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ABSTRACT
Motivation: Homology search finds similar segments between two
biological sequences, such as DNA or protein sequences. The intro-
duction of optimal spaced seeds in PatternHunter, (Ma et al., 2002),
has increased both the sensitivity and the speed of homology search
and it has been adopted by many alignment programs such as
BLAST. With the further improvement provided by multiple spaced
seeds in PatternHunterII, (Li et al., 2004), Smith-Waterman sensitivity
is approached at BLASTn speed. However, computing optimal mul-
tiple spaced seeds was proved to be NP-hard and current heuristic
algorithms are all very slow (exponential).
Results: We give a simple algorithm which computes good multiple
seeds in polynomial time. Due to a completely different approach,
the difference with respect to the previous methods is dramatic. The
multiple spaced seed of PatternHunterII, with 16 weight 11 seeds, (Li
et al., 2004), was computed in 12 days. It takes us 17 seconds to find
a better one. Our approach changes the way of looking at multiple
spaced seeds.
Contact: ilie@csd.uwo.ca

1 INTRODUCTION
Homology search finds similar segments between two biological
sequences, such as DNA or protein sequences. A significant fraction
of computing power in the world is dedicated to performing such
tasks. The increase in genomic data is quickly outgrowing computer
advances and hence better mathematical solutions are required. As
the classical dynamic programming techniques of (Needleman and
Wunsch, 1970; Smith and Waterman, 1981) became overwhelmed
by the task, popular programs such as FASTA (Lipman and Pearson,
1985) and BLAST (Altschul et al., 1990) used heuristic algorithms.
BLAST used a filtration technique in which positions with short
consecutive matches, orhits, were identified first and then exten-
ded into local alignments. Speed was traded for sensitivity since
longer initial matches missed many local alignments, hence decre-
asing sensitivity, whereas short initial matches produced too many
hits, thus decreasing speed.

A breakthrough came with PatternHunter (Ma et al., 2002) where
the hits were no longer required to consist of consecutive mat-
ches. More precisely, PatternHunter looks for runs of 18 consecutive
nucleotides in each sequence such that only those specified by1’s in
the string111*1**1*1**11*111 are required to match. Such a
string is called aspaced seedand the number of1’s in it is itsweight.
Using this notion, BLAST required a hit according to aconsecutive
seed such as11111111111.

The filtration principle has been used before in approximate string
matching (Karp and Rabin, 1987; Pevzner and Waterman, 1995;

Burkhardt and Kärkäinen, 2001) but the important novelty of Pat-
ternHunter was the use of optimal spaced seeds, that is, spaced
seeds that have optimal sensitivity. Impressively, the approach of
PatternHunter increases both the speed and sensitivity. The idea has
been adopted since by the new versions of BLAST, MegaBLAST,
BLASTZ, and other software programs (Brejova et al., 2004; Noé
and Kucherov, 2005; Kisman et al., 2005).

As noticed in (Ma et al., 2002), multiple spaced seeds—sets
of seeds that hit whenever one of the components does so—are
better, and with their introduction in PatternHunterII, (Li et al.,
2004), Smith-Waterman sensitivity (Smith and Waterman, 1981) is
approached whereas the speed is that of BLASTn.

Quite a few papers have been written about spaced seeds, evalua-
ting the advantages of spaced seeds over consecutive ones (Buhler
et al., 2003; Keich et al., 2004; Choi and Zhang, 2004; Li et al.,
2006), showing that the relevant computational problems are NP-
hard (Li et al., 2004, 2006), giving exact (exponential) algorithms
for computing sensitivity (Buhler et al., 2003; Li et al., 2004; Keich
et al., 2004; Choi and Zhang, 2004; Choi et al., 2004), polynomial
time approximation schemes (Li et al., 2006) or heuristic algorithms
(Li et al., 2004; Choi et al., 2004; Yang. et al., 2004; Preparata et
al., 2005; Ilie and Ilie, 2007; Kong, 2007), adapting the seeds for
more specific biological tasks (Brejova et al., 2004; Kucherov et al.,
2004; Sun and Buhler, 2004; Noé and Kucherov, 2005), or buil-
ding models to understand the mechanism that makes spaced seeds
powerful (Buhler et al., 2003; Sun and Buhler, 2004; Preparata et
al., 2005).

Finding optimal (multiple) spaced seeds is NP-hard but even fin-
ding good ones is very difficult. Exhaustive search involves two
exponential-time steps: (i) there are exponentially many seeds to
be tried and (ii) computing the sensitivity of each takes exponen-
tial time as well. Several approaches (Buhler et al., 2003; Li et al.,
2004; Keich et al., 2004) tried to deal with the latter exponential by
approximating the sensitivity. For the former, the number of seeds
to be considered has been reduced by various heuristics (Choi et al.,
2004; Yang. et al., 2004; Preparata et al., 2005; Kong, 2007) but it
remained exponential.

The approach here is based on the overlaps between the hits of
a multiple seed. A new measure,overlap complexity, is introdu-
ced and shown to be experimentally well correlated with sensitivity.
Since the new measure is computable in (low) polynomial time, we
shall use overlap complexity instead of sensitivity and this takes care
of the exponential in (ii). A similar approach has been introduced in
(Ilie and Ilie, 2007) for single seeds. Also, (Yang. et al., 2004; Kong,
2007) contain some other measures well correlated with sensitivity
for multiple seeds. However, we take care also of the exponential
at (i), that is, the exponential number of candidate seeds. We give
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a simple algorithm which improves quickly the overlap complexity
of an initial multiple seed, thus providing a good multiple seed in
polynomial time.

We provide some results showing the good correlation between
overlap complexity and sensitivity for single seeds. Our polynomial-
time algorithm produces single seeds of sensitivity very close to
optimal. For the multiple seed case such comparison cannot be made
since no optimal multiple seeds are known. We shall compare our
multiple seeds with previous ones and show them to have better sen-
sitivity while our algorithm is much faster. The most important test
is to compare against the multiple seed implemented in PatternHun-
terII, which contains 16 weight 11 seeds. While it took (Li etal.,
2004) 12 days to compute this multiple seed, we obtain a better
multiple seed in 17 seconds. The dramatic improvement is dueto a
completely different approach. As discussed in the last section, our
approach allows looking at multiple seeds in a totally different way.

A number of problems remain to be investigated such as proving
guarantees about the correlation between overlap complexity and
sensitivity, approximation ratio and exact running time ofour heuri-
stic algorithm for approximating the overlap complexity. However,
such problems may be mostly of theoretical interest as in practice
our algorithms produce very good multiple seeds in very short time.

The paper is organized as follows. The next section formally
introduces multiple spaced seed and all concepts needed later.
Our new measure is introduced in Section 3. Section 4 shows
good correlation between overlap complexity and sensitivity. Our
polynomial-time algorithm for computing good multiple seeds is
given in Section 5. In Section 6 we compute better seeds than all
previous ones. We conclude with a brief discussion in Section 7.
More seeds whose sensitivity is discussed in the text are provided in
the Appendix.

The content of the paper can be read in several ways, according
to the goal of the reader. First, we computed a number of multi-
ple spaced seeds that are ready to be used. No understanding of our
algorithm is necessary for that purpose. Second, our algorithm is
simple and explained in detail for the reader interested in producing
a more efficient implementation and/or modifying the algorithm in
order to solve different problems, such as computing more specia-
lized seeds. Finally, we provide explanation of the intuitive ideas
behind our algorithm in order to provide the interested reader with
in-depth understanding of our approach.

2 SPACED SEEDS
We start with some basic definitions. An alphabet is a finite nonem-
pty set, denoted byA. The set of finite strings overA is denoted
by A∗. For a stringx ∈ A∗, the length ofx is denoted by|x|. For
1 ≤ i ≤ |x|, the ith letter ofx is denoted byx[i]. If u = xy, for
somex, y ∈ A∗, thenx (y, resp.) is called a prefix (suffix, resp.) of
u. For two stringsu andv, anoverlapbetweenu andv is any string
that is both a suffix ofu and a prefix ofv.

A spaced seedis any1 string over the alphabet{1,*}; 1 stands
for a ‘match’ and* for a ‘don’t care’ position. For a seeds, the
lengthof s is ℓ = |s| and theweight, w, of s is the number of1’s
in s. A multiple spaced seedS is any finite nonempty set of spaced
seeds.

1 From biological point of view only strings starting and ending with1 are
spaced seeds. The seeds we shall eventually compute satisfythis condition.

The quality of the spaced seeds is given by their sensitivity, which,
intuitively, is a measure of their ability to detect similarsegments
between biological sequences; see Ma et al. (2002). This is done
as follows. Given two DNA sequences and a seed s, we say that s
simultaneously matches (hits) the two sequences at given positions
if each1 in s corresponds to a match between the corresponding
nucleotides in the two sequences; see Fig. 1 for an example using
PatternHunter’s seed. Such a match is then extended using classical
methods to a local alignment.

DNA seq.S1 A C G A G G C A C T G T A T G T A T A T C T A

DNA seq.S2 A G T A G G C A A T G C A T T T A A A T C T C

matches/mism. = 6= 6= = = = = = 6= = = 6= = = 6= = = 6= = = = = 6=

Bernoulli seq.R 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0

spaced seeds 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1

Fig. 1. An example of a hit using PatternHunter’s spaced seed. All 1’s in the
seed (the last row) must correspond to matches between the sequences. The
spaced seeds hits the Bernoulli sequenceR (ending) at the third position
from the right.

However, in order to be able to compare spaced seeds and ulti-
mately compute good ones, we need a precise mathematical setting.
The above process will therefore be reformulated as follows, see
Ma et al. (2002); Keich et al. (2004). Assume there are two DNA
sequences S 1 

and S 2 
such that the events that they are identi-

cal at any given position are jointly independent and each event
is of probability p, called thesimilarity level. The sequence of
equalities/inequalities between the two DNA sequences translates
then into a sequence R of 1’s (corresponding to matches) and 0’s
(corresponding to mismatches) that appear with probability p and
1 −← p, respectively. Therefore, given an (infinite) Bernoulli random
sequence R and a seed s, we say that s hits R (ending) at position
k if aligning the end of s with position k of R causes all1’s in s to
align with 1’s in R; see Fig. 1.

We are now in the position to give a rigurous definition for sensi-
tivity of a spaced seed. Thesensitivityof a seed s is the probability
that s hits R at or before position n; see Ma et al. (2002); Keich et
al. (2004). Note that the sensitivity depends on both the similarity
level p and the length of the random region n.

An intuitive explanation of the reason for which seeds have dif-
ferent sensitivities follows. Recall that the sensitivityof a seed is
the probability of hitting a random region of a given length.For two
spaced seeds of the same weight, the expected number of hits is
the same but their sensitivities need not be the same. This happens
as the hits of one seed may appear more clustered. A good intui-
tive example is searching for the stringsaaa andabc in a random
text. For each occurrence ofaaa, the chance of having another one
sharing two letters with it is 1/26 whereas starting afresh would
require ( 1/26) 

3 . Therefore, the occurrences ofabc are more evenly
distributed and it is more likely to see first anabc in the text.

A multiple spaced seed hits a sequence R if and only if one of its
seeds hits R. The sensitivity of a multiple spaced seed S is defined
similarly, that is, the probability that at least one seed of S hits R at
or before position n.

In the light of the tradeoff between search speed and sensitivity, it
makes sense to consider only multiple seeds in which all seeds have
the same weight (they may have different lengths).
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3 OVERLAP COMPLEXITY
We introduce in this section our complexity measure, the overlap
complexity, which will turn out to be well correlated with sensitivity
but much easier to compute. Therefore, it will replace sensitivity
in our computations. Before introducing it, we give some intuitive
explanation why overlapping hits of a seed are undesirable.

The hits of a seed can overlap but overlapping hits will detect
a single local alignment. An example showing such a situation is
shown in Fig. 2.

hit of good seed 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1
local alignment 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0

1st hit of bad seed 1 1 * 1 1 * 1 1 * 1 1 * 1 1 * 1
2nd hit of bad seed 1 1 * 1 1 * 1 1 * 1 1 * 1 1 * 1
3rd hit of bad seed 1 1 * 1 1 * 1 1 * 1 1 * 1 1 * 1

Fig. 2. An example showing the intuition behind overlap complexity; a local
alignment is detected by one hit of a good seed whereas a bad seed “wastes”
three hits to detect the same alignment.

Therefore, the sensitivity of a seed is inversely proportional with
the number of overlapping hits, since the expected number ofhits
is the same. Thus, good seeds should have a low number of over-
lapping hits. The definite proof that (non-uniformly) spaced seeds
are better than consecutive seeds, due to (Li et al., 2006), involves
estimating the expected number of non-overlapping hits. However,
computing this number in general is as difficult as computingsen-
sitivity. Therefore, we look here for simpler ways to detectlow
numbers of overlapping hits.

We shall define a measure that is independent of the similarity
level p. Consider two seedss1 ands2 and denote byσ[i] the num-
ber of pairs of1’s aligned together when a copy ofs2 shifted byi
positions is aligned againsts1. The shifti takes values from1−|s2|
to |s1| − 1, where a negative shift meanss2 starts first. Precisely, if
we denote

t1 = ∗|s2|−1s1∗
|s2|−1,

t2,i = ∗|s2|−1+is2∗
|s1|−i−1, for 1− |s2| ≤ i ≤ |s1| − 1,

then

σ[i] = card{j | 1 ≤ j ≤ |s1|+ 2|s2| − 2, t1[j] = t2,i[j] = 1} .

Theoverlap complexityfor two seeds is defined as

OC(s1, s2) =

|s1|−1X
i=1−|s2|

2σ[i].

An example is shown in Fig. 3. Note that the measure is symmetric,
that is,OC(s1, s2) = OC(s2, s1), for any seedss1 ands2.

The definition of the overlap complexity deserves a few com-
ments. Note that the “importance” (we should say “weight” but that
would be confused with the weight of the seeds) of the number of
pairs of1’s aligned together for each shift doubles with each pair
of 1’s. While this may look as a reasonably natural definition, there
is a good intuitive reason behind it. For a shift i, denote by σ ∗ 

[i]
the number of1’s aligned against*’s and by σ ∗ ∗ 

[i] the number of

shift i σ[i]

* * * 1 1 * * 1 * 1 * * *
1 * 1 1 * * * * * * * * * −3 1
* 1 * 1 1 * * * * * * * * −2 2

* * 1 * 1 1 * * * * * * * −1 1
* * * 1 * 1 1 * * * * * * 0 1
* * * * 1 * 1 1 * * * * * 1 2

* * * * * 1 * 1 1 * * * * 2 1
* * * * * * 1 * 1 1 * * * 3 1
* * * * * * * 1 * 1 1 * * 4 2

* * * * * * * * 1 * 1 1 * 5 0
* * * * * * * * * 1 * 1 1 6 1

Fig. 3. An example of the overlap complexity of two seeds:
OC(11**1*1,1*11) =

P6
i=−3 2σ[i] = 25.

pairs of*’s aligned together. For our example, these arrays are given
below:

i −←3 −←2 −←1 0 1 2 3 4 5 6

σ ∗ 
[i] 5 3 5 5 3 5 5 3 7 5

σ ∗ ∗ 
[i] 7 8 7 7 8 7 7 8 6 7

The number of overlapping hits (with shift i) is then proportional to
p 

σ ∗ 

[ i] ( p 

2 + ( 1 −←p ) 

2 ) 

σ ∗ ∗ 

[ i] , where p is the similarity level; p 

σ ∗ 

[ i] is
the probability that σ ∗ 

[i] *’s take value 1 and ( p 

2 + ( 1 −←p ) 

2 ) 

σ ∗ ∗ 

[ i]

is the probability that σ ∗ ∗ 
[i] pairs of*’s take the same value, 0 or 1.

Choosing p = 0.5 makes this quantity equal to 2− σ ∗ 

[ i] − σ ∗ ∗ 

[ i] . It is
reasonable to assume that a fixed-size window in considered when
evaluating the overlapping hits, that is, the sum σ [i] + σ ∗ 

[i] + σ ∗ ∗ 
[i]

is assumed to be a constant, say c; in our example c = 13. Then,
the number of overlapping hits is proportional to 2− σ ∗ 

[ i] − σ ∗ ∗ 

[ i] =
2σ [ i] − c = 1

2c 

2σ [ i] . Since c is constant, this is proportional with 2σ [ i]

which gives our definition of overlap complexity.
It is important to mention that the freedom to conveniently choose

the value p = 0.5 is due to the fact that, even if the optimal seed may
change with p (see Table 1 below), the sensitivity changes very little.

For a multiple seedS = {s1, s2, . . . , sk}, the overlap complexity
is defined by:

OC(S) =
X

1≤i≤j≤k

OC(si, sj).

Note that the overlap complexity is invariant with respect to the
order of the seeds and reversal (assuming all seeds are reversed
simultaneously). This is expected of any measure well correlated
with sensitivity.

4 SENSITIVITY OF LOW-OVERLAP SEEDS
We show here that the overlap complexity is, experimentally, well
correlated with sensitivity for single seeds. We consider in Table 1
the top sensitivity seeds of (Choi et al., 2004) (that is, seeds with
highest sensitivity among those with a given weight); theirsensi-
tivity ranks for similarity levels 65% , 70% , . . . , 90% are given in
columns 2, 3, . . . , 7, respectively. As mentioned earlier, the top sen-
sitivity seed may change with the similarity level p. For instance, the
first line for weight 11 corresponds to PatternHunter’s seedwhich is
the best for similarity levels 65% and 70%, second best for 75%,
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80%, and 85%, and only third best for 90%. However, the diffe-
rences between the sensitivities of these top seeds for any of the
similarity levels considered is very small, a crucial observation for
our approach, which is independent of similarity level.

The last column of Table 1 gives the overlap complexity rank.
In all cases, at least one top sensitivity seed is on top of theover-
lap complexity ranking. Note that the seeds with the lowest overlap
complexity are on top of the overlap complexity ranking.

Table 1. The top sensitivity seeds from (Choi et al., 2004); a ‘-’ means not
in top 20. The last column gives the overlap complexity rank.Only rankings
are shown, not the seeds. Each line corresponds to one seed.

sensitivity rank overlap
weight under a similarity level complexity

65% 70% 75% 80% 85% 90% rank
1 1 1 1 1 1 1

9 2 2 2 2 2 2 1
4 4 4 4 4 4 1
1 1 1 1 1 1 1

10 2 2 4 6 8 9 1
8 6 2 2 2 5 1
1 1 2 2 2 3 1

11 2 2 1 1 1 1 2
6 3 3 5 5 6 2
1 1 1 1 1 1 1

12 2 2 2 5 3 2 2
6 3 3 2 4 4 1
1 3 7 - - - 2

13 2 1 1 2 2 2 1
7 2 2 1 1 1 6
1 3 7 - - - 1

14 2 1 1 1 1 1 1
5 2 2 3 3 6 1
1 2 - - - - 4

15 14 1 2 5 5 4 39
- 5 1 1 1 1 1

16

1 9 - - - - 11
7 1 2 6 13 20 1
- 7 1 1 1 3 1
- - 5 2 2 1 26
1 3 - - - - 1

17 6 1 2 4 4 5 1
- - 1 1 1 1 2
1 4 - - - - 36

18 - 1 1 2 3 2 1
- - 4 3 1 1 142

The opposite is shown in Table 2 where the highest sensitivity
of the seeds with lowest overlap complexity is shown. (Theremay
be several seeds with lowest overlap complexity.) Almost all dif-
ferences are zero. The correlation between the two measuresis
remarkable.

We cannot make the same comparison for multiple spaced seeds
since there are no optimal multiple spaced seeds known.

5 A POLYNOMIAL-TIME ALGORITHM
The exact algorithms for computing sensitivity are all exponential,
see (Buhler et al., 2003; Keich et al., 2004; Choi and Zhang, 2004),
which is expected since the problem is NP-hard (Li et al., 2006).

Table 2. The sensitivity of the top overlap complexity seeds for weights 9
to 18, similarity 70%, and length of random region 64.

weight
optimal sensitivity of a difference

sensitivity top overlap seed to optimal
9 0.729156 0.729156 0.000000
10 0.595740 0.595740 0.000000
11 0.467122 0.467122 0.000000
12 0.356430 0.356430 0.000000
13 0.264750 0.264750 0.000000
14 0.193514 0.193514 0.000000
15 0.138660 0.138333 0.000327
16 0.098942 0.098942 0.000000
17 0.070004 0.070004 0.000000
18 0.049146 0.049146 0.000000

The one of (Choi and Zhang, 2004) runs in timeO(nℓ22(ℓ−w)), for
seeds of lengthℓ and weightw. The other two have running times
O(nℓ22ℓ−w) for (Keich et al., 2004) andO(nw2ℓ−w) for (Buhler
et al., 2003).

For multiple seeds, (Li et al., 2004) gave a dynamic programming
algorithm that runs in timeO

�
(k + L + n)

Pk

i=1 ℓi2
ℓi−w

�
, where

k is the number of seeds,ℓi’s are the lengths of the seeds andL =
max1≤i≤k ℓi.

Therefore, finding optimal seeds by trying all seeds of a given
weight (and length) and selecting the best is computationally very
expensive. In fact, it has been shown by (Li et al., 2004) to beNP-
hard for an arbitrary distribution.

Some heuristic algorithms for computing good multiple seeds are
presented in (Yang. et al., 2004) and (Kong, 2007). As with our
approach, they find some measures that are well correlated with
similarity but they still need to consider exponentially many seeds.
We shall compare our seeds with theirs in the next section.

The heuristic algorithm we derive from our overlap complexity
is very simple: compute the seed with the lowest overlap com-
plexity. This produces very good multiple seeds but we need to
consider exponentially many candidates. To reduce the comple-
xity of this step, we shall start with a fixed seed and repeatedly
modify it to improve its overlap complexity. Each improvement con-
sists of swapping a1 with a * as long as the overlap complexity
improves. Moreover, we greedily choose a swap that producesthe
greatest improvement. The number of such swaps in each seed will
be bounded by the weight of the seeds.

We shall say that1 flipped is * and vice versa. For a seeds
and two positionsi, j, we denote byflip(s, i, j) the seed obtained
from s by flipping the letters in positionsi and j. For instance,
flip(1*11*11, 3, 5) = 1**1111. With this notation, the algo-
rithm MULTIPLESEEDS is described in Fig. 4. Remarkably, Pat-
ternHunter’s seed is obtained by performing only 4 swaps in the
algorithm MULTIPLESEEDS(11, 18); see Fig. 5. This can be done
by hand!

Let us discuss briefly our choice of the initial seeds in step 6.
These are consecutive seeds and have very low sensitivity. One
would imagine that starting from different seeds, e.g., random,
would produce better results. Somewhat unexpectedly this does not
seem to be the case and we preferred to keep a simple, deterministic,
and ultimately reliable choice.
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MULTIPLESEEDS(w, k)

- given: the weightw and the number of seedsk
- returns: a multiple seedS with k seeds of weightw and high
sensitivity

// find the length of the seeds – half are equally spaced
// in the intervalm..M , the others have lengthM

1. m = round up
�

4w
3

�
// shortest seed

2. M = 25 // longest seed
3. h = 2(M−m)

k
// float

4. for i from 1 to k do
5. ℓi ← min(round up(m + i× h), 25)

6. si ← *
ℓi−w1w

7. S ← {s1, s2, . . . , sk}
// swap1’s and*’s to improve sensitivity

8. swaps← 0

9. while
��
∃ r, i, j with OC({s1, . . . , sr−1, flip(sr, i, j), sr+1,

. . . , sk}) < OC(S)
�

and (swaps≤ k × w)
�

do

10. choose a triple(r, i, j) that reducesOC(S) the most
11. S ← {s1, . . . , sr−1, flip(sr, i, j), sr+1, . . . , sk}
12. swaps← swaps+ 1
13. return(S)

Fig. 4. The MULTIPLESEEDS algorithm which, given the weight and
lengths of the seeds, computes a multiple seed with low overlap complexity
and, therefore, high sensitivity.

intermediate seeds pairs swapped

* * * * * * * 1 1 1 1 1 1 1 1 1 1 1 (1, 12)
1 * * * * * * 1 1 1 1 * 1 1 1 1 1 1 (3, 15)
1 * 1 * * * * 1 1 1 1 * 1 1 * 1 1 1 (2, 9)
1 1 1 * * * * 1 * 1 1 * 1 1 * 1 1 1 (5, 11)
1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1

Fig. 5. Intermediate seeds computed by MULTIPLESEEDS(11, 18) to find
PatternHunter’s seed111*1**1*1**11*111. The flipped positions are
given in the right column..

Concerning the swapping technique, it is trickier to give a good
intuitive explanation. First, such swaps may change very much the
overlaps and thus have the potential of improving the overlap com-
plexity. Second, any seed can be transformed into any other seed
with the same length and weight using few such swaps and there-
fore we may potentially reach those seeds with very low overlap
complexity we are looking for. Finally, and most convincingly, it
works very well in practice.

It is possible that the swaps can be improved, or done differently.
For instance, we did not perform more than one swap at the time
as that would slow down the algorithm, even if it would remain
polynomial.

Note that our whole approach with overlap complexity works
within fixed length for seeds. When given only a fixed weight and
number of seeds, a problem we need to solve is finding a good length
set of the seeds. Trying all possible lengths is impractical. We came
up with a simple but efficient choice, see steps 1 to 5 in the algo-
rithm. Essentially, we set half of the lengths equal to 25 andthe
other half “equally” spaced between4w

3
and 25. (The code in lines

1 to 5 makes our choice precise.) The number 25 depends on the
computer. Our tests were performed on a laptop with only 512 MB

of RAM which prevented us from computing the sensitivity of lon-
ger seeds. We believe that the addition of longer seeds to some of
our multiple seeds would increase the sensitivity but this needs to be
tested.

Our choice of seed lengths turns out to be very good as we shall
see below. However, for one seed we need to consider all lengths in
an interval. In a few cases below we shall do the same for two seeds.

We have shown in the previous section good correlation between
overlap complexity and sensitivity but now we compute an appro-
ximation of the overlap complexity. Still, the seeds we obtain have
high sensitivity as shown in Table 3. We give also the time required
for computing each seed.

Table 3. The sensitivity of the single spaced seeds computed by MULTIP-
LESEEDScompared to the optimal sensitivity for weights 9 to 18, similarity
70%, and length of random region 64. For each weightw, the best length in
the interval4w

3
.. 5w

3
was chosen.

weight
optimal swap difference time

sensitivity sensitivity to optimal (sec)
9 0.729156 0.726279 0.002877 0.01

10 0.595740 0.594758 0.000981 0.01
11 0.467122 0.467122 0.000000 0.01
12 0.356430 0.354035 0.002395 0.04
13 0.264750 0.264512 0.000238 0.04
14 0.193514 0.192711 0.000803 0.09
15 0.138660 0.138333 0.000327 0.16
16 0.098942 0.098865 0.000076 0.17
17 0.070004 0.069874 0.000130 0.33
18 0.049146 0.048946 0.000200 0.58

Let us consider the time complexity of the MULTIPLESEEDS

algorithm. Computing the lengths and initial seeds in steps1 to 6
takesO(kw) time. To perform a swap, all possibilities for the triple
(r, i, j) in step 9 are considered, that is,

Pk

i=1 w(ℓi−w). For each,
we compute the new overlap complexity inO(ℓr

Pk

i=1 ℓi) time.
(This is because the overlap complexity of two seeds is computed in
time the product of their lengths and here we need only to update
the pairs containing the seedsr.) If we set L = max1≤i≤k ℓi,
then the total time complexity of the MULTIPLESEEDSalgorithm
isO(k3L2w2(L−w)). If we assume that, in practice,k is bounded
andL is linear inw, then it becomesO(w5).

It may be useful to briefly summarize the steps of our approach
to constructing multiple spaced seeds. Finding the optimalmultiple
spaced seed for a given weight and number of seeds involves two
exponential stages: (i) there are exponentially many candidate seeds
and (ii) computing the sensitivity of each requires exponential time
as well. The exponential at (i) hides in fact two exponentials: (i.1)
there are exponentially many lengths sets and (i.2) for eachlength
set, there are exponentially many multiple seeds. First, weguess
the length set (steps 1-5 of MULTIPLESEEDS); this takes care of the
exponential at (i.1). Second, we start with some fixed valuesfor the
seeds (step 6), and this eliminates the exponential at (i.2). Finally,
we repeatedly modify (polynomially many times) this multiple seed
using overlap complexity that is computable in polynomial time as
well. This way the exponential at (ii) is avoided. Instead oftesting
candidates we directly build a multiple spaced seed as required. This
is totally different from previous approaches.

5
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6 BETTER MULTIPLE SEEDS
We compare in this section our multiple seeds with the ones compu-
ted by other approaches. In Table 4 we compare our seeds with the
best of (Yang. et al., 2004) and (Kong, 2007). We picked the best
multiple seed of (Yang. et al., 2004) and compared it with ours for
several similarity levels. The ones of (Kong, 2007) were computed
for a specific similarity level and we give the sensitivity for those.
Our seeds are better for all levels. Note that our method for choosing
the length set in steps 1 to 5 of the algorithm MULTIPLESEEDSwor-
ked well even for two or three seeds. Only in the second last line the
lengths given by it would produce a multiple seed of slightlylower
sensitivity and we had to use an interval of lengths. This is still very
fast.

Table 4. Comparing the seeds computed by MULTIPLESEEDS with pre-
vious multiple seeds; first group (lines 1 to 5): best of (Yang. et al., 2004),
8 seeds, weight 12; second group (lines 6 and 7): best of (Kong, 2007), 3
seeds of weight 9; third group (lines 8 and 9): best of (Kong, 2007), 2 seeds
of weight 11. The similarities for which Kong’s seeds were computed are
given in parentheses. For the second last line, we considered the interval
16..19 for lengths.

former their sensitivity of time
multiple seeds sensitivity our multiple seed (sec)

(Yang. et al., 2004)
8 seeds of
weight 12

0.287255 (60%) 0.313090 (60%)

2.50
0.500277 (65%) 0.538023 (65%)
0.727770 (70%) 0 .765212 (70%)
0.897822 (75%) 0.920984 (75%)
0.977895 (80%) 0.985577 (80%)

(Kong, 2007)
3 (2) seeds of
weight 9 (11)

0.185211 (50%) 0.185472 (50%) 0.06

0.972460 (75%) 0.977626 (75%) 0.05

0.038393 (50%) 0.038554 (50%) 0.29

0.815865 (75%) 0.823314 (75%) 0.02

The most difficult test is comparing with the multiple seeds of (Li
et al., 2004), the sensitivities of which were kindly provided by the
authors (Li, 2007; Ma, 2007). The multiple seed of 16 weight 11
seeds in (Li et al., 2004) — which is implemented in the best homo-
logy search software, PatternHunterII — took 12 days to compute
greedily, that is, assuming the firsti seeds are known, the(i + 1)th
seed is selected by exhaustive search in a length interval sothat it
maximizes the sensitivity of alli + 1 seeds. Remarkably, MULTIP-
LESEEDScomputes a better multiple seed in 17 seconds! It is shown
in Table 5 and the comparison with the one of (Li et al., 2004) is
provided in columns two and three of Table 6. The last column of
Table 6 contains the sensitivity (significantly higher) of amultiple
seed consisting of 32 weight 11 seeds which we computed in less
than 3 minutes. The multiple seed itself is given in the Appendix.

We computed then, for the same weight 11, any number of seeds
between 1 and 16 and compared their sensitivity for similarity level
70% with those of (Li et al., 2004) in Table 7. We give also the
time required by each computation. The multiple seeds are given in
the Appendix. Note that the sensitivity of our multiple seeds with
13, 14, and 15 seeds are higher than the sensitivity of the ones of
(Li et al., 2004) with an extra seed, that is, 14, 15, and 16 seeds,
respectively.

Table 5. Our multiple seed with 16 weight 11 seeds. It was computed in 17
seconds and it has higher sensitivity than PatternHunterII’s multiple seed;
see Table 6.

16 seeds of weight 11

{ 111*11**11*1111,
111*1*11**1*1111,
11*1**11*1*1**1111,
11111***1**1*1*1*11,
111*1*11*1***1***111,
11*1*1****111**11**11,
11*11**1****1**1***1111,
111**1**11*****1*1**1*11,
1111****1***1*1****11**11,
11*11****1****1**1**1*111,
111**1*1****1****1*1*1*11,
11*11***1*1*******11*1*11,
111**11*******11**1*1*1*1,
111***1*1**1***1*****1111,
1*11*1*1***1*1******11*11,
11*1*1****1**1**11****111 }

Table 6. The sensitivity of our multiple seed of weight 11 from Table 5
compared to that of (Li et al., 2004) for length of random region 64.

sensitivity of sensitivity of sensitivity of
similarity the 16 seeds of our 16 seeds our 32 seeds

(Li et al., 2004) in Table 5 (see Appendix)
60% 0.566640 0.578242 0.699776
65% 0.781508 0.792108 0.877349
70% 0.924114 0.930081 0.967602
75% 0.984289 0.986152 0.995271
80% 0.998449 0.998716 0.999702
85% 0.999951 0.999963 0.999995
90% 1.000000 1.000000 1.000000

time 12 days 17 sec 171 sec

We should mention that the implementation of MULTIPLESEEDS

is straightforward and we used the dynamic programming algorithm
of (Li et al., 2004) for computing sensitivity. The running times can
probably be improved but our focus is on fast algorithms and not on
efficient implementation.

7 CONCLUSION AND FURTHER RESEARCH
The introduction of optimal spaced seeds in (Ma et al., 2002)fol-
lowed by multiple spaced seeds in (Li et al., 2004) revolutionized
homology search. It is therefore important to compute good mul-
tiple spaced seeds fast. The optimal ones are hard to computeand
research has been done for finding faster ways to compute lessthan
optimal but still good seeds. Our approach is much faster andpro-
duces better multiple seeds than the existing ones. This wasshown
by comparing our results with the best previous ones.

We believe that the dramatic improvement brought by our
approach allows looking at multiple seeds in a different way, beyond
the improvement in homology search simply due to better multi-
ple seeds. So far, as computing good multiple spaced seeds was a
very time-consuming task, the seeds were first computed and then
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Table 7. The sensitivity of our multiple seeds withi seeds,1 ≤ i ≤ 16, of
weight 11, compared to that of (Li et al., 2004) for similarity 70% and length
of random region 64. The ones fori ≥ 3 are computed by the algorithm
MULTIPLESEEDSas given whereas fori = 1, 2 an interval for lengths was
considered.

i sensitivity of sensitivity of time to
number the firsti seeds of i seeds compute
of seeds (Li et al., 2004) computed herei seeds (sec)

1 0.467122 0.467122 0.01
2 0.620034 0.621992 0.88
3 0.701920 0.705694 0.09
4 0.754809 0.758224 0.20
5 0.791461 0.797473 0.52
6 0.818647 0.825245 0.82
7 0.839900 0.845990 1.33
8 0.856520 0.863893 1.96
9 0.870671 0.877309 2.95
10 0.882106 0.888385 3.89
11 0.891927 0.898855 5.40
12 0.900161 0.907064 7.50
13 0.907335 0.914018 9.87
14 0.913581 0.920340 11.68
15 0.919134 0.925966 16.17
16 0.924114 0.930081 17.26

hard-coded in the homology search software. With our approach
testing of many seeds for a given purpose becomes possible. Also,
the swapping technique we used for fast improvement of overlap
complexity may be useful for fast improvement of other, specific,
properties as well.

While our experimental results are very good, the theory to sup-
port them needs development. Problems include proving guarantees
for the correlation between overlap complexity and sensitivity, fin-
ding bounds on the approximation ratio of our heuristic algorithm
and approximating the number of swaps needed. (The bound we
set for the number of swaps in the algorithm was never reachedin
practice.) On one hand, these theoretical questions are noteasy to
solve and they are not essential for the practical aspect of our study;
we simply build better multiple spaced seeds than all previous ones
using a much faster algorithm.On the other hand, they may bring
new ideas to further improve our approach.

From practical point of view, the best way of using the overlap
complexity is an open problem and should be further investigated.
Also the way the lengths are computed could be improved. As men-
tioned, this is computer dependent in our case. We plan to make
more experiments on a computer with a larger RAM. However, all
these improvement, important as they might be, are most likely to
be incremental, nowhere near the dramatic improvement presented
here.
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APPENDIX
The multiple seed used in Table 4 for comparison with the one of
(Yang. et al., 2004):
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111*1*11*1*11111
11*11*111*1*1**111
11111****1**11**1*111
11**11*1*1*****1*1*1111
111*1*1****11****1**11*11
111**11******1*11**1*1*11
111*1***11****1*1**1**111
11*11*1***1**1***11***111

The multiple seeds used in Table 4 for comparison with the ones
of (Kong, 2007); they are given in the same order in which the
sensitivities are given in Table 4:

11*1*111*111
111*1****1***1***1*11
111****1*****1**1****1*11

11*1*111*111
111*1****1***1***1*11
111****1*****1**1****1*11

11*1*11**11*1111
111*11**1*1*1**111

111*111**1*1111
11*1*1***11******1**1*111

Our multiple seed of 32 weight 11 seeds the sensitivity of which
is given in the last column of Table 6; the time needed to compute
all 32 seeds was 171 seconds:

111*11*11**1111
11*1*111*11**111
111**11*1*11*111
1111*1*11**1*1*11
111**11**1**11*111
11*11***11*1*111*1
1111*1**1*1*1***111
11*11*1*1****1*1111
1111*****1**111*1*11
111*1*****111***11*11
111*1**11****1**1*111
111*1*1***1*1**1**1*11
11*1***11*1****1***1111
11*11****1*11*****11*11
111*1**1*****1*1**1**111
111*1*1***1*****11***111
11*1**1***11***1*1***1*11
11*11***1*1******1*1**111
11*1**1***1**1****11**111
11*11****1**1***1***1*111
11**11**1**1******11*1*11
111**1****1****11***1*111
11*11**1******1*1*1**1*11
11*1*11*****1*1****11**11
111***1**1*1*****1*1**111
1111****11*****1**1*1**11
1*1*1*1**1***1**1**1*1*11
111****1*1***1***11*1*1*1
1*1*1**11***1****1**11*11
111***1*1***1*1***1**11*1
111**1*1****1**1***1*1*11
11**11****1**11*****111*1

The seeds used to obtain the sensitivities in Table 7; the first is
PatternHunter’s seeds; the set of 16 seeds is given in Table 5:

1 seed
111*1**1*1**11*111
2 seeds
111*1*1**1*11*111
1111***1**1***1*1*111

3 seeds
111*111**1*1111
11*11*1****1***1*1*111
111***1*1**1***1**1**1*11

4 seeds
111*111**1*1111
11*11*1****1*1**1111
111***1***1****1*11**1*11
11*11***1*****1***1*1*111

5 seeds
111*11*11*1*111
1111**1*1*1***11*11
11*1*1***1**1**1***1111
11*1*11*******1*1**1**111
111*1***1**1*****1*1**111

6 seeds
111*11*11*1*111
11*1*1**11**1*1111
1111***1***1*1***11*11
111**1***1***11****1*1*11
111*1*1****1**1**1****111
11*11**1*1******1*1***111

7 seeds
111*11*1*1*1111
1111***11**1*1*111
111*1****11*1**11**11
1*111***1*1***1****1*111
11*1**11******1*1*1**1*11
111**1*****1**1**11***111
111*1***1****1****1*11*11

8 seeds
11*111*1*1*1111
1111*1**1**11**111
11*11***11**1**1*111
111**11*****1*1***1*111
11*1*1****11******1**1111
11*1**1***1*1****1*11**11
111*1****1****11***1*11*1
111**11*1*******1**1*1*11

9 seeds
111*11*1*1*1111
11*1*1111**1**111
11*11****1*11**1111
1111***1***1*1*1**1*11
11*1***11****1***1*11*11
11*1*1***1**1*1****1**111
1*111*1*****1****1**11*11
111**1**1**1*****1**111*1
111***11******1*1*1***111

10 seeds
111*1*11*111*11
1*111**11*1**1111
1111****11**11*1*11
111*11*****1*1**11*11
111*1**1**1*****1*1*111
1111***1***1***1***1*11*1
11**1*1**1****1*11****111
11*1*1*1***1****1*1*1**11
11*1**1*1***1*****11**111
111**1***1**1*1****1**111

11 seeds
111*11*1*1*1111
111*1*111***11*11
11*1*1**1**11**1111
111*11**1*1***1*1*11
111**1****11**1**11*11
111*1****1*1***1***1*111
11**11***1****1*11****111
11*11**1**1***1****1*1*11
1*11*1**1**1******11**111
111***11******1**1*11*1*1
111***1*1***1****1**11*11

12 seeds
111*11*1*1*1111
111*1*111**1**111
111*11****11*1*111
1111***1**11*1**1*11
11*1*11****1*1***11*11
111*1***1***1**1**1*111
111***1*1**1***1****1*111
11*1*1***1**1**1*1****111
11**1**1***1*1****11**111
1*11**1**1****1***11**111
11**11****1***1***1*11*11
111*1***11*******1*1*1*11

13 seeds
111*11*11*1*111
11*11*1*1*1**1111
111*1*1**1**11*111
111*11**11****1*1*11
1111**1***1*1*1***111
11*11******11***1*1*111
111***11*1*****1**1*1*11
111**1**1*1*******1**1111
1*111*****1***1**1*1**111
11**1*1****1***11**1**111
11*1****11***11**1**1**11
1*11*1***1*****11***11*11
111*1*1****1**1*****11*11

14 seeds
111*11*1**11111
1111**11*1*1*111
11*1*111****11*111
111*1****11**1*1111
11*11***1*11***1*1*11
111***1**1**1*1***1111
111*1*1******1*11****111
1*1*1**1*1****1**11*1**11
1111**1****1****1**11**11
111*1***1***1****1*1**111
11*1*1**1**1**1***1***111
11**11**1*1*****1***11*11
111**1*1*1***1*****1*1*11
11*1**1***1**1***11**1*11

15 seeds
111**1*1111*111
11*111*1*1**1111
1111**11*1*1*1**11
11*1*1*11**1***1111
111*11****11**1*1*11
111*1***1**1*1***1*111
1111***1****1**11**1*11
11*1*11******1***11**111
111*1****1***1*1**1**1*11
11*1*1**1**1**1****1*1*11
111**1***11******1**1*111
11*11******11***1*1***111
11*11**1**1******1*1*1*11
1*11**1*1***1***1**1**111
111***11****1*1*****11*11
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