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ABSTRACT

Motivation: Homology search finds similar segments between two
biological sequences, such as DNA or protein sequences. The intro-
duction of optimal spaced seeds in PatternHunter, (Ma et al., 2002),
has increased both the sensitivity and the speed of homology search
and it has been adopted by many alignment programs such as
BLAST. With the further improvement provided by multiple spaced
seeds in PatternHunterll, (Li et al., 2004), Smith-Waterman sensitivity
is approached at BLASTn speed. However, computing optimal mul-
tiple spaced seeds was proved to be NP-hard and current heuristic
algorithms are all very slow (exponential).

Results: We give a simple algorithm which computes good multiple
seeds in polynomial time. Due to a completely different approach,
the difference with respect to the previous methods is dramatic. The
multiple spaced seed of PatternHunterll, with 16 weight 11 seeds, (Li
et al., 2004), was computed in 12 days. It takes us 17 seconds to find
a better one. Our approach changes the way of looking at multiple

Burkhardt and Karkainen, 2001) but the important novelty of Pat-
ternHunter was the use of optimal spaced seeds, that is, spaced
seeds that have optimal sensitivity. Impressively, the approach of
PatternHunter increases both the speed and sensitivity. The idea has
been adopted since by the new versions of BLAST, MegaBLAST,
BLASTZ, and other software programs (Brejova et al., 2004; Noé
and Kucherov, 2005; Kisman et al., 2005).

As noticed in (Ma et al., 2002), multiple spaced seeds—sets
of seeds that hit whenever one of the components does so—are
better, and with their introduction in PatternHunterll, (Li et al.,
2004), Smith-Waterman sensitivity (Smith and Waterman, 1981) is
approached whereas the speed is that of BLASTn.

Quite a few papers have been written about spaced seeds, evalua-
ting the advantages of spaced seeds over consecutive ones (Buhler
et al., 2003; Keich et al., 2004; Choi and Zhang, 2004; Li et al.,
2006), showing that the relevant computational problems are NP-
hard (Li et al., 2004, 2006), giving exact (exponential) algorithms

for computing sensitivity (Buhler et al., 2003; Li et al., 2004; Keich

et al., 2004; Choi and Zhang, 2004; Choi et al., 2004), polynomial
time approximation schemes (Li et al., 2006) or heuristic algorithms
(Li et al., 2004; Choi et al., 2004; Yang. et al., 2004; Preparata et
1 INTRODUCTION al., 2005; llie and llie, 2007; Kong, 2007), adapting the seeds for

Homology search finds similar segments between two biologicamore specific biological tasks (Brejova et al., 2004; Kucherov et al.,
sequences, such as DNA or protein sequences. A significant fractiof?04; Sun and Buhler, 2004; Noé and Kucherov, 2005), or buil-
of computing power in the world is dedicated to performing suchding models to understand the mechanism that makes spaced seeds
tasks. The increase in genomic data is quickly outgrowing computepowerful (Buhler et al., 2003; Sun and Buhler, 2004; Preparata et
advances and hence better mathematical solutions are required. Ak, 2005).

the classical dynamic programming techniques of (Needleman and Finding optimal (multiple) spaced seeds is NP-hard but even fin-
Wunsch, 1970; Smith and Waterman, 1981) became overwhelme@ng good ones is very difficult. Exhaustive search involves two
by the task, popular programs such as FASTA (Lipman and PearsofXponential-time steps: (i) there are exponentially many seeds to
1985) and BLAST (Altschul et al., 1990) used heuristic algorithms.Pe tried and (ii) computing the sensitivity of each takes exponen-
BLAST used a filtration technique in which positions with short tial time as well. Several approaches (Buhler et al., 2003; Li et al.,
consecutive matches, bits, were identified first and then exten- 2004; Keich et al., 2004) tried to deal with the latter exponential by
ded into local alignments. Speed was traded for sensitivity sinc@Pproximating the sensitivity. For the former, the number of seeds
longer initial matches missed many local alignments, hence decrd0 be considered has been reduced by various heuristics (Choi et al.,
asing sensitivity, whereas short initial matches produced too man¢004; Yang. et al., 2004; Preparata et al., 2005; Kong, 2007) but it
hits, thus decreasing speed. remained exponential.

A breakthrough came with PatternHunter (Ma et al., 2002) where The approach here is based on the overlaps between the hits of
the hits were no longer required to consist of consecutive mat2 Multiple seed. A new measureyerlap complexityis introdu-
ches. More precisely, PatternHunter looks for runs of 18 consecutivéed and shown to be experimentally well correlated with sensitivity.
nucleotides in each sequence such that only those specifiediny ~ Since the new measure is computable in (low) polynomial time, we
the stringl11* 1x+ 1x 1x+ 11* 111 are required to match. Such a shall use overlap complexity instead of sensitivity and this takes care
string is called @paced seednd the number df's initisitsweight ~ 0f the exponential in (ii). A similar approach has been introduced in
Using this notion, BLAST required a hit according te@nsecutive ~ (Ilie and llie, 2007) for single seeds. Also, (Yang. et al., 2004; Kong,
seed such as1111111111. 2007) contain some other measures well correlated with sensitivity

The filtration principle has been used before in approximate strindor multiple seeds. However, we take care also of the exponential
matching (Karp and Rabin, 1987; Pevzner and Waterman, 1995t (i), that is, the exponential number of candidate seeds. We give

spaced seeds.
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a simple algorithm which improves quickly the overlap coexity The quality of the spaced seeds is given by their sensitiwvitych,
of an initial multiple seed, thus providing a good multipked in  intuitively, is a measure of their ability to detect simikggments
polynomial time. between biological sequences; see Ma et al. (2002). Thisne d
We provide some results showing the good correlation beiweeas follows. Given two DNA sequences and a segde say thak
overlap complexity and sensitivity for single seeds. Odypomial- simultaneously matches (hits) the two sequences at giveitiqgots

time algorithm produces single seeds of sensitivity venselto  if eachl in s corresponds to a match between the corresponding
optimal. For the multiple seed case such comparison camnmoglle  nucleotides in the two sequences; see Fig. 1 for an examjsig us
since no optimal multiple seeds are known. We shall compare o PatternHunter’'s seed. Such a match is then extended usisgjal
multiple seeds with previous ones and show them to haverisette =~ methods to a local alignment.

sitivity while our algorithm is much faster. The most impaort test

is to compare against the multiple seed implemented in fP&tten-

terll, which contains 16 weight 11 seeds. While it took (Liakt, DNA seq. S

AGGCA GTA TATATC

2004) 12 days to compute this multiple seed, we obtain arbette pna seq.s- AGGCA GCA TAAATC
multiple seed in 17 seconds. The dramatic improvement idalae matches/mism. ===-= =/= ==/===
completely different approach. As discussed in the lagt@®oour Bernoulli seq.k 11111 101 110111
spaced seesd 111+ 1 11 11+111

approach allows looking at multiple seeds in a totally défe way.

A number of problems remain to be investigated such as pgovin
guarantees about the correlation between overlap conyleri Fig. 1. Anexample of a hit using PatternHunter’s spaced.s&éd’s in the
sensitivity, approximation ratio and exact running timeof heuri- ~ Se€d (the last row) must correspond to matches betweendhersees. The
stic algorithm for approximating the overlap complexityowever, spaced sged hits the Bernoulli sequenc® (ending) at the third position

. . L from the right.
such problems may be mostly of theoretical interest as intjpea
our algorithms produce very good multiple seeds in verytdioe.

The paper is organized as follows. The next section formally However, in order to be able to compare spaced seeds and ulti-
introduces multiple spaced seed and all concepts needed lat mately compute good ones, we need a precise mathematitaset
Our new measure is introduced in Section 3. Section 4 show3he above process will therefore be reformulated as follove®
good correlation between overlap complexity and sensiti@ur Ma et al. (2002); Keich et al. (2004). Assume there are two DNA
polynomial-time algorithm for computing good multiple sseis  sequences ;Sand S such that the events that they are identi-
given in Section 5. In Section 6 we compute better seeds thhan acal at any given position are jointly independent and eaantiev
previous ones. We conclude with a brief discussion in Secfio is of probability p, called thesimilarity level. The sequence of
More seeds whose sensitivity is discussed in the text aredao in equalities/inequalities between the two DNA sequencesskates
the Appendix. then into a sequenck of 1's (corresponding to matches) and 0's

The content of the paper can be read in several ways, acgordin(corresponding to mismatches) that appear with probghiliand
to the goal of the reader. First, we computed a number of multi 1 — p, respectively. Therefore, given an (infinite) Bernoulihdam
ple spaced seeds that are ready to be used. No understafidimg o sequence? and a seed, we say that hits R (ending) at position
algorithm is necessary for that purpose. Second, our dfgoris k if aligning the end ofs with positionk of R causes all’s in s to
simple and explained in detail for the reader interestedadpcing  align with 1's in R; see Fig. 1.

a more efficient implementation and/or modifying the altfori in We are now in the position to give a rigurous definition forgen
order to solve different problems, such as computing moeeigp tivity of a spaced seed. Treensitivityof a seeds is the probability
lized seeds. Finally, we provide explanation of the intgitideas thats hits R at or before positiom; see Ma et al. (2002); Keich et
behind our algorithm in order to provide the interested eeavdth al. (2004). Note that the sensitivity depends on both theélaiity

in-depth understanding of our approach. level p and the length of the random regien
An intuitive explanation of the reason for which seeds hate d
2 SPACED SEEDS ferent sensitivities follows. Recall that the sensitiviti/a seed is

the probability of hitting a random region of a given lengftbr two
spaced seeds of the same weight, the expected number of hits i
the same but their sensitivities need not be the same. Thizeha

as the hits of one seed may appear more clustered. A good intui
tive example is searching for the stringaa andabc in a random
text. For each occurrence aéa, the chance of having another one
sharing two letters with it is /26 whereas starting afresh would
require(1/26)*. Therefore, the occurrencesatic are more evenly
distributed and it is more likely to see first abc in the text.

A multiple spaced seed hits a sequerité and only if one of its
seeds hitsk. The sensitivity of a multiple spaced se8ds defined
similarly, that is, the probability that at least one seed diits R at
or before position

In the light of the tradeoff between search speed and seitsitt
L From biological point of view only strings starting and emgliwith 1 are ~ Makes sense to consider only multiple seeds in which allsseade
spaced seeds. The seeds we shall eventually compute shissépndition. the same weight (they may have different lengths).

We start with some basic definitions. An alphabet is a finiteemo-
pty set, denoted byl. The set of finite strings oved is denoted
by A*. For a stringz € A*, the length ofz is denoted byz|. For

1 < ¢ < |z|, theith letter ofz is denoted by [i]. If v = zy, for
somez,y € A", thenz (y, resp.) is called a prefix (suffix, resp.) of
u. For two stringsw andv, anoverlapbetween: andv is any string
that is both a suffix ofs and a prefix ofv.

A spaced seetb any* string over the alphabdftl, * }; 1 stands
for a ‘match’ and+ for a ‘don’t care’ position. For a seed the
lengthof s is ¢ = |s| and theweight w, of s is the number ofl’s
in s. A multiple spaced seeSl is any finite nonempty set of spaced
seeds.
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3 OVERLAP COMPLEXITY shifti ofi]
We introduce in this section our complexity measure, thelape 1x1 1 Lrewdxd 3 1
complexity, which will turn out to be well correlated withrsstivity 1+11 o 5
but much easier to compute. Therefore, it will replace smityi 1%11 1 1
in our computations. Before introducing it, we give somaiitite 1%11 A
explanation why overlapping hits of a seed are undesirable. 111 1 5
The hits of a seed can overlap but overlapping hits will detec 1%11 5 1
a single local alignment. An example showing such a sitnaigo 1%11 3 1
shown in Fig. 2. 111 4 >
111 5 0
1«11 6 1
hit of good seed 111%21wxlx1xx11x111 Fig. 3. An example of the overlap complexity of two seeds:
local alignment 1111101111101111111101 OC(11+#1¢1,1+11) = °6__, 270 — 25,
1st hit of bad seed 11-11+11+11+11+1 v
2nd hit of bad seed 11-11+11+11+11+1
3rd hit of bad seed 11-11+-11+11+-11+1

pairs of* 's aligned together. For our example, these arrays are given

Fig. 2. An example showing the intuition behind overlap complexétjocal below:

alignment is detected by one hit of a good seed whereas a bddwsastes” .
three hits to detect the same alignment. ¢ | -3 -2 -1 01
o] 5 3 5 5 3
owlt] | 7 8 7T 7 8

- U N
3 ol w
00 o
> 3| ot
- o>

Therefore, the sensitivity of a seed is inversely propodlavith
the number of overlapping hits, since the expected numbéitef  The number of overlapping hits (with shiftis then proportional to
is the same. Thus, good seeds should have a low number of ovep["(p? + (1 — p)?)7=*l"), wherep is the similarity levelp [l is
lapping hits. The definite proof that (non-uniformly) spaceeds the probability that:. [i] * 's take value 1 an@p? + (1 — p)?)7 =[]
are better than consecutive seeds, due to (Li et al., 200&)lvies is the probability that...[;] pairs of+'s take the same value, 0 or 1.
estimating the expected number of non-overlapping hitsvéver, ~ Choosingp = 0.5 makes this quantity equal &+ 1=+l |tis
computing this number in general is as difficult as compusag-  reasonable to assume that a fixed-size window in considehet w
sitivity. Therefore, we look here for simpler ways to detémt/ evaluating the overlapping hits, that is, the stifif + o [i] + 04« [7]
numbers of overlapping hits. is assumed to be a constant, gayn our examplec = 13. Then,

We shall define a measure that is independent of the sinyilaritthe number of overlapping hits is proportionalao?+ A==+l —
level p. Consider two seeds; ands» and denote by [i] the num-  2°l7¢ = L2901 Sincecis constant, this is proportional wit *
ber of pairs ofl’s aligned together when a copy ef shifted by: which gives our definition of overlap complexity.

positions is aligned against. The shift: takes values fror — | s2| Itis important to mention that the freedom to convenientigase
to |s1| — 1, where a negative shift meass starts first. Precisely, if the value p = 0.5 is due to the fact that, even if the optimal seed may
we denote change witlp (see Table 1 below), the sensitivity changes very little.
ty = #21hgyloalt For amultiple seed = {s1, s2, . . ., s, }, the overlap complexity
to, = #7217 igpulatl =71 Hor 1 — sy <d < [s| — 1, is defined by:
then OC(S) = Z OC(SL7 SJ)
1<i<j<k

ofi] = card{j [ 1 < j < [s1] + 2[s2| — 2, ta[j] = t2.s[j] = 1} .
Note that the overlap complexity is invariant with respectte
Theoverlap complexityor two seeds is defined as order of the seeds and reversal (assuming all seeds aresadver
simultaneously). This is expected of any measure well taed

[s1]—1 with sensitivity.

OC(Sl,Sg) = Z 20[”.
i=1—|sa|

4 SENSITIVITY OF LOW-OVERLAP SEEDS

An example is shown in Fig. 3. Note that the measure is synienetr We show here that the overlap complexity is, experimentalisil
that is,0C(s1, s2) = OC(sz, s1), for any seeds; ands,. correlated with sensitivity for single seeds. We considefable 1
The definition of the overlap complexity deserves a few com-the top sensitivity seeds of (Choi et al., 2004) (that isdsesith
ments. Note that the “importance” (we should say “weightt’ thiat highest sensitivity among those with a given weight); ttsginsi-
would be confused with the weight of the seeds) of the number otivity ranks for similarity levels65%, 70%, . ..,90% are given in
pairs of 1's aligned together for each shift doubles with each paircolumns2, 3, ..., 7, respectively. As mentioned earlier, the top sen-
of 1's. While this may look as a reasonably natural definitioeyéh  sitivity seed may change with the similarity leyelFor instance, the
is a good intuitive reason behind it. For a shiftdenote byo. [7] first line for weight 11 corresponds to PatternHunter’s sebith is
the number ofl’s aligned against’s and byo..[i] the number of  the best for similarity level$5% and70%, second best fof5%,
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Table 2. The sensitivity of the top overlap complexity seeds for vaesg9

80%, and85%, and only third best fof0%. However, the diffe- to0 18, similarity 70%, and length of random region 64,

rences between the sensitivities of these top seeds for fatheo
similarity levels considered is very small, a crucial olvaéon for
our approach, which is independent of similarity level.

optimal sensitivity of a  difference

The last column of Table 1 gives the overlap complexity rank. weight sensitivity  top overlap seed to optimal
In all cases, at least one top sensitivity seed is on top obtlee- 9 0.729156 0.729156 0.000000
lap complexity ranking. Note that the seeds with the lowestlap 10 0.595740 0.595740 0.000000
complexity are on top of the overlap complexity ranking. 11 0.467122 0.467122 0.000000

12 0.356430 0.356430 0.000000

Table 1. The top sensitivity seeds from (Choi et al., 2004); a ‘-’ meaot 13 0.264750 0.264750 0.000000
in top 20. The last column gives the overlap complexity radily rankings 14 0.193514 0.193514 0.000000
are shown, not the seeds. Each line corresponds to one seed. 15 0.138660 0.138333 0.000327
16 0.098942 0.098942 0.000000

sensitivity rank overlap 17 0.070004 0.070004 0.000000

weight under a similarity level complexity 18 0.049146 0.049146 0.000000

65% 70% 75% 80% 85% 90% rank

1 1 1 1 1 1 1
9 2 2 2 2 2 2 1
4 4 4 4 4 4 1 The one of (Choi and Zhang, 2004) runs in tid@éns22~*)), for
11 1 1 1 1 1 seeds of lengtli and weightw. The other two have running times
o2 2 4 6 8 9 1 O(n*2°=") for (Keich et al., 2004) and(nw2’~") for (Buhler
f i ; ; g g 1 etal., 2003).
For multiple seeds, (Li et al., 2004) gave a dynamic programgm
11 2 2 1 1 1 1 2 ) o & l—w
6 3 3 5 5 6 2 algorithm that runs in im€ ((k + L 4+ n) 37, £:2%~*), where
1 1 1 1 1 1 1 k is the number of seed§;’s are the lengths of the seeds ahd=
12 2 2 2 5 3 2 2 maxi<i<k li.
6 3 3 2 4 4 1 Therefore, finding optimal seeds by trying all seeds of amgive
T 3 7 - - - 2 weight (and length) and selecting the best is computatipwary
13 2 1 1 2 2 2 1 expensive. In fact, it has been shown by (Li et al., 2004) tdiBe
7 2 2 1 1 1 6 hard for an arbitrary distribution.
T3 7 - - - 1 Some heuristic algorithms for computing good multiple seaa
14 2 1 1 1 1 1 1 presented in (Yang. et al., 2004) and (Kong, 2007). As with ou
5 2 2 3 3 6 1 approach, they find some measures that are well correlatéd wi
12 - - 4 similarity but they still need to consider exponentiallyngaeeds.
15 14 1 2 5 5 4 39 : o .
-5 1 1 1 1 1 We shall compare our seeds with theirs in the next section.
T 9 - - - - 1 The heuristic algorithm we derive from our overlap compiexi
7 1 2 6 13 20 1 is very simple: compute the seed with the lowest overlap com-
16 -7 1 1 1 3 1 plexity. This produces very good multiple seeds but we need t
- . 5 2 2 1 26 consider exponentially many candidates. To reduce the lmmp
T 3 - - - - 1 xity of this step, we shall start with a fixed seed and repépated
17 6 1 2 4 4 5 1 modify it to improve its overlap complexity. Each improvemeon-
- -1 1 1 1 2 sists of swapping 4 with a* as long as the overlap complexity
14 - - - - 36 improves. Moreover, we greedily choose a swap that prodtinees
18 -1 j 32 f 12 122 greatest improvement. The number of such swaps in each sted w

be bounded by the weight of the seeds.

We shall say that flippedis * and vice versa. For a seed
and two positiong, j, we denote byflip(s, 7, j) the seed obtained
from s by flipping the letters in positions and j. For instance,
flip(1x11%11,3,5) = 1x+1111. With this notation, the algo-

) . rithm MULTIPLESEEDS s described in Fig. 4. Remarkably, Pat-
ferences are zero. The correlation between the two meagires , . . ; .
ternHunter’s seed is obtained by performing only 4 swapshé t

remarkable. . . . ?
We cannot make the same comparison for multiple spaced see@slgomhm MULTIPLESEEDS(11, 18); see Fig. 5. This can be done

. . . y hand!
since there are no optimal multiple spaced seeds known. Let us discuss briefly our choice of the initial seeds in step 6

These are consecutive seeds and have very low sensitivitg. O
5 A POLYNOMIAL-TIME ALGORITHM would imagine that starting from different seeds, e.g.,dom,
The exact algorithms for computing sensitivity are all exgatial,  would produce better results. Somewhat unexpectedly tras dot
see (Buhler et al., 2003; Keich et al., 2004; Choi and Zhaf94p, seem to be the case and we preferred to keep a simple, deienin
which is expected since the problem is NP-hard (Li et al.,6200 and ultimately reliable choice.

The opposite is shown in Table 2 where the highest senyitivit
of the seeds with lowest overlap complexity is shown. (Thesy
be several seeds with lowest overlap complexity.) Almoktidd
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MULTIPLESEEDSw, k)

- given: the weightv and the number of seeds
- returns: a multiple seefl with & seeds of weight and high
sensitivity
/ find the length of the seeds — half are equally spaced
/l'in the intervalm.. M, the others have length/

1. m = round_up(22) I/ shortest seed
2. M =25 /l'longest seed
3. h=20m) /I float
4. for ifrom1tokdo
5. £; «— min(round_up(m + i x h), 25)
6. 5 — *Zi—wlw
7. S« {81,82,...,Sk}
/I swapl’s and* s to improve sensitivity
8. swaps— 0
9. while ((3 ryi, 5 With OC({s1, . .., 8r—1, fip(sr,d, 1), o1,
...,sk}) < OC(S)) and (swaps< k x w)) do
10. choose a triplér, 7, j) that reduce®©C(S) the most
11. S —{s1,...,80—1,flip(sr,%,7), Sr41,..., 5k}
12. swaps— swaps+ 1
13. return(S)
Fig. 4. The MuLTIPLESEEDS algorithm which, given the weight and

lengths of the seeds, computes a multiple seed with low ayedmplexity
and, therefore, high sensitivity.

intermediate seeds pairs swapped

*xxxxx 11111111111 (1,12)
1+ xx%%x1111+x111111 (3715)
1+ 1+ **%1111*11*111 (279)
111*»*xx1x11%11x111 (5,11)

111+21xx1x1xx11+111

Fig. 5. Intermediate seeds computed by MIPLESEEDS11, 18) to find
PatternHunter's seetil1* 1x+ 1x1x+ 11+ 111. The flipped positions are
given in the right column..

of RAM which prevented us from computing the sensitivity o
ger seeds. We believe that the addition of longer seeds te sém
our multiple seeds would increase the sensitivity but thisds to be
tested.

Our choice of seed lengths turns out to be very good as we shall
see below. However, for one seed we need to consider allHsrigt
an interval. In a few cases below we shall do the same for tedsse

We have shown in the previous section good correlation beiwe
overlap complexity and sensitivity but now we compute anrapp
ximation of the overlap complexity. Still, the seeds we abtsave
high sensitivity as shown in Table 3. We give also the timeiieg]
for computing each seed.

Table 3. The sensitivity of the single spaced seeds computed byTivk-
LESEEDScompared to the optimal sensitivity for weights 9 to 18, &anity
70%, and length of random region 64. For each weighthe best length in
the interval2 .. 52 was chosen.

weight optimal swap difference time

sensitivity  sensitivity to optimal  (sec)
9 0.729156 0.726279 0.002877 0.01
10 0.595740 0.594758 0.000981 0.01
11 0.467122 0.467122 0.000000 0.01
12 0.356430 0.354035 0.002395 0.04
13 0.264750 0.264512 0.000238 0.04
14 0.193514 0.192711 0.000803 0.09
15 0.138660 0.138333 0.000327 0.16
16 0.098942 0.098865 0.000076 0.17
17 0.070004 0.069874 0.000130 0.33
18 0.049146 0.048946 0.000200 0.58

Let us consider the time complexity of the UWTIPLESEEDS
algorithm. Computing the lengths and initial seeds in steps 6
takesO(kw) time. To perform a swap, all possibilities for the triple
(r,1,7) in step 9 are considered, thatg‘,f:1 w(¢; —w). For each,
we compute the new overlap complexity (¢, Zle ;) time.
(This is because the overlap complexity of two seeds is coeapin

Concerning the swapping technique, it is trickier to give a goodtime the product of their lengths and here we need only to tepda

intuitive explanation. First, such swaps may change verghnbe
overlaps and thus have the potential of improving the opectam-
plexity. Second, any seed can be transformed into any otett s

the pairs containing the seed.) If we setL = maxi<i< {i,
then the total time complexity of the ML.TIPLESEEDSalgorithm
is O(K*L*w? (L —w)). If we assume that, in practick s bounded

with the same length and weight using few such swaps and-thereandL is linear inw, then it become& (w?®).

fore we may potentially reach those seeds with very low ayerl
complexity we are looking for. Finally, and most convindingt
works very well in practice.

It is possible that the swaps can be improved, or done diftbre

It may be useful to briefly summarize the steps of our approach
to constructing multiple spaced seeds. Finding the optimatiple
spaced seed for a given weight and number of seeds invohe@s tw
exponential stages: (i) there are exponentially many cateiseeds

For instance, we did not perform more than one swap at the timand (ii) computing the sensitivity of each requires expaiaétime
as that would slow down the algorithm, even if it would remain as well. The exponential at (i) hides in fact two exponeastiél1)

polynomial.

there are exponentially many lengths sets and (i.2) for éamgith

Note that our whole approach with overlap complexity works set, there are exponentially many multiple seeds. Firstguess

within fixed length for seeds. When given only a fixed weighd an
number of seeds, a problem we need to solve is finding a gogthlen
set of the seeds. Trying all possible lengths is impractit& came
up with a simple but efficient choice, see steps 1 to 5 in the-alg
rithm. Essentially, we set half of the lengths equal to 25 el
other half “equally” spaced betweégf— and 25. (The code in lines

the length set (steps 1-5 of WM TIPLESEEDS); this takes care of the
exponential at (i.1). Second, we start with some fixed valaethe
seeds (step 6), and this eliminates the exponential at Gigally,
we repeatedly modify (polynomially many times) this mukigseed
using overlap complexity that is computable in polynomiaig as
well. This way the exponential at (ii) is avoided. Insteadedting

1 to 5 makes our choice precise.) The number 25 depends on tleandidates we directly build a multiple spaced seed asnedur his
computer. Our tests were performed on a laptop with only 5B M s totally different from previous approaches.
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Table 5. Our multiple seed with 16 weight 11 seeds. It was computedin 1
seconds and it has higher sensitivity than PatternHurgeriultiple seed;
see Table 6.

6 BETTER MULTIPLE SEEDS

We compare in this section our multiple seeds with the onegce
ted by other approaches. In Table 4 we compare our seedsheith t
best of (Yang. et al., 2004) and (Kong, 2007). We picked th& be
multiple seed of (Yang. et al., 2004) and compared it withsdor
several similarity levels. The ones of (Kong, 2007) were potad

16 seeds of weight 11
{ 111+11%+11%1111,

e . e 111#21+11*x1%x1111,
for a specific similarity level and we give the sensitivity fhose.
. 11+ 1x*11%1%1*+%x1111,
Our seeds are better for all levels. Note that our methodifoosing
the length setin steps 1 to 5 of the algorithnu M I1PLE SEEDSWOr 11111wwndrxlnlndxdd,
g P g 111% 1% 105 1ees 1o w111,

ked well even for two or three seeds. Only in the second lastthe
lengths given by it would produce a multiple seed of sligthohyer
sensitivity and we had to use an interval of lengths. Thisilisvery

fast.

11% 1% Lxwx % 111% % 11% %11,
11 1dxxIxxrxIx*xIoxx1111,
11dxxTx*LDxxxxxIx1xx1x11,

R e N L I S I
N R I I I o I
11dxxIxIx*rx IxwnxIx1x1x1],
R B O i I L K
111%*Ldxxxxxxx]DsxTxIx]x],
11 xxx I Dxxxxx Iorxxx1111,

N N R N N o I
T1x1*xQx***Q*x*xQ*xx1Q1x*xx*x111 }

Table 4. Comparing the seeds computed byulMiPLESEEDS with pre-

vious multiple seeds; first group (lines 1 to 5): best of (Yaeigal., 2004),
8 seeds, weight 12; second group (lines 6 and 7): best of (K20@j7), 3

seeds of weight 9; third group (lines 8 and 9): best of (Korif)73, 2 seeds
of weight 11. The similarities for which Kong’s seeds werenpuited are
given in parentheses. For the second last line, we considbeeinterval

16..19 for lengths.

Table 6. The sensitivity of our multiple seed of weight 11 from Table 5
compared to that of (Li et al., 2004) for length of random oegb4.

their
sensitivity
0.287255 (60%)
(Yang. et al., 2004)0.500277 (65%)

former
multiple seeds

sensitivity of ~ time
our multiple seed (sec)
0.313090 (60%)
0.538023 (65%)

sensitivity of
the 16 seeds of

sensitivity of
our 16 seeds

sensitivity of

similarity our 32 seeds

8seedsof 0.727770 (70%) 0.765212 (70%8.50 (Lietal., 2004) inTable5 (see Appendix)
weight12 ~ 0.897822 (75%) 0.920984 (75%) 60% 0.566640 0.578242 0.699776
0.977895 (80%) 0.985577 (80%) 65% 0.781508 0.792108 0.877349
(Kong, 2007) 0.185211 (50%) 0.185472 (50%) 0.06 70% 0.924114 0.930081 0.967602
3(2) seeds of 0-972460 (75%)  0.977626 (75%) 0.05 75% 0.984289 0.986152 0.995271
weight 9 (11) 0.038393 (50%) 0.038554 (50%) 0.29 gng’ 8-3333;‘2 8-3333;2 8-33338;

0 0 0 . . .
0.815865 (75%) 0.823314 (75%) 0.02 90% 1000000 1000000 1000000
time 12 days 17 sec 171 sec

The most difficult test is comparing with the multiple seetif.o
et al., 2004), the sensitivities of which were kindly praaddby the
authors (Li, 2007; Ma, 2007). The multiple seed of 16 weight 1
seeds in (Li et al., 2004) — which is implemented in the besato
logy search software, PatternHunterll — took 12 days to agmp
greedily, that is, assuming the firsseeds are known, tHe + 1)th
seed is selected by exhaustive search in a length intenihlasat
maximizes the sensitivity of all+ 1 seeds. Remarkably, ML.TIP-
LESEEDScomputes a better multiple seed in 17 seconds! Itis show/ CONCLUSION AND FURTHER RESEARCH
in Table 5 and the comparison with the one of (Li et al., 2084) i The introduction of optimal spaced seeds in (Ma et al., 26612)
provided in columns two and three of Table 6. The last colurn o lowed by multiple spaced seeds in (Li et al., 2004) revohized
Table 6 contains the sensitivity (significantly higher) ofnaltiple homology search. It is therefore important to compute goadt m
seed consisting of 32 weight 11 seeds which we computed & lestiple spaced seeds fast. The optimal ones are hard to corapdte
than 3 minutes. The multiple seed itself is given in the Agjhen research has been done for finding faster ways to computénkass

We computed then, for the same weight 11, any number of seedsptimal but still good seeds. Our approach is much fasterpaod
between 1 and 16 and compared their sensitivity for sintyldevel duces better multiple seeds than the existing ones. Thish@sn
70% with those of (Li et al., 2004) in Table 7. We give also the by comparing our results with the best previous ones.
time required by each computation. The multiple seeds aengn We believe that the dramatic improvement brought by our
the Appendix. Note that the sensitivity of our multiple seedth approach allows looking at multiple seeds in a different viogyond
13, 14, and 15 seeds are higher than the sensitivity of the ohe the improvement in homology search simply due to better imult
(Li et al., 2004) with an extra seed, that is, 14, 15, and 16lsee ple seeds. So far, as computing good multiple spaced seexla wa
respectively. very time-consuming task, the seeds were first computedeerd t

We should mention that the implementation oM IPLESEEDS
is straightforward and we used the dynamic programmingrélgo
of (Li et al., 2004) for computing sensitivity. The runnirigies can
probably be improved but our focus is on fast algorithms astcbn
efficient implementation.




Multiple spaced seeds

Table 7. The sensitivity of our multiple seeds wittseeds] < i < 16, of
weight 11, compared to that of (Li et al., 2004) for similpart0% and length
of random region 64. The ones for> 3 are computed by the algorithm
MuULTIPLESEEDSas given whereas far= 1, 2 an interval for lengths was
considered.

i sensitivity of sensitivity of time to
number the first seeds of i seeds compute
of seeds (Lietal,2004) computed heréseeds (sec)

1 0.467122 0.467122 0.01

2 0.620034 0.621992 0.88

3 0.701920 0.705694 0.09

4 0.754809 0.758224 0.20

5 0.791461 0.797473 0.52

6 0.818647 0.825245 0.82

7 0.839900 0.845990 1.33

8 0.856520 0.863893 1.96

9 0.870671 0.877309 2.95

10 0.882106 0.888385 3.89

11 0.891927 0.898855 5.40

12 0.900161 0.907064 7.50

13 0.907335 0.914018 9.87

14 0.913581 0.920340 11.68

15 0.919134 0.925966 16.17

16 0.924114 0.930081 17.26

hard-coded in the homology search software. With our ambroa
testing of many seeds for a given purpose becomes possilse, A
the swapping technique we used for fast improvement of aperl
complexity may be useful for fast improvement of other, $pec
properties as well.

While our experimental results are very good, the theoryum® s
port them needs development. Problems include provingagtees
for the correlation between overlap complexity and sernisitifin-
ding bounds on the approximation ratio of our heuristic gthm
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APPENDIX

The multiple seed used in Table 4 for comparison with the dne o
(Yang. et al., 2004):




Lucian llie and Silvana llie

111#1#11%1%11111
11%11%111% 15 1% 111
11111## %% 1x* 11x% 15111
11 % 11% 1x Lxwwnn 1x 1% 1111
I B B I I I I I
I I e I I I I I
111*1***QQx*x* T T x1x*x111
B R N R I I I I

The multiple seeds used in Table 4 for comparison with thes one
of (Kong, 2007); they are given in the same order in which the
sensitivities are given in Table 4:

11+1+111+111
111*1**x*xQx*xxQxxx]1x1]1
N N R N e

11+1+111+111
I R N I I
111 ***xJxkxskx]x*xToxsx]x]]

11#1#11%%11%1111
111+ 11#*1* 1+ 1%+ 111

111%111%%1%1111
N N R N e I e I

Our multiple seed of 32 weight 11 seeds the sensitivity ofcivhi

is given in the last column of Table 6; the time needed to cdmpu
all 32 seeds was 171 seconds:

111%11%11%%1111
11%1+111%11% %111
111##11%1% 11111
1111# 1% 1% % 1x1%11
111#%#11x% 1% % 11%111
11%11##%11%1x111%1

1111% 1ex 1% 1 1exx111
11%11# 1x 1o v w12 1111

1111w kxxx1xx111% 1511

111% Tewxxx11Tax%11x11

111 Tex 11w s s 1w 15111
1115 1e Teww I Taw Lex 1511
I1xQx*xx1l*Lxx*xx]x*xx1111
11x11*x*xx1x 1 s x*xx*x11x11
111*1**xx*x*xx]x]x*x1*+x111
b B B o I I I e
N R I N N R I
11*x11**x* I JHxskxsxx]x]x*111
N R N N o I I I I
11*x11**x*xQx*xTHx*xTxx*x1x111
11x*11x* T *xQxskxsxxx11x1x11
B R e I I I I I
11*x11* *xQx*xskx*x]*T*Txx1x11
11*x1*x1Q**x*x*J*x T x*xx11*xx11
B N N e I I I I
111 ***x*JQx*x*xxQx*xT*T*x11
N R N N R I I I
I N N I I I
I 11 *x Q1 * x*THxx*xx]xx11x11
N N N N N N N
I N R I I I I
T1x*1]x*x* T x1 1 x*xx111%1

The seeds used to obtain the sensitivities in Table 7; theidirs
PatternHunter's seeds; the set of 16 seeds is given in Table 5

1 seed

111 2#*1*1x* 11111

2 seeds

111+ 2% 1x%1%x11%111
1112 %%xLoxLorxx1x1x111

3 seeds

111%111%%1%1111
11x11*1xxx*xIxx*x1x1%x111
b o o R I I

4 seeds

111+111%%1+1111

11#10% Twkww 1 141111

B I IR I I I I I
B I I I e e

6 seeds

111%11%11%1%111

11# 1% 1#%11%% 11111

111 x**xdxxxIxlxxx11x11
I R R I o I e
B B B e e I
B I I R B I I e I

8 seeds

11%111#1%1%1111

1111% 1ex1x%11#%111

11% 11# %% 11x% 1x % 1111

N N I o I e e
T1x1xQxxxx I xxxxxx]1xx1111
B I I R I I I
111 *T**x**xQx*x*xJQx*x1x11*1
I I I B IR I I I

10 seeds

111%1%11+111+11

1+111%% 1111111
1112%%*x11*x11x1x11

111 10w wwwnx 1x1xx11%11
111x 1% DxxIxxx*xx1x1x111
I I R R I I I I
Tl*x*1*T**xQx*x*x]*1Q*x*xx1171
T1*x1*xQ*xQx**xQx*xx1xI1x1x%x11
B I I I I e I
111 **Qx**xQx*TxJx*x*x1xx1171

12 seeds

111%11#1%1%1111

111% 1+ 111%% 1%+ 111

111% 11#%%% 1151111

1111 #% 1ex11% 1ox1x11

11% 1% 11w xxx 1x Towx 11511
N N o e o I e e
B I I I I I e e
B I O IR I I e I
Tl*x*J**xQx*xQxQx*xx11x*x111
B I I I I I I
B I R I I I e I
b I o o o T I

14 seeds

11111+1*%11111
1111%%11%1%1%111
11#1#%111#%%%11%111

111 1wwxx11%x 1% 1111
11#12% % 1x 11 1x 1% 11
11dxx*xIxxIwxx1*x1xx%x1111

B I I R I I I I I e
N B N R I I o e
b I R o I I
B I B I R I I I I
T1*x1*xQ*x*Jx*xQx*xJx*x*xTxxx1171
B I I I I I I I
I I IR I e e I I I
T1*xQ*x*Jx*x*Jx*xQx*x11**x1%x1]1

5 seeds

111#11%11% 1% 111
1111%% 1% 1x Loxx11x11
T1x1xIxsxQx*xLxxlxxx1111
N R B R N R R N A
N N N N e
7 seeds

111%11%1x1%1111
1111#%%11%% 1x1%111

111% Trwxx11x Tox11x%11
111 ***1*J*x*T*xx*xx1x111
N R I R I I I I
I R R I I I e I
N N N R I e I
9 seeds

111%11%1x1%1111
11%1+1111% % 1+%111

11% 11sxx% 1% 11#%1111

111 Lsk% Lows 1o Ta Tex 1511
N R I I I I I I
N N N N N I I I
N N N N o I N
B R N e I I I
111*** Q1 x*xskx*x]*]*Txx*x111
11 seeds

111#11% 1% 151111
111#1#111% %% 11%11

11% 1 1ex1x% 11#%1111

111% 11#x 1x Lx v 11511

112w # Texwx1Dnx 1ex 11511

B B N e I I e
T1x*1]x*xQxsx*x]*T1x*x*x111
11*x11**xQx*Jwx*xJHrxxx]x]1x1]
R R N o I I I I
111*** Q1 x*xskx*xTxx]1x11*1*1
111**x* ] J*x*xTHxsxx]x*x11x11
13 seeds

111%11%11%1%111

11% 11+ 1% 1% 1%+ 1111

111#1# 1xx1x%11%111
111%11e% 11w % s 1x1x11
1111%# Texx1x 1 1exx111

N N I I I e I
I I N R I I I I
B R B e I I e I
N o R N e e I
N R N R I I I I I
N R I I N I
N N R N R N e S I
I R N N o I I
15 seeds

111%%1%1111%111

11#111% 1% 1%%1111
1111##11%1* 1% Q%% 11

11+ 1% 1% 11w % 1x%% 1111

I11# 10w wwn ITwx 15 1x11
111*dx*xIxxIxIxxx1%x111
111 xx*xDxxkxIxx1lxx1x11
I B I I I I I
I R B N L I I e
R R R R N I K I
b B I R I I I e
R I I IE R I T I e
I R I R N R I I K I
I I o I I I I I
I R I K I L I




