the standard
tetrahedral lattice and returns a collection of coefficients indexed by scale and location.
These coefficients have the same organizational structure as the coefficients produced by
the wavelet transform. Like the wavelet transform, the Morphlet coefficients reflect the
deviation of the diffeomorphism at one scale and location from the behavior predicted
from the next coarser scale values. Unlike the wavelet transform, a given coefficient no
longer corresponds to an element of a basis set. Rather, both decomposition and recon-
struction are nonlinear.



1.1 Related Work
There is now a long history of the use of multiscale methods in image registration and
deformation [8]. On the question of representing diffeomorphism, D. Mumford and E.
Sharon have worked on the question of the conformal fingerprint for conformal diffeo-
morphisms between two simply connected regions of the plane [11]. T.F. Cootes et al.[2]
work on building a parametric statistical model on the space of diffeomorphisms. A great
deal of interest in pattern analysis using diffeomorphic registration has been generated in
the field of computational anatomy. See [6, 9].

2 Template Warping and Diffeomorphisms
Before we continue, let us define some terms and make precise the problem we wish to
address. For our purposes, a diffeomorphism is a smooth function from Rn to Rn which
is one to one, onto, and has a smooth inverse. We shall model signals and images as
real-valued functions on Rn. The deformation of a signal will be the action of a diffeo-
morphism on the signal.

Ideform(x) = φ
∗(I)(x) = I ◦φ

−1(x). (1)

We assume we have a collection of signals {In}N
n=1 and a fixed template signal Itemplate

such that for each signal In there exists a diffeomorphism φn such that:

In = φ
∗
n (Itemplate). (2)

We will not address the question of how to calculate φn given In and Itemplate. There is
a large existing literature devoted to solving the diffeomorphic registration problem [10],
and we postpone discussing the relationship between the morphlet transform and regis-
tration algorithms for a later publication. We will simply assume that we can calculate φn
satisfying (2) or some appropriate regularization.1

Once the set of registering diffeomorphisms, {φn}N
n=1, has been obtained, all of the

information contained in the sample {In}N
n=1 is now contained (up to the accuracy of

the diffeomorphic assumption) in the set of registering diffeomorphisms and the template
Itemplate. If we want to study the variability of {In}N

n=1 we need only study the variability of
{φn}N

n=1. This is advantageous due to the smoothness of the registering diffeomorphisms.
Typically, the measured signals are not smooth. In 1-d, the signals may have jumps

and spikes. In 2-d, the images have edges and textures. Representing these features can
be difficult, and most of the science of image analysis focuses on ways of dealing with
these non-smooth features. In contrast, the registering diffeomorphisms are frequently
very smooth functions with a few localized regions of sharp transition. These regions of
sharp transition in the registering diffeomorphisms are exactly the regions responsible for
the variability in the collection of signals {In}N

n=1.
Bijections that are smooth except for a few local singularities have sparse Morphlet

transforms. Thus, even when analyzing images with high spatial resolution, only a small
fraction of the morphlet coefficients of the resulting registering diffeomorphisms will be
large. Only these large coefficients are important. Morphlet transform preserves diffeo-
morphisms, and has approximation properties similar to the wavelet transform. Thus, if

1In the presence of noise, (2) is never satisfied. Rather, registration algorithms typically search for a diffeo-
morphism that satisfies a regularized least squares problem.



we threshold and discard small coefficients, the reconstructed diffeomorphism will have a
sparse representation and will be very close to the original diffeomorphism. We will give
examples of such a reconstruction in section 5.2.

3 The Interpolating Wavelet Transforms
The Morphlet transform is a nonlinear variant of the wavelet transform. We do not have
the space to give a thorough introduction to the theory of linear wavelet transforms, but
because the Morphlet transform explicitly builds off of the interpolating wavelet transform
[3] we will briefly describe its construction and properties. For ease of presentation we
will only discuss the one dimensional case; the higher dimensional case is similar.

The linear interpolating wavelet transform is defined on the dyadic samples of a con-
tinuous real-valued function. Let f be a continuous function on R. Fix integers J0 and J1
which will serve as the coarsest and finest dyadic sampling scales respectively. Sample f
at k

2J1
for k ∈ Z. Define β

j
k as:

β
j

k = f (
k
2 j ) (3)

for J0 ≤ j ≤ J1.
Fix a positive odd integer D. And define the prediction Pred j

k as:

Pred j
k = π

j
k (

k
2 j +

1
2 j+1 ), (4)

where π
j

k is a local interpolating polynomial of order D. Specifically,

π
j

k interpolates the values (
k + i
2 j ,β j

k+i) for i =−D−1
2

, . . . ,
D+1

2
. (5)

We define the linear interpolating wavelet transform as the set of coefficients:{
β

J0
k ,α j,linear

k

}
j,k∈Z

(6)

where
α

j,linear
k = β

j+1
2k+1−Pred j

k. (7)

Thus, α
j,linear

k measures the discrepancy between the true value of the function and
the value predicted by using the samples at the next coarser scale. The coefficients {β

J0
k }

are called the coarse scale coefficients and {α
j,linear

k } are called the detail coefficients. In
regions where f is smooth, the detail coefficients decay exponentially in j. The rate of
decay measures the degree of smoothness of f . If a function is smooth everywhere except
for a few isolated singularities, then the fine scale coefficients of the wavelet transform
will be very small away from the singularities.

To invert the transform we employ a pyramidal scheme starting with the coarsest
sample β

J0
k . For each scale j, we predict the values at the next finer scale j + 1 using (4)

and reconstruct the samples at scale j +1 using:

β
j+1

2k+1 = α
j,linear

k +Pred j
k. (8)

Both the forward and inverse transforms involve O(N) flops, where N is the number of
samples of f .



4 The Morphlet Transform
The Morphlet transform acts on the dyadic samples of a continuous diffeomorphism of
Rn. We will show the 2-d version of the transform, as the simplicity of diffeomorphisms in
dimension n = 1 makes the 1-d transform insufficiently instructive. The high dimensional
versions follow the same pattern as the 2-d transform.

4.1 The Sampling Condition
Due to a sampling condition, the Morphlet transform is only actually defined for a special
sub-manifold of the space of diffeomorphisms. The idea behind the sampling condition is
to ensure, at each scale, that the reconstructed function “looks like a diffeomorphism.” In
particular, we demand that the discrete Jacobians of the samples of the diffeomorphism
are all positively oriented affine maps at all scales. For any given diffeomorphism there
exists a dyadic scale J such that for all scales finer than J the discrete Jacobians satisfy
this condition. Thus, a diffeomorphism needs to be sufficiently finely sampled before the
Morphlet transform may be applied.

Let φ be a diffeomorphism of the plane. As in the linear case define β
j

k,l :

β
j

k,l = φ(
k
2 j ,

l
2 j ) (9)

To clarify the sampling condition, and ease the notation for the definition of the fine scale
coefficients, we define three intermediate sets of samples, {β

j,0
k,l } , {β

j,1
k,l }, and {β

j,2
k,l }.

β
j,3

k,l = β
j

k,l (10)

β
j+1,1

2k,2l = β
j+1,2

2k,2l = β
j,3

k,l (11)

β
j+1,1

2k+1,2l+1 = β
j+1,2

2k+1,2l+1 =
1
2
(β j,3

k+1,l +β
j,3

k,l+1) (12)

β
j+1,1

2k+1,2l =
1
2
(β j,3

k+1,l +β
j,3

k,l ) , β
j+1,2

2k+1,2l = β
j+1,3

2k+1,2l (13)

We say the diffeomorphism satisfies the sampling condition for the scales j ∈ [J0,J1]
if the following condition is satisfied:

Discrete Bijectivity Constraint For all j ∈ [J0,J1], (k, l) ∈ Z2, n = 0,1,2,

δ ∈ ∆ =
{
±

[
1 0
0 1

]
,±

[
1 1
−1 0

]
,±

[
0 −1
1 1

]}
: (14)

sign
(

det[β j,n
k,l −β

j,n
k+δ1,2,l+δ2,2

,β j,n
k+δ1,1,l+δ2,1

−β
j,n

k+δ1,2,l+δ2,2
]
)

= sign
(

det(δ )
)
. (15)

4.2 Defining the Morphlet Coefficients
To define the fine scale coefficients we begin by fixing a coarsest and a finest dyadic scale
J0 and J1 for which φ satisfies the Discrete Bijectivity Constraint. As in the interpolating
wavelet transform, we also fix an odd integer D which will serve as the order of an under-
lying linear interpolating wavelet transform as in section 3. In addition, we fix a sequence
of exponentially decaying integers λ j for j = J0,J0 +1, . . . ,J1. The order of the transform



D and the rate of decay of λ j will determine the relationship between the decay of the
Morphlet coefficients and the smoothness of the diffeomorphism.

For J0 ≤ j ≤ J1 and ∆ as in (14), we first define the boundary penalty terms as:

Λ
j
i (k, l) = ∑

δ∈∆

β
j,i

k+δ1,1,l+δ1,2
−β

j,i
k+δ1,2,l+δ2,2

det[β j
k,l −β

j,i
k+δ1,2,l+δ2,2

,β j,i
k+δ1,1,l+δ1,2

−β
j,i

k+δ1,2,l+δ2,2
]
. (16)

Then we define the fine scale coefficients

α
j

2k+1,2l = α
j,linear

2k+1,2l −λ j

[
0 1
−1 0

]
Λ

j+1
1 (2k +1,2l) (17)

α
j

2k,2l+1 = α
j,linear

2k,2l+1−λ j

[
0 1
−1 0

]
Λ

j+1
2 (2k,2l +1) (18)

α
j

2k+1,2l+1 = α
j,linear

2k+1,2l+1−λ j

[
0 1
−1 0

]
Λ

j+1
3 (2k +1,2l +1) (19)

The Morphlet transform for φ is then:

M (φ) = {β
J0
k,l ,α

j
k,l}. (20)

Note that the detail coefficients of the Morphlet transform are perturbed versions of
the linear interpolating wavelet coefficients. For a smooth diffeomorphism, the difference
between the linear coefficients and Morphlet coefficients at fine scales is O(λ j). Thus,
the exponential decay of λ j indicates that the fine scale coefficient of both transforms are
very similar. The biggest difference comes in the coarse and medium scales, where the
perturbation can be large relative to λ j. The perturbation is large when, due to a Gibbs’
phenomenon, the local polynomial interpolation of the diffeomorphism has a vanishing
Jacobian. Under these circumstances, the perturbation can dominate the coefficient.

4.3 Basic Properties of the Morphlet Transform
• Functions reconstructed with the inverse transform will always be discrete diffeo-

morphisms. On the set of diffeomorphisms that satisfy the Discrete Bijectivity Con-
straint, the Morphlet transform is invertible. Both transforms require O(N) flops
where N is the number of samples, though the inverse transform requires more work
as it requires the use of Newton’s method or another similar nonlinear solver.

• If φ is an affine map then Mdetail(φ) = 0. In particular, the detail coefficients of the
identity map vanish.

• If τ ∈ R2 then Mcoarse(φ + τ) = Mcoarse(φ)+ τ and Mdetail(φ + τ) = Mdetail(φ).
The detail coefficients are invariant under translation.

• If A ∈ S0n, α
j

k,l(Aφ) = Aα
j

k,l(φ). The detail coefficients are covariant under linear
orthogonal transformation.

• If Ω ⊂ dom(φ) is a open domain such that φ |Ω and φ−1|φ(Ω) are smooth then all
Morphlet coefficients with support2 in Ω decay geometrically as a function of the

2The support of a Morphlet coefficient is the collection of all points in the domain of the bijection which
appear in the penalty term (16) and the linear coefficient (7) for the corresponding formula (17) - (19).



discrete scale index. The rate of decay is determined by the smoothness of the
refinement scheme and the smoothness of φ .

• If λ j = O(2−(D+1) j), the approximation rate of the Morphlet transform is as good
as the approximation rate of the associated wavelet transform.

5 Stylized Applications

5.1 Random Diffeomorphisms
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Figure 1: (a) ω = 1, (b) ω = 2, (c) ω = 4, (d) ω = 5.

The inverse Morphlet transform can be used to generate random diffeomorphisms of
any preselected smoothness: first, generate a random affine diffeomorphism3; second,
subsample the affine map and use the samples as the coarse scale coefficients; third, ran-
domly generate detail coefficients with a preselected decay; finally, apply the inverse
transform. In particular, one can choose uncorrelated random Gaussian coefficients with
scale-dependents standard deviations α

j
k,l ∼ N(0,C2−ω j) for some fixed C,ω > 0. The

larger ω , the smoother the random diffeomorphism. Figure 1 shows the action of four
random diffeomorphisms on a rectangular grid. Each diffeomorphism was generated with
coarse scale coefficients set to the identity map and with C = 1. The value of ω is varied.

5.2 Compression
In the case where one must compress an image consisting of a known template that has
been deformed smoothly, note that if the template has sharp features, such as edges, it
can be very difficult to compress a warped instance by standard means. Indeed traditional
compression schemes will not work well on figure 2(b). However, as panels (c) and (d) in

3This is just a matter of linear algebra.



(a) (b)

(c) (d)

Figure 2: (a) Image I, (b) φ ∗(I), (c) φ ∗
10%

(I), Rel. L2-error = 9.0e − 4 (d) φ ∗
2%

(I),
L2-error = 1.9e−3.

our example show, if we take the template as separately known to the compressor and the
decompressor, and simply compress the morphism, we can reconstruct the warped image
yielding a dramatically better visual fidelity than standard compression could offer.

The Morphlet coefficients of a smooth diffeomorphism decay rapidly. Because the
approximation rate of the Morphlet transform is at least as good as the approximation
rate of the wavelet transform, we may discard a large percentage of the coefficients and
still reconstruct the diffeomorphism with high accuracy. This approximation rate can be
used to “compress” an image that is a warped version of a known template. To store the
image, we store the template and the registering diffeomorphism. If we have a collection
of images all of which are diffeomorphic to the template, then the ability to compress the
diffeomorphisms translates into low storage for all of the images in the collection.

In figure 2 we show a simple “bulls-eye” template, (a), and the action of a randomly
generated diffeomorphism φ on the template, (b). Applying the Morphlet transform to
φ , we threshold all but the largest 10% of the detail coefficients and apply the inverse
transform to construct φ10%. Similarly, we threshold all but the largest 2% of the detail
coefficients to construct φ2%. We apply both φ10% and φ2% to I and record the relative
L2-error between φ ∗(I) and φ10%(I), φ2%(I) respectively. All images are resolved at 512
x 512.

Notice that thresholding the diffeomorphism and applying it to the template effectively
smooths the level curves of φ(I). No linear method can achieve this.

5.3 Interpolation
Given two diffeomorphisms, φ1 and φ0, that are affine maps at the coarsest scale, the Mor-
phlet transform can be used to interpolate between them in the space of diffeomorphisms.
To do so, we interpolate between the two affine maps at the coarsest scale4 and then we

4Pull back to the Lie algebra and linearly interpolate.
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Figure 3: (a) The original template I, (b) φ ∗
0 (I), (c) φ ∗

1
4
(I), (d) φ ∗

1
2
(I), (e) φ ∗

3
4
(I), (f) φ ∗

1 (I).

simply linearly interpolate the respective detail coefficients of the Morphlet transform:

α
j

k,l(φt) = tα j
k,l(φ1)+(1− t)α j

k,l(φ0). (21)

Figure 3 shows a simple example of the action of interpolated diffeomorphisms on a
template. Figure 3 (a) is the original template, I. Figure 3 (b) and (f) show the action of
φ0 and φ1 on the template, respectively, where both diffeomorphisms were synthetically
generated by the authors. Both φ0 and φ1 are the identity map at the the coarsest scale.
For t = 1

4 , 1
2 , and 3

4 we interpolate between the two diffeomorphisms as in (21) and apply
the maps to the template.

This interpolation provides a cartoon model for articulated motion. The underlying
object–here a cartoon face–undergoes diffeomorphic changes. The Morphlet coefficients
act like small control knobs with which we can change the expression of the face.

6 Conclusion
The space of Euclidean diffeomorphisms is highly nonlinear. Yet, there is a large sub-
manifold of diffeomorphisms that satisfy the Discrete Bijectivity Constraint and for this
submanifold the Morphlet transform acts as an embedding into L∞ (or Rn in the finitely
sampled case). All of the coefficients are calculated using only local information and,
similar to wavelets, diffeomorphisms have sparse Morphlet transforms. The Morphlet
transform provides a representation where approximation and manipulation are simple
arithmetic operations. Future work will further explore how these properties can be used
in image and signal analysis.

7 Acknowledgements
Thanks to: Claire Tomlin and other participants in the ONR-MURI “CoMotion” project
that partially supported this work; NSF DMS 0072661, NSF DMS 0140698(FRG) and
CNS-0085984 for partial support; Peter Schroeder (CalTech), Victoria Stodden, and Inam



Rahman for discussions about software for Multiscale Analysis of Riemannian Symmetric-
Space Valued data; IPAM for its support of the first author during the “Multiscale Geo-
metric Analysis” long program; MSRI for its support of both authors during its “Mathe-
matical, Statistical, and Computational Aspects of Vision” long program. The first author
has been supported by an NSF Postdoctoral Fellowship.

References
[1] R. Bernstein. Digital image processing of earth observation sensor data. IBM Jour-

nal of Research and Development, (20):40–57.

[2] T. F. Cootes, C. J. Twining, and C. J. Taylor. Diffeomorphic statistical shape models.
In Proceedings of BMVC 2004, volume 1, pages 447–456, 2004.

[3] David Donoho. Interpolating wavelet transforms. Technical report, Stanford Uni-
versity, 1992.

[4] David L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory,
41(3):613–627, 1995.

[5] David L. Donoho, Martin Vetterli, R. A. DeVore, and Ingrid Daubechies. Data
compression and harmonic analysis. IEEE Trans. Inform. Theory, 44(6):2435–2476,
1998. Information theory: 1948–1998.

[6] S. Joshi and M. I. Miller. Landmark matching via large deformation diffeomor-
phisms. IEEE Transactions on Image Processing, 9(8):1357–1370, August 2000.

[7] Y. Keller and A. Averbuch. Fast motion estimation using bidirectional gradient
methods. Image Processing, IEEE Transactions on, 13(8):1042 – 1054, August
2004.
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